Age | Commit message (Collapse) | Author | Files | Lines |
|
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
|
|
* Start cleaning up unique store path generation (they weren't always
unique; in particular the suffix ("-aterm-2.2", "-builder.sh") was
not part of the hash, therefore changes to the suffix would cause
multiple store objects with the same hash).
|
|
|
|
- Drop the store expression. So now a substitute is just a
command-line invocation (a program name + arguments). If you
register a substitute you are responsible for registering the
expression that built it (if any) as a root of the garbage
collector.
- Drop the substitutes-rev DB table.
|
|
symlink.
|
|
|
|
0, set the mode to either 444 or 555, set the group to the default).
|
|
|
|
derivation, since NormalisationGoal would first run a
NormalisationGoal on the subderivation (a no-op, since in a
situation where we need fallback the successor is known), and then
runs a RealisationGoal on the normal form, which then cannot do a
fallback because it doesn't know the derivation expression for which
it is a normal form.
Tossed out the 2-phase normalisation/realisation in
NormalisationGoal and SubstitutionGoal since it's no longer needed -
a RealisationGoal will run a NormalisationGoal if necessary.
|
|
could get out of sync if multiple input derivations mapped to the
same closure expression (since waitees is a set).
|
|
particular happens on distributed builds or when using push/pull.
|
|
print out incorrect "build failed" messages).
|
|
derivation disables scanning for dependencies. Use at your own
risk. This is a quick hack to speed up UML image generation (image
are very big, say 1 GB).
It would be better if the scanner were faster, and didn't read the
whole file into memory.
|
|
|
|
|
|
|
|
|
|
normalisation goal.
|
|
Whenever Nix attempts to realise a derivation for which a closure is
already known, but this closure cannot be realised, fall back on
normalising the derivation.
The most common scenario in which this is useful is when we have
registered substitutes in order to perform binary distribution from,
say, a network repository. If the repository is down, the
realisation of the derivation will fail. When this option is
specified, Nix will build the derivation instead. Thus, binary
installation falls back on a source installation. This option is
not the default since it is generally not desirable for a transient
failure in obtaining the substitutes to lead to a full build from
source (with the related consumption of resources).
|
|
much as possible. (This is similar to GNU Make's `-k' flag.)
* Refactoring to implement this: previously we just bombed out when
a build failed, but now we have to clean up. In particular this
means that goals must be freed quickly --- they shouldn't hang
around until the worker exits. So the worker now maintains weak
pointers in order not to prevent garbage collection.
* Documented the `-k' and `-j' flags.
|
|
goal and allow the problem to be handled elsewhere (e.g., at
top-level).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
delete obstructing invalid paths.
|
|
only caused a crash if the program was *not* invoked with a high
verbosity level.
|
|
* A better substitute mechanism.
Instead of generating a store expression for each store path for
which we have a substitute, we can have a single store expression
that builds a generic program that is invoked to build the desired
store path, which is passed as an argument.
This means that operations like `nix-pull' only produce O(1) files
instead of O(N) files in the store when registering N substitutes.
(It consumes O(N) database storage, of course, but that's not a
performance problem).
* Added a test for the substitute mechanism.
* `nix-store --substitute' reads the substitutes from standard input,
instead of from the command line. This prevents us from running
into the kernel's limit on command line length.
|
|
|
|
approach. This makes it much easier to add extra complexity in the
normaliser / realiser (e.g., build hooks, substitutes).
|
|
|
|
|
|
hack.
|
|
Linux), so use setpgid().
|
|
* When a fast build wakes up a goal, try to start that goal in the
same iteration of the startBuild() loop of run(). Otherwise no job
might be started until the next job terminates.
|
|
(Though the `build-remote.pl' script has a gigantic race condition).
|
|
per-machine maximum number of parallel jobs on a remote machine.
|
|
in parallel. Hooks are more efficient: locks on output paths are
only acquired when the hook says that it is willing to accept a
build job. Hooks now work in two phases. First, they should first
tell Nix whether they are willing to accept a job. Nix guarantuees
that no two hooks will ever be in the first phase at the same time
(this simplifies the implementation of hooks, since they don't have
to perform locking (?)). Second, if they accept a job, they are
then responsible for building it (on the remote system), and copying
the result back. These can be run in parallel with other hooks and
locally executed jobs.
The implementation is a bit messy right now, though.
* The directory `distributed' shows a (hacky) example of a hook that
distributes build jobs over a set of machines listed in a
configuration file.
|
|
no limit).
* Add missing file to distribution.
|
|
distributing a build action to another machine. In particular, the
paths in the input closures, the output paths, and successor mapping
for sub-derivations.
|
|
|
|
parallel as possible (similar to GNU Make's `-j' switch). This is
useful on SMP systems, but it is especially useful for doing builds
on multiple machines. The idea is that a large derivation is
initiated on one master machine, which then distributes
sub-derivations to any number of slave machines. This should not
happen synchronously or in lock-step, so the master must be capable
of dealing with multiple parallel build jobs. We now have the
infrastructure to support this.
TODO: substitutes are currently broken.
|
|
|
|
|