about summary refs log tree commit diff
path: root/tvix/eval/src/compiler
diff options
context:
space:
mode:
Diffstat (limited to 'tvix/eval/src/compiler')
-rw-r--r--tvix/eval/src/compiler/mod.rs1093
1 files changed, 1093 insertions, 0 deletions
diff --git a/tvix/eval/src/compiler/mod.rs b/tvix/eval/src/compiler/mod.rs
new file mode 100644
index 000000000000..5cb02a66b96a
--- /dev/null
+++ b/tvix/eval/src/compiler/mod.rs
@@ -0,0 +1,1093 @@
+//! This module implements a compiler for compiling the rnix AST
+//! representation to Tvix bytecode.
+//!
+//! A note on `unwrap()`: This module contains a lot of calls to
+//! `unwrap()` or `expect(...)` on data structures returned by `rnix`.
+//! The reason for this is that rnix uses the same data structures to
+//! represent broken and correct ASTs, so all typed AST variants have
+//! the ability to represent an incorrect node.
+//!
+//! However, at the time that the AST is passed to the compiler we
+//! have verified that `rnix` considers the code to be correct, so all
+//! variants are fulfilled. In cases where the invariant is guaranteed
+//! by the code in this module, `debug_assert!` has been used to catch
+//! mistakes early during development.
+
+use path_clean::PathClean;
+use rnix::ast::{self, AstToken, HasEntry};
+use rowan::ast::AstNode;
+use std::collections::{hash_map, HashMap};
+use std::path::{Path, PathBuf};
+use std::rc::Rc;
+
+use crate::chunk::Chunk;
+use crate::errors::{Error, ErrorKind, EvalResult};
+use crate::opcode::{CodeIdx, OpCode};
+use crate::value::{Lambda, Value};
+use crate::warnings::{EvalWarning, WarningKind};
+
+/// Represents the result of compiling a piece of Nix code. If
+/// compilation was successful, the resulting bytecode can be passed
+/// to the VM.
+pub struct CompilationResult {
+    pub lambda: Lambda,
+    pub warnings: Vec<EvalWarning>,
+    pub errors: Vec<Error>,
+}
+
+/// Represents a single local already known to the compiler.
+struct Local {
+    // Definition name, which can be different kinds of tokens (plain
+    // string or identifier). Nix does not allow dynamic names inside
+    // of `let`-expressions.
+    name: String,
+
+    // Syntax node at which this local was declared.
+    node: Option<rnix::SyntaxNode>,
+
+    // Scope depth of this local.
+    depth: usize,
+
+    // Phantom locals are not actually accessible by users (e.g.
+    // intermediate values used for `with`).
+    phantom: bool,
+
+    // Is this local known to have been used at all?
+    used: bool,
+}
+
+/// Represents a stack offset containing keys which are currently
+/// in-scope through a with expression.
+#[derive(Debug)]
+struct With {
+    depth: usize,
+}
+
+/// Represents a scope known during compilation, which can be resolved
+/// directly to stack indices.
+///
+/// TODO(tazjin): `with`-stack
+/// TODO(tazjin): flag "specials" (e.g. note depth if builtins are
+/// overridden)
+#[derive(Default)]
+struct Scope {
+    locals: Vec<Local>,
+
+    // How many scopes "deep" are these locals?
+    scope_depth: usize,
+
+    // Stack indices of attribute sets currently in scope through
+    // `with`.
+    with_stack: Vec<With>,
+
+    // Users are allowed to override globally defined symbols like
+    // `true`, `false` or `null` in scopes. We call this "scope
+    // poisoning", as it requires runtime resolution of those tokens.
+    //
+    // To support this efficiently, the depth at which a poisoning
+    // occured is tracked here.
+    poisoned_tokens: HashMap<&'static str, usize>,
+}
+
+impl Scope {
+    /// Mark a globally defined token as poisoned.
+    fn poison(&mut self, name: &'static str, depth: usize) {
+        match self.poisoned_tokens.entry(name) {
+            hash_map::Entry::Occupied(_) => {
+                /* do nothing, as the token is already poisoned at a
+                 * lower scope depth */
+            }
+            hash_map::Entry::Vacant(entry) => {
+                entry.insert(depth);
+            }
+        }
+    }
+
+    /// Check whether a given token is poisoned.
+    fn is_poisoned(&self, name: &str) -> bool {
+        self.poisoned_tokens.contains_key(name)
+    }
+
+    /// "Unpoison" tokens that were poisoned at a given depth. Used
+    /// when scopes are closed.
+    fn unpoison(&mut self, depth: usize) {
+        self.poisoned_tokens
+            .retain(|_, poisoned_at| *poisoned_at != depth);
+    }
+}
+
+/// Represents the lambda currently being compiled.
+struct LambdaCtx {
+    lambda: Lambda,
+    scope: Scope,
+}
+
+impl LambdaCtx {
+    fn new() -> Self {
+        LambdaCtx {
+            lambda: Lambda::new_anonymous(),
+            scope: Default::default(),
+        }
+    }
+}
+
+type GlobalsMap = HashMap<&'static str, Rc<dyn Fn(&mut Compiler)>>;
+
+struct Compiler {
+    contexts: Vec<LambdaCtx>,
+    warnings: Vec<EvalWarning>,
+    errors: Vec<Error>,
+    root_dir: PathBuf,
+
+    /// Carries all known global tokens; the full set of which is
+    /// created when the compiler is invoked.
+    ///
+    /// Each global has an associated token, which when encountered as
+    /// an identifier is resolved against the scope poisoning logic,
+    /// and a function that should emit code for the token.
+    globals: GlobalsMap,
+}
+
+// Helper functions for emitting code and metadata to the internal
+// structures of the compiler.
+impl Compiler {
+    fn context(&self) -> &LambdaCtx {
+        &self.contexts[self.contexts.len() - 1]
+    }
+
+    fn context_mut(&mut self) -> &mut LambdaCtx {
+        let idx = self.contexts.len() - 1;
+        &mut self.contexts[idx]
+    }
+
+    fn chunk(&mut self) -> &mut Chunk {
+        Rc::<Chunk>::get_mut(self.context_mut().lambda.chunk())
+            .expect("compiler flaw: long-lived chunk reference")
+    }
+
+    fn scope(&self) -> &Scope {
+        &self.context().scope
+    }
+
+    fn scope_mut(&mut self) -> &mut Scope {
+        &mut self.context_mut().scope
+    }
+
+    fn emit_constant(&mut self, value: Value) {
+        let idx = self.chunk().push_constant(value);
+        self.chunk().push_op(OpCode::OpConstant(idx));
+    }
+}
+
+// Actual code-emitting AST traversal methods.
+impl Compiler {
+    fn compile(&mut self, expr: ast::Expr) {
+        match expr {
+            ast::Expr::Literal(literal) => self.compile_literal(literal),
+            ast::Expr::Path(path) => self.compile_path(path),
+            ast::Expr::Str(s) => self.compile_str(s),
+            ast::Expr::UnaryOp(op) => self.compile_unary_op(op),
+            ast::Expr::BinOp(op) => self.compile_binop(op),
+            ast::Expr::HasAttr(has_attr) => self.compile_has_attr(has_attr),
+            ast::Expr::List(list) => self.compile_list(list),
+            ast::Expr::AttrSet(attrs) => self.compile_attr_set(attrs),
+            ast::Expr::Select(select) => self.compile_select(select),
+            ast::Expr::Assert(assert) => self.compile_assert(assert),
+            ast::Expr::IfElse(if_else) => self.compile_if_else(if_else),
+            ast::Expr::LetIn(let_in) => self.compile_let_in(let_in),
+            ast::Expr::Ident(ident) => self.compile_ident(ident),
+            ast::Expr::With(with) => self.compile_with(with),
+            ast::Expr::Lambda(lambda) => self.compile_lambda(lambda),
+            ast::Expr::Apply(apply) => self.compile_apply(apply),
+
+            // Parenthesized expressions are simply unwrapped, leaving
+            // their value on the stack.
+            ast::Expr::Paren(paren) => self.compile(paren.expr().unwrap()),
+
+            ast::Expr::LegacyLet(_) => todo!("legacy let"),
+
+            ast::Expr::Root(_) => unreachable!("there cannot be more than one root"),
+            ast::Expr::Error(_) => unreachable!("compile is only called on validated trees"),
+        }
+    }
+
+    fn compile_literal(&mut self, node: ast::Literal) {
+        match node.kind() {
+            ast::LiteralKind::Float(f) => {
+                self.emit_constant(Value::Float(f.value().unwrap()));
+            }
+
+            ast::LiteralKind::Integer(i) => {
+                self.emit_constant(Value::Integer(i.value().unwrap()));
+            }
+            ast::LiteralKind::Uri(u) => {
+                self.emit_warning(node.syntax().clone(), WarningKind::DeprecatedLiteralURL);
+                self.emit_constant(Value::String(u.syntax().text().into()));
+            }
+        }
+    }
+
+    fn compile_path(&mut self, node: ast::Path) {
+        // TODO(tazjin): placeholder implementation while waiting for
+        // https://github.com/nix-community/rnix-parser/pull/96
+
+        let raw_path = node.to_string();
+        let path = if raw_path.starts_with('/') {
+            Path::new(&raw_path).to_owned()
+        } else if raw_path.starts_with('~') {
+            let mut buf = match dirs::home_dir() {
+                Some(buf) => buf,
+                None => {
+                    self.emit_error(
+                        node.syntax().clone(),
+                        ErrorKind::PathResolution("failed to determine home directory".into()),
+                    );
+                    return;
+                }
+            };
+
+            buf.push(&raw_path);
+            buf
+        } else if raw_path.starts_with('.') {
+            let mut buf = self.root_dir.clone();
+            buf.push(&raw_path);
+            buf
+        } else {
+            // TODO: decide what to do with findFile
+            todo!("other path types (e.g. <...> lookups) not yet implemented")
+        };
+
+        // TODO: Use https://github.com/rust-lang/rfcs/issues/2208
+        // once it is available
+        let value = Value::Path(path.clean());
+        self.emit_constant(value);
+    }
+
+    fn compile_str(&mut self, node: ast::Str) {
+        let mut count = 0;
+
+        // The string parts are produced in literal order, however
+        // they need to be reversed on the stack in order to
+        // efficiently create the real string in case of
+        // interpolation.
+        for part in node.normalized_parts().into_iter().rev() {
+            count += 1;
+
+            match part {
+                // Interpolated expressions are compiled as normal and
+                // dealt with by the VM before being assembled into
+                // the final string.
+                ast::InterpolPart::Interpolation(node) => self.compile(node.expr().unwrap()),
+
+                ast::InterpolPart::Literal(lit) => {
+                    self.emit_constant(Value::String(lit.into()));
+                }
+            }
+        }
+
+        if count != 1 {
+            self.chunk().push_op(OpCode::OpInterpolate(count));
+        }
+    }
+
+    fn compile_unary_op(&mut self, op: ast::UnaryOp) {
+        self.compile(op.expr().unwrap());
+
+        let opcode = match op.operator().unwrap() {
+            ast::UnaryOpKind::Invert => OpCode::OpInvert,
+            ast::UnaryOpKind::Negate => OpCode::OpNegate,
+        };
+
+        self.chunk().push_op(opcode);
+    }
+
+    fn compile_binop(&mut self, op: ast::BinOp) {
+        use ast::BinOpKind;
+
+        // Short-circuiting and other strange operators, which are
+        // under the same node type as NODE_BIN_OP, but need to be
+        // handled separately (i.e. before compiling the expressions
+        // used for standard binary operators).
+
+        match op.operator().unwrap() {
+            BinOpKind::And => return self.compile_and(op),
+            BinOpKind::Or => return self.compile_or(op),
+            BinOpKind::Implication => return self.compile_implication(op),
+            _ => {}
+        };
+
+        // For all other operators, the two values need to be left on
+        // the stack in the correct order before pushing the
+        // instruction for the operation itself.
+        self.compile(op.lhs().unwrap());
+        self.compile(op.rhs().unwrap());
+
+        match op.operator().unwrap() {
+            BinOpKind::Add => self.chunk().push_op(OpCode::OpAdd),
+            BinOpKind::Sub => self.chunk().push_op(OpCode::OpSub),
+            BinOpKind::Mul => self.chunk().push_op(OpCode::OpMul),
+            BinOpKind::Div => self.chunk().push_op(OpCode::OpDiv),
+            BinOpKind::Update => self.chunk().push_op(OpCode::OpAttrsUpdate),
+            BinOpKind::Equal => self.chunk().push_op(OpCode::OpEqual),
+            BinOpKind::Less => self.chunk().push_op(OpCode::OpLess),
+            BinOpKind::LessOrEq => self.chunk().push_op(OpCode::OpLessOrEq),
+            BinOpKind::More => self.chunk().push_op(OpCode::OpMore),
+            BinOpKind::MoreOrEq => self.chunk().push_op(OpCode::OpMoreOrEq),
+            BinOpKind::Concat => self.chunk().push_op(OpCode::OpConcat),
+
+            BinOpKind::NotEqual => {
+                self.chunk().push_op(OpCode::OpEqual);
+                self.chunk().push_op(OpCode::OpInvert)
+            }
+
+            // Handled by separate branch above.
+            BinOpKind::And | BinOpKind::Implication | BinOpKind::Or => {
+                unreachable!()
+            }
+        };
+    }
+
+    fn compile_and(&mut self, node: ast::BinOp) {
+        debug_assert!(
+            matches!(node.operator(), Some(ast::BinOpKind::And)),
+            "compile_and called with wrong operator kind: {:?}",
+            node.operator(),
+        );
+
+        // Leave left-hand side value on the stack.
+        self.compile(node.lhs().unwrap());
+
+        // If this value is false, jump over the right-hand side - the
+        // whole expression is false.
+        let end_idx = self.chunk().push_op(OpCode::OpJumpIfFalse(0));
+
+        // Otherwise, remove the previous value and leave the
+        // right-hand side on the stack. Its result is now the value
+        // of the whole expression.
+        self.chunk().push_op(OpCode::OpPop);
+        self.compile(node.rhs().unwrap());
+
+        self.patch_jump(end_idx);
+        self.chunk().push_op(OpCode::OpAssertBool);
+    }
+
+    fn compile_or(&mut self, node: ast::BinOp) {
+        debug_assert!(
+            matches!(node.operator(), Some(ast::BinOpKind::Or)),
+            "compile_or called with wrong operator kind: {:?}",
+            node.operator(),
+        );
+
+        // Leave left-hand side value on the stack
+        self.compile(node.lhs().unwrap());
+
+        // Opposite of above: If this value is **true**, we can
+        // short-circuit the right-hand side.
+        let end_idx = self.chunk().push_op(OpCode::OpJumpIfTrue(0));
+        self.chunk().push_op(OpCode::OpPop);
+        self.compile(node.rhs().unwrap());
+        self.patch_jump(end_idx);
+        self.chunk().push_op(OpCode::OpAssertBool);
+    }
+
+    fn compile_implication(&mut self, node: ast::BinOp) {
+        debug_assert!(
+            matches!(node.operator(), Some(ast::BinOpKind::Implication)),
+            "compile_implication called with wrong operator kind: {:?}",
+            node.operator(),
+        );
+
+        // Leave left-hand side value on the stack and invert it.
+        self.compile(node.lhs().unwrap());
+        self.chunk().push_op(OpCode::OpInvert);
+
+        // Exactly as `||` (because `a -> b` = `!a || b`).
+        let end_idx = self.chunk().push_op(OpCode::OpJumpIfTrue(0));
+        self.chunk().push_op(OpCode::OpPop);
+        self.compile(node.rhs().unwrap());
+        self.patch_jump(end_idx);
+        self.chunk().push_op(OpCode::OpAssertBool);
+    }
+
+    fn compile_has_attr(&mut self, node: ast::HasAttr) {
+        // Put the attribute set on the stack.
+        self.compile(node.expr().unwrap());
+        let mut count = 0;
+
+        // Push all path fragments with an operation for fetching the
+        // next nested element, for all fragments except the last one.
+        for fragment in node.attrpath().unwrap().attrs() {
+            if count > 0 {
+                self.chunk().push_op(OpCode::OpAttrOrNotFound);
+            }
+            count += 1;
+            self.compile_attr(fragment);
+        }
+
+        // After the last fragment, emit the actual instruction that
+        // leaves a boolean on the stack.
+        self.chunk().push_op(OpCode::OpAttrsIsSet);
+    }
+
+    fn compile_attr(&mut self, node: ast::Attr) {
+        match node {
+            ast::Attr::Dynamic(dynamic) => self.compile(dynamic.expr().unwrap()),
+            ast::Attr::Str(s) => self.compile_str(s),
+            ast::Attr::Ident(ident) => self.emit_literal_ident(&ident),
+        }
+    }
+
+    // Compile list literals into equivalent bytecode. List
+    // construction is fairly simple, consisting of pushing code for
+    // each literal element and an instruction with the element count.
+    //
+    // The VM, after evaluating the code for each element, simply
+    // constructs the list from the given number of elements.
+    fn compile_list(&mut self, node: ast::List) {
+        let mut count = 0;
+
+        for item in node.items() {
+            count += 1;
+            self.compile(item);
+        }
+
+        self.chunk().push_op(OpCode::OpList(count));
+    }
+
+    // Compile attribute set literals into equivalent bytecode.
+    //
+    // This is complicated by a number of features specific to Nix
+    // attribute sets, most importantly:
+    //
+    // 1. Keys can be dynamically constructed through interpolation.
+    // 2. Keys can refer to nested attribute sets.
+    // 3. Attribute sets can (optionally) be recursive.
+    fn compile_attr_set(&mut self, node: ast::AttrSet) {
+        if node.rec_token().is_some() {
+            todo!("recursive attribute sets are not yet implemented")
+        }
+
+        let mut count = 0;
+
+        // Inherits have to be evaluated before entering the scope of
+        // a potentially recursive attribute sets (i.e. we always
+        // inherit "from the outside").
+        for inherit in node.inherits() {
+            match inherit.from() {
+                Some(from) => {
+                    for ident in inherit.idents() {
+                        count += 1;
+
+                        // First emit the identifier itself
+                        self.emit_literal_ident(&ident);
+
+                        // Then emit the node that we're inheriting
+                        // from.
+                        //
+                        // TODO: Likely significant optimisation
+                        // potential in having a multi-select
+                        // instruction followed by a merge, rather
+                        // than pushing/popping the same attrs
+                        // potentially a lot of times.
+                        self.compile(from.expr().unwrap());
+                        self.emit_literal_ident(&ident);
+                        self.chunk().push_op(OpCode::OpAttrsSelect);
+                    }
+                }
+
+                None => {
+                    for ident in inherit.idents() {
+                        count += 1;
+                        self.emit_literal_ident(&ident);
+
+                        match self.resolve_local(ident.ident_token().unwrap().text()) {
+                            Some(idx) => self.chunk().push_op(OpCode::OpGetLocal(idx)),
+                            None => {
+                                self.emit_error(
+                                    ident.syntax().clone(),
+                                    ErrorKind::UnknownStaticVariable,
+                                );
+                                continue;
+                            }
+                        };
+                    }
+                }
+            }
+        }
+
+        for kv in node.attrpath_values() {
+            count += 1;
+
+            // Because attribute set literals can contain nested keys,
+            // there is potentially more than one key fragment. If
+            // this is the case, a special operation to construct a
+            // runtime value representing the attribute path is
+            // emitted.
+            let mut key_count = 0;
+            for fragment in kv.attrpath().unwrap().attrs() {
+                key_count += 1;
+                self.compile_attr(fragment);
+            }
+
+            // We're done with the key if there was only one fragment,
+            // otherwise we need to emit an instruction to construct
+            // the attribute path.
+            if key_count > 1 {
+                self.chunk().push_op(OpCode::OpAttrPath(key_count));
+            }
+
+            // The value is just compiled as normal so that its
+            // resulting value is on the stack when the attribute set
+            // is constructed at runtime.
+            self.compile(kv.value().unwrap());
+        }
+
+        self.chunk().push_op(OpCode::OpAttrs(count));
+    }
+
+    fn compile_select(&mut self, node: ast::Select) {
+        let set = node.expr().unwrap();
+        let path = node.attrpath().unwrap();
+
+        if node.or_token().is_some() {
+            self.compile_select_or(set, path, node.default_expr().unwrap());
+            return;
+        }
+
+        // Push the set onto the stack
+        self.compile(set);
+
+        // Compile each key fragment and emit access instructions.
+        //
+        // TODO: multi-select instruction to avoid re-pushing attrs on
+        // nested selects.
+        for fragment in path.attrs() {
+            self.compile_attr(fragment);
+            self.chunk().push_op(OpCode::OpAttrsSelect);
+        }
+    }
+
+    /// Compile an `or` expression into a chunk of conditional jumps.
+    ///
+    /// If at any point during attribute set traversal a key is
+    /// missing, the `OpAttrOrNotFound` instruction will leave a
+    /// special sentinel value on the stack.
+    ///
+    /// After each access, a conditional jump evaluates the top of the
+    /// stack and short-circuits to the default value if it sees the
+    /// sentinel.
+    ///
+    /// Code like `{ a.b = 1; }.a.c or 42` yields this bytecode and
+    /// runtime stack:
+    ///
+    /// ```notrust
+    ///            Bytecode                     Runtime stack
+    ///  ┌────────────────────────────┐   ┌─────────────────────────┐
+    ///  │    ...                     │   │ ...                     │
+    ///  │ 5  OP_ATTRS(1)             │ → │ 5  [ { a.b = 1; }     ] │
+    ///  │ 6  OP_CONSTANT("a")        │ → │ 6  [ { a.b = 1; } "a" ] │
+    ///  │ 7  OP_ATTR_OR_NOT_FOUND    │ → │ 7  [ { b = 1; }       ] │
+    ///  │ 8  JUMP_IF_NOT_FOUND(13)   │ → │ 8  [ { b = 1; }       ] │
+    ///  │ 9  OP_CONSTANT("C")        │ → │ 9  [ { b = 1; } "c"   ] │
+    ///  │ 10 OP_ATTR_OR_NOT_FOUND    │ → │ 10 [ NOT_FOUND        ] │
+    ///  │ 11 JUMP_IF_NOT_FOUND(13)   │ → │ 11 [                  ] │
+    ///  │ 12 JUMP(14)                │   │ ..     jumped over      │
+    ///  │ 13 CONSTANT(42)            │ → │ 12 [ 42 ]               │
+    ///  │ 14 ...                     │   │ ..   ....               │
+    ///  └────────────────────────────┘   └─────────────────────────┘
+    /// ```
+    fn compile_select_or(&mut self, set: ast::Expr, path: ast::Attrpath, default: ast::Expr) {
+        self.compile(set);
+        let mut jumps = vec![];
+
+        for fragment in path.attrs() {
+            self.compile_attr(fragment);
+            self.chunk().push_op(OpCode::OpAttrOrNotFound);
+            jumps.push(self.chunk().push_op(OpCode::OpJumpIfNotFound(0)));
+        }
+
+        let final_jump = self.chunk().push_op(OpCode::OpJump(0));
+
+        for jump in jumps {
+            self.patch_jump(jump);
+        }
+
+        // Compile the default value expression and patch the final
+        // jump to point *beyond* it.
+        self.compile(default);
+        self.patch_jump(final_jump);
+    }
+
+    fn compile_assert(&mut self, node: ast::Assert) {
+        // Compile the assertion condition to leave its value on the stack.
+        self.compile(node.condition().unwrap());
+        self.chunk().push_op(OpCode::OpAssert);
+
+        // The runtime will abort evaluation at this point if the
+        // assertion failed, if not the body simply continues on like
+        // normal.
+        self.compile(node.body().unwrap());
+    }
+
+    // Compile conditional expressions using jumping instructions in the VM.
+    //
+    //                        ┌────────────────────┐
+    //                        │ 0  [ conditional ] │
+    //                        │ 1   JUMP_IF_FALSE →┼─┐
+    //                        │ 2  [  main body  ] │ │ Jump to else body if
+    //                       ┌┼─3─←     JUMP       │ │ condition is false.
+    //  Jump over else body  ││ 4  [  else body  ]←┼─┘
+    //  if condition is true.└┼─5─→     ...        │
+    //                        └────────────────────┘
+    fn compile_if_else(&mut self, node: ast::IfElse) {
+        self.compile(node.condition().unwrap());
+
+        let then_idx = self.chunk().push_op(OpCode::OpJumpIfFalse(0));
+
+        self.chunk().push_op(OpCode::OpPop); // discard condition value
+        self.compile(node.body().unwrap());
+
+        let else_idx = self.chunk().push_op(OpCode::OpJump(0));
+
+        self.patch_jump(then_idx); // patch jump *to* else_body
+        self.chunk().push_op(OpCode::OpPop); // discard condition value
+        self.compile(node.else_body().unwrap());
+
+        self.patch_jump(else_idx); // patch jump *over* else body
+    }
+
+    // Compile an `inherit` node of a `let`-expression.
+    fn compile_let_inherit<I: Iterator<Item = ast::Inherit>>(&mut self, inherits: I) {
+        for inherit in inherits {
+            match inherit.from() {
+                // Within a `let` binding, inheriting from the outer
+                // scope is a no-op *if* the identifier can be
+                // statically resolved.
+                None if self.scope().with_stack.is_empty() => {
+                    self.emit_warning(inherit.syntax().clone(), WarningKind::UselessInherit);
+                    continue;
+                }
+
+                None => {
+                    for ident in inherit.idents() {
+                        // If the identifier resolves statically, it
+                        // has precedence over dynamic bindings, and
+                        // the inherit is useless.
+                        if self
+                            .resolve_local(ident.ident_token().unwrap().text())
+                            .is_some()
+                        {
+                            self.emit_warning(ident.syntax().clone(), WarningKind::UselessInherit);
+                            continue;
+                        }
+
+                        self.compile_ident(ident.clone());
+                        self.declare_local(
+                            ident.syntax().clone(),
+                            ident.ident_token().unwrap().text(),
+                        );
+                    }
+                }
+
+                Some(from) => {
+                    for ident in inherit.idents() {
+                        self.compile(from.expr().unwrap());
+                        self.emit_literal_ident(&ident);
+                        self.chunk().push_op(OpCode::OpAttrsSelect);
+                        self.declare_local(
+                            ident.syntax().clone(),
+                            ident.ident_token().unwrap().text(),
+                        );
+                    }
+                }
+            }
+        }
+    }
+
+    // Compile a standard `let ...; in ...` statement.
+    //
+    // Unless in a non-standard scope, the encountered values are
+    // simply pushed on the stack and their indices noted in the
+    // entries vector.
+    fn compile_let_in(&mut self, node: ast::LetIn) {
+        self.begin_scope();
+
+        self.compile_let_inherit(node.inherits());
+
+        for entry in node.attrpath_values() {
+            let mut path = match normalise_ident_path(entry.attrpath().unwrap().attrs()) {
+                Ok(p) => p,
+                Err(err) => {
+                    self.errors.push(err);
+                    continue;
+                }
+            };
+
+            if path.len() != 1 {
+                todo!("nested bindings in let expressions :(")
+            }
+
+            self.compile(entry.value().unwrap());
+            self.declare_local(
+                entry.attrpath().unwrap().syntax().clone(),
+                path.pop().unwrap(),
+            );
+        }
+
+        // Deal with the body, then clean up the locals afterwards.
+        self.compile(node.body().unwrap());
+        self.end_scope();
+    }
+
+    fn compile_ident(&mut self, node: ast::Ident) {
+        let ident = node.ident_token().unwrap();
+
+        // If the identifier is a global, and it is not poisoned, emit
+        // the global directly.
+        if let Some(global) = self.globals.get(ident.text()) {
+            if !self.scope().is_poisoned(ident.text()) {
+                global.clone()(self);
+                return;
+            }
+        }
+
+        match self.resolve_local(ident.text()) {
+            Some(idx) => self.chunk().push_op(OpCode::OpGetLocal(idx)),
+            None => {
+                if self.scope().with_stack.is_empty() {
+                    self.emit_error(node.syntax().clone(), ErrorKind::UnknownStaticVariable);
+                    return;
+                }
+
+                // Variable needs to be dynamically resolved
+                // at runtime.
+                self.emit_constant(Value::String(ident.text().into()));
+                self.chunk().push_op(OpCode::OpResolveWith)
+            }
+        };
+    }
+
+    // Compile `with` expressions by emitting instructions that
+    // pop/remove the indices of attribute sets that are implicitly in
+    // scope through `with` on the "with-stack".
+    fn compile_with(&mut self, node: ast::With) {
+        // TODO: Detect if the namespace is just an identifier, and
+        // resolve that directly (thus avoiding duplication on the
+        // stack).
+        self.compile(node.namespace().unwrap());
+
+        self.declare_phantom();
+        let depth = self.scope().scope_depth;
+        self.scope_mut().with_stack.push(With { depth });
+
+        let with_idx = self.scope().locals.len() - 1;
+        self.chunk().push_op(OpCode::OpPushWith(with_idx));
+
+        self.compile(node.body().unwrap());
+    }
+
+    fn compile_lambda(&mut self, node: ast::Lambda) {
+        // Open new lambda context in compiler, which has its own
+        // scope etc.
+        self.contexts.push(LambdaCtx::new());
+        self.begin_scope();
+
+        // Compile the function itself
+        match node.param().unwrap() {
+            ast::Param::Pattern(_) => todo!("formals function definitions"),
+            ast::Param::IdentParam(param) => {
+                let name = param
+                    .ident()
+                    .unwrap()
+                    .ident_token()
+                    .unwrap()
+                    .text()
+                    .to_string();
+
+                self.declare_local(param.syntax().clone(), name);
+            }
+        }
+
+        self.compile(node.body().unwrap());
+        self.end_scope();
+
+        // TODO: determine and insert enclosing name, if available.
+
+        // Pop the lambda context back off, and emit the finished
+        // lambda as a constant.
+        let compiled = self.contexts.pop().unwrap();
+
+        #[cfg(feature = "disassembler")]
+        {
+            crate::disassembler::disassemble_chunk(&compiled.lambda.chunk);
+        }
+
+        self.emit_constant(Value::Lambda(compiled.lambda));
+    }
+
+    fn compile_apply(&mut self, node: ast::Apply) {
+        // To call a function, we leave its arguments on the stack,
+        // followed by the function expression itself, and then emit a
+        // call instruction. This way, the stack is perfectly laid out
+        // to enter the function call straight away.
+        self.compile(node.argument().unwrap());
+        self.compile(node.lambda().unwrap());
+        self.chunk().push_op(OpCode::OpCall);
+    }
+
+    /// Emit the literal string value of an identifier. Required for
+    /// several operations related to attribute sets, where
+    /// identifiers are used as string keys.
+    fn emit_literal_ident(&mut self, ident: &ast::Ident) {
+        self.emit_constant(Value::String(ident.ident_token().unwrap().text().into()));
+    }
+
+    fn patch_jump(&mut self, idx: CodeIdx) {
+        let offset = self.chunk().code.len() - 1 - idx.0;
+
+        match &mut self.chunk().code[idx.0] {
+            OpCode::OpJump(n)
+            | OpCode::OpJumpIfFalse(n)
+            | OpCode::OpJumpIfTrue(n)
+            | OpCode::OpJumpIfNotFound(n) => {
+                *n = offset;
+            }
+
+            op => panic!("attempted to patch unsupported op: {:?}", op),
+        }
+    }
+
+    fn begin_scope(&mut self) {
+        self.scope_mut().scope_depth += 1;
+    }
+
+    fn end_scope(&mut self) {
+        debug_assert!(self.scope().scope_depth != 0, "can not end top scope");
+
+        // If this scope poisoned any builtins or special identifiers,
+        // they need to be reset.
+        let depth = self.scope().scope_depth;
+        self.scope_mut().unpoison(depth);
+
+        self.scope_mut().scope_depth -= 1;
+
+        // When ending a scope, all corresponding locals need to be
+        // removed, but the value of the body needs to remain on the
+        // stack. This is implemented by a separate instruction.
+        let mut pops = 0;
+
+        // TL;DR - iterate from the back while things belonging to the
+        // ended scope still exist.
+        while !self.scope().locals.is_empty()
+            && self.scope().locals[self.scope().locals.len() - 1].depth > self.scope().scope_depth
+        {
+            pops += 1;
+
+            // While removing the local, analyse whether it has been
+            // accessed while it existed and emit a warning to the
+            // user otherwise.
+            if let Some(Local {
+                node: Some(node),
+                used,
+                ..
+            }) = self.scope_mut().locals.pop()
+            {
+                if !used {
+                    self.emit_warning(node, WarningKind::UnusedBinding);
+                }
+            }
+        }
+
+        if pops > 0 {
+            self.chunk().push_op(OpCode::OpCloseScope(pops));
+        }
+
+        while !self.scope().with_stack.is_empty()
+            && self.scope().with_stack[self.scope().with_stack.len() - 1].depth
+                > self.scope().scope_depth
+        {
+            self.chunk().push_op(OpCode::OpPopWith);
+            self.scope_mut().with_stack.pop();
+        }
+    }
+
+    /// Declare a local variable known in the scope that is being
+    /// compiled by pushing it to the locals. This is used to
+    /// determine the stack offset of variables.
+    fn declare_local<S: Into<String>>(&mut self, node: rnix::SyntaxNode, name: S) {
+        let name = name.into();
+        let depth = self.scope().scope_depth;
+
+        // Do this little dance to get ahold of the *static* key and
+        // use it for poisoning if required.
+        let key: Option<&'static str> = match self.globals.get_key_value(name.as_str()) {
+            Some((key, _)) => Some(*key),
+            None => None,
+        };
+
+        if let Some(global_ident) = key {
+            self.emit_warning(node.clone(), WarningKind::ShadowedGlobal(global_ident));
+            self.scope_mut().poison(global_ident, depth);
+        }
+
+        self.scope_mut().locals.push(Local {
+            depth,
+            name: name.into(),
+            node: Some(node),
+            phantom: false,
+            used: false,
+        });
+    }
+
+    fn declare_phantom(&mut self) {
+        let depth = self.scope().scope_depth;
+        self.scope_mut().locals.push(Local {
+            depth,
+            name: "".into(),
+            node: None,
+            phantom: true,
+            used: true,
+        });
+    }
+
+    fn resolve_local(&mut self, name: &str) -> Option<usize> {
+        let scope = self.scope_mut();
+
+        for (idx, local) in scope.locals.iter_mut().enumerate().rev() {
+            if !local.phantom && local.name == name {
+                local.used = true;
+                return Some(idx);
+            }
+        }
+
+        None
+    }
+
+    fn emit_warning(&mut self, node: rnix::SyntaxNode, kind: WarningKind) {
+        self.warnings.push(EvalWarning { node, kind })
+    }
+
+    fn emit_error(&mut self, node: rnix::SyntaxNode, kind: ErrorKind) {
+        self.errors.push(Error {
+            node: Some(node),
+            kind,
+        })
+    }
+}
+
+/// Convert a non-dynamic string expression to a string if possible,
+/// or raise an error.
+fn expr_str_to_string(expr: ast::Str) -> EvalResult<String> {
+    if expr.normalized_parts().len() == 1 {
+        if let ast::InterpolPart::Literal(s) = expr.normalized_parts().pop().unwrap() {
+            return Ok(s);
+        }
+    }
+
+    return Err(Error {
+        node: Some(expr.syntax().clone()),
+        kind: ErrorKind::DynamicKeyInLet(expr.syntax().clone()),
+    });
+}
+
+/// Convert a single identifier path fragment to a string if possible,
+/// or raise an error about the node being dynamic.
+fn attr_to_string(node: ast::Attr) -> EvalResult<String> {
+    match node {
+        ast::Attr::Ident(ident) => Ok(ident.ident_token().unwrap().text().into()),
+        ast::Attr::Str(s) => expr_str_to_string(s),
+
+        // The dynamic node type is just a wrapper. C++ Nix does not
+        // care about the dynamic wrapper when determining whether the
+        // node itself is dynamic, it depends solely on the expression
+        // inside (i.e. `let ${"a"} = 1; in a` is valid).
+        ast::Attr::Dynamic(ref dynamic) => match dynamic.expr().unwrap() {
+            ast::Expr::Str(s) => expr_str_to_string(s),
+            _ => Err(ErrorKind::DynamicKeyInLet(node.syntax().clone()).into()),
+        },
+    }
+}
+
+// Normalises identifier fragments into a single string vector for
+// `let`-expressions; fails if fragments requiring dynamic computation
+// are encountered.
+fn normalise_ident_path<I: Iterator<Item = ast::Attr>>(path: I) -> EvalResult<Vec<String>> {
+    path.map(attr_to_string).collect()
+}
+
+/// Prepare the full set of globals from additional globals supplied
+/// by the caller of the compiler, as well as the built-in globals
+/// that are always part of the language.
+///
+/// Note that all builtin functions are *not* considered part of the
+/// language in this sense and MUST be supplied as additional global
+/// values, including the `builtins` set itself.
+fn prepare_globals(additional: HashMap<&'static str, Value>) -> GlobalsMap {
+    let mut globals: GlobalsMap = HashMap::new();
+
+    globals.insert(
+        "true",
+        Rc::new(|compiler| {
+            compiler.chunk().push_op(OpCode::OpTrue);
+        }),
+    );
+
+    globals.insert(
+        "false",
+        Rc::new(|compiler| {
+            compiler.chunk().push_op(OpCode::OpFalse);
+        }),
+    );
+
+    globals.insert(
+        "null",
+        Rc::new(|compiler| {
+            compiler.chunk().push_op(OpCode::OpNull);
+        }),
+    );
+
+    for (ident, value) in additional.into_iter() {
+        globals.insert(
+            ident,
+            Rc::new(move |compiler| compiler.emit_constant(value.clone())),
+        );
+    }
+
+    globals
+}
+
+pub fn compile(
+    expr: ast::Expr,
+    location: Option<PathBuf>,
+    globals: HashMap<&'static str, Value>,
+) -> EvalResult<CompilationResult> {
+    let mut root_dir = match location {
+        Some(dir) => Ok(dir),
+        None => std::env::current_dir().map_err(|e| {
+            ErrorKind::PathResolution(format!("could not determine current directory: {}", e))
+        }),
+    }?;
+
+    // If the path passed from the caller points to a file, the
+    // filename itself needs to be truncated as this must point to a
+    // directory.
+    if root_dir.is_file() {
+        root_dir.pop();
+    }
+
+    let mut c = Compiler {
+        root_dir,
+        globals: prepare_globals(globals),
+        contexts: vec![LambdaCtx::new()],
+        warnings: vec![],
+        errors: vec![],
+    };
+
+    c.compile(expr);
+
+    Ok(CompilationResult {
+        lambda: c.contexts.pop().unwrap().lambda,
+        warnings: c.warnings,
+        errors: c.errors,
+    })
+}