about summary refs log tree commit diff
path: root/absl/synchronization/mutex_benchmark.cc
blob: ab1880012a0c1e791478b047b65cc0a90d36b7d7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cstdint>
#include <mutex>  // NOLINT(build/c++11)
#include <vector>

#include "absl/base/internal/cycleclock.h"
#include "absl/base/internal/spinlock.h"
#include "absl/synchronization/blocking_counter.h"
#include "absl/synchronization/internal/thread_pool.h"
#include "absl/synchronization/mutex.h"
#include "benchmark/benchmark.h"

namespace {

void BM_Mutex(benchmark::State& state) {
  static absl::Mutex* mu = new absl::Mutex;
  for (auto _ : state) {
    absl::MutexLock lock(mu);
  }
}
BENCHMARK(BM_Mutex)->UseRealTime()->Threads(1)->ThreadPerCpu();

static void DelayNs(int64_t ns, int* data) {
  int64_t end = absl::base_internal::CycleClock::Now() +
                ns * absl::base_internal::CycleClock::Frequency() / 1e9;
  while (absl::base_internal::CycleClock::Now() < end) {
    ++(*data);
    benchmark::DoNotOptimize(*data);
  }
}

template <typename MutexType>
class RaiiLocker {
 public:
  explicit RaiiLocker(MutexType* mu) : mu_(mu) { mu_->Lock(); }
  ~RaiiLocker() { mu_->Unlock(); }
 private:
  MutexType* mu_;
};

template <>
class RaiiLocker<std::mutex> {
 public:
  explicit RaiiLocker(std::mutex* mu) : mu_(mu) { mu_->lock(); }
  ~RaiiLocker() { mu_->unlock(); }
 private:
  std::mutex* mu_;
};

template <typename MutexType>
void BM_Contended(benchmark::State& state) {
  struct Shared {
    MutexType mu;
    int data = 0;
  };
  static auto* shared = new Shared;
  int local = 0;
  for (auto _ : state) {
    // Here we model both local work outside of the critical section as well as
    // some work inside of the critical section. The idea is to capture some
    // more or less realisitic contention levels.
    // If contention is too low, the benchmark won't measure anything useful.
    // If contention is unrealistically high, the benchmark will favor
    // bad mutex implementations that block and otherwise distract threads
    // from the mutex and shared state for as much as possible.
    // To achieve this amount of local work is multiplied by number of threads
    // to keep ratio between local work and critical section approximately
    // equal regardless of number of threads.
    DelayNs(100 * state.threads, &local);
    RaiiLocker<MutexType> locker(&shared->mu);
    DelayNs(state.range(0), &shared->data);
  }
}

BENCHMARK_TEMPLATE(BM_Contended, absl::Mutex)
    ->UseRealTime()
    // ThreadPerCpu poorly handles non-power-of-two CPU counts.
    ->Threads(1)
    ->Threads(2)
    ->Threads(4)
    ->Threads(6)
    ->Threads(8)
    ->Threads(12)
    ->Threads(16)
    ->Threads(24)
    ->Threads(32)
    ->Threads(48)
    ->Threads(64)
    ->Threads(96)
    ->Threads(128)
    ->Threads(192)
    ->Threads(256)
    // Some empirically chosen amounts of work in critical section.
    // 1 is low contention, 200 is high contention and few values in between.
    ->Arg(1)
    ->Arg(20)
    ->Arg(50)
    ->Arg(200);

BENCHMARK_TEMPLATE(BM_Contended, absl::base_internal::SpinLock)
    ->UseRealTime()
    // ThreadPerCpu poorly handles non-power-of-two CPU counts.
    ->Threads(1)
    ->Threads(2)
    ->Threads(4)
    ->Threads(6)
    ->Threads(8)
    ->Threads(12)
    ->Threads(16)
    ->Threads(24)
    ->Threads(32)
    ->Threads(48)
    ->Threads(64)
    ->Threads(96)
    ->Threads(128)
    ->Threads(192)
    ->Threads(256)
    // Some empirically chosen amounts of work in critical section.
    // 1 is low contention, 200 is high contention and few values in between.
    ->Arg(1)
    ->Arg(20)
    ->Arg(50)
    ->Arg(200);

BENCHMARK_TEMPLATE(BM_Contended, std::mutex)
    ->UseRealTime()
    // ThreadPerCpu poorly handles non-power-of-two CPU counts.
    ->Threads(1)
    ->Threads(2)
    ->Threads(4)
    ->Threads(6)
    ->Threads(8)
    ->Threads(12)
    ->Threads(16)
    ->Threads(24)
    ->Threads(32)
    ->Threads(48)
    ->Threads(64)
    ->Threads(96)
    ->Threads(128)
    ->Threads(192)
    ->Threads(256)
    // Some empirically chosen amounts of work in critical section.
    // 1 is low contention, 200 is high contention and few values in between.
    ->Arg(1)
    ->Arg(20)
    ->Arg(50)
    ->Arg(200);

// Measure the overhead of conditions on mutex release (when they must be
// evaluated).  Mutex has (some) support for equivalence classes allowing
// Conditions with the same function/argument to potentially not be multiply
// evaluated.
//
// num_classes==0 is used for the special case of every waiter being distinct.
void BM_ConditionWaiters(benchmark::State& state) {
  int num_classes = state.range(0);
  int num_waiters = state.range(1);

  struct Helper {
    static void Waiter(absl::BlockingCounter* init, absl::Mutex* m, int* p) {
      init->DecrementCount();
      m->LockWhen(absl::Condition(
          static_cast<bool (*)(int*)>([](int* v) { return *v == 0; }), p));
      m->Unlock();
    }
  };

  if (num_classes == 0) {
    // No equivalence classes.
    num_classes = num_waiters;
  }

  absl::BlockingCounter init(num_waiters);
  absl::Mutex mu;
  std::vector<int> equivalence_classes(num_classes, 1);

  // Must be declared last to be destroyed first.
  absl::synchronization_internal::ThreadPool pool(num_waiters);

  for (int i = 0; i < num_waiters; i++) {
    // Mutex considers Conditions with the same function and argument
    // to be equivalent.
    pool.Schedule([&, i] {
      Helper::Waiter(&init, &mu, &equivalence_classes[i % num_classes]);
    });
  }
  init.Wait();

  for (auto _ : state) {
    mu.Lock();
    mu.Unlock();  // Each unlock requires Condition evaluation for our waiters.
  }

  mu.Lock();
  for (int i = 0; i < num_classes; i++) {
    equivalence_classes[i] = 0;
  }
  mu.Unlock();
}

// Some configurations have higher thread limits than others.
#if defined(__linux__) && !defined(THREAD_SANITIZER)
constexpr int kMaxConditionWaiters = 8192;
#else
constexpr int kMaxConditionWaiters = 1024;
#endif
BENCHMARK(BM_ConditionWaiters)->RangePair(0, 2, 1, kMaxConditionWaiters);

}  // namespace