Age | Commit message (Collapse) | Author | Files | Lines |
|
Necessary for multi-threaded commands like "nix verify-paths".
|
|
Locally-built paths are now signed automatically using the secret keys
specified by the ‘secret-key-files’ option.
|
|
This imports signatures from one store into another. E.g.
$ nix copy-sigs -r /run/current-system -s https://cache.nixos.org/
imported 595 signatures
|
|
These are content-addressed paths or outputs of locally performed
builds. They are trusted even if they don't have signatures, so "nix
verify-paths" won't complain about them.
|
|
In particular, this eliminates a bunch of boilerplate code.
|
|
|
|
This enables an optimisation in hydra-queue-runner, preventing a
download of a NAR it just uploaded to the cache when reading files
like hydra-build-products.
|
|
This is primary to allow hydra-queue-runner to extract files like
"nix-support/hydra-build-products" from NARs in binary caches.
|
|
|
|
|
|
Calling a class an API is a bit redundant...
|
|
Also, move a few free-standing functions into StoreAPI and Derivation.
Also, introduce a non-nullable smart pointer, ref<T>, which is just a
wrapper around std::shared_ptr ensuring that the pointer is never
null. (For reference-counted values, this is better than passing a
"T&", because the latter doesn't maintain the refcount. Usually, the
caller will have a shared_ptr keeping the value alive, but that's not
always the case, e.g., when passing a reference to a std::thread via
std::bind.)
|
|
|
|
|
|
Previously, to build a derivation remotely, we had to copy the entire
closure of the .drv file to the remote machine, even though we only
need the top-level derivation. This is very wasteful: the closure can
contain thousands of store paths, and in some Hydra use cases, include
source paths that are very large (e.g. Git/Mercurial checkouts).
So now there is a new operation, StoreAPI::buildDerivation(), that
performs a build from an in-memory representation of a derivation
(BasicDerivation) rather than from a on-disk .drv file. The only files
that need to be in the Nix store are the sources of the derivation
(drv.inputSrcs), and the needed output paths of the dependencies (as
described by drv.inputDrvs). "nix-store --serve" exposes this
interface.
Note that this is a privileged operation, because you can construct a
derivation that builds any store path whatsoever. Fixing this will
require changing the hashing scheme (i.e., the output paths should be
computed from the other fields in BasicDerivation, allowing them to be
verified without access to other derivations). However, this would be
quite nice because it would allow .drv-free building (e.g. "nix-env
-i" wouldn't have to write any .drv files to disk).
Fixes #173.
|
|
|
|
|
|
|
|
|
|
|
|
readdir() already returns the inode numbers, so we don't need to call
lstat to know if a file was already linked or not.
|
|
|
|
By preloading all inodes in the /nix/store/.links directory, we can
quickly determine of a hardlinked file was already linked to the hashed
links.
This is tolerant of removing the .links directory, it will simply
recalculate all hashes in the store.
|
|
The flag ‘--check’ to ‘nix-store -r’ or ‘nix-build’ will cause Nix to
redo the build of a derivation whose output paths are already valid.
If the new output differs from the original output, an error is
printed. This makes it easier to test if a build is deterministic.
(Obviously this cannot catch all sources of non-determinism, but it
catches the most common one, namely the current time.)
For example:
$ nix-build '<nixpkgs>' -A patchelf
...
$ nix-build '<nixpkgs>' -A patchelf --check
error: derivation `/nix/store/1ipvxsdnbhl1rw6siz6x92s7sc8nwkkb-patchelf-0.6' may not be deterministic: hash mismatch in output `/nix/store/4pc1dmw5xkwmc6q3gdc9i5nbjl4dkjpp-patchelf-0.6.drv'
The --check build fails if not all outputs are valid. Thus the first
call to nix-build is necessary to ensure that all outputs are valid.
The current outputs are left untouched: the new outputs are either put
in a chroot or diverted to a different location in the store using
hash rewriting.
|
|
AFAIK, nobody uses it, it's not maintained, and it has no tests.
|
|
To deal with SQLITE_PROTOCOL, we also need to retry read-only
operations.
|
|
|
|
For instance, it's pointless to keep copy-from-other-stores running if
there are no other stores, or download-using-manifests if there are no
manifests. This also speeds things up because we don't send queries
to those substituters.
|
|
|
|
|
|
This greatly reduces the number of system calls.
|
|
This reverts commit 28bba8c44f484eae38e8a15dcec73cfa999156f6.
|
|
|
|
Also, change the file mode before changing the owner. This prevents a
slight time window in which a setuid binary would be setuid root.
|
|
It turns out that in multi-user Nix, a builder may be able to do
ln /etc/shadow $out/foo
Afterwards, canonicalisePathMetaData() will be applied to $out/foo,
causing /etc/shadow's mode to be set to 444 (readable by everybody but
writable by nobody). That's obviously Very Bad.
Fortunately, this fails in NixOS's default configuration because
/nix/store is a bind mount, so "ln" will fail with "Invalid
cross-device link". It also fails if hard-link restrictions are
enabled, so a workaround is:
echo 1 > /proc/sys/fs/protected_hardlinks
The solution is to check that all files in $out are owned by the build
user. This means that innocuous operations like "ln
${pkgs.foo}/some-file $out/" are now rejected, but that already failed
in chroot builds anyway.
|
|
Doing this once makes subsequent operations like garbage collecting
more efficient since we don't have to call makeMutable() first.
|
|
So if a path is not garbage solely because it's reachable from a root
due to the gc-keep-outputs or gc-keep-derivations settings, ‘nix-store
-q --roots’ now shows that root.
|
|
But this time it's *obviously* correct! No more segfaults due to
infinite recursions for sure, etc.
Also, move directories to /nix/store/trash instead of renaming them to
/nix/store/bla-gc-<pid>. Then we can just delete /nix/store/trash at
the end.
|
|
Hopefully this reduces the chance of hitting ‘unable to fork: Cannot
allocate memory’ errors. vfork() is used for everything except
starting builders.
|
|
This allows repairing corrupted derivations and other source files.
|
|
If we find a corrupted path in the output closure, we rebuild the
derivation that produced that particular path.
|
|
With this flag, if any valid derivation output is missing or corrupt,
it will be recreated by using a substitute if available, or by
rebuilding the derivation. The latter may use hash rewriting if
chroots are not available.
|
|
missing/corrupt paths
Also, return a non-zero exit code if errors remain after
verifying/repairing.
|
|
This operation allows fixing corrupted or accidentally deleted store
paths by redownloading them using substituters, if available.
Since the corrupted path cannot be replaced atomically, there is a
very small time window (one system call) during which neither the old
(corrupted) nor the new (repaired) contents are available. So
repairing should be used with some care on critical packages like
Glibc.
|
|
It turns out that the immutable bit doesn't work all that well. A
better way is to make the entire Nix store a read-only bind mount,
i.e. by doing
$ mount --bind /nix/store /nix/store
$ mount -o remount,ro,bind /nix/store
(This would typically done in an early boot script, before anything
from /nix/store is used.)
Since Nix needs to be able to write to the Nix store, it now detects
if /nix/store is a read-only bind mount and then makes it writable in
a private mount namespace.
|
|
|
|
|
|
|
|
|
|
|