Age | Commit message (Collapse) | Author | Files | Lines |
|
E.g. ‘"foo" < "bar"’ now works.
|
|
This reverts commit 28bba8c44f484eae38e8a15dcec73cfa999156f6.
|
|
|
|
|
|
adding primop function calculating hash of a string
Signed-off-by: Marc Weber <marco-oweber@gmx.de>
|
|
|
|
This allows adding attributes like
attr = if stdenv.system == "bla" then something else null;
without changing the resulting derivation on non-<bla> platforms.
We once considered adding a special "ignore" value for this purpose,
but using null seems more elegant.
|
|
The integer constant ‘langVersion’ denotes the current language
version. It gets increased every time a language feature is
added/changed/removed. It's currently 1.
The string constant ‘nixVersion’ contains the current Nix version,
e.g. "1.2pre2980_9de6bc5".
|
|
This reverts commit 2980d1fba97069805c3649c5d99d0356bce6c303. It
causes a regression in NixOS evaluation:
string `/nix/store/ya3s5gmj3b28170fpbjhgsk8wzymkpa1-pommed-1.39/etc/pommed.conf' cannot refer to other paths
|
|
|
|
This allows repairing corrupted derivations and other source files.
|
|
|
|
|
|
|
|
This can serve as a generic efficient list builder. For instance, the
function ‘catAttrs’ in Nixpkgs can be rewritten from
attr: l: fold (s: l: if hasAttr attr s then [(getAttr attr s)] ++ l else l) [] l
to
attr: l: builtins.concatLists (map (s: if hasAttr attr s then [(getAttr attr s)] else []) l)
Statistics before:
time elapsed: 1.08683
size of a value: 24
environments allocated: 1384376 (35809568 bytes)
list elements: 6946783 (55574264 bytes)
list concatenations: 37434
values allocated: 1760440 (42250560 bytes)
attribute sets allocated: 392040
right-biased unions: 186334
values copied in right-biased unions: 591137
symbols in symbol table: 18273
number of thunks: 1297673
number of thunks avoided: 1380759
number of attr lookups: 430802
number of primop calls: 628912
number of function calls: 1333544
Statistics after (including new catAttrs):
time elapsed: 0.959854
size of a value: 24
environments allocated: 1010198 (26829296 bytes)
list elements: 1984878 (15879024 bytes)
list concatenations: 30488
values allocated: 1589760 (38154240 bytes)
attribute sets allocated: 392040
right-biased unions: 186334
values copied in right-biased unions: 591137
symbols in symbol table: 18274
number of thunks: 1040925
number of thunks avoided: 1038428
number of attr lookups: 438419
number of primop calls: 474844
number of function calls: 959366
|
|
The one in Nixpkgs is O(n^2), this one is O(n). Big reduction in the
number of list allocations.
Statistics before (on a NixOS system config):
time elapsed: 1.17982
size of a value: 24
environments allocated: 1543334 (39624560 bytes)
list elements: 9612638 (76901104 bytes)
list concatenations: 37434
values allocated: 1854933 (44518392 bytes)
attribute sets allocated: 392040
right-biased unions: 186334
values copied in right-biased unions: 591137
symbols in symbol table: 18272
number of thunks: 1392467
number of thunks avoided: 1507311
number of attr lookups: 430801
number of primop calls: 691600
number of function calls: 1492502
Statistics after:
time elapsed: 1.08683
size of a value: 24
environments allocated: 1384376 (35809568 bytes)
list elements: 6946783 (55574264 bytes)
list concatenations: 37434
values allocated: 1760440 (42250560 bytes)
attribute sets allocated: 392040
right-biased unions: 186334
values copied in right-biased unions: 591137
symbols in symbol table: 18273
number of thunks: 1297673
number of thunks avoided: 1380759
number of attr lookups: 430802
number of primop calls: 628912
number of function calls: 1333544
|
|
Evaluation of a NixOS configuration spends quite a lot of time in the
"filter" function in Nixpkgs. As implemented in Nixpkgs, this is a
O(n^2) operation, so it's a good candidate for providing a more
efficient (i.e. primop) implementation. Using it gives a ~10% speed
increase and a significant reduction in the number of evaluations.
Statistics before (on a NixOS system config):
time elapsed: 1.3258
size of a value: 24
environments allocated: 1980939 (50127080 bytes)
list elements: 14679308 (117434464 bytes)
list concatenations: 50828
values allocated: 2098938 (50374512 bytes)
attribute sets allocated: 392040
right-biased unions: 186334
values copied in right-biased unions: 591137
symbols in symbol table: 18271
number of thunks: 1645752
number of thunks avoided: 1921196
number of attr lookups: 430798
number of primop calls: 838807
number of function calls: 1930107
Statistics after:
time elapsed: 1.17982
size of a value: 24
environments allocated: 1543334 (39624560 bytes)
list elements: 9612638 (76901104 bytes)
list concatenations: 37434
values allocated: 1854933 (44518392 bytes)
attribute sets allocated: 392040
right-biased unions: 186334
values copied in right-biased unions: 591137
symbols in symbol table: 18272
number of thunks: 1392467
number of thunks avoided: 1507311
number of attr lookups: 430801
number of primop calls: 691600
number of function calls: 1492502
|
|
Setting the environment variable NIX_COUNT_CALLS to 1 enables some
basic profiling in the evaluator. It will count calls to functions
and primops as well as evaluations of attributes.
For example, to see where evaluation of a NixOS configuration spends
its time:
$ NIX_SHOW_STATS=1 NIX_COUNT_CALLS=1 ./src/nix-instantiate/nix-instantiate '<nixos>' -A system --readonly-mode
...
calls to 39 primops:
239532 head
233962 tail
191252 hasAttr
...
calls to 1595 functions:
224157 `/nix/var/nix/profiles/per-user/root/channels/nixos/nixpkgs/pkgs/lib/lists.nix:17:19'
221767 `/nix/var/nix/profiles/per-user/root/channels/nixos/nixpkgs/pkgs/lib/lists.nix:17:14'
221767 `/nix/var/nix/profiles/per-user/root/channels/nixos/nixpkgs/pkgs/lib/lists.nix:17:10'
...
evaluations of 7088 attributes:
167377 undefined position
132459 `/nix/var/nix/profiles/per-user/root/channels/nixos/nixpkgs/pkgs/lib/attrsets.nix:119:41'
47322 `/nix/var/nix/profiles/per-user/root/channels/nixos/nixpkgs/pkgs/lib/attrsets.nix:13:21'
...
|
|
Put all Nix configuration flags in a Settings object.
|
|
|
|
heap just in case it escapes the stack frame.
|
|
attrset.
The generated attrset has drvPath and outPath with the right string context, type 'derivation', outputName with
the right name, all with a list of outputs, and an attribute for each output.
I see three uses for this (though certainly there may be more):
* Using derivations generated by something besides nix-instantiate (e.g. guix)
* Allowing packages provided by channels to be used in nix expressions. If a channel installed a valid deriver
for each package it provides into the store, then those could be imported and used as dependencies or installed
in environment.systemPackages, for example.
* Enable hydra to be consistent in how it treats inputs that are outputs of another build. Right now, if an
input is passed as an argument to the job, it is passed as a derivation, but if it is accessed via NIX_PATH
(i.e. through the <> syntax), then it is a path that can be imported. This is problematic because the build
being depended upon may have been built with non-obvious arguments passed to its jobset file. With this
feature, hydra can just set the name of that input to the path to its drv file in NIX_PATH
|
|
|
|
Needed for Charon/Hydra interaction.
|
|
|
|
I.e. when multiple non-derivation arguments are passed to ‘nix-store
-r’ to be substituted, do them in parallel.
|
|
EvalState::eval(). This gives a 12% speedup on ‘nix-instantiate
/etc/nixos/nixos/ -A system --readonly-mode’ (from 1.01s to 0.89s).
|
|
|
|
This makes it easier to pinpoint the source of a crash.
|
|
|
|
file.
|
|
Since it's rarely used and fixing it is too much work right now,
just document it.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for input derivations
Multiple outputs test passes!
|
|
derivation paths
This required adding a queryOutputDerivationNames function in the store API
|
|
|
|
unsaveDiscardOutputDependency
|
|
This will break things that depend on being able to just strip away an equals sign, so those have to be updated next
|
|
active
|
|
For each output, this adds a corresponding attribute to the derivation that is
the same as the derivation except for outPath, which is set to the path specific
to that output. Additionally, an "all" attribute is added that is a list of all
of the output derivations. This has to be done outside of derivationStrict as
each output is itself a derivation that contains itself (and all other outputs)
as an attribute. The derivation itself is equivalent to the first output in the
outputs list (or "out" if that list isn't set).
|
|
This should also fix:
nix-instantiate: ./../boost/shared_ptr.hpp:254: T* boost::shared_ptr<T>::operator->() const [with T = nix::StoreAPI]: Assertion `px != 0' failed.
which was caused by hashDerivationModulo() calling the ‘store’
object (during store upgrades) before openStore() assigned it.
|
|
the EvalState class.
|
|
|
|
derivations added to the store by clients have "correct" output
paths (meaning that the output paths are computed by hashing the
derivation according to a certain algorithm). This means that a
malicious user could craft a special .drv file to build *any*
desired path in the store with any desired contents (so long as the
path doesn't already exist). Then the attacker just needs to wait
for a victim to come along and install the compromised path.
For instance, if Alice (the attacker) knows that the latest Firefox
derivation in Nixpkgs produces the path
/nix/store/1a5nyfd4ajxbyy97r1fslhgrv70gj8a7-firefox-5.0.1
then (provided this path doesn't already exist) she can craft a .drv
file that creates that path (i.e., has it as one of its outputs),
add it to the store using "nix-store --add", and build it with
"nix-store -r". So the fake .drv could write a Trojan to the
Firefox path. Then, if user Bob (the victim) comes along and does
$ nix-env -i firefox
$ firefox
he executes the Trojan injected by Alice.
The fix is to have the Nix daemon verify that derivation outputs are
correct (in addValidPath()). This required some refactoring to move
the hash computation code to libstore.
|
|
by setting the ‘outputs’ attribute. For example:
stdenv.mkDerivation {
name = "aterm-2.5";
src = ...;
outputs = [ "out" "tools" "dev" ];
configureFlags = "--bindir=$(tools)/bin --includedir=$(dev)/include";
}
This derivation creates three outputs, named like this:
/nix/store/gcnqgllbh01p3d448q8q6pzn2nc2gpyl-aterm-2.5
/nix/store/gjf1sgirwfnrlr0bdxyrwzpw2r304j02-aterm-2.5-tools
/nix/store/hp6108bqfgxvza25nnxfs7kj88xi2vdx-aterm-2.5-dev
That is, the symbolic name of the output is suffixed to the store
path (except for the ‘out’ output). Each path is passed to the
builder through the corresponding environment variable, e.g.,
${tools}.
The main reason for multiple outputs is to allow parts of a package
to be distributed and garbage-collected separately. For instance,
most packages depend on Glibc for its libraries, but don't need its
header files. If these are separated into different store paths,
then a package that depends on the Glibc libraries only causes the
libraries and not the headers to be downloaded.
The main problem with multiple outputs is that if one output exists
while the others have been garbage-collected (or never downloaded in
the first place), and we want to rebuild the other outputs, then
this isn't possible because we can't clobber a valid output (it
might be in active use). This currently gives an error message
like:
error: derivation `/nix/store/1s9zw4c8qydpjyrayxamx2z7zzp5pcgh-aterm-2.5.drv' is blocked by its output paths
There are two solutions: 1) Do the build in a chroot. Then we don't
need to overwrite the existing path. 2) Use hash rewriting (see the
ASE-2005 paper). Scary but it should work.
This is not finished yet. There is not yet an easy way to refer to
non-default outputs in Nix expressions. Also, mutually recursive
outputs aren't detected yet and cause the garbage collector to
crash.
|