1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/fastmem.h"
#include <memory>
#include <random>
#include <string>
#include "base/init_google.h"
#include "base/logging.h"
#include "testing/base/public/benchmark.h"
#include "gtest/gtest.h"
namespace {
using RandomEngine = std::minstd_rand0;
void VerifyResults(const int r1, const int r2, const std::string& a,
const std::string& b) {
CHECK_EQ(a.size(), b.size());
if (r1 == 0) {
EXPECT_EQ(r2, 0) << a << " " << b;
} else if (r1 > 0) {
EXPECT_GT(r2, 0) << a << " " << b;
} else {
EXPECT_LT(r2, 0) << a << " " << b;
}
if ((r1 == 0) == (r2 == 0)) {
EXPECT_EQ(r1 == 0,
absl::strings_internal::memeq(a.data(), b.data(), a.size()))
<< r1 << " " << a << " " << b;
}
}
// Check correctness against glibc's memcmp implementation
void CheckSingle(const std::string& a, const std::string& b) {
CHECK_EQ(a.size(), b.size());
const int r1 = memcmp(a.data(), b.data(), a.size());
const int r2 =
absl::strings_internal::fastmemcmp_inlined(a.data(), b.data(), a.size());
VerifyResults(r1, r2, a, b);
}
void GenerateString(size_t len, std::string* s) {
s->clear();
for (int i = 0; i < len; i++) {
*s += ('a' + (i % 26));
}
}
void CheckCompare(const std::string& a, const std::string& b) {
CheckSingle(a, b);
for (int common = 0; common <= 32; common++) {
std::string extra;
GenerateString(common, &extra);
CheckSingle(extra + a, extra + b);
CheckSingle(a + extra, b + extra);
for (char c1 = 'a'; c1 <= 'c'; c1++) {
for (char c2 = 'a'; c2 <= 'c'; c2++) {
CheckSingle(extra + c1 + a, extra + c2 + b);
}
}
}
}
TEST(FastCompare, Misc) {
CheckCompare("", "");
CheckCompare("a", "a");
CheckCompare("ab", "ab");
CheckCompare("abc", "abc");
CheckCompare("abcd", "abcd");
CheckCompare("abcde", "abcde");
CheckCompare("a", "x");
CheckCompare("ab", "xb");
CheckCompare("abc", "xbc");
CheckCompare("abcd", "xbcd");
CheckCompare("abcde", "xbcde");
CheckCompare("x", "a");
CheckCompare("xb", "ab");
CheckCompare("xbc", "abc");
CheckCompare("xbcd", "abcd");
CheckCompare("xbcde", "abcde");
CheckCompare("a", "x");
CheckCompare("ab", "ax");
CheckCompare("abc", "abx");
CheckCompare("abcd", "abcx");
CheckCompare("abcde", "abcdx");
CheckCompare("x", "a");
CheckCompare("ax", "ab");
CheckCompare("abx", "abc");
CheckCompare("abcx", "abcd");
CheckCompare("abcdx", "abcde");
for (int len = 0; len < 1000; len++) {
std::string p(len, 'z');
CheckCompare(p + "x", p + "a");
CheckCompare(p + "ax", p + "ab");
CheckCompare(p + "abx", p + "abc");
CheckCompare(p + "abcx", p + "abcd");
CheckCompare(p + "abcdx", p + "abcde");
}
}
TEST(FastCompare, TrailingByte) {
for (int i = 0; i < 256; i++) {
for (int j = 0; j < 256; j++) {
std::string a(1, i);
std::string b(1, j);
CheckSingle(a, b);
}
}
}
// Check correctness of memcpy_inlined.
void CheckSingleMemcpyInlined(const std::string& a) {
std::unique_ptr<char[]> destination(new char[a.size() + 2]);
destination[0] = 'x';
destination[a.size() + 1] = 'x';
absl::strings_internal::memcpy_inlined(destination.get() + 1, a.data(),
a.size());
CHECK_EQ('x', destination[0]);
CHECK_EQ('x', destination[a.size() + 1]);
CHECK_EQ(0, memcmp(a.data(), destination.get() + 1, a.size()));
}
TEST(MemCpyInlined, Misc) {
CheckSingleMemcpyInlined("");
CheckSingleMemcpyInlined("0");
CheckSingleMemcpyInlined("012");
CheckSingleMemcpyInlined("0123");
CheckSingleMemcpyInlined("01234");
CheckSingleMemcpyInlined("012345");
CheckSingleMemcpyInlined("0123456");
CheckSingleMemcpyInlined("01234567");
CheckSingleMemcpyInlined("012345678");
CheckSingleMemcpyInlined("0123456789");
CheckSingleMemcpyInlined("0123456789a");
CheckSingleMemcpyInlined("0123456789ab");
CheckSingleMemcpyInlined("0123456789abc");
CheckSingleMemcpyInlined("0123456789abcd");
CheckSingleMemcpyInlined("0123456789abcde");
CheckSingleMemcpyInlined("0123456789abcdef");
CheckSingleMemcpyInlined("0123456789abcdefg");
}
template <typename Function>
inline void CopyLoop(benchmark::State& state, int size, Function func) {
char* src = new char[size];
char* dst = new char[size];
memset(src, 'x', size);
memset(dst, 'y', size);
for (auto _ : state) {
func(dst, src, size);
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * size);
CHECK_EQ(dst[0], 'x');
delete[] src;
delete[] dst;
}
void BM_memcpy(benchmark::State& state) {
CopyLoop(state, state.range(0), memcpy);
}
BENCHMARK(BM_memcpy)->DenseRange(1, 18)->Range(32, 8 << 20);
void BM_memcpy_inlined(benchmark::State& state) {
CopyLoop(state, state.range(0), absl::strings_internal::memcpy_inlined);
}
BENCHMARK(BM_memcpy_inlined)->DenseRange(1, 18)->Range(32, 8 << 20);
// unaligned memcpy
void BM_unaligned_memcpy(benchmark::State& state) {
const int n = state.range(0);
const int kMaxOffset = 32;
char* src = new char[n + kMaxOffset];
char* dst = new char[n + kMaxOffset];
memset(src, 'x', n + kMaxOffset);
int r = 0, i = 0;
for (auto _ : state) {
memcpy(dst + (i % kMaxOffset), src + ((i + 5) % kMaxOffset), n);
r += dst[0];
++i;
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * n);
delete[] src;
delete[] dst;
benchmark::DoNotOptimize(r);
}
BENCHMARK(BM_unaligned_memcpy)->DenseRange(1, 18)->Range(32, 8 << 20);
// memmove worst case: heavy overlap, but not always by the same amount.
// Also, the source and destination will often be unaligned.
void BM_memmove_worst_case(benchmark::State& state) {
const int n = state.range(0);
const int32_t kDeterministicSeed = 301;
const int kMaxOffset = 32;
char* src = new char[n + kMaxOffset];
memset(src, 'x', n + kMaxOffset);
size_t offsets[64];
RandomEngine rng(kDeterministicSeed);
std::uniform_int_distribution<size_t> random_to_max_offset(0, kMaxOffset);
for (size_t& offset : offsets) {
offset = random_to_max_offset(rng);
}
int r = 0, i = 0;
for (auto _ : state) {
memmove(src + offsets[i], src + offsets[i + 1], n);
r += src[0];
i = (i + 2) % arraysize(offsets);
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * n);
delete[] src;
benchmark::DoNotOptimize(r);
}
BENCHMARK(BM_memmove_worst_case)->DenseRange(1, 18)->Range(32, 8 << 20);
// memmove cache-friendly: aligned and overlapping with 4k
// between the source and destination addresses.
void BM_memmove_cache_friendly(benchmark::State& state) {
const int n = state.range(0);
char* src = new char[n + 4096];
memset(src, 'x', n);
int r = 0;
while (state.KeepRunningBatch(2)) { // count each memmove as an iteration
memmove(src + 4096, src, n);
memmove(src, src + 4096, n);
r += src[0];
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * n);
delete[] src;
benchmark::DoNotOptimize(r);
}
BENCHMARK(BM_memmove_cache_friendly)
->Arg(5 * 1024)
->Arg(10 * 1024)
->Range(16 << 10, 8 << 20);
// memmove best(?) case: aligned and non-overlapping.
void BM_memmove_aligned_non_overlapping(benchmark::State& state) {
CopyLoop(state, state.range(0), memmove);
}
BENCHMARK(BM_memmove_aligned_non_overlapping)
->DenseRange(1, 18)
->Range(32, 8 << 20);
// memset speed
void BM_memset(benchmark::State& state) {
const int n = state.range(0);
char* dst = new char[n];
int r = 0;
for (auto _ : state) {
memset(dst, 'x', n);
r += dst[0];
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * n);
delete[] dst;
benchmark::DoNotOptimize(r);
}
BENCHMARK(BM_memset)->Range(8, 4096 << 10);
// Bandwidth (vectorization?) test: the ideal generated code will be limited
// by memory bandwidth. Even so-so generated code will max out memory bandwidth
// on some machines.
void BM_membandwidth(benchmark::State& state) {
const int n = state.range(0);
CHECK_EQ(n % 32, 0); // We will read 32 bytes per iter.
char* dst = new char[n];
int r = 0;
for (auto _ : state) {
const uint32_t* p = reinterpret_cast<uint32_t*>(dst);
const uint32_t* limit = reinterpret_cast<uint32_t*>(dst + n);
uint32_t x = 0;
while (p < limit) {
x += p[0];
x += p[1];
x += p[2];
x += p[3];
x += p[4];
x += p[5];
x += p[6];
x += p[7];
p += 8;
}
r += x;
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * n);
delete[] dst;
benchmark::DoNotOptimize(r);
}
BENCHMARK(BM_membandwidth)->Range(32, 16384 << 10);
// Helper for benchmarks. Repeatedly compares two strings that are
// either equal or different only in one character. If test_equal_strings
// is false then position_to_modify determines where the difference will be.
template <typename Function>
ABSL_ATTRIBUTE_ALWAYS_INLINE inline void StringCompareLoop(
benchmark::State& state, bool test_equal_strings,
std::string::size_type position_to_modify, int size, Function func) {
const int kIterMult = 4; // Iteration multiplier for better timing resolution
CHECK_GT(size, 0);
const bool position_to_modify_is_valid =
position_to_modify != std::string::npos && position_to_modify < size;
CHECK_NE(position_to_modify_is_valid, test_equal_strings);
if (!position_to_modify_is_valid) {
position_to_modify = 0;
}
std::string sa(size, 'a');
std::string sb = sa;
char last = sa[size - 1];
int num = 0;
for (auto _ : state) {
for (int i = 0; i < kIterMult; ++i) {
sb[position_to_modify] = test_equal_strings ? last : last ^ 1;
num += func(sa, sb);
}
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * size);
benchmark::DoNotOptimize(num);
}
// Helper for benchmarks. Repeatedly compares two memory regions that are
// either equal or different only in their final character.
template <typename Function>
ABSL_ATTRIBUTE_ALWAYS_INLINE inline void CompareLoop(benchmark::State& state,
bool test_equal_strings,
int size, Function func) {
const int kIterMult = 4; // Iteration multiplier for better timing resolution
CHECK_GT(size, 0);
char* data = static_cast<char*>(malloc(size * 2));
memset(data, 'a', size * 2);
char* a = data;
char* b = data + size;
char last = a[size - 1];
int num = 0;
for (auto _ : state) {
for (int i = 0; i < kIterMult; ++i) {
b[size - 1] = test_equal_strings ? last : last ^ 1;
num += func(a, b, size);
}
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * size);
benchmark::DoNotOptimize(num);
free(data);
}
void BM_memcmp(benchmark::State& state) {
CompareLoop(state, false, state.range(0), memcmp);
}
BENCHMARK(BM_memcmp)->DenseRange(1, 9)->Range(32, 8 << 20);
void BM_fastmemcmp_inlined(benchmark::State& state) {
CompareLoop(state, false, state.range(0),
absl::strings_internal::fastmemcmp_inlined);
}
BENCHMARK(BM_fastmemcmp_inlined)->DenseRange(1, 9)->Range(32, 8 << 20);
void BM_memeq(benchmark::State& state) {
CompareLoop(state, false, state.range(0), absl::strings_internal::memeq);
}
BENCHMARK(BM_memeq)->DenseRange(1, 9)->Range(32, 8 << 20);
void BM_memeq_equal(benchmark::State& state) {
CompareLoop(state, true, state.range(0), absl::strings_internal::memeq);
}
BENCHMARK(BM_memeq_equal)->DenseRange(1, 9)->Range(32, 8 << 20);
bool StringLess(const std::string& x, const std::string& y) { return x < y; }
bool StringEqual(const std::string& x, const std::string& y) { return x == y; }
bool StdEqual(const std::string& x, const std::string& y) {
return x.size() == y.size() &&
std::equal(x.data(), x.data() + x.size(), y.data());
}
// Benchmark for x < y, where x and y are strings that differ in only their
// final char. That should be more-or-less the worst case for <.
void BM_string_less(benchmark::State& state) {
StringCompareLoop(state, false, state.range(0) - 1, state.range(0),
StringLess);
}
BENCHMARK(BM_string_less)->DenseRange(1, 9)->Range(32, 1 << 20);
// Benchmark for x < y, where x and y are strings that differ in only their
// first char. That should be more-or-less the best case for <.
void BM_string_less_easy(benchmark::State& state) {
StringCompareLoop(state, false, 0, state.range(0), StringLess);
}
BENCHMARK(BM_string_less_easy)->DenseRange(1, 9)->Range(32, 1 << 20);
void BM_string_equal(benchmark::State& state) {
StringCompareLoop(state, false, state.range(0) - 1, state.range(0),
StringEqual);
}
BENCHMARK(BM_string_equal)->DenseRange(1, 9)->Range(32, 1 << 20);
void BM_string_equal_equal(benchmark::State& state) {
StringCompareLoop(state, true, std::string::npos, state.range(0), StringEqual);
}
BENCHMARK(BM_string_equal_equal)->DenseRange(1, 9)->Range(32, 1 << 20);
void BM_std_equal(benchmark::State& state) {
StringCompareLoop(state, false, state.range(0) - 1, state.range(0), StdEqual);
}
BENCHMARK(BM_std_equal)->DenseRange(1, 9)->Range(32, 1 << 20);
void BM_std_equal_equal(benchmark::State& state) {
StringCompareLoop(state, true, std::string::npos, state.range(0), StdEqual);
}
BENCHMARK(BM_std_equal_equal)->DenseRange(1, 9)->Range(32, 1 << 20);
void BM_string_equal_unequal_lengths(benchmark::State& state) {
const int size = state.range(0);
std::string a(size, 'a');
std::string b(size + 1, 'a');
int count = 0;
for (auto _ : state) {
b[size - 1] = 'a';
count += (a == b);
}
benchmark::DoNotOptimize(count);
}
BENCHMARK(BM_string_equal_unequal_lengths)->Arg(1)->Arg(1 << 20);
void BM_stdstring_equal_unequal_lengths(benchmark::State& state) {
const int size = state.range(0);
std::string a(size, 'a');
std::string b(size + 1, 'a');
int count = 0;
for (auto _ : state) {
b[size - 1] = 'a';
count += (a == b);
}
benchmark::DoNotOptimize(count);
}
BENCHMARK(BM_stdstring_equal_unequal_lengths)->Arg(1)->Arg(1 << 20);
} // namespace
|