1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/bernoulli_distribution.h"
#include <cmath>
#include <cstddef>
#include <random>
#include <sstream>
#include <utility>
#include "gtest/gtest.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
namespace {
class BernoulliTest : public testing::TestWithParam<std::pair<double, size_t>> {
};
TEST_P(BernoulliTest, Serialize) {
const double d = GetParam().first;
absl::bernoulli_distribution before(d);
{
absl::bernoulli_distribution via_param{
absl::bernoulli_distribution::param_type(d)};
EXPECT_EQ(via_param, before);
}
std::stringstream ss;
ss << before;
absl::bernoulli_distribution after(0.6789);
EXPECT_NE(before.p(), after.p());
EXPECT_NE(before.param(), after.param());
EXPECT_NE(before, after);
ss >> after;
EXPECT_EQ(before.p(), after.p());
EXPECT_EQ(before.param(), after.param());
EXPECT_EQ(before, after);
}
TEST_P(BernoulliTest, Accuracy) {
// Sadly, the claim to fame for this implementation is precise accuracy, which
// is very, very hard to measure, the improvements come as trials approach the
// limit of double accuracy; thus the outcome differs from the
// std::bernoulli_distribution with a probability of approximately 1 in 2^-53.
const std::pair<double, size_t> para = GetParam();
size_t trials = para.second;
double p = para.first;
absl::InsecureBitGen rng;
size_t yes = 0;
absl::bernoulli_distribution dist(p);
for (size_t i = 0; i < trials; ++i) {
if (dist(rng)) yes++;
}
// Compute the distribution parameters for a binomial test, using a normal
// approximation for the confidence interval, as there are a sufficiently
// large number of trials that the central limit theorem applies.
const double stddev_p = std::sqrt((p * (1.0 - p)) / trials);
const double expected = trials * p;
const double stddev = trials * stddev_p;
// 5 sigma, approved by Richard Feynman
EXPECT_NEAR(yes, expected, 5 * stddev)
<< "@" << p << ", "
<< std::abs(static_cast<double>(yes) - expected) / stddev << " stddev";
}
// There must be many more trials to make the mean approximately normal for `p`
// closes to 0 or 1.
INSTANTIATE_TEST_SUITE_P(
All, BernoulliTest,
::testing::Values(
// Typical values.
std::make_pair(0, 30000), std::make_pair(1e-3, 30000000),
std::make_pair(0.1, 3000000), std::make_pair(0.5, 3000000),
std::make_pair(0.9, 30000000), std::make_pair(0.999, 30000000),
std::make_pair(1, 30000),
// Boundary cases.
std::make_pair(std::nextafter(1.0, 0.0), 1), // ~1 - epsilon
std::make_pair(std::numeric_limits<double>::epsilon(), 1),
std::make_pair(std::nextafter(std::numeric_limits<double>::min(),
1.0), // min + epsilon
1),
std::make_pair(std::numeric_limits<double>::min(), // smallest normal
1),
std::make_pair(
std::numeric_limits<double>::denorm_min(), // smallest denorm
1),
std::make_pair(std::numeric_limits<double>::min() / 2, 1), // denorm
std::make_pair(std::nextafter(std::numeric_limits<double>::min(),
0.0), // denorm_max
1)));
// NOTE: absl::bernoulli_distribution is not guaranteed to be stable.
TEST(BernoulliTest, StabilityTest) {
// absl::bernoulli_distribution stability relies on FastUniformBits and
// integer arithmetic.
absl::random_internal::sequence_urbg urbg({
0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull,
0x4864f22c059bf29eull, 0x247856d8b862665cull, 0xe46e86e9a1337e10ull,
0xd8c8541f3519b133ull, 0xe75b5162c567b9e4ull, 0xf732e5ded7009c5bull,
0xb170b98353121eacull, 0x1ec2e8986d2362caull, 0x814c8e35fe9a961aull,
0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull, 0x1224e62c978bbc7full,
0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull, 0x1bbc23cfa8fac721ull,
0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull, 0x836d794457c08849ull,
0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull, 0xb12d74fdd718c8c5ull,
0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull, 0x5738341045ba0d85ull,
0xe3fd722dc65ad09eull, 0x5a14fd21ea2a5705ull, 0x14e6ea4d6edb0c73ull,
0x275b0dc7e0a18acfull, 0x36cebe0d2653682eull, 0x0361e9b23861596bull,
});
// Generate a std::string of '0' and '1' for the distribution output.
auto generate = [&urbg](absl::bernoulli_distribution& dist) {
std::string output;
output.reserve(36);
urbg.reset();
for (int i = 0; i < 35; i++) {
output.append(dist(urbg) ? "1" : "0");
}
return output;
};
const double kP = 0.0331289862362;
{
absl::bernoulli_distribution dist(kP);
auto v = generate(dist);
EXPECT_EQ(35, urbg.invocations());
EXPECT_EQ(v, "00000000000010000000000010000000000") << dist;
}
{
absl::bernoulli_distribution dist(kP * 10.0);
auto v = generate(dist);
EXPECT_EQ(35, urbg.invocations());
EXPECT_EQ(v, "00000100010010010010000011000011010") << dist;
}
{
absl::bernoulli_distribution dist(kP * 20.0);
auto v = generate(dist);
EXPECT_EQ(35, urbg.invocations());
EXPECT_EQ(v, "00011110010110110011011111110111011") << dist;
}
{
absl::bernoulli_distribution dist(1.0 - kP);
auto v = generate(dist);
EXPECT_EQ(35, urbg.invocations());
EXPECT_EQ(v, "11111111111111111111011111111111111") << dist;
}
}
TEST(BernoulliTest, StabilityTest2) {
absl::random_internal::sequence_urbg urbg(
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
// Generate a std::string of '0' and '1' for the distribution output.
auto generate = [&urbg](absl::bernoulli_distribution& dist) {
std::string output;
output.reserve(13);
urbg.reset();
for (int i = 0; i < 12; i++) {
output.append(dist(urbg) ? "1" : "0");
}
return output;
};
constexpr double b0 = 1.0 / 13.0 / 0.2;
constexpr double b1 = 2.0 / 13.0 / 0.2;
constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1));
{
absl::bernoulli_distribution dist(b0);
auto v = generate(dist);
EXPECT_EQ(12, urbg.invocations());
EXPECT_EQ(v, "000011100101") << dist;
}
{
absl::bernoulli_distribution dist(b1);
auto v = generate(dist);
EXPECT_EQ(12, urbg.invocations());
EXPECT_EQ(v, "001111101101") << dist;
}
{
absl::bernoulli_distribution dist(b3);
auto v = generate(dist);
EXPECT_EQ(12, urbg.invocations());
EXPECT_EQ(v, "001111101111") << dist;
}
}
} // namespace
|