1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_
#define ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_
// This file contains some implementation details which are used by one or more
// of the absl random number distributions.
#include <cfloat>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <limits>
#include <type_traits>
#if (defined(_WIN32) || defined(_WIN64)) && defined(_M_IA64)
#include <intrin.h> // NOLINT(build/include_order)
#pragma intrinsic(_umul128)
#define ABSL_INTERNAL_USE_UMUL128 1
#endif
#include "absl/base/config.h"
#include "absl/base/internal/bits.h"
#include "absl/numeric/int128.h"
#include "absl/random/internal/fastmath.h"
#include "absl/random/internal/traits.h"
namespace absl {
namespace random_internal {
// Creates a double from `bits`, with the template fields controlling the
// output.
//
// RandU64To is both more efficient and generates more unique values in the
// result interval than known implementations of std::generate_canonical().
//
// The `Signed` parameter controls whether positive, negative, or both are
// returned (thus affecting the output interval).
// When Signed == SignedValueT, range is U(-1, 1)
// When Signed == NegativeValueT, range is U(-1, 0)
// When Signed == PositiveValueT, range is U(0, 1)
//
// When the `IncludeZero` parameter is true, the function may return 0 for some
// inputs, otherwise it never returns 0.
//
// The `ExponentBias` parameter determines the scale of the output range by
// adjusting the exponent.
//
// When a value in U(0,1) is required, use:
// RandU64ToDouble<PositiveValueT, true, 0>();
//
// When a value in U(-1,1) is required, use:
// RandU64ToDouble<SignedValueT, false, 0>() => U(-1, 1)
// This generates more distinct values than the mathematically equivalent
// expression `U(0, 1) * 2.0 - 1.0`, and is preferable.
//
// Scaling the result by powers of 2 (and avoiding a multiply) is also possible:
// RandU64ToDouble<PositiveValueT, false, 1>(); => U(0, 2)
// RandU64ToDouble<PositiveValueT, false, -1>(); => U(0, 0.5)
//
// Tristate types controlling the output.
struct PositiveValueT {};
struct NegativeValueT {};
struct SignedValueT {};
// RandU64ToDouble is the double-result variant of RandU64To, described above.
template <typename Signed, bool IncludeZero, int ExponentBias = 0>
inline double RandU64ToDouble(uint64_t bits) {
static_assert(std::is_same<Signed, PositiveValueT>::value ||
std::is_same<Signed, NegativeValueT>::value ||
std::is_same<Signed, SignedValueT>::value,
"");
// Maybe use the left-most bit for a sign bit.
uint64_t sign = std::is_same<Signed, NegativeValueT>::value
? 0x8000000000000000ull
: 0; // Sign bits.
if (std::is_same<Signed, SignedValueT>::value) {
sign = bits & 0x8000000000000000ull;
bits = bits & 0x7FFFFFFFFFFFFFFFull;
}
if (IncludeZero) {
if (bits == 0u) return 0;
}
// Number of leading zeros is mapped to the exponent: 2^-clz
int clz = base_internal::CountLeadingZeros64(bits);
// Shift number left to erase leading zeros.
bits <<= IncludeZero ? clz : (clz & 63);
// Shift number right to remove bits that overflow double mantissa. The
// direction of the shift depends on `clz`.
bits >>= (64 - DBL_MANT_DIG);
// Compute IEEE 754 double exponent.
// In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the
// exponent to account for that.
const uint64_t exp =
(std::is_same<Signed, SignedValueT>::value ? 1023U : 1022U) +
static_cast<uint64_t>(ExponentBias - clz);
constexpr int kExp = DBL_MANT_DIG - 1;
// Construct IEEE 754 double from exponent and mantissa.
const uint64_t val = sign | (exp << kExp) | (bits & ((1ULL << kExp) - 1U));
double res;
static_assert(sizeof(res) == sizeof(val), "double is not 64 bit");
// Memcpy value from "val" to "res" to avoid aliasing problems. Assumes that
// endian-ness is same for double and uint64_t.
std::memcpy(&res, &val, sizeof(res));
return res;
}
// RandU64ToFloat is the float-result variant of RandU64To, described above.
template <typename Signed, bool IncludeZero, int ExponentBias = 0>
inline float RandU64ToFloat(uint64_t bits) {
static_assert(std::is_same<Signed, PositiveValueT>::value ||
std::is_same<Signed, NegativeValueT>::value ||
std::is_same<Signed, SignedValueT>::value,
"");
// Maybe use the left-most bit for a sign bit.
uint64_t sign = std::is_same<Signed, NegativeValueT>::value
? 0x80000000ul
: 0; // Sign bits.
if (std::is_same<Signed, SignedValueT>::value) {
uint64_t a = bits & 0x8000000000000000ull;
sign = static_cast<uint32_t>(a >> 32);
bits = bits & 0x7FFFFFFFFFFFFFFFull;
}
if (IncludeZero) {
if (bits == 0u) return 0;
}
// Number of leading zeros is mapped to the exponent: 2^-clz
int clz = base_internal::CountLeadingZeros64(bits);
// Shift number left to erase leading zeros.
bits <<= IncludeZero ? clz : (clz & 63);
// Shift number right to remove bits that overflow double mantissa. The
// direction of the shift depends on `clz`.
bits >>= (64 - FLT_MANT_DIG);
// Construct IEEE 754 float exponent.
// In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the
// exponent to account for that.
const uint32_t exp =
(std::is_same<Signed, SignedValueT>::value ? 127U : 126U) +
static_cast<uint32_t>(ExponentBias - clz);
constexpr int kExp = FLT_MANT_DIG - 1;
const uint32_t val = sign | (exp << kExp) | (bits & ((1U << kExp) - 1U));
float res;
static_assert(sizeof(res) == sizeof(val), "float is not 32 bit");
// Assumes that endian-ness is same for float and uint32_t.
std::memcpy(&res, &val, sizeof(res));
return res;
}
template <typename Result>
struct RandU64ToReal {
template <typename Signed, bool IncludeZero, int ExponentBias = 0>
static inline Result Value(uint64_t bits) {
return RandU64ToDouble<Signed, IncludeZero, ExponentBias>(bits);
}
};
template <>
struct RandU64ToReal<float> {
template <typename Signed, bool IncludeZero, int ExponentBias = 0>
static inline float Value(uint64_t bits) {
return RandU64ToFloat<Signed, IncludeZero, ExponentBias>(bits);
}
};
} // namespace random_internal
} // namespace absl
#endif // ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_
|