Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
We were importing paths without sorting them topologically, leading to
"path is not valid" errors.
See e.g. http://hydra.nixos.org/build/12451761
|
|
This makes things more efficient (we don't need to use an SSH master
connection, and we only start a single remote process) and gets rid of
locking issues (the remote nix-store process will keep inputs and
outputs locked as long as they're needed).
It also makes it more or less secure to connect directly to the root
account on the build machine, using a forced command
(e.g. ‘command="nix-store --serve --write"’). This bypasses the Nix
daemon and is therefore more efficient.
Also, don't call nix-store to import the output paths.
|
|
When copying a large path causes the daemon to run out of memory, you
now get:
error: Nix daemon out of memory
instead of:
error: writing to file: Broken pipe
|
|
I.e. if you have a derivation with
src = ./huge-directory;
you'll get a warning that this is not a good idea.
|
|
The flag ‘--check’ to ‘nix-store -r’ or ‘nix-build’ will cause Nix to
redo the build of a derivation whose output paths are already valid.
If the new output differs from the original output, an error is
printed. This makes it easier to test if a build is deterministic.
(Obviously this cannot catch all sources of non-determinism, but it
catches the most common one, namely the current time.)
For example:
$ nix-build '<nixpkgs>' -A patchelf
...
$ nix-build '<nixpkgs>' -A patchelf --check
error: derivation `/nix/store/1ipvxsdnbhl1rw6siz6x92s7sc8nwkkb-patchelf-0.6' may not be deterministic: hash mismatch in output `/nix/store/4pc1dmw5xkwmc6q3gdc9i5nbjl4dkjpp-patchelf-0.6.drv'
The --check build fails if not all outputs are valid. Thus the first
call to nix-build is necessary to ensure that all outputs are valid.
The current outputs are left untouched: the new outputs are either put
in a chroot or diverted to a different location in the store using
hash rewriting.
|
|
As discovered by Todd Veldhuizen, the shell started by nix-shell has
its affinity set to a single CPU. This is because nix-shell connects
to the Nix daemon, which causes the affinity hack to be applied. So
we turn this off for Perl programs.
|
|
On a system with multiple CPUs, running Nix operations through the
daemon is significantly slower than "direct" mode:
$ NIX_REMOTE= nix-instantiate '<nixos>' -A system
real 0m0.974s
user 0m0.875s
sys 0m0.088s
$ NIX_REMOTE=daemon nix-instantiate '<nixos>' -A system
real 0m2.118s
user 0m1.463s
sys 0m0.218s
The main reason seems to be that the client and the worker get moved
to a different CPU after every call to the worker. This patch adds a
hack to lock them to the same CPU. With this, the overhead of going
through the daemon is very small:
$ NIX_REMOTE=daemon nix-instantiate '<nixos>' -A system
real 0m1.074s
user 0m0.809s
sys 0m0.098s
|
|
This reverts commit 28bba8c44f484eae38e8a15dcec73cfa999156f6.
|
|
|
|
|
|
Fixes #76.
|
|
So if a path is not garbage solely because it's reachable from a root
due to the gc-keep-outputs or gc-keep-derivations settings, ‘nix-store
-q --roots’ now shows that root.
|
|
Slightly scared of using std::cerr in a vforked process...
|
|
AFAIK nobody uses this, setuid binaries are evil, and there is no good
reason why people can't just run the daemon.
|
|
This allows repairing corrupted derivations and other source files.
|
|
With this flag, if any valid derivation output is missing or corrupt,
it will be recreated by using a substitute if available, or by
rebuilding the derivation. The latter may use hash rewriting if
chroots are not available.
|
|
This ensures that "nix-build --run-env" doesn't keep a connection to
the worker open, preventing it from exiting.
|
|
|
|
|
|
|
|
Put all Nix configuration flags in a Settings object.
|
|
|
|
|
|
To implement binary caches efficiently, Hydra needs to be able to map
the hash part of a store path (e.g. "gbg...zr7") to the full store
path (e.g. "/nix/store/gbg...kzr7-subversion-1.7.5"). (The binary
cache mechanism uses hash parts as a key for looking up store paths to
ensure privacy.) However, doing a search in the Nix store for
/nix/store/<hash>* is expensive since it requires reading the entire
directory. queryPathFromHashPart() prevents this by doing a cheap
database lookup.
|
|
querySubstitutablePaths() takes a set of paths, so this greatly
reduces daemon <-> client latency.
|
|
queryValidPaths() combines multiple calls to isValidPath() in one.
This matters when using the Nix daemon because it reduces latency.
For instance, on "nix-env -qas \*" it reduces execution time from 5.7s
to 4.7s (which is indistinguishable from the non-daemon case).
|
|
|
|
Also removed querySubstitutablePathInfo().
|
|
Getting substitute information using the binary cache substituter has
non-trivial latency overhead. A package or NixOS system configuration
can have hundreds of dependencies, and in the worst case (when the
local info cache is empty) we have to do a separate HTTP request for
each of these. If the ping time to the server is t, getting N info
files will take tN seconds; e.g., with a ping time of 0.1s to
nixos.org, sequentially downloading 1000 info files (a typical NixOS
config) will take at least 100 seconds.
To fix this problem, the binary cache substituter can now perform
requests in parallel. This required changing the substituter
interface to support a function querySubstitutablePathInfos() that
queries multiple paths at the same time, and rewriting queryMissing()
to take advantage of parallelism. (Due to local caching,
parallelising queryMissing() is sufficient for most use cases, since
it's almost always called before building a derivation and thus fills
the local info cache.)
For example, parallelism speeds up querying all 1056 paths in a
particular NixOS system configuration from 116s to 2.6s. It works so
well because the eccentricity of the top-level derivation in the
dependency graph is only 9. So we only need 10 round-trips (when
using an unlimited number of parallel connections) to get everything.
Currently we do a maximum of 150 parallel connections to the server.
Thus it's important that the binary cache server (e.g. nixos.org) has
a high connection limit. Alternatively we could use HTTP pipelining,
but WWW::Curl doesn't support it and libcurl has a hard-coded limit of
5 requests per pipeline.
|
|
I.e. when multiple non-derivation arguments are passed to ‘nix-store
-r’ to be substituted, do them in parallel.
|
|
We can't open a SQLite database if the disk is full. Since this
prevents the garbage collector from running when it's most needed, we
reserve some dummy space that we can free just before doing a garbage
collection. This actually revives some old code from the Berkeley DB
days.
Fixes #27.
|
|
to disable use of substitutes; i.e., force building from source.
Fixes Nix/221.
|
|
We don't need this anymore now that current filesystems support more
than 32,000 files in a directory.
|
|
|
|
|
|
|
|
stream it's now necessary for the daemon to process the entire
sequence of exported paths, rather than letting the client do it.
|
|
(way fewer roundtrips) by allowing the client to send data in bigger
chunks.
* Some refactoring.
|
|
* Buffer the HashSink. This speeds up hashing a bit because it
prevents lots of calls to the hash update functions (e.g. nix-hash
went from 9.3s to 8.7s of user time on the closure of my
/var/run/current-system).
|
|
system calls / context switches when dumping a NAR and in the worker
protocol.
|
|
daemon (which is an error), print a nicer error message than
"Connection reset by peer" or "broken pipe".
* In the daemon, log errors that occur during request parameter
processing.
|
|
derivation paths
This required adding a queryOutputDerivationNames function in the store API
|
|
character. (Nix/216)
|
|
daemon.
|
|
will approximately require.
|