Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
|
|
|
|
|
|
In "nix-env -qas", we don't need the substitute info, we just need to
know if it exists. This can be done using a HTTP HEAD request, which
saves bandwidth.
Note however that curl currently has a bug that prevents it from
reusing HTTP connections if HEAD requests return a 404:
https://sourceforge.net/tracker/?func=detail&aid=3542731&group_id=976&atid=100976
Without the patch attached to the issue, using HEAD is actually quite
a bit slower than GET.
|
|
|
|
|
|
|
|
Getting substitute information using the binary cache substituter has
non-trivial latency overhead. A package or NixOS system configuration
can have hundreds of dependencies, and in the worst case (when the
local info cache is empty) we have to do a separate HTTP request for
each of these. If the ping time to the server is t, getting N info
files will take tN seconds; e.g., with a ping time of 0.1s to
nixos.org, sequentially downloading 1000 info files (a typical NixOS
config) will take at least 100 seconds.
To fix this problem, the binary cache substituter can now perform
requests in parallel. This required changing the substituter
interface to support a function querySubstitutablePathInfos() that
queries multiple paths at the same time, and rewriting queryMissing()
to take advantage of parallelism. (Due to local caching,
parallelising queryMissing() is sufficient for most use cases, since
it's almost always called before building a derivation and thus fills
the local info cache.)
For example, parallelism speeds up querying all 1056 paths in a
particular NixOS system configuration from 116s to 2.6s. It works so
well because the eccentricity of the top-level derivation in the
dependency graph is only 9. So we only need 10 round-trips (when
using an unlimited number of parallel connections) to get everything.
Currently we do a maximum of 150 parallel connections to the server.
Thus it's important that the binary cache server (e.g. nixos.org) has
a high connection limit. Alternatively we could use HTTP pipelining,
but WWW::Curl doesn't support it and libcurl has a hard-coded limit of
5 requests per pipeline.
|
|
Using WWW::Curl rather than running an external curl process for every
NAR info file halves the time it takes to get info thanks to libcurl's
support for persistent HTTP connections. (We save a roundtrip per
file.) But the real gain will come from using parallel and/or
pipelined requests.
|
|
I.e. if a NAR info file does *not* exist, we record it in the cache DB
so that we don't retry it later.
|
|
|
|
|
|
|
|
|
|
|
|
Use the hash part of the store path as a key rather than a hash of the
store path. This is enough to get the desired privacy property.
|
|
|
|
|
|
|
|
|
|
|
|
XZ compresses significantly better than bzip2. Here are the
compression ratios and execution times (using 4 cores in parallel) on
my /var/run/current-system (3.1 GiB):
bzip2: total compressed size 849.56 MiB, 30.8% [2m08]
xz -6: total compressed size 641.84 MiB, 23.4% [6m53]
xz -7: total compressed size 621.82 MiB, 22.6% [7m19]
xz -8: total compressed size 599.33 MiB, 21.8% [7m18]
xz -9: total compressed size 588.18 MiB, 21.4% [7m40]
Note that compression takes much longer. More importantly, however,
decompression is much faster:
bzip2: 1m47.274s
xz -6: 0m55.446s
xz -7: 0m54.119s
xz -8: 0m52.388s
xz -9: 0m51.842s
The only downside to using -9 is that decompression takes a fair
amount (~65 MB) of memory.
|
|
Manifests are a huge pain, since users need to run nix-pull directly
or indirectly to obtain them. They tend to be large and lag behind
the available binaries; also, the downloaded manifests in
/nix/var/nix/manifest need to be in sync with the Nixpkgs sources. So
we want to get rid of them.
The idea of manifest-free operation works as follows. Nix is
configured with a set of URIs of binary caches, e.g.
http://nixos.org/binary-cache
Whenever Nix needs a store path X, it checks each binary cache for the
existence of a file <CACHE-URI>/<SHA-256 hash of X>.narinfo, e.g.
http://nixos.org/binary-cache/bi1gh9...ia17.narinfo
The .narinfo file contains the necessary information about the store
path that was formerly kept in the manifest, i.e., (relative) URI of
the compressed NAR, references, size, hash, etc. For example:
StorePath: /nix/store/xqp4l88cr9bxv01jinkz861mnc9p7qfi-neon-0.29.6
URL: 1bjxbg52l32wj8ww47sw9f4qz0r8n5vs71l93lcbgk2506v3cpfd.nar.bz2
CompressedHash: sha256:1bjxbg52l32wj8ww47sw9f4qz0r8n5vs71l93lcbgk2506v3cpfd
CompressedSize: 202542
NarHash: sha256:1af26536781e6134ab84201b33408759fc59b36cc5530f57c0663f67b588e15f
NarSize: 700440
References: 043zrsanirjh8nbc5vqpjn93hhrf107f-bash-4.2-p24 cj7a81wsm1ijwwpkks3725661h3263p5-glibc-2.13 ...
Deriver: 4idz1bgi58h3pazxr3akrw4fsr6zrf3r-neon-0.29.6.drv
System: x86_64-linux
Nix then knows that it needs to download
http://nixos.org/binary-cache/1bjxbg52l32wj8ww47sw9f4qz0r8n5vs71l93lcbgk2506v3cpfd.nar.bz2
to substitute the store path.
Note that the store directory is omitted from the References and
Deriver fields to save space, and that the URL can be relative to the
binary cache prefix.
This patch just makes nix-push create binary caches in this format.
The next step is to make a substituter that supports them.
|
|
usable by normal users - install as a data file, not a program file
|
|
For several platforms we don't currently have "native" Nix packages
(e.g. Mac OS X and FreeBSD). This provides the next best thing: a
tarball containing the closure of Nix, plus a simple script
"nix-finish-install" that initialises the Nix database, registers the
paths in the closure as valid, and runs "nix-env -i /path/to/nix" to
initialise the user profile.
The tarball must be unpacked in the root directory. It creates
/nix/store/... and /usr/bin/nix-finish-install. Typical installation
is as follows:
$ cd /
$ tar xvf /path/to/nix-1.1pre1234_abcdef-x86_64-linux.tar.bz2
$ nix-finish-install
(if necessary add ~/.nix-profile/etc/profile.d/nix.sh to the shell
login scripts)
After this, /usr/bin/nix-finish-install can be deleted, if desired.
The downside to the binary tarball is that it's pretty big (~55 MiB
for x86_64-linux).
|
|
It's no longer needed because Nixpkgs' fontconfig uses
/etc/fonts/fonts.conf as a default, just like other distributions.
|
|
|
|
|
|
|
|
Perl <= 5.10 doesn't have make_path. See
e.g. http://hydra.nixos.org/build/2493981.
|
|
Mandatory features are features that MUST be present in a derivation's
requiredSystemFeatures attribute. One application is performance
testing, where we have a dedicated machine to run performance tests
(and nothing else). Then we would add the label "perf" to the
machine's mandatory features and to the performance testing
derivations.
|
|
|
|
|
|
|
|
|
|
tarball
Without this change, if the URL is a redirect that changes in between,
we can get a manifest that doesn't match the tarball.
|
|
|
|
"nix-channel --add" now accepts a second argument: the channel name.
This allows channels to have a nicer name than (say) nixpkgs_unstable.
If no name is given, it defaults to the last component of the URL
(with "-unstable" or "-stable" removed).
Also, channels are now stored in a profile
(/nix/var/nix/profiles/per-user/$USER/channels). One advantage of
this is that it allows rollbacks (e.g. if "nix-channel --update" gives
an undesirable update).
|
|
|
|
so that network progress is what's measured
|
|
|
|
|
|
|
|
If we don't follow redirects, we might think that MANIFEST.bz2 exists
just because the HEAD request succeeds on the redirector URI.
|
|
|
|
Sometimes when doing "nix-build --run-env" you don't want all
dependencies to be built. For instance, if we want to do "--run-env"
on the "build" attribute in Hydra's release.nix (to get Hydra's build
environment), we don't want its "tarball" dependency to be built. So
we can do:
$ nix-build --run-env release.nix -A build --exclude 'hydra-tarball'
This will skip the dependency whose name matches the "hydra-tarball"
regular expression. The "--exclude" option can be repeated any number
of times.
|
|
--command
|
|
This command builds or fetches all dependencies of the given
derivation, then starts a shell with the environment variables from
the derivation. This shell also sources $stdenv/setup to initialise
the environment further.
The current directory is not changed. Thus this is a convenient way
to reproduce a build environment in an existing working tree.
Existing environment variables are left untouched (unless the
derivation overrides them). As a special hack, the original value of
$PATH is appended to the $PATH produced by $stdenv/setup.
Example session:
$ nix-build --run-env '<nixpkgs>' -A xterm
(the dependencies of xterm are built/fetched...)
$ tar xf $src
$ ./configure
$ make
$ emacs
(... hack source ...)
$ make
$ ./xterm
|
|
We're already printing progress on stderr, so printing them on stdout
afterwards is kind of useless.
|