1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_
#define ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_
#include <cstddef>
#include <memory>
#include <type_traits>
#include <utility>
#include "absl/meta/type_traits.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
// Defines how slots are initialized/destroyed/moved.
template <class Policy, class = void>
struct hash_policy_traits {
private:
struct ReturnKey {
// We return `Key` here.
// When Key=T&, we forward the lvalue reference.
// When Key=T, we return by value to avoid a dangling reference.
// eg, for string_hash_map.
template <class Key, class... Args>
Key operator()(Key&& k, const Args&...) const {
return std::forward<Key>(k);
}
};
template <class P = Policy, class = void>
struct ConstantIteratorsImpl : std::false_type {};
template <class P>
struct ConstantIteratorsImpl<P, absl::void_t<typename P::constant_iterators>>
: P::constant_iterators {};
public:
// The actual object stored in the hash table.
using slot_type = typename Policy::slot_type;
// The type of the keys stored in the hashtable.
using key_type = typename Policy::key_type;
// The argument type for insertions into the hashtable. This is different
// from value_type for increased performance. See initializer_list constructor
// and insert() member functions for more details.
using init_type = typename Policy::init_type;
using reference = decltype(Policy::element(std::declval<slot_type*>()));
using pointer = typename std::remove_reference<reference>::type*;
using value_type = typename std::remove_reference<reference>::type;
// Policies can set this variable to tell raw_hash_set that all iterators
// should be constant, even `iterator`. This is useful for set-like
// containers.
// Defaults to false if not provided by the policy.
using constant_iterators = ConstantIteratorsImpl<>;
// PRECONDITION: `slot` is UNINITIALIZED
// POSTCONDITION: `slot` is INITIALIZED
template <class Alloc, class... Args>
static void construct(Alloc* alloc, slot_type* slot, Args&&... args) {
Policy::construct(alloc, slot, std::forward<Args>(args)...);
}
// PRECONDITION: `slot` is INITIALIZED
// POSTCONDITION: `slot` is UNINITIALIZED
template <class Alloc>
static void destroy(Alloc* alloc, slot_type* slot) {
Policy::destroy(alloc, slot);
}
// Transfers the `old_slot` to `new_slot`. Any memory allocated by the
// allocator inside `old_slot` to `new_slot` can be transferred.
//
// OPTIONAL: defaults to:
//
// clone(new_slot, std::move(*old_slot));
// destroy(old_slot);
//
// PRECONDITION: `new_slot` is UNINITIALIZED and `old_slot` is INITIALIZED
// POSTCONDITION: `new_slot` is INITIALIZED and `old_slot` is
// UNINITIALIZED
template <class Alloc>
static void transfer(Alloc* alloc, slot_type* new_slot, slot_type* old_slot) {
transfer_impl(alloc, new_slot, old_slot, 0);
}
// PRECONDITION: `slot` is INITIALIZED
// POSTCONDITION: `slot` is INITIALIZED
template <class P = Policy>
static auto element(slot_type* slot) -> decltype(P::element(slot)) {
return P::element(slot);
}
// Returns the amount of memory owned by `slot`, exclusive of `sizeof(*slot)`.
//
// If `slot` is nullptr, returns the constant amount of memory owned by any
// full slot or -1 if slots own variable amounts of memory.
//
// PRECONDITION: `slot` is INITIALIZED or nullptr
template <class P = Policy>
static size_t space_used(const slot_type* slot) {
return P::space_used(slot);
}
// Provides generalized access to the key for elements, both for elements in
// the table and for elements that have not yet been inserted (or even
// constructed). We would like an API that allows us to say: `key(args...)`
// but we cannot do that for all cases, so we use this more general API that
// can be used for many things, including the following:
//
// - Given an element in a table, get its key.
// - Given an element initializer, get its key.
// - Given `emplace()` arguments, get the element key.
//
// Implementations of this must adhere to a very strict technical
// specification around aliasing and consuming arguments:
//
// Let `value_type` be the result type of `element()` without ref- and
// cv-qualifiers. The first argument is a functor, the rest are constructor
// arguments for `value_type`. Returns `std::forward<F>(f)(k, xs...)`, where
// `k` is the element key, and `xs...` are the new constructor arguments for
// `value_type`. It's allowed for `k` to alias `xs...`, and for both to alias
// `ts...`. The key won't be touched once `xs...` are used to construct an
// element; `ts...` won't be touched at all, which allows `apply()` to consume
// any rvalues among them.
//
// If `value_type` is constructible from `Ts&&...`, `Policy::apply()` must not
// trigger a hard compile error unless it originates from `f`. In other words,
// `Policy::apply()` must be SFINAE-friendly. If `value_type` is not
// constructible from `Ts&&...`, either SFINAE or a hard compile error is OK.
//
// If `Ts...` is `[cv] value_type[&]` or `[cv] init_type[&]`,
// `Policy::apply()` must work. A compile error is not allowed, SFINAE or not.
template <class F, class... Ts, class P = Policy>
static auto apply(F&& f, Ts&&... ts)
-> decltype(P::apply(std::forward<F>(f), std::forward<Ts>(ts)...)) {
return P::apply(std::forward<F>(f), std::forward<Ts>(ts)...);
}
// Returns the "key" portion of the slot.
// Used for node handle manipulation.
template <class P = Policy>
static auto key(slot_type* slot)
-> decltype(P::apply(ReturnKey(), element(slot))) {
return P::apply(ReturnKey(), element(slot));
}
// Returns the "value" (as opposed to the "key") portion of the element. Used
// by maps to implement `operator[]`, `at()` and `insert_or_assign()`.
template <class T, class P = Policy>
static auto value(T* elem) -> decltype(P::value(elem)) {
return P::value(elem);
}
private:
// Use auto -> decltype as an enabler.
template <class Alloc, class P = Policy>
static auto transfer_impl(Alloc* alloc, slot_type* new_slot,
slot_type* old_slot, int)
-> decltype((void)P::transfer(alloc, new_slot, old_slot)) {
P::transfer(alloc, new_slot, old_slot);
}
template <class Alloc>
static void transfer_impl(Alloc* alloc, slot_type* new_slot,
slot_type* old_slot, char) {
construct(alloc, new_slot, std::move(element(old_slot)));
destroy(alloc, old_slot);
}
};
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_
|