about summary refs log tree commit diff
path: root/absl/container/internal/layout.h
blob: 0c239fe876c5c2880efe76a18b037ec6a50ccbef (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//                           MOTIVATION AND TUTORIAL
//
// If you want to put in a single heap allocation N doubles followed by M ints,
// it's easy if N and M are known at compile time.
//
//   struct S {
//     double a[N];
//     int b[M];
//   };
//
//   S* p = new S;
//
// But what if N and M are known only in run time? Class template Layout to the
// rescue! It's a portable generalization of the technique known as struct hack.
//
//   // This object will tell us everything we need to know about the memory
//   // layout of double[N] followed by int[M]. It's structurally identical to
//   // size_t[2] that stores N and M. It's very cheap to create.
//   const Layout<double, int> layout(N, M);
//
//   // Allocate enough memory for both arrays. `AllocSize()` tells us how much
//   // memory is needed. We are free to use any allocation function we want as
//   // long as it returns aligned memory.
//   std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]);
//
//   // Obtain the pointer to the array of doubles.
//   // Equivalent to `reinterpret_cast<double*>(p.get())`.
//   //
//   // We could have written layout.Pointer<0>(p) instead. If all the types are
//   // unique you can use either form, but if some types are repeated you must
//   // use the index form.
//   double* a = layout.Pointer<double>(p.get());
//
//   // Obtain the pointer to the array of ints.
//   // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`.
//   int* b = layout.Pointer<int>(p);
//
// If we are unable to specify sizes of all fields, we can pass as many sizes as
// we can to `Partial()`. In return, it'll allow us to access the fields whose
// locations and sizes can be computed from the provided information.
// `Partial()` comes in handy when the array sizes are embedded into the
// allocation.
//
//   // size_t[1] containing N, size_t[1] containing M, double[N], int[M].
//   using L = Layout<size_t, size_t, double, int>;
//
//   unsigned char* Allocate(size_t n, size_t m) {
//     const L layout(1, 1, n, m);
//     unsigned char* p = new unsigned char[layout.AllocSize()];
//     *layout.Pointer<0>(p) = n;
//     *layout.Pointer<1>(p) = m;
//     return p;
//   }
//
//   void Use(unsigned char* p) {
//     // First, extract N and M.
//     // Specify that the first array has only one element. Using `prefix` we
//     // can access the first two arrays but not more.
//     constexpr auto prefix = L::Partial(1);
//     size_t n = *prefix.Pointer<0>(p);
//     size_t m = *prefix.Pointer<1>(p);
//
//     // Now we can get pointers to the payload.
//     const L layout(1, 1, n, m);
//     double* a = layout.Pointer<double>(p);
//     int* b = layout.Pointer<int>(p);
//   }
//
// The layout we used above combines fixed-size with dynamically-sized fields.
// This is quite common. Layout is optimized for this use case and generates
// optimal code. All computations that can be performed at compile time are
// indeed performed at compile time.
//
// Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to
// ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no
// padding in between arrays.
//
// You can manually override the alignment of an array by wrapping the type in
// `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
// and behavior as `Layout<..., T, ...>` except that the first element of the
// array of `T` is aligned to `N` (the rest of the elements follow without
// padding). `N` cannot be less than `alignof(T)`.
//
// `AllocSize()` and `Pointer()` are the most basic methods for dealing with
// memory layouts. Check out the reference or code below to discover more.
//
//                            EXAMPLE
//
//   // Immutable move-only string with sizeof equal to sizeof(void*). The
//   // string size and the characters are kept in the same heap allocation.
//   class CompactString {
//    public:
//     CompactString(const char* s = "") {
//       const size_t size = strlen(s);
//       // size_t[1] followed by char[size + 1].
//       const L layout(1, size + 1);
//       p_.reset(new unsigned char[layout.AllocSize()]);
//       // If running under ASAN, mark the padding bytes, if any, to catch
//       // memory errors.
//       layout.PoisonPadding(p_.get());
//       // Store the size in the allocation.
//       *layout.Pointer<size_t>(p_.get()) = size;
//       // Store the characters in the allocation.
//       memcpy(layout.Pointer<char>(p_.get()), s, size + 1);
//     }
//
//     size_t size() const {
//       // Equivalent to reinterpret_cast<size_t&>(*p).
//       return *L::Partial().Pointer<size_t>(p_.get());
//     }
//
//     const char* c_str() const {
//       // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)).
//       // The argument in Partial(1) specifies that we have size_t[1] in front
//       // of the characters.
//       return L::Partial(1).Pointer<char>(p_.get());
//     }
//
//    private:
//     // Our heap allocation contains a size_t followed by an array of chars.
//     using L = Layout<size_t, char>;
//     std::unique_ptr<unsigned char[]> p_;
//   };
//
//   int main() {
//     CompactString s = "hello";
//     assert(s.size() == 5);
//     assert(strcmp(s.c_str(), "hello") == 0);
//   }
//
//                               DOCUMENTATION
//
// The interface exported by this file consists of:
// - class `Layout<>` and its public members.
// - The public members of class `internal_layout::LayoutImpl<>`. That class
//   isn't intended to be used directly, and its name and template parameter
//   list are internal implementation details, but the class itself provides
//   most of the functionality in this file. See comments on its members for
//   detailed documentation.
//
// `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a
// `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)`
// creates a `Layout` object, which exposes the same functionality by inheriting
// from `LayoutImpl<>`.

#ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_
#define ABSL_CONTAINER_INTERNAL_LAYOUT_H_

#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <ostream>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <utility>

#ifdef ADDRESS_SANITIZER
#include <sanitizer/asan_interface.h>
#endif

#include "absl/meta/type_traits.h"
#include "absl/strings/str_cat.h"
#include "absl/types/span.h"
#include "absl/utility/utility.h"

#if defined(__GXX_RTTI)
#define ABSL_INTERNAL_HAS_CXA_DEMANGLE
#endif

#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
#include <cxxabi.h>
#endif

namespace absl {
namespace container_internal {

// A type wrapper that instructs `Layout` to use the specific alignment for the
// array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
// and behavior as `Layout<..., T, ...>` except that the first element of the
// array of `T` is aligned to `N` (the rest of the elements follow without
// padding).
//
// Requires: `N >= alignof(T)` and `N` is a power of 2.
template <class T, size_t N>
struct Aligned;

namespace internal_layout {

template <class T>
struct NotAligned {};

template <class T, size_t N>
struct NotAligned<const Aligned<T, N>> {
  static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified");
};

template <size_t>
using IntToSize = size_t;

template <class>
using TypeToSize = size_t;

template <class T>
struct Type : NotAligned<T> {
  using type = T;
};

template <class T, size_t N>
struct Type<Aligned<T, N>> {
  using type = T;
};

template <class T>
struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {};

template <class T, size_t N>
struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {};

template <class T>
struct AlignOf : NotAligned<T>, std::integral_constant<size_t, alignof(T)> {};

template <class T, size_t N>
struct AlignOf<Aligned<T, N>> : std::integral_constant<size_t, N> {
  static_assert(N % alignof(T) == 0,
                "Custom alignment can't be lower than the type's alignment");
};

// Does `Ts...` contain `T`?
template <class T, class... Ts>
using Contains = absl::disjunction<std::is_same<T, Ts>...>;

template <class From, class To>
using CopyConst =
    typename std::conditional<std::is_const<From>::value, const To, To>::type;

template <class T>
using SliceType = absl::Span<T>;

// This namespace contains no types. It prevents functions defined in it from
// being found by ADL.
namespace adl_barrier {

template <class Needle, class... Ts>
constexpr size_t Find(Needle, Needle, Ts...) {
  static_assert(!Contains<Needle, Ts...>(), "Duplicate element type");
  return 0;
}

template <class Needle, class T, class... Ts>
constexpr size_t Find(Needle, T, Ts...) {
  return adl_barrier::Find(Needle(), Ts()...) + 1;
}

constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); }

// Returns `q * m` for the smallest `q` such that `q * m >= n`.
// Requires: `m` is a power of two. It's enforced by IsLegalElementType below.
constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); }

constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; }

constexpr size_t Max(size_t a) { return a; }

template <class... Ts>
constexpr size_t Max(size_t a, size_t b, Ts... rest) {
  return adl_barrier::Max(b < a ? a : b, rest...);
}

template <class T>
std::string TypeName() {
  std::string out;
  int status = 0;
  char* demangled = nullptr;
#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
  demangled = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, &status);
#endif
  if (status == 0 && demangled != nullptr) {  // Demangling succeeeded.
    absl::StrAppend(&out, "<", demangled, ">");
    free(demangled);
  } else {
#if defined(__GXX_RTTI) || defined(_CPPRTTI)
    absl::StrAppend(&out, "<", typeid(T).name(), ">");
#endif
  }
  return out;
}

}  // namespace adl_barrier

template <bool C>
using EnableIf = typename std::enable_if<C, int>::type;

// Can `T` be a template argument of `Layout`?
template <class T>
using IsLegalElementType = std::integral_constant<
    bool, !std::is_reference<T>::value && !std::is_volatile<T>::value &&
              !std::is_reference<typename Type<T>::type>::value &&
              !std::is_volatile<typename Type<T>::type>::value &&
              adl_barrier::IsPow2(AlignOf<T>::value)>;

template <class Elements, class SizeSeq, class OffsetSeq>
class LayoutImpl;

// Public base class of `Layout` and the result type of `Layout::Partial()`.
//
// `Elements...` contains all template arguments of `Layout` that created this
// instance.
//
// `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is the number of arguments
// passed to `Layout::Partial()` or `Layout::Layout()`.
//
// `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is
// `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we
// can compute offsets).
template <class... Elements, size_t... SizeSeq, size_t... OffsetSeq>
class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>,
                 absl::index_sequence<OffsetSeq...>> {
 private:
  static_assert(sizeof...(Elements) > 0, "At least one field is required");
  static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value,
                "Invalid element type (see IsLegalElementType)");

  enum {
    NumTypes = sizeof...(Elements),
    NumSizes = sizeof...(SizeSeq),
    NumOffsets = sizeof...(OffsetSeq),
  };

  // These are guaranteed by `Layout`.
  static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1),
                "Internal error");
  static_assert(NumTypes > 0, "Internal error");

  // Returns the index of `T` in `Elements...`. Results in a compilation error
  // if `Elements...` doesn't contain exactly one instance of `T`.
  template <class T>
  static constexpr size_t ElementIndex() {
    static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(),
                  "Type not found");
    return adl_barrier::Find(Type<T>(),
                             Type<typename Type<Elements>::type>()...);
  }

  template <size_t N>
  using ElementAlignment =
      AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>;

 public:
  // Element types of all arrays packed in a tuple.
  using ElementTypes = std::tuple<typename Type<Elements>::type...>;

  // Element type of the Nth array.
  template <size_t N>
  using ElementType = typename std::tuple_element<N, ElementTypes>::type;

  constexpr explicit LayoutImpl(IntToSize<SizeSeq>... sizes)
      : size_{sizes...} {}

  // Alignment of the layout, equal to the strictest alignment of all elements.
  // All pointers passed to the methods of layout must be aligned to this value.
  static constexpr size_t Alignment() {
    return adl_barrier::Max(AlignOf<Elements>::value...);
  }

  // Offset in bytes of the Nth array.
  //
  //   // int[3], 4 bytes of padding, double[4].
  //   Layout<int, double> x(3, 4);
  //   assert(x.Offset<0>() == 0);   // The ints starts from 0.
  //   assert(x.Offset<1>() == 16);  // The doubles starts from 16.
  //
  // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
  template <size_t N, EnableIf<N == 0> = 0>
  constexpr size_t Offset() const {
    return 0;
  }

  template <size_t N, EnableIf<N != 0> = 0>
  constexpr size_t Offset() const {
    static_assert(N < NumOffsets, "Index out of bounds");
    return adl_barrier::Align(
        Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1],
        ElementAlignment<N>());
  }

  // Offset in bytes of the array with the specified element type. There must
  // be exactly one such array and its zero-based index must be at most
  // `NumSizes`.
  //
  //   // int[3], 4 bytes of padding, double[4].
  //   Layout<int, double> x(3, 4);
  //   assert(x.Offset<int>() == 0);      // The ints starts from 0.
  //   assert(x.Offset<double>() == 16);  // The doubles starts from 16.
  template <class T>
  constexpr size_t Offset() const {
    return Offset<ElementIndex<T>()>();
  }

  // Offsets in bytes of all arrays for which the offsets are known.
  constexpr std::array<size_t, NumOffsets> Offsets() const {
    return {{Offset<OffsetSeq>()...}};
  }

  // The number of elements in the Nth array. This is the Nth argument of
  // `Layout::Partial()` or `Layout::Layout()` (zero-based).
  //
  //   // int[3], 4 bytes of padding, double[4].
  //   Layout<int, double> x(3, 4);
  //   assert(x.Size<0>() == 3);
  //   assert(x.Size<1>() == 4);
  //
  // Requires: `N < NumSizes`.
  template <size_t N>
  constexpr size_t Size() const {
    static_assert(N < NumSizes, "Index out of bounds");
    return size_[N];
  }

  // The number of elements in the array with the specified element type.
  // There must be exactly one such array and its zero-based index must be
  // at most `NumSizes`.
  //
  //   // int[3], 4 bytes of padding, double[4].
  //   Layout<int, double> x(3, 4);
  //   assert(x.Size<int>() == 3);
  //   assert(x.Size<double>() == 4);
  template <class T>
  constexpr size_t Size() const {
    return Size<ElementIndex<T>()>();
  }

    // The number of elements of all arrays for which they are known.
  constexpr std::array<size_t, NumSizes> Sizes() const {
    return {{Size<SizeSeq>()...}};
  }

  // Pointer to the beginning of the Nth array.
  //
  // `Char` must be `[const] [signed|unsigned] char`.
  //
  //   // int[3], 4 bytes of padding, double[4].
  //   Layout<int, double> x(3, 4);
  //   unsigned char* p = unsigned char[x.AllocSize()];
  //   int* ints = x.Pointer<0>(p);
  //   double* doubles = x.Pointer<1>(p);
  //
  // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
  // Requires: `p` is aligned to `Alignment()`.
  template <size_t N, class Char>
  CopyConst<Char, ElementType<N>>* Pointer(Char* p) const {
    using C = typename std::remove_const<Char>::type;
    static_assert(
        std::is_same<C, char>() || std::is_same<C, unsigned char>() ||
            std::is_same<C, signed char>(),
        "The argument must be a pointer to [const] [signed|unsigned] char");
    constexpr size_t alignment = Alignment();
    (void)alignment;
    assert(reinterpret_cast<uintptr_t>(p) % alignment == 0);
    return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>());
  }

  // Pointer to the beginning of the array with the specified element type.
  // There must be exactly one such array and its zero-based index must be at
  // most `NumSizes`.
  //
  // `Char` must be `[const] [signed|unsigned] char`.
  //
  //   // int[3], 4 bytes of padding, double[4].
  //   Layout<int, double> x(3, 4);
  //   unsigned char* p = new unsigned char[x.AllocSize()];
  //   int* ints = x.Pointer<int>(p);
  //   double* doubles = x.Pointer<double>(p);
  //
  // Requires: `p` is aligned to `Alignment()`.
  template <class T, class Char>
  CopyConst<Char, T>* Pointer(Char* p) const {
    return Pointer<ElementIndex<T>()>(p);
  }

  // Pointers to all arrays for which pointers are known.
  //
  // `Char` must be `[const] [signed|unsigned] char`.
  //
  //   // int[3], 4 bytes of padding, double[4].
  //   Layout<int, double> x(3, 4);
  //   unsigned char* p = new unsigned char[x.AllocSize()];
  //
  //   int* ints;
  //   double* doubles;
  //   std::tie(ints, doubles) = x.Pointers(p);
  //
  // Requires: `p` is aligned to `Alignment()`.
  //
  // Note: We're not using ElementType alias here because it does not compile
  // under MSVC.
  template <class Char>
  std::tuple<CopyConst<
      Char, typename std::tuple_element<OffsetSeq, ElementTypes>::type>*...>
  Pointers(Char* p) const {
    return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>(
        Pointer<OffsetSeq>(p)...);
  }

  // The Nth array.
  //
  // `Char` must be `[const] [signed|unsigned] char`.
  //
  //   // int[3], 4 bytes of padding, double[4].
  //   Layout<int, double> x(3, 4);
  //   unsigned char* p = new unsigned char[x.AllocSize()];
  //   Span<int> ints = x.Slice<0>(p);
  //   Span<double> doubles = x.Slice<1>(p);
  //
  // Requires: `N < NumSizes`.
  // Requires: `p` is aligned to `Alignment()`.
  template <size_t N, class Char>
  SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const {
    return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>());
  }

  // The array with the specified element type. There must be exactly one
  // such array and its zero-based index must be less than `NumSizes`.
  //
  // `Char` must be `[const] [signed|unsigned] char`.
  //
  //   // int[3], 4 bytes of padding, double[4].
  //   Layout<int, double> x(3, 4);
  //   unsigned char* p = new unsigned char[x.AllocSize()];
  //   Span<int> ints = x.Slice<int>(p);
  //   Span<double> doubles = x.Slice<double>(p);
  //
  // Requires: `p` is aligned to `Alignment()`.
  template <class T, class Char>
  SliceType<CopyConst<Char, T>> Slice(Char* p) const {
    return Slice<ElementIndex<T>()>(p);
  }

  // All arrays with known sizes.
  //
  // `Char` must be `[const] [signed|unsigned] char`.
  //
  //   // int[3], 4 bytes of padding, double[4].
  //   Layout<int, double> x(3, 4);
  //   unsigned char* p = new unsigned char[x.AllocSize()];
  //
  //   Span<int> ints;
  //   Span<double> doubles;
  //   std::tie(ints, doubles) = x.Slices(p);
  //
  // Requires: `p` is aligned to `Alignment()`.
  //
  // Note: We're not using ElementType alias here because it does not compile
  // under MSVC.
  template <class Char>
  std::tuple<SliceType<CopyConst<
      Char, typename std::tuple_element<SizeSeq, ElementTypes>::type>>...>
  Slices(Char* p) const {
    // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63875 (fixed
    // in 6.1).
    (void)p;
    return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>(
        Slice<SizeSeq>(p)...);
  }

  // The size of the allocation that fits all arrays.
  //
  //   // int[3], 4 bytes of padding, double[4].
  //   Layout<int, double> x(3, 4);
  //   unsigned char* p = new unsigned char[x.AllocSize()];  // 48 bytes
  //
  // Requires: `NumSizes == sizeof...(Ts)`.
  constexpr size_t AllocSize() const {
    static_assert(NumTypes == NumSizes, "You must specify sizes of all fields");
    return Offset<NumTypes - 1>() +
           SizeOf<ElementType<NumTypes - 1>>() * size_[NumTypes - 1];
  }

  // If built with --config=asan, poisons padding bytes (if any) in the
  // allocation. The pointer must point to a memory block at least
  // `AllocSize()` bytes in length.
  //
  // `Char` must be `[const] [signed|unsigned] char`.
  //
  // Requires: `p` is aligned to `Alignment()`.
  template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0>
  void PoisonPadding(const Char* p) const {
    Pointer<0>(p);  // verify the requirements on `Char` and `p`
  }

  template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0>
  void PoisonPadding(const Char* p) const {
    static_assert(N < NumOffsets, "Index out of bounds");
    (void)p;
#ifdef ADDRESS_SANITIZER
    PoisonPadding<Char, N - 1>(p);
    // The `if` is an optimization. It doesn't affect the observable behaviour.
    if (ElementAlignment<N - 1>() % ElementAlignment<N>()) {
      size_t start =
          Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1];
      ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start);
    }
#endif
  }

  // Human-readable description of the memory layout. Useful for debugging.
  // Slow.
  //
  //   // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed
  //   // by an unknown number of doubles.
  //   auto x = Layout<char, int, double>::Partial(5, 3);
  //   assert(x.DebugString() ==
  //          "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)");
  //
  // Each field is in the following format: @offset<type>(sizeof)[size] (<type>
  // may be missing depending on the target platform). For example,
  // @8<int>(4)[3] means that at offset 8 we have an array of ints, where each
  // int is 4 bytes, and we have 3 of those ints. The size of the last field may
  // be missing (as in the example above). Only fields with known offsets are
  // described. Type names may differ across platforms: one compiler might
  // produce "unsigned*" where another produces "unsigned int *".
  std::string DebugString() const {
    const auto offsets = Offsets();
    const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>()...};
    const std::string types[] = {adl_barrier::TypeName<ElementType<OffsetSeq>>()...};
    std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")");
    for (size_t i = 0; i != NumOffsets - 1; ++i) {
      absl::StrAppend(&res, "[", size_[i], "]; @", offsets[i + 1], types[i + 1],
                      "(", sizes[i + 1], ")");
    }
    // NumSizes is a constant that may be zero. Some compilers cannot see that
    // inside the if statement "size_[NumSizes - 1]" must be valid.
    int last = static_cast<int>(NumSizes) - 1;
    if (NumTypes == NumSizes && last >= 0) {
      absl::StrAppend(&res, "[", size_[last], "]");
    }
    return res;
  }

 private:
  // Arguments of `Layout::Partial()` or `Layout::Layout()`.
  size_t size_[NumSizes > 0 ? NumSizes : 1];
};

template <size_t NumSizes, class... Ts>
using LayoutType = LayoutImpl<
    std::tuple<Ts...>, absl::make_index_sequence<NumSizes>,
    absl::make_index_sequence<adl_barrier::Min(sizeof...(Ts), NumSizes + 1)>>;

}  // namespace internal_layout

// Descriptor of arrays of various types and sizes laid out in memory one after
// another. See the top of the file for documentation.
//
// Check out the public API of internal_layout::LayoutImpl above. The type is
// internal to the library but its methods are public, and they are inherited
// by `Layout`.
template <class... Ts>
class Layout : public internal_layout::LayoutType<sizeof...(Ts), Ts...> {
 public:
  static_assert(sizeof...(Ts) > 0, "At least one field is required");
  static_assert(
      absl::conjunction<internal_layout::IsLegalElementType<Ts>...>::value,
      "Invalid element type (see IsLegalElementType)");

  // The result type of `Partial()` with `NumSizes` arguments.
  template <size_t NumSizes>
  using PartialType = internal_layout::LayoutType<NumSizes, Ts...>;

  // `Layout` knows the element types of the arrays we want to lay out in
  // memory but not the number of elements in each array.
  // `Partial(size1, ..., sizeN)` allows us to specify the latter. The
  // resulting immutable object can be used to obtain pointers to the
  // individual arrays.
  //
  // It's allowed to pass fewer array sizes than the number of arrays. E.g.,
  // if all you need is to the offset of the second array, you only need to
  // pass one argument -- the number of elements in the first arrays.
  //
  //   // int[3] followed by 4 bytes of padding and an unknown number of
  //   // doubles.
  //   auto x = Layout<int, double>::Partial(3);
  //   // doubles start at byte 16.
  //   assert(x.Offset<1>() == 16);
  //
  // If you know the number of elements in all arrays, you can still call
  // `Partial()` but it's more convenient to use the constructor of `Layout`.
  //
  //   Layout<int, double> x(3, 5);
  //
  // Note: The sizes of the arrays must be specified in number of elements,
  // not in bytes.
  //
  // Requires: `sizeof...(Sizes) <= sizeof...(Ts)`.
  // Requires: all arguments are convertible to `size_t`.
  template <class... Sizes>
  static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) {
    static_assert(sizeof...(Sizes) <= sizeof...(Ts), "");
    return PartialType<sizeof...(Sizes)>(absl::forward<Sizes>(sizes)...);
  }

  // Creates a layout with the sizes of all arrays specified. If you know
  // only the sizes of the first N arrays (where N can be zero), you can use
  // `Partial()` defined above. The constructor is essentially equivalent to
  // calling `Partial()` and passing in all array sizes; the constructor is
  // provided as a convenient abbreviation.
  //
  // Note: The sizes of the arrays must be specified in number of elements,
  // not in bytes.
  constexpr explicit Layout(internal_layout::TypeToSize<Ts>... sizes)
      : internal_layout::LayoutType<sizeof...(Ts), Ts...>(sizes...) {}
};

}  // namespace container_internal
}  // namespace absl

#endif  // ABSL_CONTAINER_INTERNAL_LAYOUT_H_