summary refs log tree commit diff
path: root/third_party/bazel/rules_haskell/examples
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/bazel/rules_haskell/examples')
l---------third_party/bazel/rules_haskell/examples/.bazelrc1
-rw-r--r--third_party/bazel/rules_haskell/examples/.gitignore1
-rw-r--r--third_party/bazel/rules_haskell/examples/BUILD.bazel10
-rw-r--r--third_party/bazel/rules_haskell/examples/README.md45
-rw-r--r--third_party/bazel/rules_haskell/examples/WORKSPACE58
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/BUILD.bazel33
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Control/Monad/Primitive.hs298
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive.hs85
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Addr.hs133
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Array.hs822
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/ByteArray.hs549
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Internal/Compat.hs38
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Internal/Operations.hs90
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/MVar.hs155
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/MachDeps.hs123
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/MutVar.hs86
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/PrimArray.hs969
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Ptr.hs125
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/SmallArray.hs967
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Types.hs395
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/UnliftedArray.hs638
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/LICENSE30
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/Setup.hs3
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/cbits/primitive-memops.c56
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/cbits/primitive-memops.h23
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/changelog.md164
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/primitive.cabal74
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/test/LICENSE30
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/test/main.hs342
-rw-r--r--third_party/bazel/rules_haskell/examples/primitive/test/primitive-tests.cabal45
-rw-r--r--third_party/bazel/rules_haskell/examples/rts/BUILD.bazel29
-rw-r--r--third_party/bazel/rules_haskell/examples/rts/One.hs6
-rw-r--r--third_party/bazel/rules_haskell/examples/rts/main.c11
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/BUILD.bazel19
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Applicative/Backwards.hs112
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Applicative/Lift.hs165
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Signatures.hs56
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Accum.hs292
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Class.hs262
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Cont.hs240
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Error.hs333
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Except.hs316
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Identity.hs188
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/List.hs185
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Maybe.hs241
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS.hs25
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/CPS.hs406
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/Lazy.hs389
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/Strict.hs392
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Reader.hs262
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Select.hs161
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/State.hs33
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/State/Lazy.hs428
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/State/Strict.hs425
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer.hs25
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/CPS.hs283
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Lazy.hs313
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Strict.hs316
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Data/Functor/Constant.hs152
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Data/Functor/Reverse.hs143
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/LICENSE31
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Setup.hs2
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/changelog124
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/legacy/pre709/Data/Functor/Identity.hs259
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Control/Monad/IO/Class.hs51
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Classes.hs529
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Compose.hs154
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Product.hs156
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Sum.hs136
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/transformers.cabal91
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/BUILD.bazel38
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector.hs1719
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle.hs655
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs1106
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Size.hs121
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs1639
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Util.hs60
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic.hs2206
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/Base.hs140
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/Mutable.hs1034
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/Mutable/Base.hs145
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/New.hs178
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Internal/Check.hs152
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Mutable.hs416
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Primitive.hs1393
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Primitive/Mutable.hs366
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable.hs1489
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Internal.hs33
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Mutable.hs543
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Unboxed.hs1488
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Unboxed/Base.hs408
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Unboxed/Mutable.hs307
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/LICENSE30
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/README.md6
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Setup.hs3
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/AwShCC.hs38
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/HybCC.hs42
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Leaffix.hs16
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/ListRank.hs21
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Quickhull.hs32
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Rootfix.hs15
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Spectral.hs21
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Tridiag.hs16
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/LICENSE30
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/Main.hs46
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/Setup.hs3
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/TestData/Graph.hs45
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/TestData/ParenTree.hs20
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/TestData/Random.hs16
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/benchmarks/vector-benchmarks.cabal37
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/changelog75
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/include/vector.h20
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/internal/GenUnboxTuple.hs239
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/internal/unbox-tuple-instances1134
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/tests/Boilerplater.hs27
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/tests/LICENSE30
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/tests/Main.hs15
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/tests/Setup.hs3
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/tests/Tests/Bundle.hs163
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/tests/Tests/Move.hs49
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs706
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector/UnitTests.hs48
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/tests/Utilities.hs350
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/vector.cabal251
124 files changed, 0 insertions, 33312 deletions
diff --git a/third_party/bazel/rules_haskell/examples/.bazelrc b/third_party/bazel/rules_haskell/examples/.bazelrc
deleted file mode 120000
index adb61980d232..000000000000
--- a/third_party/bazel/rules_haskell/examples/.bazelrc
+++ /dev/null
@@ -1 +0,0 @@
-../.bazelrc
\ No newline at end of file
diff --git a/third_party/bazel/rules_haskell/examples/.gitignore b/third_party/bazel/rules_haskell/examples/.gitignore
deleted file mode 100644
index a6ef824c1f83..000000000000
--- a/third_party/bazel/rules_haskell/examples/.gitignore
+++ /dev/null
@@ -1 +0,0 @@
-/bazel-*
diff --git a/third_party/bazel/rules_haskell/examples/BUILD.bazel b/third_party/bazel/rules_haskell/examples/BUILD.bazel
deleted file mode 100644
index ff7445a2f7c3..000000000000
--- a/third_party/bazel/rules_haskell/examples/BUILD.bazel
+++ /dev/null
@@ -1,10 +0,0 @@
-load(
-    "@io_tweag_rules_haskell//haskell:haskell.bzl",
-    "haskell_toolchain",
-)
-
-haskell_toolchain(
-    name = "ghc",
-    tools = ["@ghc//:bin"],
-    version = "8.6.4",
-)
diff --git a/third_party/bazel/rules_haskell/examples/README.md b/third_party/bazel/rules_haskell/examples/README.md
deleted file mode 100644
index 7b477f547619..000000000000
--- a/third_party/bazel/rules_haskell/examples/README.md
+++ /dev/null
@@ -1,45 +0,0 @@
-# rule_haskell examples
-
-Examples of using [rules_haskell][rules_haskell], the Bazel rule set
-for building Haskell code.
-
-* [**vector:**](./vector/) shows how to build the `vector` package as
-  found on Hackage, using a Nix provided compiler toolchain.
-* [**rts:**](./rts/) demonstrates foreign exports and shows how to
-  link against GHC's RTS library, i.e. `libHSrts.so`.
-  
-## **Important**
-
-Run all commands from the root of `rules_haskell`.
-If you `cd examples/`, bazel *will* [break on
-you](https://github.com/tweag/rules_haskell/issues/740).
-This is a current problem with bazel workspaces.
-
-## Root Workspace
-
-Build everything in the root workspace with;
-
-```
-$ bazel build @io_tweag_rules_haskell_examples//...
-```
-
-Show every target of the vector example;
-
-```
-$ bazel query @io_tweag_rules_haskell_examples//vector/...
-@io_tweag_rules_haskell_examples//vector:vector
-@io_tweag_rules_haskell_examples//vector:semigroups
-@io_tweag_rules_haskell_examples//vector:primitive
-@io_tweag_rules_haskell_examples//vector:ghc-prim
-@io_tweag_rules_haskell_examples//vector:deepseq
-@io_tweag_rules_haskell_examples//vector:base
-```
-
-Build the two main Haskell targets;
-
-```
-$ bazel build @io_tweag_rules_haskell_examples//vector
-$ bazel build @io_tweag_rules_haskell_examples//rts:add-one-hs
-```
-
-[rules_haskell]: https://github.com/tweag/rules_haskell
diff --git a/third_party/bazel/rules_haskell/examples/WORKSPACE b/third_party/bazel/rules_haskell/examples/WORKSPACE
deleted file mode 100644
index 1e99f221190a..000000000000
--- a/third_party/bazel/rules_haskell/examples/WORKSPACE
+++ /dev/null
@@ -1,58 +0,0 @@
-workspace(name = "io_tweag_rules_haskell_examples")
-
-local_repository(
-    name = "io_tweag_rules_haskell",
-    path = "..",
-)
-
-load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
-load("@io_tweag_rules_haskell//haskell:repositories.bzl", "haskell_repositories")
-
-haskell_repositories()
-
-rules_nixpkgs_version = "0.5.2"
-
-http_archive(
-    name = "io_tweag_rules_nixpkgs",
-    sha256 = "5a384daa57b49abf9f0b672852f1a66a3c52aecf9d4d2ac64f6de0fd307690c8",
-    strip_prefix = "rules_nixpkgs-%s" % rules_nixpkgs_version,
-    urls = ["https://github.com/tweag/rules_nixpkgs/archive/v%s.tar.gz" % rules_nixpkgs_version],
-)
-
-load(
-    "@io_tweag_rules_nixpkgs//nixpkgs:nixpkgs.bzl",
-    "nixpkgs_cc_configure",
-    "nixpkgs_package",
-)
-
-# For the rts example.
-nixpkgs_package(
-    name = "ghc",
-    attribute_path = "haskellPackages.ghc",
-    build_file = "@io_tweag_rules_haskell//haskell:ghc.BUILD",
-    repository = "@io_tweag_rules_haskell//nixpkgs:default.nix",
-)
-
-nixpkgs_cc_configure(
-    nix_file = "@io_tweag_rules_haskell//nixpkgs:cc-toolchain.nix",
-    repository = "@io_tweag_rules_haskell//nixpkgs:default.nix",
-)
-
-load(
-    "@io_tweag_rules_haskell//haskell:nixpkgs.bzl",
-    "haskell_register_ghc_nixpkgs",
-)
-
-haskell_register_ghc_nixpkgs(
-    repositories = {
-        "nixpkgs": "@io_tweag_rules_haskell//nixpkgs:default.nix",
-    },
-    version = "8.6.4",
-)
-
-load(
-    "@io_tweag_rules_haskell//haskell:haskell.bzl",
-    "haskell_register_ghc_bindists",
-)
-
-haskell_register_ghc_bindists(version = "8.6.4")
diff --git a/third_party/bazel/rules_haskell/examples/primitive/BUILD.bazel b/third_party/bazel/rules_haskell/examples/primitive/BUILD.bazel
deleted file mode 100644
index 798e55f29be7..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/BUILD.bazel
+++ /dev/null
@@ -1,33 +0,0 @@
-load(
-    "@io_tweag_rules_haskell//haskell:haskell.bzl",
-    "haskell_cc_import",
-    "haskell_library",
-    "haskell_toolchain_library",
-)
-
-haskell_toolchain_library(name = "base")
-
-haskell_toolchain_library(name = "ghc-prim")
-
-cc_library(
-    name = "memops",
-    srcs = ["cbits/primitive-memops.c"],
-    hdrs = ["cbits/primitive-memops.h"],
-    deps = ["@ghc//:threaded-rts"],
-)
-
-haskell_library(
-    name = "primitive",
-    srcs = glob([
-        "Data/**/*.hs",
-        "Control/**/*.hs",
-    ]),
-    version = "0",
-    visibility = ["//visibility:public"],
-    deps = [
-        ":base",
-        ":ghc-prim",
-        ":memops",
-        "//transformers",
-    ],
-)
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Control/Monad/Primitive.hs b/third_party/bazel/rules_haskell/examples/primitive/Control/Monad/Primitive.hs
deleted file mode 100644
index f182c18b086b..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Control/Monad/Primitive.hs
+++ /dev/null
@@ -1,298 +0,0 @@
-{-# LANGUAGE CPP, MagicHash, UnboxedTuples, TypeFamilies #-}
-{-# LANGUAGE FlexibleContexts, FlexibleInstances, UndecidableInstances #-}
-{-# LANGUAGE ScopedTypeVariables #-}
-{-# OPTIONS_GHC -fno-warn-deprecations #-}
-
--- |
--- Module      : Control.Monad.Primitive
--- Copyright   : (c) Roman Leshchinskiy 2009
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Portability : non-portable
---
--- Primitive state-transformer monads
---
-
-module Control.Monad.Primitive (
-  PrimMonad(..), RealWorld, primitive_,
-  PrimBase(..),
-  liftPrim, primToPrim, primToIO, primToST, ioToPrim, stToPrim,
-  unsafePrimToPrim, unsafePrimToIO, unsafePrimToST, unsafeIOToPrim,
-  unsafeSTToPrim, unsafeInlinePrim, unsafeInlineIO, unsafeInlineST,
-  touch, evalPrim
-) where
-
-import GHC.Prim   ( State#, RealWorld, touch# )
-import GHC.Base   ( unsafeCoerce#, realWorld# )
-#if MIN_VERSION_base(4,4,0)
-import GHC.Base   ( seq# )
-#else
-import Control.Exception (evaluate)
-#endif
-#if MIN_VERSION_base(4,2,0)
-import GHC.IO     ( IO(..) )
-#else
-import GHC.IOBase ( IO(..) )
-#endif
-import GHC.ST     ( ST(..) )
-
-import Control.Monad.Trans.Class (lift)
-#if !MIN_VERSION_base(4,8,0)
-import Data.Monoid (Monoid)
-#endif
-
-import Control.Monad.Trans.Cont     ( ContT    )
-import Control.Monad.Trans.Identity ( IdentityT (IdentityT) )
-import Control.Monad.Trans.List     ( ListT    )
-import Control.Monad.Trans.Maybe    ( MaybeT   )
-import Control.Monad.Trans.Error    ( ErrorT, Error)
-import Control.Monad.Trans.Reader   ( ReaderT  )
-import Control.Monad.Trans.State    ( StateT   )
-import Control.Monad.Trans.Writer   ( WriterT  )
-import Control.Monad.Trans.RWS      ( RWST     )
-
-#if MIN_VERSION_transformers(0,4,0)
-import Control.Monad.Trans.Except   ( ExceptT  )
-#endif
-
-#if MIN_VERSION_transformers(0,5,3)
-import Control.Monad.Trans.Accum    ( AccumT   )
-import Control.Monad.Trans.Select   ( SelectT  )
-#endif
-
-import qualified Control.Monad.Trans.RWS.Strict    as Strict ( RWST   )
-import qualified Control.Monad.Trans.State.Strict  as Strict ( StateT )
-import qualified Control.Monad.Trans.Writer.Strict as Strict ( WriterT )
-
--- | Class of monads which can perform primitive state-transformer actions
-class Monad m => PrimMonad m where
-  -- | State token type
-  type PrimState m
-
-  -- | Execute a primitive operation
-  primitive :: (State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
-
--- | Class of primitive monads for state-transformer actions.
---
--- Unlike 'PrimMonad', this typeclass requires that the @Monad@ be fully
--- expressed as a state transformer, therefore disallowing other monad
--- transformers on top of the base @IO@ or @ST@.
---
--- @since 0.6.0.0
-class PrimMonad m => PrimBase m where
-  -- | Expose the internal structure of the monad
-  internal :: m a -> State# (PrimState m) -> (# State# (PrimState m), a #)
-
--- | Execute a primitive operation with no result
-primitive_ :: PrimMonad m
-              => (State# (PrimState m) -> State# (PrimState m)) -> m ()
-{-# INLINE primitive_ #-}
-primitive_ f = primitive (\s# ->
-    case f s# of
-        s'# -> (# s'#, () #))
-
-instance PrimMonad IO where
-  type PrimState IO = RealWorld
-  primitive = IO
-  {-# INLINE primitive #-}
-instance PrimBase IO where
-  internal (IO p) = p
-  {-# INLINE internal #-}
-
--- | @since 0.6.3.0
-instance PrimMonad m => PrimMonad (ContT r m) where
-  type PrimState (ContT r m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-
-instance PrimMonad m => PrimMonad (IdentityT m) where
-  type PrimState (IdentityT m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-
--- | @since 0.6.2.0
-instance PrimBase m => PrimBase (IdentityT m) where
-  internal (IdentityT m) = internal m
-  {-# INLINE internal #-}
-
-instance PrimMonad m => PrimMonad (ListT m) where
-  type PrimState (ListT m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-
-instance PrimMonad m => PrimMonad (MaybeT m) where
-  type PrimState (MaybeT m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-
-instance (Error e, PrimMonad m) => PrimMonad (ErrorT e m) where
-  type PrimState (ErrorT e m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-
-instance PrimMonad m => PrimMonad (ReaderT r m) where
-  type PrimState (ReaderT r m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-
-instance PrimMonad m => PrimMonad (StateT s m) where
-  type PrimState (StateT s m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-
-instance (Monoid w, PrimMonad m) => PrimMonad (WriterT w m) where
-  type PrimState (WriterT w m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-
-instance (Monoid w, PrimMonad m) => PrimMonad (RWST r w s m) where
-  type PrimState (RWST r w s m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-
-#if MIN_VERSION_transformers(0,4,0)
-instance PrimMonad m => PrimMonad (ExceptT e m) where
-  type PrimState (ExceptT e m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-#endif
-
-#if MIN_VERSION_transformers(0,5,3)
--- | @since 0.6.3.0
-instance ( Monoid w
-         , PrimMonad m
-# if !(MIN_VERSION_base(4,8,0))
-         , Functor m
-# endif
-         ) => PrimMonad (AccumT w m) where
-  type PrimState (AccumT w m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-instance PrimMonad m => PrimMonad (SelectT r m) where
-  type PrimState (SelectT r m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-#endif
-
-instance PrimMonad m => PrimMonad (Strict.StateT s m) where
-  type PrimState (Strict.StateT s m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-
-instance (Monoid w, PrimMonad m) => PrimMonad (Strict.WriterT w m) where
-  type PrimState (Strict.WriterT w m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-
-instance (Monoid w, PrimMonad m) => PrimMonad (Strict.RWST r w s m) where
-  type PrimState (Strict.RWST r w s m) = PrimState m
-  primitive = lift . primitive
-  {-# INLINE primitive #-}
-
-instance PrimMonad (ST s) where
-  type PrimState (ST s) = s
-  primitive = ST
-  {-# INLINE primitive #-}
-instance PrimBase (ST s) where
-  internal (ST p) = p
-  {-# INLINE internal #-}
-
--- | Lifts a 'PrimBase' into another 'PrimMonad' with the same underlying state
--- token type.
-liftPrim
-  :: (PrimBase m1, PrimMonad m2, PrimState m1 ~ PrimState m2) => m1 a -> m2 a
-{-# INLINE liftPrim #-}
-liftPrim = primToPrim
-
--- | Convert a 'PrimBase' to another monad with the same state token.
-primToPrim :: (PrimBase m1, PrimMonad m2, PrimState m1 ~ PrimState m2)
-        => m1 a -> m2 a
-{-# INLINE primToPrim #-}
-primToPrim m = primitive (internal m)
-
--- | Convert a 'PrimBase' with a 'RealWorld' state token to 'IO'
-primToIO :: (PrimBase m, PrimState m ~ RealWorld) => m a -> IO a
-{-# INLINE primToIO #-}
-primToIO = primToPrim
-
--- | Convert a 'PrimBase' to 'ST'
-primToST :: PrimBase m => m a -> ST (PrimState m) a
-{-# INLINE primToST #-}
-primToST = primToPrim
-
--- | Convert an 'IO' action to a 'PrimMonad'.
--- 
--- @since 0.6.2.0
-ioToPrim :: (PrimMonad m, PrimState m ~ RealWorld) => IO a -> m a
-{-# INLINE ioToPrim #-}
-ioToPrim = primToPrim
-
--- | Convert an 'ST' action to a 'PrimMonad'.
---
--- @since 0.6.2.0
-stToPrim :: PrimMonad m => ST (PrimState m) a -> m a
-{-# INLINE stToPrim #-}
-stToPrim = primToPrim
-
--- | Convert a 'PrimBase' to another monad with a possibly different state
--- token. This operation is highly unsafe!
-unsafePrimToPrim :: (PrimBase m1, PrimMonad m2) => m1 a -> m2 a
-{-# INLINE unsafePrimToPrim #-}
-unsafePrimToPrim m = primitive (unsafeCoerce# (internal m))
-
--- | Convert any 'PrimBase' to 'ST' with an arbitrary state token. This
--- operation is highly unsafe!
-unsafePrimToST :: PrimBase m => m a -> ST s a
-{-# INLINE unsafePrimToST #-}
-unsafePrimToST = unsafePrimToPrim
-
--- | Convert any 'PrimBase' to 'IO'. This operation is highly unsafe!
-unsafePrimToIO :: PrimBase m => m a -> IO a
-{-# INLINE unsafePrimToIO #-}
-unsafePrimToIO = unsafePrimToPrim
-
--- | Convert an 'ST' action with an arbitraty state token to any 'PrimMonad'.
--- This operation is highly unsafe!
--- 
--- @since 0.6.2.0
-unsafeSTToPrim :: PrimMonad m => ST s a -> m a
-{-# INLINE unsafeSTToPrim #-}
-unsafeSTToPrim = unsafePrimToPrim
-
--- | Convert an 'IO' action to any 'PrimMonad'. This operation is highly
--- unsafe!
---
--- @since 0.6.2.0
-unsafeIOToPrim :: PrimMonad m => IO a -> m a
-{-# INLINE unsafeIOToPrim #-}
-unsafeIOToPrim = unsafePrimToPrim
-
-unsafeInlinePrim :: PrimBase m => m a -> a
-{-# INLINE unsafeInlinePrim #-}
-unsafeInlinePrim m = unsafeInlineIO (unsafePrimToIO m)
-
-unsafeInlineIO :: IO a -> a
-{-# INLINE unsafeInlineIO #-}
-unsafeInlineIO m = case internal m realWorld# of (# _, r #) -> r
-
-unsafeInlineST :: ST s a -> a
-{-# INLINE unsafeInlineST #-}
-unsafeInlineST = unsafeInlinePrim
-
-touch :: PrimMonad m => a -> m ()
-{-# INLINE touch #-}
-touch x = unsafePrimToPrim
-        $ (primitive (\s -> case touch# x s of { s' -> (# s', () #) }) :: IO ())
-
--- | Create an action to force a value; generalizes 'Control.Exception.evaluate'
---
--- @since 0.6.2.0
-evalPrim :: forall a m . PrimMonad m => a -> m a
-#if MIN_VERSION_base(4,4,0)
-evalPrim a = primitive (\s -> seq# a s)
-#else
--- This may or may not work so well, but there's probably nothing better to do.
-{-# NOINLINE evalPrim #-}
-evalPrim a = unsafePrimToPrim (evaluate a :: IO a)
-#endif
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive.hs
deleted file mode 100644
index db545ed81514..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive.hs
+++ /dev/null
@@ -1,85 +0,0 @@
-{-# LANGUAGE MagicHash #-}
-{-# OPTIONS_GHC -fno-warn-duplicate-exports #-}
--- |
--- Module      : Data.Primitive
--- Copyright   : (c) Roman Leshchinskiy 2009-2012
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Portability : non-portable
---
--- Reexports all primitive operations
---
-module Data.Primitive (
-  -- * Re-exports
-  module Data.Primitive.Types
-  ,module Data.Primitive.Array
-  ,module Data.Primitive.ByteArray
-  ,module Data.Primitive.Addr
-  ,module Data.Primitive.SmallArray
-  ,module Data.Primitive.UnliftedArray
-  ,module Data.Primitive.PrimArray
-  ,module Data.Primitive.MutVar
-  -- * Naming Conventions
-  -- $namingConventions
-) where
-
-import Data.Primitive.Types
-import Data.Primitive.Array
-import Data.Primitive.ByteArray
-import Data.Primitive.Addr
-import Data.Primitive.SmallArray
-import Data.Primitive.UnliftedArray
-import Data.Primitive.PrimArray
-import Data.Primitive.MutVar
-
-{- $namingConventions
-For historical reasons, this library embraces the practice of suffixing
-the name of a function with the type it operates on. For example, three
-of the variants of the array indexing function are:
-
-> indexArray      ::           Array      a -> Int -> a
-> indexSmallArray ::           SmallArray a -> Int -> a
-> indexPrimArray  :: Prim a => PrimArray  a -> Int -> a
-
-In a few places, where the language sounds more natural, the array type
-is instead used as a prefix. For example, @Data.Primitive.SmallArray@
-exports @smallArrayFromList@, which would sound unnatural if it used
-@SmallArray@ as a suffix instead.
-
-This library provides several functions traversing, building, and filtering
-arrays. These functions are suffixed with an additional character to
-indicate their the nature of their effectfulness:
-
-* No suffix: A non-effectful pass over the array.
-* @-A@ suffix: An effectful pass over the array, where the effect is 'Applicative'.
-* @-P@ suffix: An effectful pass over the array, where the effect is 'PrimMonad'.
-
-Additionally, an apostrophe can be used to indicate strictness in the elements.
-The variants with an apostrophe are used in @Data.Primitive.Array@ but not
-in @Data.Primitive.PrimArray@ since the array type it provides is always strict in the element.
-For example, there are three variants of the function that filters elements
-from a primitive array.
-
-> filterPrimArray  :: (Prim a               ) => (a ->   Bool) -> PrimArray a ->    PrimArray a
-> filterPrimArrayA :: (Prim a, Applicative f) => (a -> f Bool) -> PrimArray a -> f (PrimArray a)
-> filterPrimArrayP :: (Prim a, PrimMonad   m) => (a -> m Bool) -> PrimArray a -> m (PrimArray a)
-
-As long as the effectful context is a monad that is sufficiently affine
-the behaviors of the 'Applicative' and 'PrimMonad' variants produce the same results
-and differ only in their strictness. Monads that are sufficiently affine
-include:
-
-* 'IO' and 'ST'
-* Any combination of 'MaybeT', 'ExceptT', 'StateT' and 'Writer' on top
-  of another sufficiently affine monad.
-
-There is one situation where the names deviate from effectful suffix convention
-described above. Throughout the haskell ecosystem, the 'Applicative' variant of
-'map' is known as 'traverse', not @mapA@. Consequently, we adopt the following
-naming convention for mapping:
-
-> mapPrimArray :: (Prim a, Prim b) => (a -> b) -> PrimArray a -> PrimArray b
-> traversePrimArray :: (Applicative f, Prim a, Prim b) => (a -> f b) -> PrimArray a -> f (PrimArray b)
-> traversePrimArrayP :: (PrimMonad m, Prim a, Prim b) => (a -> m b) -> PrimArray a -> m (PrimArray b)
--}
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Addr.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Addr.hs
deleted file mode 100644
index 2ff25005c6aa..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Addr.hs
+++ /dev/null
@@ -1,133 +0,0 @@
-{-# LANGUAGE MagicHash, UnboxedTuples, CPP #-}
-
--- |
--- Module      : Data.Primitive.Addr
--- Copyright   : (c) Roman Leshchinskiy 2009-2012
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Portability : non-portable
---
--- Primitive operations on machine addresses
---
-
-module Data.Primitive.Addr (
-  -- * Types
-  Addr(..),
-
-  -- * Address arithmetic
-  nullAddr, plusAddr, minusAddr, remAddr,
-
-  -- * Element access
-  indexOffAddr, readOffAddr, writeOffAddr,
-
-  -- * Block operations
-  copyAddr,
-#if __GLASGOW_HASKELL__ >= 708
-  copyAddrToByteArray,
-#endif
-  moveAddr, setAddr,
-
-  -- * Conversion
-  addrToInt
-) where
-
-import Control.Monad.Primitive
-import Data.Primitive.Types
-#if __GLASGOW_HASKELL__ >= 708
-import Data.Primitive.ByteArray
-#endif
-
-import GHC.Base ( Int(..) )
-import GHC.Prim
-
-import GHC.Ptr
-import Foreign.Marshal.Utils
-
-
--- | The null address
-nullAddr :: Addr
-nullAddr = Addr nullAddr#
-
-infixl 6 `plusAddr`, `minusAddr`
-infixl 7 `remAddr`
-
--- | Offset an address by the given number of bytes
-plusAddr :: Addr -> Int -> Addr
-plusAddr (Addr a#) (I# i#) = Addr (plusAddr# a# i#)
-
--- | Distance in bytes between two addresses. The result is only valid if the
--- difference fits in an 'Int'.
-minusAddr :: Addr -> Addr -> Int
-minusAddr (Addr a#) (Addr b#) = I# (minusAddr# a# b#)
-
--- | The remainder of the address and the integer.
-remAddr :: Addr -> Int -> Int
-remAddr (Addr a#) (I# i#) = I# (remAddr# a# i#)
-
--- | Read a value from a memory position given by an address and an offset.
--- The memory block the address refers to must be immutable. The offset is in
--- elements of type @a@ rather than in bytes.
-indexOffAddr :: Prim a => Addr -> Int -> a
-{-# INLINE indexOffAddr #-}
-indexOffAddr (Addr addr#) (I# i#) = indexOffAddr# addr# i#
-
--- | Read a value from a memory position given by an address and an offset.
--- The offset is in elements of type @a@ rather than in bytes.
-readOffAddr :: (Prim a, PrimMonad m) => Addr -> Int -> m a
-{-# INLINE readOffAddr #-}
-readOffAddr (Addr addr#) (I# i#) = primitive (readOffAddr# addr# i#)
-
--- | Write a value to a memory position given by an address and an offset.
--- The offset is in elements of type @a@ rather than in bytes.
-writeOffAddr :: (Prim a, PrimMonad m) => Addr -> Int -> a -> m ()
-{-# INLINE writeOffAddr #-}
-writeOffAddr (Addr addr#) (I# i#) x = primitive_ (writeOffAddr# addr# i# x)
-
--- | Copy the given number of bytes from the second 'Addr' to the first. The
--- areas may not overlap.
-copyAddr :: PrimMonad m => Addr         -- ^ destination address
-                        -> Addr         -- ^ source address
-                        -> Int          -- ^ number of bytes
-                        -> m ()
-{-# INLINE copyAddr #-}
-copyAddr (Addr dst#) (Addr src#) n
-  = unsafePrimToPrim $ copyBytes (Ptr dst#) (Ptr src#) n
-
-#if __GLASGOW_HASKELL__ >= 708
--- | Copy the given number of bytes from the 'Addr' to the 'MutableByteArray'.
---   The areas may not overlap. This function is only available when compiling
---   with GHC 7.8 or newer.
---   
---   @since 0.6.4.0
-copyAddrToByteArray :: PrimMonad m
-  => MutableByteArray (PrimState m) -- ^ destination
-  -> Int -- ^ offset into the destination array
-  -> Addr -- ^ source
-  -> Int -- ^ number of bytes to copy
-  -> m ()
-{-# INLINE copyAddrToByteArray #-}
-copyAddrToByteArray (MutableByteArray marr) (I# off) (Addr addr) (I# len) =
-  primitive_ $ copyAddrToByteArray# addr marr off len
-#endif
-
--- | Copy the given number of bytes from the second 'Addr' to the first. The
--- areas may overlap.
-moveAddr :: PrimMonad m => Addr         -- ^ destination address
-                        -> Addr         -- ^ source address
-                        -> Int          -- ^ number of bytes
-                        -> m ()
-{-# INLINE moveAddr #-}
-moveAddr (Addr dst#) (Addr src#) n
-  = unsafePrimToPrim $ moveBytes (Ptr dst#) (Ptr src#) n
-
--- | Fill a memory block of with the given value. The length is in
--- elements of type @a@ rather than in bytes.
-setAddr :: (Prim a, PrimMonad m) => Addr -> Int -> a -> m ()
-{-# INLINE setAddr #-}
-setAddr (Addr addr#) (I# n#) x = primitive_ (setOffAddr# addr# 0# n# x)
-
--- | Convert an 'Addr' to an 'Int'.
-addrToInt :: Addr -> Int
-{-# INLINE addrToInt #-}
-addrToInt (Addr addr#) = I# (addr2Int# addr#)
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Array.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Array.hs
deleted file mode 100644
index 13352f6cb444..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Array.hs
+++ /dev/null
@@ -1,822 +0,0 @@
-{-# LANGUAGE CPP, MagicHash, UnboxedTuples, DeriveDataTypeable, BangPatterns #-}
-{-# LANGUAGE RankNTypes #-}
-{-# LANGUAGE TypeFamilies #-}
-
--- |
--- Module      : Data.Primitive.Array
--- Copyright   : (c) Roman Leshchinskiy 2009-2012
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Portability : non-portable
---
--- Primitive arrays of boxed values.
---
-
-module Data.Primitive.Array (
-  Array(..), MutableArray(..),
-
-  newArray, readArray, writeArray, indexArray, indexArrayM, indexArray##,
-  freezeArray, thawArray, runArray,
-  unsafeFreezeArray, unsafeThawArray, sameMutableArray,
-  copyArray, copyMutableArray,
-  cloneArray, cloneMutableArray,
-  sizeofArray, sizeofMutableArray,
-  fromListN, fromList,
-  mapArray',
-  traverseArrayP
-) where
-
-import Control.Monad.Primitive
-
-import GHC.Base  ( Int(..) )
-import GHC.Prim
-import qualified GHC.Exts as Exts
-#if (MIN_VERSION_base(4,7,0))
-import GHC.Exts (fromListN, fromList)
-#endif
-
-import Data.Typeable ( Typeable )
-import Data.Data
-  (Data(..), DataType, mkDataType, Constr, mkConstr, Fixity(..), constrIndex)
-import Data.Primitive.Internal.Compat ( isTrue#, mkNoRepType )
-
-import Control.Monad.ST(ST,runST)
-
-import Control.Applicative
-import Control.Monad (MonadPlus(..), when)
-import Control.Monad.Fix
-#if MIN_VERSION_base(4,4,0)
-import Control.Monad.Zip
-#endif
-import Data.Foldable (Foldable(..), toList)
-#if !(MIN_VERSION_base(4,8,0))
-import Data.Traversable (Traversable(..))
-import Data.Monoid
-#endif
-#if MIN_VERSION_base(4,9,0)
-import qualified GHC.ST as GHCST
-import qualified Data.Foldable as F
-import Data.Semigroup
-#endif
-#if MIN_VERSION_base(4,8,0)
-import Data.Functor.Identity
-#endif
-#if MIN_VERSION_base(4,10,0)
-import GHC.Exts (runRW#)
-#elif MIN_VERSION_base(4,9,0)
-import GHC.Base (runRW#)
-#endif
-
-import Text.ParserCombinators.ReadP
-
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
-import Data.Functor.Classes (Eq1(..),Ord1(..),Show1(..),Read1(..))
-#endif
-
--- | Boxed arrays
-data Array a = Array
-  { array# :: Array# a }
-  deriving ( Typeable )
-
--- | Mutable boxed arrays associated with a primitive state token.
-data MutableArray s a = MutableArray
-  { marray# :: MutableArray# s a }
-  deriving ( Typeable )
-
-sizeofArray :: Array a -> Int
-sizeofArray a = I# (sizeofArray# (array# a))
-{-# INLINE sizeofArray #-}
-
-sizeofMutableArray :: MutableArray s a -> Int
-sizeofMutableArray a = I# (sizeofMutableArray# (marray# a))
-{-# INLINE sizeofMutableArray #-}
-
--- | Create a new mutable array of the specified size and initialise all
--- elements with the given value.
-newArray :: PrimMonad m => Int -> a -> m (MutableArray (PrimState m) a)
-{-# INLINE newArray #-}
-newArray (I# n#) x = primitive
-   (\s# -> case newArray# n# x s# of
-             (# s'#, arr# #) ->
-               let ma = MutableArray arr#
-               in (# s'# , ma #))
-
--- | Read a value from the array at the given index.
-readArray :: PrimMonad m => MutableArray (PrimState m) a -> Int -> m a
-{-# INLINE readArray #-}
-readArray arr (I# i#) = primitive (readArray# (marray# arr) i#)
-
--- | Write a value to the array at the given index.
-writeArray :: PrimMonad m => MutableArray (PrimState m) a -> Int -> a -> m ()
-{-# INLINE writeArray #-}
-writeArray arr (I# i#) x = primitive_ (writeArray# (marray# arr) i# x)
-
--- | Read a value from the immutable array at the given index.
-indexArray :: Array a -> Int -> a
-{-# INLINE indexArray #-}
-indexArray arr (I# i#) = case indexArray# (array# arr) i# of (# x #) -> x
-
--- | Read a value from the immutable array at the given index, returning
--- the result in an unboxed unary tuple. This is currently used to implement
--- folds.
-indexArray## :: Array a -> Int -> (# a #)
-indexArray## arr (I# i) = indexArray# (array# arr) i
-{-# INLINE indexArray## #-}
-
--- | Monadically read a value from the immutable array at the given index.
--- This allows us to be strict in the array while remaining lazy in the read
--- element which is very useful for collective operations. Suppose we want to
--- copy an array. We could do something like this:
---
--- > copy marr arr ... = do ...
--- >                        writeArray marr i (indexArray arr i) ...
--- >                        ...
---
--- But since primitive arrays are lazy, the calls to 'indexArray' will not be
--- evaluated. Rather, @marr@ will be filled with thunks each of which would
--- retain a reference to @arr@. This is definitely not what we want!
---
--- With 'indexArrayM', we can instead write
---
--- > copy marr arr ... = do ...
--- >                        x <- indexArrayM arr i
--- >                        writeArray marr i x
--- >                        ...
---
--- Now, indexing is executed immediately although the returned element is
--- still not evaluated.
---
-indexArrayM :: Monad m => Array a -> Int -> m a
-{-# INLINE indexArrayM #-}
-indexArrayM arr (I# i#)
-  = case indexArray# (array# arr) i# of (# x #) -> return x
-
--- | Create an immutable copy of a slice of an array.
---
--- This operation makes a copy of the specified section, so it is safe to
--- continue using the mutable array afterward.
-freezeArray
-  :: PrimMonad m
-  => MutableArray (PrimState m) a -- ^ source
-  -> Int                          -- ^ offset
-  -> Int                          -- ^ length
-  -> m (Array a)
-{-# INLINE freezeArray #-}
-freezeArray (MutableArray ma#) (I# off#) (I# len#) =
-  primitive $ \s -> case freezeArray# ma# off# len# s of
-    (# s', a# #) -> (# s', Array a# #)
-
--- | Convert a mutable array to an immutable one without copying. The
--- array should not be modified after the conversion.
-unsafeFreezeArray :: PrimMonad m => MutableArray (PrimState m) a -> m (Array a)
-{-# INLINE unsafeFreezeArray #-}
-unsafeFreezeArray arr
-  = primitive (\s# -> case unsafeFreezeArray# (marray# arr) s# of
-                        (# s'#, arr'# #) ->
-                          let a = Array arr'#
-                          in (# s'#, a #))
-
--- | Create a mutable array from a slice of an immutable array.
---
--- This operation makes a copy of the specified slice, so it is safe to use the
--- immutable array afterward.
-thawArray
-  :: PrimMonad m
-  => Array a -- ^ source
-  -> Int     -- ^ offset
-  -> Int     -- ^ length
-  -> m (MutableArray (PrimState m) a)
-{-# INLINE thawArray #-}
-thawArray (Array a#) (I# off#) (I# len#) =
-  primitive $ \s -> case thawArray# a# off# len# s of
-    (# s', ma# #) -> (# s', MutableArray ma# #)
-
--- | Convert an immutable array to an mutable one without copying. The
--- immutable array should not be used after the conversion.
-unsafeThawArray :: PrimMonad m => Array a -> m (MutableArray (PrimState m) a)
-{-# INLINE unsafeThawArray #-}
-unsafeThawArray a
-  = primitive (\s# -> case unsafeThawArray# (array# a) s# of
-                        (# s'#, arr'# #) ->
-                          let ma = MutableArray arr'#
-                          in (# s'#, ma #))
-
--- | Check whether the two arrays refer to the same memory block.
-sameMutableArray :: MutableArray s a -> MutableArray s a -> Bool
-{-# INLINE sameMutableArray #-}
-sameMutableArray arr brr
-  = isTrue# (sameMutableArray# (marray# arr) (marray# brr))
-
--- | Copy a slice of an immutable array to a mutable array.
-copyArray :: PrimMonad m
-          => MutableArray (PrimState m) a    -- ^ destination array
-          -> Int                             -- ^ offset into destination array
-          -> Array a                         -- ^ source array
-          -> Int                             -- ^ offset into source array
-          -> Int                             -- ^ number of elements to copy
-          -> m ()
-{-# INLINE copyArray #-}
-#if __GLASGOW_HASKELL__ > 706
--- NOTE: copyArray# and copyMutableArray# are slightly broken in GHC 7.6.* and earlier
-copyArray (MutableArray dst#) (I# doff#) (Array src#) (I# soff#) (I# len#)
-  = primitive_ (copyArray# src# soff# dst# doff# len#)
-#else
-copyArray !dst !doff !src !soff !len = go 0
-  where
-    go i | i < len = do
-                       x <- indexArrayM src (soff+i)
-                       writeArray dst (doff+i) x
-                       go (i+1)
-         | otherwise = return ()
-#endif
-
--- | Copy a slice of a mutable array to another array. The two arrays may
--- not be the same.
-copyMutableArray :: PrimMonad m
-          => MutableArray (PrimState m) a    -- ^ destination array
-          -> Int                             -- ^ offset into destination array
-          -> MutableArray (PrimState m) a    -- ^ source array
-          -> Int                             -- ^ offset into source array
-          -> Int                             -- ^ number of elements to copy
-          -> m ()
-{-# INLINE copyMutableArray #-}
-#if __GLASGOW_HASKELL__ >= 706
--- NOTE: copyArray# and copyMutableArray# are slightly broken in GHC 7.6.* and earlier
-copyMutableArray (MutableArray dst#) (I# doff#)
-                 (MutableArray src#) (I# soff#) (I# len#)
-  = primitive_ (copyMutableArray# src# soff# dst# doff# len#)
-#else
-copyMutableArray !dst !doff !src !soff !len = go 0
-  where
-    go i | i < len = do
-                       x <- readArray src (soff+i)
-                       writeArray dst (doff+i) x
-                       go (i+1)
-         | otherwise = return ()
-#endif
-
--- | Return a newly allocated Array with the specified subrange of the
--- provided Array. The provided Array should contain the full subrange
--- specified by the two Ints, but this is not checked.
-cloneArray :: Array a -- ^ source array
-           -> Int     -- ^ offset into destination array
-           -> Int     -- ^ number of elements to copy
-           -> Array a
-{-# INLINE cloneArray #-}
-cloneArray (Array arr#) (I# off#) (I# len#)
-  = case cloneArray# arr# off# len# of arr'# -> Array arr'#
-
--- | Return a newly allocated MutableArray. with the specified subrange of
--- the provided MutableArray. The provided MutableArray should contain the
--- full subrange specified by the two Ints, but this is not checked.
-cloneMutableArray :: PrimMonad m
-        => MutableArray (PrimState m) a -- ^ source array
-        -> Int                          -- ^ offset into destination array
-        -> Int                          -- ^ number of elements to copy
-        -> m (MutableArray (PrimState m) a)
-{-# INLINE cloneMutableArray #-}
-cloneMutableArray (MutableArray arr#) (I# off#) (I# len#) = primitive
-   (\s# -> case cloneMutableArray# arr# off# len# s# of
-             (# s'#, arr'# #) -> (# s'#, MutableArray arr'# #))
-
-emptyArray :: Array a
-emptyArray =
-  runST $ newArray 0 (die "emptyArray" "impossible") >>= unsafeFreezeArray
-{-# NOINLINE emptyArray #-}
-
-#if !MIN_VERSION_base(4,9,0)
-createArray
-  :: Int
-  -> a
-  -> (forall s. MutableArray s a -> ST s ())
-  -> Array a
-createArray 0 _ _ = emptyArray
-createArray n x f = runArray $ do
-  mary <- newArray n x
-  f mary
-  pure mary
-
-runArray
-  :: (forall s. ST s (MutableArray s a))
-  -> Array a
-runArray m = runST $ m >>= unsafeFreezeArray
-
-#else /* Below, runRW# is available. */
-
--- This low-level business is designed to work with GHC's worker-wrapper
--- transformation. A lot of the time, we don't actually need an Array
--- constructor. By putting it on the outside, and being careful about
--- how we special-case the empty array, we can make GHC smarter about this.
--- The only downside is that separately created 0-length arrays won't share
--- their Array constructors, although they'll share their underlying
--- Array#s.
-createArray
-  :: Int
-  -> a
-  -> (forall s. MutableArray s a -> ST s ())
-  -> Array a
-createArray 0 _ _ = Array (emptyArray# (# #))
-createArray n x f = runArray $ do
-  mary <- newArray n x
-  f mary
-  pure mary
-
-runArray
-  :: (forall s. ST s (MutableArray s a))
-  -> Array a
-runArray m = Array (runArray# m)
-
-runArray#
-  :: (forall s. ST s (MutableArray s a))
-  -> Array# a
-runArray# m = case runRW# $ \s ->
-  case unST m s of { (# s', MutableArray mary# #) ->
-  unsafeFreezeArray# mary# s'} of (# _, ary# #) -> ary#
-
-unST :: ST s a -> State# s -> (# State# s, a #)
-unST (GHCST.ST f) = f
-
-emptyArray# :: (# #) -> Array# a
-emptyArray# _ = case emptyArray of Array ar -> ar
-{-# NOINLINE emptyArray# #-}
-#endif
-
-
-die :: String -> String -> a
-die fun problem = error $ "Data.Primitive.Array." ++ fun ++ ": " ++ problem
-
-arrayLiftEq :: (a -> b -> Bool) -> Array a -> Array b -> Bool
-arrayLiftEq p a1 a2 = sizeofArray a1 == sizeofArray a2 && loop (sizeofArray a1 - 1)
-  where loop i | i < 0     = True
-               | (# x1 #) <- indexArray## a1 i
-               , (# x2 #) <- indexArray## a2 i
-               , otherwise = p x1 x2 && loop (i-1)
-
-instance Eq a => Eq (Array a) where
-  a1 == a2 = arrayLiftEq (==) a1 a2
-
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
--- | @since 0.6.4.0
-instance Eq1 Array where
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,5,0)
-  liftEq = arrayLiftEq
-#else
-  eq1 = arrayLiftEq (==)
-#endif
-#endif
-
-instance Eq (MutableArray s a) where
-  ma1 == ma2 = isTrue# (sameMutableArray# (marray# ma1) (marray# ma2))
-
-arrayLiftCompare :: (a -> b -> Ordering) -> Array a -> Array b -> Ordering
-arrayLiftCompare elemCompare a1 a2 = loop 0
-  where
-  mn = sizeofArray a1 `min` sizeofArray a2
-  loop i
-    | i < mn
-    , (# x1 #) <- indexArray## a1 i
-    , (# x2 #) <- indexArray## a2 i
-    = elemCompare x1 x2 `mappend` loop (i+1)
-    | otherwise = compare (sizeofArray a1) (sizeofArray a2)
-
--- | Lexicographic ordering. Subject to change between major versions.
-instance Ord a => Ord (Array a) where
-  compare a1 a2 = arrayLiftCompare compare a1 a2
-
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
--- | @since 0.6.4.0
-instance Ord1 Array where
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,5,0)
-  liftCompare = arrayLiftCompare
-#else
-  compare1 = arrayLiftCompare compare
-#endif
-#endif
-
-instance Foldable Array where
-  -- Note: we perform the array lookups eagerly so we won't
-  -- create thunks to perform lookups even if GHC can't see
-  -- that the folding function is strict.
-  foldr f = \z !ary ->
-    let
-      !sz = sizeofArray ary
-      go i
-        | i == sz = z
-        | (# x #) <- indexArray## ary i
-        = f x (go (i+1))
-    in go 0
-  {-# INLINE foldr #-}
-  foldl f = \z !ary ->
-    let
-      go i
-        | i < 0 = z
-        | (# x #) <- indexArray## ary i
-        = f (go (i-1)) x
-    in go (sizeofArray ary - 1)
-  {-# INLINE foldl #-}
-  foldr1 f = \ !ary ->
-    let
-      !sz = sizeofArray ary - 1
-      go i =
-        case indexArray## ary i of
-          (# x #) | i == sz -> x
-                  | otherwise -> f x (go (i+1))
-    in if sz < 0
-       then die "foldr1" "empty array"
-       else go 0
-  {-# INLINE foldr1 #-}
-  foldl1 f = \ !ary ->
-    let
-      !sz = sizeofArray ary - 1
-      go i =
-        case indexArray## ary i of
-          (# x #) | i == 0 -> x
-                  | otherwise -> f (go (i - 1)) x
-    in if sz < 0
-       then die "foldl1" "empty array"
-       else go sz
-  {-# INLINE foldl1 #-}
-#if MIN_VERSION_base(4,6,0)
-  foldr' f = \z !ary ->
-    let
-      go i !acc
-        | i == -1 = acc
-        | (# x #) <- indexArray## ary i
-        = go (i-1) (f x acc)
-    in go (sizeofArray ary - 1) z
-  {-# INLINE foldr' #-}
-  foldl' f = \z !ary ->
-    let
-      !sz = sizeofArray ary
-      go i !acc
-        | i == sz = acc
-        | (# x #) <- indexArray## ary i
-        = go (i+1) (f acc x)
-    in go 0 z
-  {-# INLINE foldl' #-}
-#endif
-#if MIN_VERSION_base(4,8,0)
-  null a = sizeofArray a == 0
-  {-# INLINE null #-}
-  length = sizeofArray
-  {-# INLINE length #-}
-  maximum ary | sz == 0   = die "maximum" "empty array"
-              | (# frst #) <- indexArray## ary 0
-              = go 1 frst
-   where
-     sz = sizeofArray ary
-     go i !e
-       | i == sz = e
-       | (# x #) <- indexArray## ary i
-       = go (i+1) (max e x)
-  {-# INLINE maximum #-}
-  minimum ary | sz == 0   = die "minimum" "empty array"
-              | (# frst #) <- indexArray## ary 0
-              = go 1 frst
-   where sz = sizeofArray ary
-         go i !e
-           | i == sz = e
-           | (# x #) <- indexArray## ary i
-           = go (i+1) (min e x)
-  {-# INLINE minimum #-}
-  sum = foldl' (+) 0
-  {-# INLINE sum #-}
-  product = foldl' (*) 1
-  {-# INLINE product #-}
-#endif
-
-newtype STA a = STA {_runSTA :: forall s. MutableArray# s a -> ST s (Array a)}
-
-runSTA :: Int -> STA a -> Array a
-runSTA !sz = \ (STA m) -> runST $ newArray_ sz >>= \ ar -> m (marray# ar)
-{-# INLINE runSTA #-}
-
-newArray_ :: Int -> ST s (MutableArray s a)
-newArray_ !n = newArray n badTraverseValue
-
-badTraverseValue :: a
-badTraverseValue = die "traverse" "bad indexing"
-{-# NOINLINE badTraverseValue #-}
-
-instance Traversable Array where
-  traverse f = traverseArray f
-  {-# INLINE traverse #-}
-
-traverseArray
-  :: Applicative f
-  => (a -> f b)
-  -> Array a
-  -> f (Array b)
-traverseArray f = \ !ary ->
-  let
-    !len = sizeofArray ary
-    go !i
-      | i == len = pure $ STA $ \mary -> unsafeFreezeArray (MutableArray mary)
-      | (# x #) <- indexArray## ary i
-      = liftA2 (\b (STA m) -> STA $ \mary ->
-                  writeArray (MutableArray mary) i b >> m mary)
-               (f x) (go (i + 1))
-  in if len == 0
-     then pure emptyArray
-     else runSTA len <$> go 0
-{-# INLINE [1] traverseArray #-}
-
-{-# RULES
-"traverse/ST" forall (f :: a -> ST s b). traverseArray f =
-   traverseArrayP f
-"traverse/IO" forall (f :: a -> IO b). traverseArray f =
-   traverseArrayP f
- #-}
-#if MIN_VERSION_base(4,8,0)
-{-# RULES
-"traverse/Id" forall (f :: a -> Identity b). traverseArray f =
-   (coerce :: (Array a -> Array (Identity b))
-           -> Array a -> Identity (Array b)) (fmap f)
- #-}
-#endif
-
--- | This is the fastest, most straightforward way to traverse
--- an array, but it only works correctly with a sufficiently
--- "affine" 'PrimMonad' instance. In particular, it must only produce
--- *one* result array. 'Control.Monad.Trans.List.ListT'-transformed
--- monads, for example, will not work right at all.
-traverseArrayP
-  :: PrimMonad m
-  => (a -> m b)
-  -> Array a
-  -> m (Array b)
-traverseArrayP f = \ !ary ->
-  let
-    !sz = sizeofArray ary
-    go !i !mary
-      | i == sz
-      = unsafeFreezeArray mary
-      | otherwise
-      = do
-          a <- indexArrayM ary i
-          b <- f a
-          writeArray mary i b
-          go (i + 1) mary
-  in do
-    mary <- newArray sz badTraverseValue
-    go 0 mary
-{-# INLINE traverseArrayP #-}
-
--- | Strict map over the elements of the array.
-mapArray' :: (a -> b) -> Array a -> Array b
-mapArray' f a =
-  createArray (sizeofArray a) (die "mapArray'" "impossible") $ \mb ->
-    let go i | i == sizeofArray a
-             = return ()
-             | otherwise
-             = do x <- indexArrayM a i
-                  -- We use indexArrayM here so that we will perform the
-                  -- indexing eagerly even if f is lazy.
-                  let !y = f x
-                  writeArray mb i y >> go (i+1)
-     in go 0
-{-# INLINE mapArray' #-}
-
-arrayFromListN :: Int -> [a] -> Array a
-arrayFromListN n l =
-  createArray n (die "fromListN" "uninitialized element") $ \sma ->
-    let go !ix [] = if ix == n
-          then return ()
-          else die "fromListN" "list length less than specified size"
-        go !ix (x : xs) = if ix < n
-          then do
-            writeArray sma ix x
-            go (ix+1) xs
-          else die "fromListN" "list length greater than specified size"
-    in go 0 l
-
-arrayFromList :: [a] -> Array a
-arrayFromList l = arrayFromListN (length l) l
-
-#if MIN_VERSION_base(4,7,0)
-instance Exts.IsList (Array a) where
-  type Item (Array a) = a
-  fromListN = arrayFromListN
-  fromList = arrayFromList
-  toList = toList
-#else
-fromListN :: Int -> [a] -> Array a
-fromListN = arrayFromListN
-
-fromList :: [a] -> Array a
-fromList = arrayFromList
-#endif
-
-instance Functor Array where
-  fmap f a =
-    createArray (sizeofArray a) (die "fmap" "impossible") $ \mb ->
-      let go i | i == sizeofArray a
-               = return ()
-               | otherwise
-               = do x <- indexArrayM a i
-                    writeArray mb i (f x) >> go (i+1)
-       in go 0
-#if MIN_VERSION_base(4,8,0)
-  e <$ a = createArray (sizeofArray a) e (\ !_ -> pure ())
-#endif
-
-instance Applicative Array where
-  pure x = runArray $ newArray 1 x
-  ab <*> a = createArray (szab*sza) (die "<*>" "impossible") $ \mb ->
-    let go1 i = when (i < szab) $
-            do
-              f <- indexArrayM ab i
-              go2 (i*sza) f 0
-              go1 (i+1)
-        go2 off f j = when (j < sza) $
-            do
-              x <- indexArrayM a j
-              writeArray mb (off + j) (f x)
-              go2 off f (j + 1)
-    in go1 0
-   where szab = sizeofArray ab ; sza = sizeofArray a
-  a *> b = createArray (sza*szb) (die "*>" "impossible") $ \mb ->
-    let go i | i < sza   = copyArray mb (i * szb) b 0 szb
-             | otherwise = return ()
-     in go 0
-   where sza = sizeofArray a ; szb = sizeofArray b
-  a <* b = createArray (sza*szb) (die "<*" "impossible") $ \ma ->
-    let fill off i e | i < szb   = writeArray ma (off+i) e >> fill off (i+1) e
-                     | otherwise = return ()
-        go i | i < sza
-             = do x <- indexArrayM a i
-                  fill (i*szb) 0 x >> go (i+1)
-             | otherwise = return ()
-     in go 0
-   where sza = sizeofArray a ; szb = sizeofArray b
-
-instance Alternative Array where
-  empty = emptyArray
-  a1 <|> a2 = createArray (sza1 + sza2) (die "<|>" "impossible") $ \ma ->
-    copyArray ma 0 a1 0 sza1 >> copyArray ma sza1 a2 0 sza2
-   where sza1 = sizeofArray a1 ; sza2 = sizeofArray a2
-  some a | sizeofArray a == 0 = emptyArray
-         | otherwise = die "some" "infinite arrays are not well defined"
-  many a | sizeofArray a == 0 = pure []
-         | otherwise = die "many" "infinite arrays are not well defined"
-
-data ArrayStack a
-  = PushArray !(Array a) !(ArrayStack a)
-  | EmptyStack
--- See the note in SmallArray about how we might improve this.
-
-instance Monad Array where
-  return = pure
-  (>>) = (*>)
-
-  ary >>= f = collect 0 EmptyStack (la-1)
-   where
-   la = sizeofArray ary
-   collect sz stk i
-     | i < 0 = createArray sz (die ">>=" "impossible") $ fill 0 stk
-     | (# x #) <- indexArray## ary i
-     , let sb = f x
-           lsb = sizeofArray sb
-       -- If we don't perform this check, we could end up allocating
-       -- a stack full of empty arrays if someone is filtering most
-       -- things out. So we refrain from pushing empty arrays.
-     = if lsb == 0
-       then collect sz stk (i - 1)
-       else collect (sz + lsb) (PushArray sb stk) (i-1)
-
-   fill _   EmptyStack         _   = return ()
-   fill off (PushArray sb sbs) smb
-     | let lsb = sizeofArray sb
-     = copyArray smb off sb 0 (lsb)
-         *> fill (off + lsb) sbs smb
-
-  fail _ = empty
-
-instance MonadPlus Array where
-  mzero = empty
-  mplus = (<|>)
-
-zipW :: String -> (a -> b -> c) -> Array a -> Array b -> Array c
-zipW s f aa ab = createArray mn (die s "impossible") $ \mc ->
-  let go i | i < mn
-           = do
-               x <- indexArrayM aa i
-               y <- indexArrayM ab i
-               writeArray mc i (f x y)
-               go (i+1)
-           | otherwise = return ()
-   in go 0
- where mn = sizeofArray aa `min` sizeofArray ab
-{-# INLINE zipW #-}
-
-#if MIN_VERSION_base(4,4,0)
-instance MonadZip Array where
-  mzip aa ab = zipW "mzip" (,) aa ab
-  mzipWith f aa ab = zipW "mzipWith" f aa ab
-  munzip aab = runST $ do
-    let sz = sizeofArray aab
-    ma <- newArray sz (die "munzip" "impossible")
-    mb <- newArray sz (die "munzip" "impossible")
-    let go i | i < sz = do
-          (a, b) <- indexArrayM aab i
-          writeArray ma i a
-          writeArray mb i b
-          go (i+1)
-        go _ = return ()
-    go 0
-    (,) <$> unsafeFreezeArray ma <*> unsafeFreezeArray mb
-#endif
-
-instance MonadFix Array where
-  mfix f = createArray (sizeofArray (f err))
-                       (die "mfix" "impossible") $ flip fix 0 $
-    \r !i !mary -> when (i < sz) $ do
-                      writeArray mary i (fix (\xi -> f xi `indexArray` i))
-                      r (i + 1) mary
-    where
-      sz = sizeofArray (f err)
-      err = error "mfix for Data.Primitive.Array applied to strict function."
-
-#if MIN_VERSION_base(4,9,0)
--- | @since 0.6.3.0
-instance Semigroup (Array a) where
-  (<>) = (<|>)
-  sconcat = mconcat . F.toList
-#endif
-
-instance Monoid (Array a) where
-  mempty = empty
-#if !(MIN_VERSION_base(4,11,0))
-  mappend = (<|>)
-#endif
-  mconcat l = createArray sz (die "mconcat" "impossible") $ \ma ->
-    let go !_  [    ] = return ()
-        go off (a:as) =
-          copyArray ma off a 0 (sizeofArray a) >> go (off + sizeofArray a) as
-     in go 0 l
-   where sz = sum . fmap sizeofArray $ l
-
-arrayLiftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Array a -> ShowS
-arrayLiftShowsPrec elemShowsPrec elemListShowsPrec p a = showParen (p > 10) $
-  showString "fromListN " . shows (sizeofArray a) . showString " "
-    . listLiftShowsPrec elemShowsPrec elemListShowsPrec 11 (toList a)
-
--- this need to be included for older ghcs
-listLiftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> [a] -> ShowS
-listLiftShowsPrec _ sl _ = sl
-
-instance Show a => Show (Array a) where
-  showsPrec p a = arrayLiftShowsPrec showsPrec showList p a
-
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
--- | @since 0.6.4.0
-instance Show1 Array where
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,5,0)
-  liftShowsPrec = arrayLiftShowsPrec
-#else
-  showsPrec1 = arrayLiftShowsPrec showsPrec showList
-#endif
-#endif
-
-arrayLiftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Array a)
-arrayLiftReadsPrec _ listReadsPrec p = readParen (p > 10) . readP_to_S $ do
-  () <$ string "fromListN"
-  skipSpaces
-  n <- readS_to_P reads
-  skipSpaces
-  l <- readS_to_P listReadsPrec
-  return $ arrayFromListN n l
-
-instance Read a => Read (Array a) where
-  readsPrec = arrayLiftReadsPrec readsPrec readList
-
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
--- | @since 0.6.4.0
-instance Read1 Array where
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,5,0)
-  liftReadsPrec = arrayLiftReadsPrec
-#else
-  readsPrec1 = arrayLiftReadsPrec readsPrec readList
-#endif
-#endif
-
-
-arrayDataType :: DataType
-arrayDataType = mkDataType "Data.Primitive.Array.Array" [fromListConstr]
-
-fromListConstr :: Constr
-fromListConstr = mkConstr arrayDataType "fromList" [] Prefix
-
-instance Data a => Data (Array a) where
-  toConstr _ = fromListConstr
-  dataTypeOf _ = arrayDataType
-  gunfold k z c = case constrIndex c of
-    1 -> k (z fromList)
-    _ -> error "gunfold"
-  gfoldl f z m = z fromList `f` toList m
-
-instance (Typeable s, Typeable a) => Data (MutableArray s a) where
-  toConstr _ = error "toConstr"
-  gunfold _ _ = error "gunfold"
-  dataTypeOf _ = mkNoRepType "Data.Primitive.Array.MutableArray"
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/ByteArray.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/ByteArray.hs
deleted file mode 100644
index 527205330b8b..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/ByteArray.hs
+++ /dev/null
@@ -1,549 +0,0 @@
-{-# LANGUAGE BangPatterns, CPP, MagicHash, UnboxedTuples, UnliftedFFITypes, DeriveDataTypeable #-}
-{-# LANGUAGE ScopedTypeVariables #-}
-{-# LANGUAGE TypeFamilies #-}
-
--- |
--- Module      : Data.Primitive.ByteArray
--- Copyright   : (c) Roman Leshchinskiy 2009-2012
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Portability : non-portable
---
--- Primitive operations on ByteArrays
---
-
-module Data.Primitive.ByteArray (
-  -- * Types
-  ByteArray(..), MutableByteArray(..), ByteArray#, MutableByteArray#,
-
-  -- * Allocation
-  newByteArray, newPinnedByteArray, newAlignedPinnedByteArray,
-  resizeMutableByteArray,
-
-  -- * Element access
-  readByteArray, writeByteArray, indexByteArray,
-
-  -- * Constructing
-  byteArrayFromList, byteArrayFromListN,
-
-  -- * Folding
-  foldrByteArray,
-
-  -- * Freezing and thawing
-  unsafeFreezeByteArray, unsafeThawByteArray,
-
-  -- * Block operations
-  copyByteArray, copyMutableByteArray,
-#if __GLASGOW_HASKELL__ >= 708
-  copyByteArrayToAddr, copyMutableByteArrayToAddr,
-#endif
-  moveByteArray,
-  setByteArray, fillByteArray,
-
-  -- * Information
-  sizeofByteArray,
-  sizeofMutableByteArray, getSizeofMutableByteArray, sameMutableByteArray,
-#if __GLASGOW_HASKELL__ >= 802
-  isByteArrayPinned, isMutableByteArrayPinned,
-#endif
-  byteArrayContents, mutableByteArrayContents
-
-) where
-
-import Control.Monad.Primitive
-import Control.Monad.ST
-import Data.Primitive.Types
-
-import Foreign.C.Types
-import Data.Word ( Word8 )
-import GHC.Base ( Int(..) )
-#if __GLASGOW_HASKELL__ >= 708
-import qualified GHC.Exts as Exts ( IsList(..) )
-#endif
-import GHC.Prim
-#if __GLASGOW_HASKELL__ >= 706
-    hiding (setByteArray#)
-#endif
-
-import Data.Typeable ( Typeable )
-import Data.Data ( Data(..) )
-import Data.Primitive.Internal.Compat ( isTrue#, mkNoRepType )
-import Numeric
-
-#if MIN_VERSION_base(4,9,0)
-import qualified Data.Semigroup as SG
-import qualified Data.Foldable as F
-#endif
-
-#if !(MIN_VERSION_base(4,8,0))
-import Data.Monoid (Monoid(..))
-#endif
-
-#if __GLASGOW_HASKELL__ >= 802
-import GHC.Exts as Exts (isByteArrayPinned#,isMutableByteArrayPinned#)
-#endif
-
-#if __GLASGOW_HASKELL__ >= 804
-import GHC.Exts (compareByteArrays#)
-#else
-import System.IO.Unsafe (unsafeDupablePerformIO)
-#endif
-
--- | Byte arrays
-data ByteArray = ByteArray ByteArray# deriving ( Typeable )
-
--- | Mutable byte arrays associated with a primitive state token
-data MutableByteArray s = MutableByteArray (MutableByteArray# s)
-                                        deriving( Typeable )
-
--- | Create a new mutable byte array of the specified size in bytes.
-newByteArray :: PrimMonad m => Int -> m (MutableByteArray (PrimState m))
-{-# INLINE newByteArray #-}
-newByteArray (I# n#)
-  = primitive (\s# -> case newByteArray# n# s# of
-                        (# s'#, arr# #) -> (# s'#, MutableByteArray arr# #))
-
--- | Create a /pinned/ byte array of the specified size in bytes. The garbage
--- collector is guaranteed not to move it.
-newPinnedByteArray :: PrimMonad m => Int -> m (MutableByteArray (PrimState m))
-{-# INLINE newPinnedByteArray #-}
-newPinnedByteArray (I# n#)
-  = primitive (\s# -> case newPinnedByteArray# n# s# of
-                        (# s'#, arr# #) -> (# s'#, MutableByteArray arr# #))
-
--- | Create a /pinned/ byte array of the specified size in bytes and with the
--- given alignment. The garbage collector is guaranteed not to move it.
-newAlignedPinnedByteArray
-  :: PrimMonad m
-  => Int  -- ^ size
-  -> Int  -- ^ alignment
-  -> m (MutableByteArray (PrimState m))
-{-# INLINE newAlignedPinnedByteArray #-}
-newAlignedPinnedByteArray (I# n#) (I# k#)
-  = primitive (\s# -> case newAlignedPinnedByteArray# n# k# s# of
-                        (# s'#, arr# #) -> (# s'#, MutableByteArray arr# #))
-
--- | Yield a pointer to the array's data. This operation is only safe on
--- /pinned/ byte arrays allocated by 'newPinnedByteArray' or
--- 'newAlignedPinnedByteArray'.
-byteArrayContents :: ByteArray -> Addr
-{-# INLINE byteArrayContents #-}
-byteArrayContents (ByteArray arr#) = Addr (byteArrayContents# arr#)
-
--- | Yield a pointer to the array's data. This operation is only safe on
--- /pinned/ byte arrays allocated by 'newPinnedByteArray' or
--- 'newAlignedPinnedByteArray'.
-mutableByteArrayContents :: MutableByteArray s -> Addr
-{-# INLINE mutableByteArrayContents #-}
-mutableByteArrayContents (MutableByteArray arr#)
-  = Addr (byteArrayContents# (unsafeCoerce# arr#))
-
--- | Check if the two arrays refer to the same memory block.
-sameMutableByteArray :: MutableByteArray s -> MutableByteArray s -> Bool
-{-# INLINE sameMutableByteArray #-}
-sameMutableByteArray (MutableByteArray arr#) (MutableByteArray brr#)
-  = isTrue# (sameMutableByteArray# arr# brr#)
-
--- | Resize a mutable byte array. The new size is given in bytes.
---
--- This will either resize the array in-place or, if not possible, allocate the
--- contents into a new, unpinned array and copy the original array's contents.
---
--- To avoid undefined behaviour, the original 'MutableByteArray' shall not be
--- accessed anymore after a 'resizeMutableByteArray' has been performed.
--- Moreover, no reference to the old one should be kept in order to allow
--- garbage collection of the original 'MutableByteArray' in case a new
--- 'MutableByteArray' had to be allocated.
---
--- @since 0.6.4.0
-resizeMutableByteArray
-  :: PrimMonad m => MutableByteArray (PrimState m) -> Int
-                 -> m (MutableByteArray (PrimState m))
-{-# INLINE resizeMutableByteArray #-}
-#if __GLASGOW_HASKELL__ >= 710
-resizeMutableByteArray (MutableByteArray arr#) (I# n#)
-  = primitive (\s# -> case resizeMutableByteArray# arr# n# s# of
-                        (# s'#, arr'# #) -> (# s'#, MutableByteArray arr'# #))
-#else
-resizeMutableByteArray arr n
-  = do arr' <- newByteArray n
-       copyMutableByteArray arr' 0 arr 0 (min (sizeofMutableByteArray arr) n)
-       return arr'
-#endif
-
--- | Get the size of a byte array in bytes. Unlike 'sizeofMutableByteArray',
--- this function ensures sequencing in the presence of resizing.
-getSizeofMutableByteArray
-  :: PrimMonad m => MutableByteArray (PrimState m) -> m Int
-{-# INLINE getSizeofMutableByteArray #-}
-#if __GLASGOW_HASKELL__ >= 801
-getSizeofMutableByteArray (MutableByteArray arr#)
-  = primitive (\s# -> case getSizeofMutableByteArray# arr# s# of
-                        (# s'#, n# #) -> (# s'#, I# n# #))
-#else
-getSizeofMutableByteArray arr
-  = return (sizeofMutableByteArray arr)
-#endif
-
--- | Convert a mutable byte array to an immutable one without copying. The
--- array should not be modified after the conversion.
-unsafeFreezeByteArray
-  :: PrimMonad m => MutableByteArray (PrimState m) -> m ByteArray
-{-# INLINE unsafeFreezeByteArray #-}
-unsafeFreezeByteArray (MutableByteArray arr#)
-  = primitive (\s# -> case unsafeFreezeByteArray# arr# s# of
-                        (# s'#, arr'# #) -> (# s'#, ByteArray arr'# #))
-
--- | Convert an immutable byte array to a mutable one without copying. The
--- original array should not be used after the conversion.
-unsafeThawByteArray
-  :: PrimMonad m => ByteArray -> m (MutableByteArray (PrimState m))
-{-# INLINE unsafeThawByteArray #-}
-unsafeThawByteArray (ByteArray arr#)
-  = primitive (\s# -> (# s#, MutableByteArray (unsafeCoerce# arr#) #))
-
--- | Size of the byte array in bytes.
-sizeofByteArray :: ByteArray -> Int
-{-# INLINE sizeofByteArray #-}
-sizeofByteArray (ByteArray arr#) = I# (sizeofByteArray# arr#)
-
--- | Size of the mutable byte array in bytes. This function\'s behavior 
--- is undefined if 'resizeMutableByteArray' is ever called on the mutable
--- byte array given as the argument. Consequently, use of this function
--- is discouraged. Prefer 'getSizeofMutableByteArray', which ensures correct
--- sequencing in the presence of resizing.
-sizeofMutableByteArray :: MutableByteArray s -> Int
-{-# INLINE sizeofMutableByteArray #-}
-sizeofMutableByteArray (MutableByteArray arr#) = I# (sizeofMutableByteArray# arr#)
-
-#if __GLASGOW_HASKELL__ >= 802
--- | Check whether or not the byte array is pinned. Pinned byte arrays cannot
---   be moved by the garbage collector. It is safe to use 'byteArrayContents'
---   on such byte arrays. This function is only available when compiling with
---   GHC 8.2 or newer.
---
---   @since 0.6.4.0
-isByteArrayPinned :: ByteArray -> Bool
-{-# INLINE isByteArrayPinned #-}
-isByteArrayPinned (ByteArray arr#) = isTrue# (Exts.isByteArrayPinned# arr#)
-
--- | Check whether or not the mutable byte array is pinned. This function is
---   only available when compiling with GHC 8.2 or newer.
---
---   @since 0.6.4.0
-isMutableByteArrayPinned :: MutableByteArray s -> Bool
-{-# INLINE isMutableByteArrayPinned #-}
-isMutableByteArrayPinned (MutableByteArray marr#) = isTrue# (Exts.isMutableByteArrayPinned# marr#)
-#endif
-
--- | Read a primitive value from the byte array. The offset is given in
--- elements of type @a@ rather than in bytes.
-indexByteArray :: Prim a => ByteArray -> Int -> a
-{-# INLINE indexByteArray #-}
-indexByteArray (ByteArray arr#) (I# i#) = indexByteArray# arr# i#
-
--- | Read a primitive value from the byte array. The offset is given in
--- elements of type @a@ rather than in bytes.
-readByteArray
-  :: (Prim a, PrimMonad m) => MutableByteArray (PrimState m) -> Int -> m a
-{-# INLINE readByteArray #-}
-readByteArray (MutableByteArray arr#) (I# i#)
-  = primitive (readByteArray# arr# i#)
-
--- | Write a primitive value to the byte array. The offset is given in
--- elements of type @a@ rather than in bytes.
-writeByteArray
-  :: (Prim a, PrimMonad m) => MutableByteArray (PrimState m) -> Int -> a -> m ()
-{-# INLINE writeByteArray #-}
-writeByteArray (MutableByteArray arr#) (I# i#) x
-  = primitive_ (writeByteArray# arr# i# x)
-
--- | Right-fold over the elements of a 'ByteArray'.
-foldrByteArray :: forall a b. (Prim a) => (a -> b -> b) -> b -> ByteArray -> b
-foldrByteArray f z arr = go 0
-  where
-    go i
-      | sizeofByteArray arr > i * sz = f (indexByteArray arr i) (go (i+1))
-      | otherwise                    = z
-    sz = sizeOf (undefined :: a)
-
-byteArrayFromList :: Prim a => [a] -> ByteArray
-byteArrayFromList xs = byteArrayFromListN (length xs) xs
-
-byteArrayFromListN :: Prim a => Int -> [a] -> ByteArray
-byteArrayFromListN n ys = runST $ do
-    marr <- newByteArray (n * sizeOf (head ys))
-    let go !ix [] = if ix == n
-          then return ()
-          else die "byteArrayFromListN" "list length less than specified size"
-        go !ix (x : xs) = if ix < n
-          then do
-            writeByteArray marr ix x
-            go (ix + 1) xs
-          else die "byteArrayFromListN" "list length greater than specified size"
-    go 0 ys
-    unsafeFreezeByteArray marr
-
-unI# :: Int -> Int#
-unI# (I# n#) = n#
-
--- | Copy a slice of an immutable byte array to a mutable byte array.
-copyByteArray
-  :: PrimMonad m => MutableByteArray (PrimState m)
-                                        -- ^ destination array
-                 -> Int                 -- ^ offset into destination array
-                 -> ByteArray           -- ^ source array
-                 -> Int                 -- ^ offset into source array
-                 -> Int                 -- ^ number of bytes to copy
-                 -> m ()
-{-# INLINE copyByteArray #-}
-copyByteArray (MutableByteArray dst#) doff (ByteArray src#) soff sz
-  = primitive_ (copyByteArray# src# (unI# soff) dst# (unI# doff) (unI# sz))
-
--- | Copy a slice of a mutable byte array into another array. The two slices
--- may not overlap.
-copyMutableByteArray
-  :: PrimMonad m => MutableByteArray (PrimState m)
-                                        -- ^ destination array
-                 -> Int                 -- ^ offset into destination array
-                 -> MutableByteArray (PrimState m)
-                                        -- ^ source array
-                 -> Int                 -- ^ offset into source array
-                 -> Int                 -- ^ number of bytes to copy
-                 -> m ()
-{-# INLINE copyMutableByteArray #-}
-copyMutableByteArray (MutableByteArray dst#) doff
-                     (MutableByteArray src#) soff sz
-  = primitive_ (copyMutableByteArray# src# (unI# soff) dst# (unI# doff) (unI# sz))
-
-#if __GLASGOW_HASKELL__ >= 708
--- | Copy a slice of a byte array to an unmanaged address. These must not
---   overlap. This function is only available when compiling with GHC 7.8
---   or newer.
---
---   @since 0.6.4.0
-copyByteArrayToAddr
-  :: PrimMonad m
-  => Addr -- ^ destination
-  -> ByteArray -- ^ source array
-  -> Int -- ^ offset into source array
-  -> Int -- ^ number of bytes to copy
-  -> m ()
-{-# INLINE copyByteArrayToAddr #-}
-copyByteArrayToAddr (Addr dst#) (ByteArray src#) soff sz
-  = primitive_ (copyByteArrayToAddr# src# (unI# soff) dst# (unI# sz))
-
--- | Copy a slice of a mutable byte array to an unmanaged address. These must
---   not overlap. This function is only available when compiling with GHC 7.8
---   or newer.
---
---   @since 0.6.4.0
-copyMutableByteArrayToAddr
-  :: PrimMonad m
-  => Addr -- ^ destination
-  -> MutableByteArray (PrimState m) -- ^ source array
-  -> Int -- ^ offset into source array
-  -> Int -- ^ number of bytes to copy
-  -> m ()
-{-# INLINE copyMutableByteArrayToAddr #-}
-copyMutableByteArrayToAddr (Addr dst#) (MutableByteArray src#) soff sz
-  = primitive_ (copyMutableByteArrayToAddr# src# (unI# soff) dst# (unI# sz))
-#endif
-
--- | Copy a slice of a mutable byte array into another, potentially
--- overlapping array.
-moveByteArray
-  :: PrimMonad m => MutableByteArray (PrimState m)
-                                        -- ^ destination array
-                 -> Int                 -- ^ offset into destination array
-                 -> MutableByteArray (PrimState m)
-                                        -- ^ source array
-                 -> Int                 -- ^ offset into source array
-                 -> Int                 -- ^ number of bytes to copy
-                 -> m ()
-{-# INLINE moveByteArray #-}
-moveByteArray (MutableByteArray dst#) doff
-              (MutableByteArray src#) soff sz
-  = unsafePrimToPrim
-  $ memmove_mba dst# (fromIntegral doff) src# (fromIntegral soff)
-                     (fromIntegral sz)
-
--- | Fill a slice of a mutable byte array with a value. The offset and length
--- are given in elements of type @a@ rather than in bytes.
-setByteArray
-  :: (Prim a, PrimMonad m) => MutableByteArray (PrimState m) -- ^ array to fill
-                           -> Int                 -- ^ offset into array
-                           -> Int                 -- ^ number of values to fill
-                           -> a                   -- ^ value to fill with
-                           -> m ()
-{-# INLINE setByteArray #-}
-setByteArray (MutableByteArray dst#) (I# doff#) (I# sz#) x
-  = primitive_ (setByteArray# dst# doff# sz# x)
-
--- | Fill a slice of a mutable byte array with a byte.
-fillByteArray
-  :: PrimMonad m => MutableByteArray (PrimState m)
-                                        -- ^ array to fill
-                 -> Int                 -- ^ offset into array
-                 -> Int                 -- ^ number of bytes to fill
-                 -> Word8               -- ^ byte to fill with
-                 -> m ()
-{-# INLINE fillByteArray #-}
-fillByteArray = setByteArray
-
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memmove"
-  memmove_mba :: MutableByteArray# s -> CInt
-              -> MutableByteArray# s -> CInt
-              -> CSize -> IO ()
-
-instance Data ByteArray where
-  toConstr _ = error "toConstr"
-  gunfold _ _ = error "gunfold"
-  dataTypeOf _ = mkNoRepType "Data.Primitive.ByteArray.ByteArray"
-
-instance Typeable s => Data (MutableByteArray s) where
-  toConstr _ = error "toConstr"
-  gunfold _ _ = error "gunfold"
-  dataTypeOf _ = mkNoRepType "Data.Primitive.ByteArray.MutableByteArray"
-
--- | @since 0.6.3.0
-instance Show ByteArray where
-  showsPrec _ ba =
-      showString "[" . go 0
-    where
-      go i
-        | i < sizeofByteArray ba = comma . showString "0x" . showHex (indexByteArray ba i :: Word8) . go (i+1)
-        | otherwise              = showChar ']'
-        where
-          comma | i == 0    = id
-                | otherwise = showString ", "
-
-
-compareByteArrays :: ByteArray -> ByteArray -> Int -> Ordering
-{-# INLINE compareByteArrays #-}
-#if __GLASGOW_HASKELL__ >= 804
-compareByteArrays (ByteArray ba1#) (ByteArray ba2#) (I# n#) =
-  compare (I# (compareByteArrays# ba1# 0# ba2# 0# n#)) 0
-#else
--- Emulate GHC 8.4's 'GHC.Prim.compareByteArrays#'
-compareByteArrays (ByteArray ba1#) (ByteArray ba2#) (I# n#)
-    = compare (fromCInt (unsafeDupablePerformIO (memcmp_ba ba1# ba2# n))) 0
-  where
-    n = fromIntegral (I# n#) :: CSize
-    fromCInt = fromIntegral :: CInt -> Int
-
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memcmp"
-  memcmp_ba :: ByteArray# -> ByteArray# -> CSize -> IO CInt
-#endif
-
-
-sameByteArray :: ByteArray# -> ByteArray# -> Bool
-sameByteArray ba1 ba2 =
-    case reallyUnsafePtrEquality# (unsafeCoerce# ba1 :: ()) (unsafeCoerce# ba2 :: ()) of
-#if __GLASGOW_HASKELL__ >= 708
-      r -> isTrue# r
-#else
-      1# -> True
-      0# -> False
-#endif
-
--- | @since 0.6.3.0
-instance Eq ByteArray where
-  ba1@(ByteArray ba1#) == ba2@(ByteArray ba2#)
-    | sameByteArray ba1# ba2# = True
-    | n1 /= n2 = False
-    | otherwise = compareByteArrays ba1 ba2 n1 == EQ
-    where
-      n1 = sizeofByteArray ba1
-      n2 = sizeofByteArray ba2
-
--- | Non-lexicographic ordering. This compares the lengths of
--- the byte arrays first and uses a lexicographic ordering if
--- the lengths are equal. Subject to change between major versions.
--- 
--- @since 0.6.3.0
-instance Ord ByteArray where
-  ba1@(ByteArray ba1#) `compare` ba2@(ByteArray ba2#)
-    | sameByteArray ba1# ba2# = EQ
-    | n1 /= n2 = n1 `compare` n2
-    | otherwise = compareByteArrays ba1 ba2 n1
-    where
-      n1 = sizeofByteArray ba1
-      n2 = sizeofByteArray ba2
--- Note: On GHC 8.4, the primop compareByteArrays# performs a check for pointer
--- equality as a shortcut, so the check here is actually redundant. However, it
--- is included here because it is likely better to check for pointer equality
--- before checking for length equality. Getting the length requires deferencing
--- the pointers, which could cause accesses to memory that is not in the cache.
--- By contrast, a pointer equality check is always extremely cheap.
-
-appendByteArray :: ByteArray -> ByteArray -> ByteArray
-appendByteArray a b = runST $ do
-  marr <- newByteArray (sizeofByteArray a + sizeofByteArray b)
-  copyByteArray marr 0 a 0 (sizeofByteArray a)
-  copyByteArray marr (sizeofByteArray a) b 0 (sizeofByteArray b)
-  unsafeFreezeByteArray marr
-
-concatByteArray :: [ByteArray] -> ByteArray
-concatByteArray arrs = runST $ do
-  let len = calcLength arrs 0
-  marr <- newByteArray len
-  pasteByteArrays marr 0 arrs
-  unsafeFreezeByteArray marr
-
-pasteByteArrays :: MutableByteArray s -> Int -> [ByteArray] -> ST s ()
-pasteByteArrays !_ !_ [] = return ()
-pasteByteArrays !marr !ix (x : xs) = do
-  copyByteArray marr ix x 0 (sizeofByteArray x)
-  pasteByteArrays marr (ix + sizeofByteArray x) xs
-
-calcLength :: [ByteArray] -> Int -> Int
-calcLength [] !n = n
-calcLength (x : xs) !n = calcLength xs (sizeofByteArray x + n)
-
-emptyByteArray :: ByteArray
-emptyByteArray = runST (newByteArray 0 >>= unsafeFreezeByteArray)
-
-replicateByteArray :: Int -> ByteArray -> ByteArray
-replicateByteArray n arr = runST $ do
-  marr <- newByteArray (n * sizeofByteArray arr)
-  let go i = if i < n
-        then do
-          copyByteArray marr (i * sizeofByteArray arr) arr 0 (sizeofByteArray arr)
-          go (i + 1)
-        else return ()
-  go 0
-  unsafeFreezeByteArray marr
-
-#if MIN_VERSION_base(4,9,0)
-instance SG.Semigroup ByteArray where
-  (<>) = appendByteArray
-  sconcat = mconcat . F.toList
-  stimes i arr
-    | itgr < 1 = emptyByteArray
-    | itgr <= (fromIntegral (maxBound :: Int)) = replicateByteArray (fromIntegral itgr) arr
-    | otherwise = error "Data.Primitive.ByteArray#stimes: cannot allocate the requested amount of memory"
-    where itgr = toInteger i :: Integer
-#endif
-
-instance Monoid ByteArray where
-  mempty = emptyByteArray
-#if !(MIN_VERSION_base(4,11,0))
-  mappend = appendByteArray
-#endif
-  mconcat = concatByteArray
-
-#if __GLASGOW_HASKELL__ >= 708
--- | @since 0.6.3.0
-instance Exts.IsList ByteArray where
-  type Item ByteArray = Word8
-
-  toList = foldrByteArray (:) []
-  fromList xs = byteArrayFromListN (length xs) xs
-  fromListN = byteArrayFromListN
-#endif
-
-die :: String -> String -> a
-die fun problem = error $ "Data.Primitive.ByteArray." ++ fun ++ ": " ++ problem
-
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Internal/Compat.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Internal/Compat.hs
deleted file mode 100644
index f6b8016ad92a..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Internal/Compat.hs
+++ /dev/null
@@ -1,38 +0,0 @@
-{-# LANGUAGE CPP, MagicHash #-}
-
--- |
--- Module      : Data.Primitive.Internal.Compat
--- Copyright   : (c) Roman Leshchinskiy 2011-2012
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Portability : non-portable
---
--- Compatibility functions
---
-
-module Data.Primitive.Internal.Compat (
-    isTrue#
-  , mkNoRepType
-  ) where
-
-#if MIN_VERSION_base(4,2,0)
-import Data.Data (mkNoRepType)
-#else
-import Data.Data (mkNorepType)
-#endif
-
-#if MIN_VERSION_base(4,7,0)
-import GHC.Exts (isTrue#)
-#endif
-
-
-
-#if !MIN_VERSION_base(4,2,0)
-mkNoRepType = mkNorepType
-#endif
-
-#if !MIN_VERSION_base(4,7,0)
-isTrue# :: Bool -> Bool
-isTrue# b = b
-#endif
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Internal/Operations.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Internal/Operations.hs
deleted file mode 100644
index 091e11f5d6a9..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Internal/Operations.hs
+++ /dev/null
@@ -1,90 +0,0 @@
-{-# LANGUAGE MagicHash, UnliftedFFITypes #-}
-
--- |
--- Module      : Data.Primitive.Internal.Operations
--- Copyright   : (c) Roman Leshchinskiy 2011-2012
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Portability : non-portable
---
--- Internal operations
---
-
-
-module Data.Primitive.Internal.Operations (
-  setWord8Array#, setWord16Array#, setWord32Array#,
-  setWord64Array#, setWordArray#,
-  setInt8Array#, setInt16Array#, setInt32Array#,
-  setInt64Array#, setIntArray#,
-  setAddrArray#, setFloatArray#, setDoubleArray#, setWideCharArray#,
-
-  setWord8OffAddr#, setWord16OffAddr#, setWord32OffAddr#,
-  setWord64OffAddr#, setWordOffAddr#,
-  setInt8OffAddr#, setInt16OffAddr#, setInt32OffAddr#,
-  setInt64OffAddr#, setIntOffAddr#,
-  setAddrOffAddr#, setFloatOffAddr#, setDoubleOffAddr#, setWideCharOffAddr#
-) where
-
-import Data.Primitive.MachDeps (Word64_#, Int64_#)
-import Foreign.C.Types
-import GHC.Prim
-
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word8"
-  setWord8Array# :: MutableByteArray# s -> CPtrdiff -> CSize -> Word# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word16"
-  setWord16Array# :: MutableByteArray# s -> CPtrdiff -> CSize -> Word# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word32"
-  setWord32Array# :: MutableByteArray# s -> CPtrdiff -> CSize -> Word# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word64"
-  setWord64Array# :: MutableByteArray# s -> CPtrdiff -> CSize -> Word64_# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word"
-  setWordArray# :: MutableByteArray# s -> CPtrdiff -> CSize -> Word# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word8"
-  setInt8Array# :: MutableByteArray# s -> CPtrdiff -> CSize -> Int# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word16"
-  setInt16Array# :: MutableByteArray# s -> CPtrdiff -> CSize -> Int# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word32"
-  setInt32Array# :: MutableByteArray# s -> CPtrdiff -> CSize -> Int# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word64"
-  setInt64Array# :: MutableByteArray# s -> CPtrdiff -> CSize -> Int64_# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word"
-  setIntArray# :: MutableByteArray# s -> CPtrdiff -> CSize -> Int# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Ptr"
-  setAddrArray# :: MutableByteArray# s -> CPtrdiff -> CSize -> Addr# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Float"
-  setFloatArray# :: MutableByteArray# s -> CPtrdiff -> CSize -> Float# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Double"
-  setDoubleArray# :: MutableByteArray# s -> CPtrdiff -> CSize -> Double# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Char"
-  setWideCharArray# :: MutableByteArray# s -> CPtrdiff -> CSize -> Char# -> IO ()
-
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word8"
-  setWord8OffAddr# :: Addr# -> CPtrdiff -> CSize -> Word# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word16"
-  setWord16OffAddr# :: Addr# -> CPtrdiff -> CSize -> Word# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word32"
-  setWord32OffAddr# :: Addr# -> CPtrdiff -> CSize -> Word# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word64"
-  setWord64OffAddr# :: Addr# -> CPtrdiff -> CSize -> Word64_# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word"
-  setWordOffAddr# :: Addr# -> CPtrdiff -> CSize -> Word# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word8"
-  setInt8OffAddr# :: Addr# -> CPtrdiff -> CSize -> Int# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word16"
-  setInt16OffAddr# :: Addr# -> CPtrdiff -> CSize -> Int# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word32"
-  setInt32OffAddr# :: Addr# -> CPtrdiff -> CSize -> Int# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word64"
-  setInt64OffAddr# :: Addr# -> CPtrdiff -> CSize -> Int64_# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Word"
-  setIntOffAddr# :: Addr# -> CPtrdiff -> CSize -> Int# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Ptr"
-  setAddrOffAddr# :: Addr# -> CPtrdiff -> CSize -> Addr# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Float"
-  setFloatOffAddr# :: Addr# -> CPtrdiff -> CSize -> Float# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Double"
-  setDoubleOffAddr# :: Addr# -> CPtrdiff -> CSize -> Double# -> IO ()
-foreign import ccall unsafe "primitive-memops.h hsprimitive_memset_Char"
-  setWideCharOffAddr# :: Addr# -> CPtrdiff -> CSize -> Char# -> IO ()
-
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/MVar.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/MVar.hs
deleted file mode 100644
index 3c7bfd1fa054..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/MVar.hs
+++ /dev/null
@@ -1,155 +0,0 @@
-{-# LANGUAGE BangPatterns #-}
-{-# LANGUAGE CPP #-}
-{-# LANGUAGE MagicHash #-}
-{-# LANGUAGE UnboxedTuples #-}
-
--- |
--- Module      : Data.Primitive.MVar
--- License     : BSD2
--- Portability : non-portable
---
--- Primitive operations on @MVar@. This module provides a similar interface
--- to "Control.Concurrent.MVar". However, the functions are generalized to
--- work in any 'PrimMonad' instead of only working in 'IO'. Note that all
--- of the functions here are completely deterministic. Users of 'MVar' are
--- responsible for designing abstractions that guarantee determinism in
--- the presence of multi-threading.
---
--- @since 0.6.4.0
-module Data.Primitive.MVar
-  ( MVar(..)
-  , newMVar
-  , isEmptyMVar
-  , newEmptyMVar
-  , putMVar
-  , readMVar
-  , takeMVar
-  , tryPutMVar
-  , tryReadMVar
-  , tryTakeMVar
-  ) where
-
-import Control.Monad.Primitive
-import Data.Primitive.Internal.Compat (isTrue#)
-import GHC.Exts (MVar#,newMVar#,takeMVar#,sameMVar#,putMVar#,tryTakeMVar#,
-  isEmptyMVar#,tryPutMVar#,(/=#))
-
-#if __GLASGOW_HASKELL__ >= 708
-import GHC.Exts (readMVar#,tryReadMVar#)
-#endif
-
-data MVar s a = MVar (MVar# s a)
-
-instance Eq (MVar s a) where
-  MVar mvar1# == MVar mvar2# = isTrue# (sameMVar# mvar1# mvar2#)
-
--- | Create a new 'MVar' that is initially empty.
-newEmptyMVar :: PrimMonad m => m (MVar (PrimState m) a)
-newEmptyMVar = primitive $ \ s# ->
-  case newMVar# s# of
-    (# s2#, svar# #) -> (# s2#, MVar svar# #)
-
-
--- | Create a new 'MVar' that holds the supplied argument.
-newMVar :: PrimMonad m => a -> m (MVar (PrimState m) a)
-newMVar value =
-  newEmptyMVar >>= \ mvar ->
-  putMVar mvar value >>
-  return mvar
-
--- | Return the contents of the 'MVar'.  If the 'MVar' is currently
--- empty, 'takeMVar' will wait until it is full.  After a 'takeMVar',
--- the 'MVar' is left empty.
-takeMVar :: PrimMonad m => MVar (PrimState m) a -> m a
-takeMVar (MVar mvar#) = primitive $ \ s# -> takeMVar# mvar# s#
-
--- | Atomically read the contents of an 'MVar'.  If the 'MVar' is
--- currently empty, 'readMVar' will wait until it is full.
--- 'readMVar' is guaranteed to receive the next 'putMVar'.
---
--- /Multiple Wakeup:/ 'readMVar' is multiple-wakeup, so when multiple readers
--- are blocked on an 'MVar', all of them are woken up at the same time.
---
--- /Compatibility note:/ On GHCs prior to 7.8, 'readMVar' is a combination
--- of 'takeMVar' and 'putMVar'. Consequently, its behavior differs in the
--- following ways:
---
--- * It is single-wakeup instead of multiple-wakeup.
--- * It might not receive the value from the next call to 'putMVar' if
---   there is already a pending thread blocked on 'takeMVar'.
--- * If another thread puts a value in the 'MVar' in between the
---   calls to 'takeMVar' and 'putMVar', that value may be overridden.
-readMVar :: PrimMonad m => MVar (PrimState m) a -> m a
-#if __GLASGOW_HASKELL__ >= 708
-readMVar (MVar mvar#) = primitive $ \ s# -> readMVar# mvar# s#
-#else
-readMVar mv = do
-  a <- takeMVar mv
-  putMVar mv a
-  return a
-#endif
-
--- |Put a value into an 'MVar'.  If the 'MVar' is currently full,
--- 'putMVar' will wait until it becomes empty.
-putMVar :: PrimMonad m => MVar (PrimState m) a -> a -> m ()
-putMVar (MVar mvar#) x = primitive_ (putMVar# mvar# x)
-
--- |A non-blocking version of 'takeMVar'.  The 'tryTakeMVar' function
--- returns immediately, with 'Nothing' if the 'MVar' was empty, or
--- @'Just' a@ if the 'MVar' was full with contents @a@.  After 'tryTakeMVar',
--- the 'MVar' is left empty.
-tryTakeMVar :: PrimMonad m => MVar (PrimState m) a -> m (Maybe a)
-tryTakeMVar (MVar m) = primitive $ \ s ->
-  case tryTakeMVar# m s of
-    (# s', 0#, _ #) -> (# s', Nothing #) -- MVar is empty
-    (# s', _,  a #) -> (# s', Just a  #) -- MVar is full
-
-
--- |A non-blocking version of 'putMVar'.  The 'tryPutMVar' function
--- attempts to put the value @a@ into the 'MVar', returning 'True' if
--- it was successful, or 'False' otherwise.
-tryPutMVar :: PrimMonad m => MVar (PrimState m) a -> a -> m Bool
-tryPutMVar (MVar mvar#) x = primitive $ \ s# ->
-    case tryPutMVar# mvar# x s# of
-        (# s, 0# #) -> (# s, False #)
-        (# s, _  #) -> (# s, True #)
-
--- | A non-blocking version of 'readMVar'.  The 'tryReadMVar' function
--- returns immediately, with 'Nothing' if the 'MVar' was empty, or
--- @'Just' a@ if the 'MVar' was full with contents @a@.
---
--- /Compatibility note:/ On GHCs prior to 7.8, 'tryReadMVar' is a combination
--- of 'tryTakeMVar' and 'putMVar'. Consequently, its behavior differs in the
--- following ways:
---
--- * It is single-wakeup instead of multiple-wakeup.
--- * In the presence of other threads calling 'putMVar', 'tryReadMVar'
---   may block.
--- * If another thread puts a value in the 'MVar' in between the
---   calls to 'tryTakeMVar' and 'putMVar', that value may be overridden.
-tryReadMVar :: PrimMonad m => MVar (PrimState m) a -> m (Maybe a)
-#if __GLASGOW_HASKELL__ >= 708
-tryReadMVar (MVar m) = primitive $ \ s ->
-    case tryReadMVar# m s of
-        (# s', 0#, _ #) -> (# s', Nothing #)      -- MVar is empty
-        (# s', _,  a #) -> (# s', Just a  #)      -- MVar is full
-#else
-tryReadMVar mv = do
-  ma <- tryTakeMVar mv
-  case ma of
-    Just a -> do
-      putMVar mv a
-      return (Just a)
-    Nothing -> return Nothing
-#endif
-
--- | Check whether a given 'MVar' is empty.
---
--- Notice that the boolean value returned  is just a snapshot of
--- the state of the MVar. By the time you get to react on its result,
--- the MVar may have been filled (or emptied) - so be extremely
--- careful when using this operation.   Use 'tryTakeMVar' instead if possible.
-isEmptyMVar :: PrimMonad m => MVar (PrimState m) a -> m Bool
-isEmptyMVar (MVar mv#) = primitive $ \ s# ->
-  case isEmptyMVar# mv# s# of
-    (# s2#, flg #) -> (# s2#, isTrue# (flg /=# 0#) #)
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/MachDeps.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/MachDeps.hs
deleted file mode 100644
index d36c25236413..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/MachDeps.hs
+++ /dev/null
@@ -1,123 +0,0 @@
-{-# LANGUAGE CPP, MagicHash #-}
--- |
--- Module      : Data.Primitive.MachDeps
--- Copyright   : (c) Roman Leshchinskiy 2009-2012
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Portability : non-portable
---
--- Machine-dependent constants
---
-
-module Data.Primitive.MachDeps where
-
-#include "MachDeps.h"
-
-import GHC.Prim
-
-sIZEOF_CHAR,
- aLIGNMENT_CHAR,
-
- sIZEOF_INT,
- aLIGNMENT_INT,
-
- sIZEOF_WORD,
- aLIGNMENT_WORD,
-
- sIZEOF_DOUBLE,
- aLIGNMENT_DOUBLE,
-
- sIZEOF_FLOAT,
- aLIGNMENT_FLOAT,
-
- sIZEOF_PTR,
- aLIGNMENT_PTR,
-
- sIZEOF_FUNPTR,
- aLIGNMENT_FUNPTR,
-
- sIZEOF_STABLEPTR,
- aLIGNMENT_STABLEPTR,
-
- sIZEOF_INT8,
- aLIGNMENT_INT8,
-
- sIZEOF_WORD8,
- aLIGNMENT_WORD8,
-
- sIZEOF_INT16,
- aLIGNMENT_INT16,
-
- sIZEOF_WORD16,
- aLIGNMENT_WORD16,
-
- sIZEOF_INT32,
- aLIGNMENT_INT32,
-
- sIZEOF_WORD32,
- aLIGNMENT_WORD32,
-
- sIZEOF_INT64,
- aLIGNMENT_INT64,
-
- sIZEOF_WORD64,
- aLIGNMENT_WORD64 :: Int
-
-
-sIZEOF_CHAR = SIZEOF_HSCHAR
-aLIGNMENT_CHAR = ALIGNMENT_HSCHAR
-
-sIZEOF_INT = SIZEOF_HSINT
-aLIGNMENT_INT = ALIGNMENT_HSINT
-
-sIZEOF_WORD = SIZEOF_HSWORD
-aLIGNMENT_WORD = ALIGNMENT_HSWORD
-
-sIZEOF_DOUBLE = SIZEOF_HSDOUBLE
-aLIGNMENT_DOUBLE = ALIGNMENT_HSDOUBLE
-
-sIZEOF_FLOAT = SIZEOF_HSFLOAT
-aLIGNMENT_FLOAT = ALIGNMENT_HSFLOAT
-
-sIZEOF_PTR = SIZEOF_HSPTR
-aLIGNMENT_PTR = ALIGNMENT_HSPTR
-
-sIZEOF_FUNPTR = SIZEOF_HSFUNPTR
-aLIGNMENT_FUNPTR = ALIGNMENT_HSFUNPTR
-
-sIZEOF_STABLEPTR = SIZEOF_HSSTABLEPTR
-aLIGNMENT_STABLEPTR = ALIGNMENT_HSSTABLEPTR
-
-sIZEOF_INT8 = SIZEOF_INT8
-aLIGNMENT_INT8 = ALIGNMENT_INT8
-
-sIZEOF_WORD8 = SIZEOF_WORD8
-aLIGNMENT_WORD8 = ALIGNMENT_WORD8
-
-sIZEOF_INT16 = SIZEOF_INT16
-aLIGNMENT_INT16 = ALIGNMENT_INT16
-
-sIZEOF_WORD16 = SIZEOF_WORD16
-aLIGNMENT_WORD16 = ALIGNMENT_WORD16
-
-sIZEOF_INT32 = SIZEOF_INT32
-aLIGNMENT_INT32 = ALIGNMENT_INT32
-
-sIZEOF_WORD32 = SIZEOF_WORD32
-aLIGNMENT_WORD32 = ALIGNMENT_WORD32
-
-sIZEOF_INT64 = SIZEOF_INT64
-aLIGNMENT_INT64 = ALIGNMENT_INT64
-
-sIZEOF_WORD64 = SIZEOF_WORD64
-aLIGNMENT_WORD64 = ALIGNMENT_WORD64
-
-#if WORD_SIZE_IN_BITS == 32
-type Word64_# = Word64#
-type Int64_# = Int64#
-#else
-type Word64_# = Word#
-type Int64_# = Int#
-#endif
-
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/MutVar.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/MutVar.hs
deleted file mode 100644
index f707bfb6308c..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/MutVar.hs
+++ /dev/null
@@ -1,86 +0,0 @@
-{-# LANGUAGE MagicHash, UnboxedTuples, DeriveDataTypeable #-}
-
--- |
--- Module      : Data.Primitive.MutVar
--- Copyright   : (c) Justin Bonnar 2011, Roman Leshchinskiy 2011-2012
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Portability : non-portable
---
--- Primitive boxed mutable variables
---
-
-module Data.Primitive.MutVar (
-  MutVar(..),
-
-  newMutVar,
-  readMutVar,
-  writeMutVar,
-
-  atomicModifyMutVar,
-  atomicModifyMutVar',
-  modifyMutVar,
-  modifyMutVar'
-) where
-
-import Control.Monad.Primitive ( PrimMonad(..), primitive_ )
-import GHC.Prim ( MutVar#, sameMutVar#, newMutVar#,
-                  readMutVar#, writeMutVar#, atomicModifyMutVar# )
-import Data.Primitive.Internal.Compat ( isTrue# )
-import Data.Typeable ( Typeable )
-
--- | A 'MutVar' behaves like a single-element mutable array associated
--- with a primitive state token.
-data MutVar s a = MutVar (MutVar# s a)
-  deriving ( Typeable )
-
-instance Eq (MutVar s a) where
-  MutVar mva# == MutVar mvb# = isTrue# (sameMutVar# mva# mvb#)
-
--- | Create a new 'MutVar' with the specified initial value
-newMutVar :: PrimMonad m => a -> m (MutVar (PrimState m) a)
-{-# INLINE newMutVar #-}
-newMutVar initialValue = primitive $ \s# ->
-  case newMutVar# initialValue s# of
-    (# s'#, mv# #) -> (# s'#, MutVar mv# #)
-
--- | Read the value of a 'MutVar'
-readMutVar :: PrimMonad m => MutVar (PrimState m) a -> m a
-{-# INLINE readMutVar #-}
-readMutVar (MutVar mv#) = primitive (readMutVar# mv#)
-
--- | Write a new value into a 'MutVar'
-writeMutVar :: PrimMonad m => MutVar (PrimState m) a -> a -> m ()
-{-# INLINE writeMutVar #-}
-writeMutVar (MutVar mv#) newValue = primitive_ (writeMutVar# mv# newValue)
-
--- | Atomically mutate the contents of a 'MutVar'
-atomicModifyMutVar :: PrimMonad m => MutVar (PrimState m) a -> (a -> (a,b)) -> m b
-{-# INLINE atomicModifyMutVar #-}
-atomicModifyMutVar (MutVar mv#) f = primitive $ atomicModifyMutVar# mv# f
-
--- | Strict version of 'atomicModifyMutVar'. This forces both the value stored
--- in the 'MutVar' as well as the value returned.
-atomicModifyMutVar' :: PrimMonad m => MutVar (PrimState m) a -> (a -> (a, b)) -> m b
-{-# INLINE atomicModifyMutVar' #-}
-atomicModifyMutVar' mv f = do
-  b <- atomicModifyMutVar mv force
-  b `seq` return b
-  where
-    force x = let (a, b) = f x in (a, a `seq` b)
-
--- | Mutate the contents of a 'MutVar'
-modifyMutVar :: PrimMonad m => MutVar (PrimState m) a -> (a -> a) -> m ()
-{-# INLINE modifyMutVar #-}
-modifyMutVar (MutVar mv#) g = primitive_ $ \s# ->
-  case readMutVar# mv# s# of
-    (# s'#, a #) -> writeMutVar# mv# (g a) s'#
-
--- | Strict version of 'modifyMutVar'
-modifyMutVar' :: PrimMonad m => MutVar (PrimState m) a -> (a -> a) -> m ()
-{-# INLINE modifyMutVar' #-}
-modifyMutVar' (MutVar mv#) g = primitive_ $ \s# ->
-  case readMutVar# mv# s# of
-    (# s'#, a #) -> let a' = g a in a' `seq` writeMutVar# mv# a' s'#
-
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/PrimArray.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/PrimArray.hs
deleted file mode 100644
index 33d81c2092ee..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/PrimArray.hs
+++ /dev/null
@@ -1,969 +0,0 @@
-{-# LANGUAGE BangPatterns #-}
-{-# LANGUAGE CPP #-}
-{-# LANGUAGE MagicHash #-}
-{-# LANGUAGE RankNTypes #-}
-{-# LANGUAGE ScopedTypeVariables #-}
-{-# LANGUAGE TypeFamilies #-}
-{-# LANGUAGE UnboxedTuples #-}
-
-{-# OPTIONS_GHC -Wall #-}
-
--- |
--- Module      : Data.Primitive.PrimArray
--- Copyright   : (c) Roman Leshchinskiy 2009-2012
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Portability : non-portable
---
--- Arrays of unboxed primitive types. The function provided by this module
--- match the behavior of those provided by @Data.Primitive.ByteArray@, and
--- the underlying types and primops that back them are the same.
--- However, the type constructors 'PrimArray' and 'MutablePrimArray' take one additional
--- argument than their respective counterparts 'ByteArray' and 'MutableByteArray'.
--- This argument is used to designate the type of element in the array.
--- Consequently, all function this modules accepts length and incides in
--- terms of elements, not bytes.
---
--- @since 0.6.4.0
-module Data.Primitive.PrimArray
-  ( -- * Types
-    PrimArray(..)
-  , MutablePrimArray(..)
-    -- * Allocation
-  , newPrimArray
-  , resizeMutablePrimArray
-#if __GLASGOW_HASKELL__ >= 710
-  , shrinkMutablePrimArray
-#endif
-    -- * Element Access
-  , readPrimArray
-  , writePrimArray
-  , indexPrimArray
-    -- * Freezing and Thawing
-  , unsafeFreezePrimArray
-  , unsafeThawPrimArray
-    -- * Block Operations
-  , copyPrimArray
-  , copyMutablePrimArray
-#if __GLASGOW_HASKELL__ >= 708
-  , copyPrimArrayToPtr
-  , copyMutablePrimArrayToPtr
-#endif
-  , setPrimArray
-    -- * Information
-  , sameMutablePrimArray
-  , getSizeofMutablePrimArray
-  , sizeofMutablePrimArray
-  , sizeofPrimArray
-    -- * List Conversion
-  , primArrayToList
-  , primArrayFromList
-  , primArrayFromListN
-    -- * Folding
-  , foldrPrimArray
-  , foldrPrimArray'
-  , foldlPrimArray
-  , foldlPrimArray'
-  , foldlPrimArrayM'
-    -- * Effectful Folding
-  , traversePrimArray_
-  , itraversePrimArray_
-    -- * Map/Create
-  , mapPrimArray
-  , imapPrimArray
-  , generatePrimArray
-  , replicatePrimArray
-  , filterPrimArray
-  , mapMaybePrimArray
-    -- * Effectful Map/Create
-    -- $effectfulMapCreate
-    -- ** Lazy Applicative
-  , traversePrimArray
-  , itraversePrimArray
-  , generatePrimArrayA
-  , replicatePrimArrayA
-  , filterPrimArrayA
-  , mapMaybePrimArrayA
-    -- ** Strict Primitive Monadic
-  , traversePrimArrayP
-  , itraversePrimArrayP
-  , generatePrimArrayP
-  , replicatePrimArrayP
-  , filterPrimArrayP
-  , mapMaybePrimArrayP
-  ) where
-
-import GHC.Prim
-import GHC.Base ( Int(..) )
-import GHC.Exts (build)
-import GHC.Ptr
-import Data.Primitive.Internal.Compat (isTrue#)
-import Data.Primitive.Types
-import Data.Primitive.ByteArray (ByteArray(..))
-import Data.Monoid (Monoid(..),(<>))
-import Control.Applicative
-import Control.Monad.Primitive
-import Control.Monad.ST
-import qualified Data.List as L
-import qualified Data.Primitive.ByteArray as PB
-import qualified Data.Primitive.Types as PT
-
-#if MIN_VERSION_base(4,7,0)
-import GHC.Exts (IsList(..))
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-import Data.Semigroup (Semigroup)
-import qualified Data.Semigroup as SG
-#endif
-
--- | Arrays of unboxed elements. This accepts types like 'Double', 'Char',
--- 'Int', and 'Word', as well as their fixed-length variants ('Word8',
--- 'Word16', etc.). Since the elements are unboxed, a 'PrimArray' is strict
--- in its elements. This differs from the behavior of 'Array', which is lazy
--- in its elements.
-data PrimArray a = PrimArray ByteArray#
-
--- | Mutable primitive arrays associated with a primitive state token.
--- These can be written to and read from in a monadic context that supports
--- sequencing such as 'IO' or 'ST'. Typically, a mutable primitive array will
--- be built and then convert to an immutable primitive array using
--- 'unsafeFreezePrimArray'. However, it is also acceptable to simply discard
--- a mutable primitive array since it lives in managed memory and will be
--- garbage collected when no longer referenced.
-data MutablePrimArray s a = MutablePrimArray (MutableByteArray# s)
-
-sameByteArray :: ByteArray# -> ByteArray# -> Bool
-sameByteArray ba1 ba2 =
-    case reallyUnsafePtrEquality# (unsafeCoerce# ba1 :: ()) (unsafeCoerce# ba2 :: ()) of
-#if __GLASGOW_HASKELL__ >= 708
-      r -> isTrue# r
-#else
-      1# -> True
-      _ -> False
-#endif
-
--- | @since 0.6.4.0
-instance (Eq a, Prim a) => Eq (PrimArray a) where
-  a1@(PrimArray ba1#) == a2@(PrimArray ba2#)
-    | sameByteArray ba1# ba2# = True
-    | sz1 /= sz2 = False
-    | otherwise = loop (quot sz1 (sizeOf (undefined :: a)) - 1)
-    where
-    -- Here, we take the size in bytes, not in elements. We do this
-    -- since it allows us to defer performing the division to
-    -- calculate the size in elements.
-    sz1 = PB.sizeofByteArray (ByteArray ba1#)
-    sz2 = PB.sizeofByteArray (ByteArray ba2#)
-    loop !i
-      | i < 0 = True
-      | otherwise = indexPrimArray a1 i == indexPrimArray a2 i && loop (i-1)
-
--- | Lexicographic ordering. Subject to change between major versions.
--- 
---   @since 0.6.4.0
-instance (Ord a, Prim a) => Ord (PrimArray a) where
-  compare a1@(PrimArray ba1#) a2@(PrimArray ba2#)
-    | sameByteArray ba1# ba2# = EQ
-    | otherwise = loop 0
-    where
-    sz1 = PB.sizeofByteArray (ByteArray ba1#)
-    sz2 = PB.sizeofByteArray (ByteArray ba2#)
-    sz = quot (min sz1 sz2) (sizeOf (undefined :: a))
-    loop !i
-      | i < sz = compare (indexPrimArray a1 i) (indexPrimArray a2 i) <> loop (i+1)
-      | otherwise = compare sz1 sz2
-
-#if MIN_VERSION_base(4,7,0)
--- | @since 0.6.4.0
-instance Prim a => IsList (PrimArray a) where
-  type Item (PrimArray a) = a
-  fromList = primArrayFromList
-  fromListN = primArrayFromListN
-  toList = primArrayToList
-#endif
-
--- | @since 0.6.4.0
-instance (Show a, Prim a) => Show (PrimArray a) where
-  showsPrec p a = showParen (p > 10) $
-    showString "fromListN " . shows (sizeofPrimArray a) . showString " "
-      . shows (primArrayToList a)
-
-die :: String -> String -> a
-die fun problem = error $ "Data.Primitive.PrimArray." ++ fun ++ ": " ++ problem
-
-primArrayFromList :: Prim a => [a] -> PrimArray a
-primArrayFromList vs = primArrayFromListN (L.length vs) vs
-
-primArrayFromListN :: forall a. Prim a => Int -> [a] -> PrimArray a
-primArrayFromListN len vs = runST run where
-  run :: forall s. ST s (PrimArray a)
-  run = do
-    arr <- newPrimArray len
-    let go :: [a] -> Int -> ST s ()
-        go [] !ix = if ix == len
-          then return ()
-          else die "fromListN" "list length less than specified size"
-        go (a : as) !ix = if ix < len
-          then do
-            writePrimArray arr ix a
-            go as (ix + 1)
-          else die "fromListN" "list length greater than specified size"
-    go vs 0
-    unsafeFreezePrimArray arr
-
--- | Convert the primitive array to a list.
-{-# INLINE primArrayToList #-}
-primArrayToList :: forall a. Prim a => PrimArray a -> [a]
-primArrayToList xs = build (\c n -> foldrPrimArray c n xs)
-
-primArrayToByteArray :: PrimArray a -> PB.ByteArray
-primArrayToByteArray (PrimArray x) = PB.ByteArray x
-
-byteArrayToPrimArray :: ByteArray -> PrimArray a
-byteArrayToPrimArray (PB.ByteArray x) = PrimArray x
-
-#if MIN_VERSION_base(4,9,0)
--- | @since 0.6.4.0
-instance Semigroup (PrimArray a) where
-  x <> y = byteArrayToPrimArray (primArrayToByteArray x SG.<> primArrayToByteArray y)
-  sconcat = byteArrayToPrimArray . SG.sconcat . fmap primArrayToByteArray
-  stimes i arr = byteArrayToPrimArray (SG.stimes i (primArrayToByteArray arr))
-#endif
-
--- | @since 0.6.4.0
-instance Monoid (PrimArray a) where
-  mempty = emptyPrimArray
-#if !(MIN_VERSION_base(4,11,0))
-  mappend x y = byteArrayToPrimArray (mappend (primArrayToByteArray x) (primArrayToByteArray y))
-#endif
-  mconcat = byteArrayToPrimArray . mconcat . map primArrayToByteArray
-
--- | The empty primitive array.
-emptyPrimArray :: PrimArray a
-{-# NOINLINE emptyPrimArray #-}
-emptyPrimArray = runST $ primitive $ \s0# -> case newByteArray# 0# s0# of
-  (# s1#, arr# #) -> case unsafeFreezeByteArray# arr# s1# of
-    (# s2#, arr'# #) -> (# s2#, PrimArray arr'# #)
-
--- | Create a new mutable primitive array of the given length. The
--- underlying memory is left uninitialized.
-newPrimArray :: forall m a. (PrimMonad m, Prim a) => Int -> m (MutablePrimArray (PrimState m) a)
-{-# INLINE newPrimArray #-}
-newPrimArray (I# n#)
-  = primitive (\s# -> 
-      case newByteArray# (n# *# sizeOf# (undefined :: a)) s# of
-        (# s'#, arr# #) -> (# s'#, MutablePrimArray arr# #)
-    )
-
--- | Resize a mutable primitive array. The new size is given in elements.
---
--- This will either resize the array in-place or, if not possible, allocate the
--- contents into a new, unpinned array and copy the original array\'s contents.
---
--- To avoid undefined behaviour, the original 'MutablePrimArray' shall not be
--- accessed anymore after a 'resizeMutablePrimArray' has been performed.
--- Moreover, no reference to the old one should be kept in order to allow
--- garbage collection of the original 'MutablePrimArray' in case a new
--- 'MutablePrimArray' had to be allocated.
-resizeMutablePrimArray :: forall m a. (PrimMonad m, Prim a)
-  => MutablePrimArray (PrimState m) a
-  -> Int -- ^ new size
-  -> m (MutablePrimArray (PrimState m) a)
-{-# INLINE resizeMutablePrimArray #-}
-#if __GLASGOW_HASKELL__ >= 710
-resizeMutablePrimArray (MutablePrimArray arr#) (I# n#)
-  = primitive (\s# -> case resizeMutableByteArray# arr# (n# *# sizeOf# (undefined :: a)) s# of
-                        (# s'#, arr'# #) -> (# s'#, MutablePrimArray arr'# #))
-#else
-resizeMutablePrimArray arr n
-  = do arr' <- newPrimArray n
-       copyMutablePrimArray arr' 0 arr 0 (min (sizeofMutablePrimArray arr) n)
-       return arr'
-#endif
-
--- Although it is possible to shim resizeMutableByteArray for old GHCs, this
--- is not the case with shrinkMutablePrimArray.
-#if __GLASGOW_HASKELL__ >= 710
--- | Shrink a mutable primitive array. The new size is given in elements.
--- It must be smaller than the old size. The array will be resized in place.
--- This function is only available when compiling with GHC 7.10 or newer.
-shrinkMutablePrimArray :: forall m a. (PrimMonad m, Prim a)
-  => MutablePrimArray (PrimState m) a
-  -> Int -- ^ new size
-  -> m ()
-{-# INLINE shrinkMutablePrimArray #-}
-shrinkMutablePrimArray (MutablePrimArray arr#) (I# n#)
-  = primitive_ (shrinkMutableByteArray# arr# (n# *# sizeOf# (undefined :: a)))
-#endif
-
-readPrimArray :: (Prim a, PrimMonad m) => MutablePrimArray (PrimState m) a -> Int -> m a
-{-# INLINE readPrimArray #-}
-readPrimArray (MutablePrimArray arr#) (I# i#)
-  = primitive (readByteArray# arr# i#)
-
--- | Write an element to the given index.
-writePrimArray ::
-     (Prim a, PrimMonad m)
-  => MutablePrimArray (PrimState m) a -- ^ array
-  -> Int -- ^ index
-  -> a -- ^ element
-  -> m ()
-{-# INLINE writePrimArray #-}
-writePrimArray (MutablePrimArray arr#) (I# i#) x
-  = primitive_ (writeByteArray# arr# i# x)
-
--- | Copy part of a mutable array into another mutable array.
---   In the case that the destination and
---   source arrays are the same, the regions may overlap.
-copyMutablePrimArray :: forall m a.
-     (PrimMonad m, Prim a)
-  => MutablePrimArray (PrimState m) a -- ^ destination array
-  -> Int -- ^ offset into destination array
-  -> MutablePrimArray (PrimState m) a -- ^ source array
-  -> Int -- ^ offset into source array
-  -> Int -- ^ number of elements to copy
-  -> m ()
-{-# INLINE copyMutablePrimArray #-}
-copyMutablePrimArray (MutablePrimArray dst#) (I# doff#) (MutablePrimArray src#) (I# soff#) (I# n#)
-  = primitive_ (copyMutableByteArray#
-      src# 
-      (soff# *# (sizeOf# (undefined :: a)))
-      dst#
-      (doff# *# (sizeOf# (undefined :: a)))
-      (n# *# (sizeOf# (undefined :: a)))
-    )
-
--- | Copy part of an array into another mutable array.
-copyPrimArray :: forall m a.
-     (PrimMonad m, Prim a)
-  => MutablePrimArray (PrimState m) a -- ^ destination array
-  -> Int -- ^ offset into destination array
-  -> PrimArray a -- ^ source array
-  -> Int -- ^ offset into source array
-  -> Int -- ^ number of elements to copy
-  -> m ()
-{-# INLINE copyPrimArray #-}
-copyPrimArray (MutablePrimArray dst#) (I# doff#) (PrimArray src#) (I# soff#) (I# n#)
-  = primitive_ (copyByteArray#
-      src# 
-      (soff# *# (sizeOf# (undefined :: a)))
-      dst#
-      (doff# *# (sizeOf# (undefined :: a)))
-      (n# *# (sizeOf# (undefined :: a)))
-    )
-
-#if __GLASGOW_HASKELL__ >= 708
--- | Copy a slice of an immutable primitive array to an address.
---   The offset and length are given in elements of type @a@.
---   This function assumes that the 'Prim' instance of @a@
---   agrees with the 'Storable' instance. This function is only
---   available when building with GHC 7.8 or newer.
-copyPrimArrayToPtr :: forall m a. (PrimMonad m, Prim a)
-  => Ptr a -- ^ destination pointer
-  -> PrimArray a -- ^ source array
-  -> Int -- ^ offset into source array
-  -> Int -- ^ number of prims to copy
-  -> m ()
-{-# INLINE copyPrimArrayToPtr #-}
-copyPrimArrayToPtr (Ptr addr#) (PrimArray ba#) (I# soff#) (I# n#) =
-    primitive (\ s# ->
-        let s'# = copyByteArrayToAddr# ba# (soff# *# siz#) addr# (n# *# siz#) s#
-        in (# s'#, () #))
-  where siz# = sizeOf# (undefined :: a)
-
--- | Copy a slice of an immutable primitive array to an address.
---   The offset and length are given in elements of type @a@.
---   This function assumes that the 'Prim' instance of @a@
---   agrees with the 'Storable' instance. This function is only
---   available when building with GHC 7.8 or newer.
-copyMutablePrimArrayToPtr :: forall m a. (PrimMonad m, Prim a)
-  => Ptr a -- ^ destination pointer
-  -> MutablePrimArray (PrimState m) a -- ^ source array
-  -> Int -- ^ offset into source array
-  -> Int -- ^ number of prims to copy
-  -> m ()
-{-# INLINE copyMutablePrimArrayToPtr #-}
-copyMutablePrimArrayToPtr (Ptr addr#) (MutablePrimArray mba#) (I# soff#) (I# n#) =
-    primitive (\ s# ->
-        let s'# = copyMutableByteArrayToAddr# mba# (soff# *# siz#) addr# (n# *# siz#) s#
-        in (# s'#, () #))
-  where siz# = sizeOf# (undefined :: a)
-#endif
-
--- | Fill a slice of a mutable primitive array with a value.
-setPrimArray
-  :: (Prim a, PrimMonad m)
-  => MutablePrimArray (PrimState m) a -- ^ array to fill
-  -> Int -- ^ offset into array
-  -> Int -- ^ number of values to fill
-  -> a -- ^ value to fill with
-  -> m ()
-{-# INLINE setPrimArray #-}
-setPrimArray (MutablePrimArray dst#) (I# doff#) (I# sz#) x
-  = primitive_ (PT.setByteArray# dst# doff# sz# x)
-
--- | Get the size of a mutable primitive array in elements. Unlike 'sizeofMutablePrimArray',
--- this function ensures sequencing in the presence of resizing.
-getSizeofMutablePrimArray :: forall m a. (PrimMonad m, Prim a)
-  => MutablePrimArray (PrimState m) a -- ^ array
-  -> m Int
-{-# INLINE getSizeofMutablePrimArray #-}
-#if __GLASGOW_HASKELL__ >= 801
-getSizeofMutablePrimArray (MutablePrimArray arr#)
-  = primitive (\s# -> 
-      case getSizeofMutableByteArray# arr# s# of
-        (# s'#, sz# #) -> (# s'#, I# (quotInt# sz# (sizeOf# (undefined :: a))) #)
-    )
-#else
--- On older GHCs, it is not possible to resize a byte array, so
--- this provides behavior consistent with the implementation for
--- newer GHCs.
-getSizeofMutablePrimArray arr
-  = return (sizeofMutablePrimArray arr)
-#endif
-
--- | Size of the mutable primitive array in elements. This function shall not
---   be used on primitive arrays that are an argument to or a result of
---   'resizeMutablePrimArray' or 'shrinkMutablePrimArray'.
-sizeofMutablePrimArray :: forall s a. Prim a => MutablePrimArray s a -> Int
-{-# INLINE sizeofMutablePrimArray #-}
-sizeofMutablePrimArray (MutablePrimArray arr#) =
-  I# (quotInt# (sizeofMutableByteArray# arr#) (sizeOf# (undefined :: a)))
-
--- | Check if the two arrays refer to the same memory block.
-sameMutablePrimArray :: MutablePrimArray s a -> MutablePrimArray s a -> Bool
-{-# INLINE sameMutablePrimArray #-}
-sameMutablePrimArray (MutablePrimArray arr#) (MutablePrimArray brr#)
-  = isTrue# (sameMutableByteArray# arr# brr#)
-
--- | Convert a mutable byte array to an immutable one without copying. The
--- array should not be modified after the conversion.
-unsafeFreezePrimArray
-  :: PrimMonad m => MutablePrimArray (PrimState m) a -> m (PrimArray a)
-{-# INLINE unsafeFreezePrimArray #-}
-unsafeFreezePrimArray (MutablePrimArray arr#)
-  = primitive (\s# -> case unsafeFreezeByteArray# arr# s# of
-                        (# s'#, arr'# #) -> (# s'#, PrimArray arr'# #))
-
--- | Convert an immutable array to a mutable one without copying. The
--- original array should not be used after the conversion.
-unsafeThawPrimArray
-  :: PrimMonad m => PrimArray a -> m (MutablePrimArray (PrimState m) a)
-{-# INLINE unsafeThawPrimArray #-}
-unsafeThawPrimArray (PrimArray arr#)
-  = primitive (\s# -> (# s#, MutablePrimArray (unsafeCoerce# arr#) #))
-
--- | Read a primitive value from the primitive array.
-indexPrimArray :: forall a. Prim a => PrimArray a -> Int -> a
-{-# INLINE indexPrimArray #-}
-indexPrimArray (PrimArray arr#) (I# i#) = indexByteArray# arr# i#
-
--- | Get the size, in elements, of the primitive array.
-sizeofPrimArray :: forall a. Prim a => PrimArray a -> Int
-{-# INLINE sizeofPrimArray #-}
-sizeofPrimArray (PrimArray arr#) = I# (quotInt# (sizeofByteArray# arr#) (sizeOf# (undefined :: a)))
-
--- | Lazy right-associated fold over the elements of a 'PrimArray'.
-{-# INLINE foldrPrimArray #-}
-foldrPrimArray :: forall a b. Prim a => (a -> b -> b) -> b -> PrimArray a -> b
-foldrPrimArray f z arr = go 0
-  where
-    !sz = sizeofPrimArray arr
-    go !i
-      | sz > i = f (indexPrimArray arr i) (go (i+1))
-      | otherwise = z
-
--- | Strict right-associated fold over the elements of a 'PrimArray'.
-{-# INLINE foldrPrimArray' #-}
-foldrPrimArray' :: forall a b. Prim a => (a -> b -> b) -> b -> PrimArray a -> b
-foldrPrimArray' f z0 arr = go (sizeofPrimArray arr - 1) z0
-  where
-    go !i !acc
-      | i < 0 = acc
-      | otherwise = go (i - 1) (f (indexPrimArray arr i) acc)
-
--- | Lazy left-associated fold over the elements of a 'PrimArray'.
-{-# INLINE foldlPrimArray #-}
-foldlPrimArray :: forall a b. Prim a => (b -> a -> b) -> b -> PrimArray a -> b
-foldlPrimArray f z arr = go (sizeofPrimArray arr - 1)
-  where
-    go !i
-      | i < 0 = z
-      | otherwise = f (go (i - 1)) (indexPrimArray arr i)
-
--- | Strict left-associated fold over the elements of a 'PrimArray'.
-{-# INLINE foldlPrimArray' #-}
-foldlPrimArray' :: forall a b. Prim a => (b -> a -> b) -> b -> PrimArray a -> b
-foldlPrimArray' f z0 arr = go 0 z0
-  where
-    !sz = sizeofPrimArray arr
-    go !i !acc
-      | i < sz = go (i + 1) (f acc (indexPrimArray arr i))
-      | otherwise = acc
-
--- | Strict left-associated fold over the elements of a 'PrimArray'.
-{-# INLINE foldlPrimArrayM' #-}
-foldlPrimArrayM' :: (Prim a, Monad m) => (b -> a -> m b) -> b -> PrimArray a -> m b
-foldlPrimArrayM' f z0 arr = go 0 z0
-  where
-    !sz = sizeofPrimArray arr
-    go !i !acc1
-      | i < sz = do
-          acc2 <- f acc1 (indexPrimArray arr i)
-          go (i + 1) acc2
-      | otherwise = return acc1
-
--- | Traverse a primitive array. The traversal forces the resulting values and
--- writes them to the new primitive array as it performs the monadic effects.
--- Consequently:
---
--- >>> traversePrimArrayP (\x -> print x $> bool x undefined (x == 2)) (fromList [1, 2, 3 :: Int])
--- 1
--- 2
--- *** Exception: Prelude.undefined
---
--- In many situations, 'traversePrimArrayP' can replace 'traversePrimArray',
--- changing the strictness characteristics of the traversal but typically improving
--- the performance. Consider the following short-circuiting traversal:
---
--- > incrPositiveA :: PrimArray Int -> Maybe (PrimArray Int)
--- > incrPositiveA xs = traversePrimArray (\x -> bool Nothing (Just (x + 1)) (x > 0)) xs
---
--- This can be rewritten using 'traversePrimArrayP'. To do this, we must
--- change the traversal context to @MaybeT (ST s)@, which has a 'PrimMonad'
--- instance:
---
--- > incrPositiveB :: PrimArray Int -> Maybe (PrimArray Int)
--- > incrPositiveB xs = runST $ runMaybeT $ traversePrimArrayP
--- >   (\x -> bool (MaybeT (return Nothing)) (MaybeT (return (Just (x + 1)))) (x > 0))
--- >   xs
--- 
--- Benchmarks demonstrate that the second implementation runs 150 times
--- faster than the first. It also results in fewer allocations.
-{-# INLINE traversePrimArrayP #-}
-traversePrimArrayP :: (PrimMonad m, Prim a, Prim b)
-  => (a -> m b)
-  -> PrimArray a
-  -> m (PrimArray b)
-traversePrimArrayP f arr = do
-  let !sz = sizeofPrimArray arr
-  marr <- newPrimArray sz
-  let go !ix = if ix < sz
-        then do
-          b <- f (indexPrimArray arr ix)
-          writePrimArray marr ix b
-          go (ix + 1)
-        else return ()
-  go 0
-  unsafeFreezePrimArray marr
-
--- | Filter the primitive array, keeping the elements for which the monadic
--- predicate evaluates true.
-{-# INLINE filterPrimArrayP #-}
-filterPrimArrayP :: (PrimMonad m, Prim a)
-  => (a -> m Bool)
-  -> PrimArray a
-  -> m (PrimArray a)
-filterPrimArrayP f arr = do
-  let !sz = sizeofPrimArray arr
-  marr <- newPrimArray sz
-  let go !ixSrc !ixDst = if ixSrc < sz
-        then do
-          let a = indexPrimArray arr ixSrc
-          b <- f a
-          if b
-            then do
-              writePrimArray marr ixDst a
-              go (ixSrc + 1) (ixDst + 1)
-            else go (ixSrc + 1) ixDst
-        else return ixDst
-  lenDst <- go 0 0
-  marr' <- resizeMutablePrimArray marr lenDst
-  unsafeFreezePrimArray marr'
-
--- | Map over the primitive array, keeping the elements for which the monadic
--- predicate provides a 'Just'.
-{-# INLINE mapMaybePrimArrayP #-}
-mapMaybePrimArrayP :: (PrimMonad m, Prim a, Prim b)
-  => (a -> m (Maybe b))
-  -> PrimArray a
-  -> m (PrimArray b)
-mapMaybePrimArrayP f arr = do
-  let !sz = sizeofPrimArray arr
-  marr <- newPrimArray sz
-  let go !ixSrc !ixDst = if ixSrc < sz
-        then do
-          let a = indexPrimArray arr ixSrc
-          mb <- f a
-          case mb of
-            Just b -> do
-              writePrimArray marr ixDst b
-              go (ixSrc + 1) (ixDst + 1)
-            Nothing -> go (ixSrc + 1) ixDst
-        else return ixDst
-  lenDst <- go 0 0
-  marr' <- resizeMutablePrimArray marr lenDst
-  unsafeFreezePrimArray marr'
-
--- | Generate a primitive array by evaluating the monadic generator function
--- at each index.
-{-# INLINE generatePrimArrayP #-}
-generatePrimArrayP :: (PrimMonad m, Prim a)
-  => Int -- ^ length
-  -> (Int -> m a) -- ^ generator
-  -> m (PrimArray a)
-generatePrimArrayP sz f = do
-  marr <- newPrimArray sz
-  let go !ix = if ix < sz
-        then do
-          b <- f ix
-          writePrimArray marr ix b
-          go (ix + 1)
-        else return ()
-  go 0
-  unsafeFreezePrimArray marr
-
--- | Execute the monadic action the given number of times and store the
--- results in a primitive array.
-{-# INLINE replicatePrimArrayP #-}
-replicatePrimArrayP :: (PrimMonad m, Prim a)
-  => Int
-  -> m a
-  -> m (PrimArray a)
-replicatePrimArrayP sz f = do
-  marr <- newPrimArray sz
-  let go !ix = if ix < sz
-        then do
-          b <- f
-          writePrimArray marr ix b
-          go (ix + 1)
-        else return ()
-  go 0
-  unsafeFreezePrimArray marr
-
-
--- | Map over the elements of a primitive array.
-{-# INLINE mapPrimArray #-}
-mapPrimArray :: (Prim a, Prim b)
-  => (a -> b)
-  -> PrimArray a
-  -> PrimArray b
-mapPrimArray f arr = runST $ do
-  let !sz = sizeofPrimArray arr
-  marr <- newPrimArray sz
-  let go !ix = if ix < sz
-        then do
-          let b = f (indexPrimArray arr ix)
-          writePrimArray marr ix b
-          go (ix + 1)
-        else return ()
-  go 0
-  unsafeFreezePrimArray marr
-
--- | Indexed map over the elements of a primitive array.
-{-# INLINE imapPrimArray #-}
-imapPrimArray :: (Prim a, Prim b)
-  => (Int -> a -> b)
-  -> PrimArray a
-  -> PrimArray b
-imapPrimArray f arr = runST $ do
-  let !sz = sizeofPrimArray arr
-  marr <- newPrimArray sz
-  let go !ix = if ix < sz
-        then do
-          let b = f ix (indexPrimArray arr ix)
-          writePrimArray marr ix b
-          go (ix + 1)
-        else return ()
-  go 0
-  unsafeFreezePrimArray marr
-
--- | Filter elements of a primitive array according to a predicate.
-{-# INLINE filterPrimArray #-}
-filterPrimArray :: Prim a
-  => (a -> Bool)
-  -> PrimArray a
-  -> PrimArray a
-filterPrimArray p arr = runST $ do
-  let !sz = sizeofPrimArray arr
-  marr <- newPrimArray sz
-  let go !ixSrc !ixDst = if ixSrc < sz
-        then do
-          let !a = indexPrimArray arr ixSrc
-          if p a
-            then do
-              writePrimArray marr ixDst a
-              go (ixSrc + 1) (ixDst + 1)
-            else go (ixSrc + 1) ixDst
-        else return ixDst
-  dstLen <- go 0 0
-  marr' <- resizeMutablePrimArray marr dstLen
-  unsafeFreezePrimArray marr'
-
--- | Filter the primitive array, keeping the elements for which the monadic
--- predicate evaluates true.
-filterPrimArrayA ::
-     (Applicative f, Prim a)
-  => (a -> f Bool) -- ^ mapping function
-  -> PrimArray a -- ^ primitive array
-  -> f (PrimArray a)
-filterPrimArrayA f = \ !ary ->
-  let
-    !len = sizeofPrimArray ary
-    go !ixSrc
-      | ixSrc == len = pure $ IxSTA $ \ixDst _ -> return ixDst
-      | otherwise = let x = indexPrimArray ary ixSrc in
-          liftA2
-            (\keep (IxSTA m) -> IxSTA $ \ixDst mary -> if keep
-              then writePrimArray (MutablePrimArray mary) ixDst x >> m (ixDst + 1) mary
-              else m ixDst mary
-            )
-            (f x)
-            (go (ixSrc + 1))
-  in if len == 0
-     then pure emptyPrimArray
-     else runIxSTA len <$> go 0
-
--- | Map over the primitive array, keeping the elements for which the applicative
--- predicate provides a 'Just'.
-mapMaybePrimArrayA ::
-     (Applicative f, Prim a, Prim b)
-  => (a -> f (Maybe b)) -- ^ mapping function
-  -> PrimArray a -- ^ primitive array
-  -> f (PrimArray b)
-mapMaybePrimArrayA f = \ !ary ->
-  let
-    !len = sizeofPrimArray ary
-    go !ixSrc
-      | ixSrc == len = pure $ IxSTA $ \ixDst _ -> return ixDst
-      | otherwise = let x = indexPrimArray ary ixSrc in
-          liftA2
-            (\mb (IxSTA m) -> IxSTA $ \ixDst mary -> case mb of
-              Just b -> writePrimArray (MutablePrimArray mary) ixDst b >> m (ixDst + 1) mary
-              Nothing -> m ixDst mary
-            )
-            (f x)
-            (go (ixSrc + 1))
-  in if len == 0
-     then pure emptyPrimArray
-     else runIxSTA len <$> go 0
-
--- | Map over a primitive array, optionally discarding some elements. This
---   has the same behavior as @Data.Maybe.mapMaybe@.
-{-# INLINE mapMaybePrimArray #-}
-mapMaybePrimArray :: (Prim a, Prim b)
-  => (a -> Maybe b)
-  -> PrimArray a
-  -> PrimArray b
-mapMaybePrimArray p arr = runST $ do
-  let !sz = sizeofPrimArray arr
-  marr <- newPrimArray sz
-  let go !ixSrc !ixDst = if ixSrc < sz
-        then do
-          let !a = indexPrimArray arr ixSrc
-          case p a of
-            Just b -> do
-              writePrimArray marr ixDst b
-              go (ixSrc + 1) (ixDst + 1)
-            Nothing -> go (ixSrc + 1) ixDst
-        else return ixDst
-  dstLen <- go 0 0
-  marr' <- resizeMutablePrimArray marr dstLen
-  unsafeFreezePrimArray marr'
-
-
--- | Traverse a primitive array. The traversal performs all of the applicative
--- effects /before/ forcing the resulting values and writing them to the new
--- primitive array. Consequently:
---
--- >>> traversePrimArray (\x -> print x $> bool x undefined (x == 2)) (fromList [1, 2, 3 :: Int])
--- 1
--- 2
--- 3
--- *** Exception: Prelude.undefined
---
--- The function 'traversePrimArrayP' always outperforms this function, but it
--- requires a 'PrimAffineMonad' constraint, and it forces the values as
--- it performs the effects.
-traversePrimArray ::
-     (Applicative f, Prim a, Prim b)
-  => (a -> f b) -- ^ mapping function
-  -> PrimArray a -- ^ primitive array
-  -> f (PrimArray b)
-traversePrimArray f = \ !ary ->
-  let
-    !len = sizeofPrimArray ary
-    go !i
-      | i == len = pure $ STA $ \mary -> unsafeFreezePrimArray (MutablePrimArray mary)
-      | x <- indexPrimArray ary i
-      = liftA2 (\b (STA m) -> STA $ \mary ->
-                  writePrimArray (MutablePrimArray mary) i b >> m mary)
-               (f x) (go (i + 1))
-  in if len == 0
-     then pure emptyPrimArray
-     else runSTA len <$> go 0
-
--- | Traverse a primitive array with the index of each element.
-itraversePrimArray ::
-     (Applicative f, Prim a, Prim b)
-  => (Int -> a -> f b)
-  -> PrimArray a
-  -> f (PrimArray b)
-itraversePrimArray f = \ !ary ->
-  let
-    !len = sizeofPrimArray ary
-    go !i
-      | i == len = pure $ STA $ \mary -> unsafeFreezePrimArray (MutablePrimArray mary)
-      | x <- indexPrimArray ary i
-      = liftA2 (\b (STA m) -> STA $ \mary ->
-                  writePrimArray (MutablePrimArray mary) i b >> m mary)
-               (f i x) (go (i + 1))
-  in if len == 0
-     then pure emptyPrimArray
-     else runSTA len <$> go 0
-
--- | Traverse a primitive array with the indices. The traversal forces the
--- resulting values and writes them to the new primitive array as it performs
--- the monadic effects.
-{-# INLINE itraversePrimArrayP #-}
-itraversePrimArrayP :: (Prim a, Prim b, PrimMonad m)
-  => (Int -> a -> m b)
-  -> PrimArray a
-  -> m (PrimArray b)
-itraversePrimArrayP f arr = do
-  let !sz = sizeofPrimArray arr
-  marr <- newPrimArray sz
-  let go !ix
-        | ix < sz = do
-            writePrimArray marr ix =<< f ix (indexPrimArray arr ix)
-            go (ix + 1)
-        | otherwise = return ()
-  go 0
-  unsafeFreezePrimArray marr
-
--- | Generate a primitive array.
-{-# INLINE generatePrimArray #-}
-generatePrimArray :: Prim a
-  => Int -- ^ length
-  -> (Int -> a) -- ^ element from index
-  -> PrimArray a
-generatePrimArray len f = runST $ do
-  marr <- newPrimArray len
-  let go !ix = if ix < len
-        then do
-          writePrimArray marr ix (f ix)
-          go (ix + 1)
-        else return ()
-  go 0
-  unsafeFreezePrimArray marr
-
--- | Create a primitive array by copying the element the given
--- number of times.
-{-# INLINE replicatePrimArray #-}
-replicatePrimArray :: Prim a
-  => Int -- ^ length
-  -> a -- ^ element
-  -> PrimArray a
-replicatePrimArray len a = runST $ do
-  marr <- newPrimArray len
-  setPrimArray marr 0 len a
-  unsafeFreezePrimArray marr
-
--- | Generate a primitive array by evaluating the applicative generator
--- function at each index.
-{-# INLINE generatePrimArrayA #-}
-generatePrimArrayA ::
-     (Applicative f, Prim a)
-  => Int -- ^ length
-  -> (Int -> f a) -- ^ element from index
-  -> f (PrimArray a)
-generatePrimArrayA len f =
-  let
-    go !i
-      | i == len = pure $ STA $ \mary -> unsafeFreezePrimArray (MutablePrimArray mary)
-      | otherwise
-      = liftA2 (\b (STA m) -> STA $ \mary ->
-                  writePrimArray (MutablePrimArray mary) i b >> m mary)
-               (f i) (go (i + 1))
-  in if len == 0
-     then pure emptyPrimArray
-     else runSTA len <$> go 0
-
--- | Execute the applicative action the given number of times and store the
--- results in a vector.
-{-# INLINE replicatePrimArrayA #-}
-replicatePrimArrayA ::
-     (Applicative f, Prim a)
-  => Int -- ^ length
-  -> f a -- ^ applicative element producer
-  -> f (PrimArray a)
-replicatePrimArrayA len f =
-  let
-    go !i
-      | i == len = pure $ STA $ \mary -> unsafeFreezePrimArray (MutablePrimArray mary)
-      | otherwise
-      = liftA2 (\b (STA m) -> STA $ \mary ->
-                  writePrimArray (MutablePrimArray mary) i b >> m mary)
-               f (go (i + 1))
-  in if len == 0
-     then pure emptyPrimArray
-     else runSTA len <$> go 0
-
--- | Traverse the primitive array, discarding the results. There
--- is no 'PrimMonad' variant of this function since it would not provide
--- any performance benefit.
-traversePrimArray_ ::
-     (Applicative f, Prim a)
-  => (a -> f b)
-  -> PrimArray a
-  -> f ()
-traversePrimArray_ f a = go 0 where
-  !sz = sizeofPrimArray a
-  go !ix = if ix < sz
-    then f (indexPrimArray a ix) *> go (ix + 1)
-    else pure ()
-
--- | Traverse the primitive array with the indices, discarding the results.
--- There is no 'PrimMonad' variant of this function since it would not
--- provide any performance benefit.
-itraversePrimArray_ ::
-     (Applicative f, Prim a)
-  => (Int -> a -> f b)
-  -> PrimArray a
-  -> f ()
-itraversePrimArray_ f a = go 0 where
-  !sz = sizeofPrimArray a
-  go !ix = if ix < sz
-    then f ix (indexPrimArray a ix) *> go (ix + 1)
-    else pure ()
-
-newtype IxSTA a = IxSTA {_runIxSTA :: forall s. Int -> MutableByteArray# s -> ST s Int}
-
-runIxSTA :: forall a. Prim a
-  => Int -- maximum possible size
-  -> IxSTA a
-  -> PrimArray a
-runIxSTA !szUpper = \ (IxSTA m) -> runST $ do
-  ar :: MutablePrimArray s a <- newPrimArray szUpper
-  sz <- m 0 (unMutablePrimArray ar)
-  ar' <- resizeMutablePrimArray ar sz
-  unsafeFreezePrimArray ar'
-{-# INLINE runIxSTA #-}
-
-newtype STA a = STA {_runSTA :: forall s. MutableByteArray# s -> ST s (PrimArray a)}
-
-runSTA :: forall a. Prim a => Int -> STA a -> PrimArray a
-runSTA !sz = \ (STA m) -> runST $ newPrimArray sz >>= \ (ar :: MutablePrimArray s a) -> m (unMutablePrimArray ar)
-{-# INLINE runSTA #-}
-
-unMutablePrimArray :: MutablePrimArray s a -> MutableByteArray# s
-unMutablePrimArray (MutablePrimArray m) = m
-
-{- $effectfulMapCreate
-The naming conventions adopted in this section are explained in the
-documentation of the @Data.Primitive@ module.
--}
-
-
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Ptr.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Ptr.hs
deleted file mode 100644
index d93ae9ac114d..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Ptr.hs
+++ /dev/null
@@ -1,125 +0,0 @@
-{-# LANGUAGE CPP #-}
-{-# LANGUAGE MagicHash #-}
-{-# LANGUAGE UnboxedTuples #-}
-{-# LANGUAGE ScopedTypeVariables #-}
-
--- |
--- Module      : Data.Primitive.Ptr
--- Copyright   : (c) Roman Leshchinskiy 2009-2012
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Portability : non-portable
---
--- Primitive operations on machine addresses
---
--- @since 0.6.4.0
-
-module Data.Primitive.Ptr (
-  -- * Types
-  Ptr(..),
-
-  -- * Address arithmetic
-  nullPtr, advancePtr, subtractPtr,
-
-  -- * Element access
-  indexOffPtr, readOffPtr, writeOffPtr,
-
-  -- * Block operations
-  copyPtr, movePtr, setPtr
-
-#if __GLASGOW_HASKELL__ >= 708
-  , copyPtrToMutablePrimArray
-#endif
-) where
-
-import Control.Monad.Primitive
-import Data.Primitive.Types
-#if __GLASGOW_HASKELL__ >= 708
-import Data.Primitive.PrimArray (MutablePrimArray(..))
-#endif
-
-import GHC.Base ( Int(..) )
-import GHC.Prim
-
-import GHC.Ptr
-import Foreign.Marshal.Utils
-
-
--- | Offset a pointer by the given number of elements.
-advancePtr :: forall a. Prim a => Ptr a -> Int -> Ptr a
-{-# INLINE advancePtr #-}
-advancePtr (Ptr a#) (I# i#) = Ptr (plusAddr# a# (i# *# sizeOf# (undefined :: a)))
-
--- | Subtract a pointer from another pointer. The result represents
---   the number of elements of type @a@ that fit in the contiguous
---   memory range bounded by these two pointers.
-subtractPtr :: forall a. Prim a => Ptr a -> Ptr a -> Int
-{-# INLINE subtractPtr #-}
-subtractPtr (Ptr a#) (Ptr b#) = I# (quotInt# (minusAddr# a# b#) (sizeOf# (undefined :: a)))
-
--- | Read a value from a memory position given by a pointer and an offset.
--- The memory block the address refers to must be immutable. The offset is in
--- elements of type @a@ rather than in bytes.
-indexOffPtr :: Prim a => Ptr a -> Int -> a
-{-# INLINE indexOffPtr #-}
-indexOffPtr (Ptr addr#) (I# i#) = indexOffAddr# addr# i#
-
--- | Read a value from a memory position given by an address and an offset.
--- The offset is in elements of type @a@ rather than in bytes.
-readOffPtr :: (Prim a, PrimMonad m) => Ptr a -> Int -> m a
-{-# INLINE readOffPtr #-}
-readOffPtr (Ptr addr#) (I# i#) = primitive (readOffAddr# addr# i#)
-
--- | Write a value to a memory position given by an address and an offset.
--- The offset is in elements of type @a@ rather than in bytes.
-writeOffPtr :: (Prim a, PrimMonad m) => Ptr a -> Int -> a -> m ()
-{-# INLINE writeOffPtr #-}
-writeOffPtr (Ptr addr#) (I# i#) x = primitive_ (writeOffAddr# addr# i# x)
-
--- | Copy the given number of elements from the second 'Ptr' to the first. The
--- areas may not overlap.
-copyPtr :: forall m a. (PrimMonad m, Prim a)
-  => Ptr a -- ^ destination pointer
-  -> Ptr a -- ^ source pointer
-  -> Int -- ^ number of elements
-  -> m ()
-{-# INLINE copyPtr #-}
-copyPtr (Ptr dst#) (Ptr src#) n
-  = unsafePrimToPrim $ copyBytes (Ptr dst#) (Ptr src#) (n * sizeOf (undefined :: a))
-
--- | Copy the given number of elements from the second 'Ptr' to the first. The
--- areas may overlap.
-movePtr :: forall m a. (PrimMonad m, Prim a)
-  => Ptr a -- ^ destination address
-  -> Ptr a -- ^ source address
-  -> Int -- ^ number of elements
-  -> m ()
-{-# INLINE movePtr #-}
-movePtr (Ptr dst#) (Ptr src#) n
-  = unsafePrimToPrim $ moveBytes (Ptr dst#) (Ptr src#) (n * sizeOf (undefined :: a))
-
--- | Fill a memory block with the given value. The length is in
--- elements of type @a@ rather than in bytes.
-setPtr :: (Prim a, PrimMonad m) => Ptr a -> Int -> a -> m ()
-{-# INLINE setPtr #-}
-setPtr (Ptr addr#) (I# n#) x = primitive_ (setOffAddr# addr# 0# n# x)
-
-
-#if __GLASGOW_HASKELL__ >= 708
--- | Copy from a pointer to a mutable primitive array.
--- The offset and length are given in elements of type @a@.
--- This function is only available when building with GHC 7.8
--- or newer.
-copyPtrToMutablePrimArray :: forall m a. (PrimMonad m, Prim a)
-  => MutablePrimArray (PrimState m) a -- ^ destination array
-  -> Int -- ^ destination offset
-  -> Ptr a -- ^ source pointer
-  -> Int -- ^ number of elements
-  -> m ()
-{-# INLINE copyPtrToMutablePrimArray #-}
-copyPtrToMutablePrimArray (MutablePrimArray ba#) (I# doff#) (Ptr addr#) (I# n#) = 
-  primitive_ (copyAddrToByteArray# addr# ba# (doff# *# siz#) (n# *# siz#))
-  where
-  siz# = sizeOf# (undefined :: a)
-#endif
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/SmallArray.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/SmallArray.hs
deleted file mode 100644
index 3a50cf218380..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/SmallArray.hs
+++ /dev/null
@@ -1,967 +0,0 @@
-{-# LANGUAGE CPP #-}
-{-# LANGUAGE MagicHash #-}
-{-# LANGUAGE RankNTypes #-}
-{-# LANGUAGE TypeFamilies #-}
-{-# LANGUAGE UnboxedTuples #-}
-{-# LANGUAGE DeriveTraversable #-}
-{-# LANGUAGE DeriveDataTypeable #-}
-{-# LANGUAGE GeneralizedNewtypeDeriving #-}
-{-# LANGUAGE BangPatterns #-}
-
--- |
--- Module : Data.Primitive.SmallArray
--- Copyright: (c) 2015 Dan Doel
--- License: BSD3
---
--- Maintainer: libraries@haskell.org
--- Portability: non-portable
---
--- Small arrays are boxed (im)mutable arrays.
---
--- The underlying structure of the 'Array' type contains a card table, allowing
--- segments of the array to be marked as having been mutated. This allows the
--- garbage collector to only re-traverse segments of the array that have been
--- marked during certain phases, rather than having to traverse the entire
--- array.
---
--- 'SmallArray' lacks this table. This means that it takes up less memory and
--- has slightly faster writes. It is also more efficient during garbage
--- collection so long as the card table would have a single entry covering the
--- entire array. These advantages make them suitable for use as arrays that are
--- known to be small.
---
--- The card size is 128, so for uses much larger than that, 'Array' would likely
--- be superior.
---
--- The underlying type, 'SmallArray#', was introduced in GHC 7.10, so prior to
--- that version, this module simply implements small arrays as 'Array'.
-
-module Data.Primitive.SmallArray
-  ( SmallArray(..)
-  , SmallMutableArray(..)
-  , newSmallArray
-  , readSmallArray
-  , writeSmallArray
-  , copySmallArray
-  , copySmallMutableArray
-  , indexSmallArray
-  , indexSmallArrayM
-  , indexSmallArray##
-  , cloneSmallArray
-  , cloneSmallMutableArray
-  , freezeSmallArray
-  , unsafeFreezeSmallArray
-  , thawSmallArray
-  , runSmallArray
-  , unsafeThawSmallArray
-  , sizeofSmallArray
-  , sizeofSmallMutableArray
-  , smallArrayFromList
-  , smallArrayFromListN
-  , mapSmallArray'
-  , traverseSmallArrayP
-  ) where
-
-
-#if (__GLASGOW_HASKELL__ >= 710)
-#define HAVE_SMALL_ARRAY 1
-#endif
-
-#if MIN_VERSION_base(4,7,0)
-import GHC.Exts hiding (toList)
-import qualified GHC.Exts
-#endif
-
-import Control.Applicative
-import Control.Monad
-import Control.Monad.Fix
-import Control.Monad.Primitive
-import Control.Monad.ST
-import Control.Monad.Zip
-import Data.Data
-import Data.Foldable as Foldable
-import Data.Functor.Identity
-#if !(MIN_VERSION_base(4,10,0))
-import Data.Monoid
-#endif
-#if MIN_VERSION_base(4,9,0)
-import qualified GHC.ST as GHCST
-import qualified Data.Semigroup as Sem
-#endif
-import Text.ParserCombinators.ReadP
-#if MIN_VERSION_base(4,10,0)
-import GHC.Exts (runRW#)
-#elif MIN_VERSION_base(4,9,0)
-import GHC.Base (runRW#)
-#endif
-
-#if !(HAVE_SMALL_ARRAY)
-import Data.Primitive.Array
-import Data.Traversable
-import qualified Data.Primitive.Array as Array
-#endif
-
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
-import Data.Functor.Classes (Eq1(..),Ord1(..),Show1(..),Read1(..))
-#endif
-
-#if HAVE_SMALL_ARRAY
-data SmallArray a = SmallArray (SmallArray# a)
-  deriving Typeable
-#else
-newtype SmallArray a = SmallArray (Array a) deriving
-  ( Eq
-  , Ord
-  , Show
-  , Read
-  , Foldable
-  , Traversable
-  , Functor
-  , Applicative
-  , Alternative
-  , Monad
-  , MonadPlus
-  , MonadZip
-  , MonadFix
-  , Monoid
-  , Typeable
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
-  , Eq1
-  , Ord1
-  , Show1
-  , Read1
-#endif
-  )
-
-#if MIN_VERSION_base(4,7,0)
-instance IsList (SmallArray a) where
-  type Item (SmallArray a) = a
-  fromListN n l = SmallArray (fromListN n l)
-  fromList l = SmallArray (fromList l)
-  toList a = Foldable.toList a
-#endif
-#endif
-
-#if HAVE_SMALL_ARRAY
-data SmallMutableArray s a = SmallMutableArray (SmallMutableArray# s a)
-  deriving Typeable
-#else
-newtype SmallMutableArray s a = SmallMutableArray (MutableArray s a)
-  deriving (Eq, Typeable)
-#endif
-
--- | Create a new small mutable array.
-newSmallArray
-  :: PrimMonad m
-  => Int -- ^ size
-  -> a   -- ^ initial contents
-  -> m (SmallMutableArray (PrimState m) a)
-#if HAVE_SMALL_ARRAY
-newSmallArray (I# i#) x = primitive $ \s ->
-  case newSmallArray# i# x s of
-    (# s', sma# #) -> (# s', SmallMutableArray sma# #)
-#else
-newSmallArray n e = SmallMutableArray `liftM` newArray n e
-#endif
-{-# INLINE newSmallArray #-}
-
--- | Read the element at a given index in a mutable array.
-readSmallArray
-  :: PrimMonad m
-  => SmallMutableArray (PrimState m) a -- ^ array
-  -> Int                               -- ^ index
-  -> m a
-#if HAVE_SMALL_ARRAY
-readSmallArray (SmallMutableArray sma#) (I# i#) =
-  primitive $ readSmallArray# sma# i#
-#else
-readSmallArray (SmallMutableArray a) = readArray a
-#endif
-{-# INLINE readSmallArray #-}
-
--- | Write an element at the given idex in a mutable array.
-writeSmallArray
-  :: PrimMonad m
-  => SmallMutableArray (PrimState m) a -- ^ array
-  -> Int                               -- ^ index
-  -> a                                 -- ^ new element
-  -> m ()
-#if HAVE_SMALL_ARRAY
-writeSmallArray (SmallMutableArray sma#) (I# i#) x =
-  primitive_ $ writeSmallArray# sma# i# x
-#else
-writeSmallArray (SmallMutableArray a) = writeArray a
-#endif
-{-# INLINE writeSmallArray #-}
-
--- | Look up an element in an immutable array.
---
--- The purpose of returning a result using a monad is to allow the caller to
--- avoid retaining references to the array. Evaluating the return value will
--- cause the array lookup to be performed, even though it may not require the
--- element of the array to be evaluated (which could throw an exception). For
--- instance:
---
--- > data Box a = Box a
--- > ...
--- >
--- > f sa = case indexSmallArrayM sa 0 of
--- >   Box x -> ...
---
--- 'x' is not a closure that references 'sa' as it would be if we instead
--- wrote:
---
--- > let x = indexSmallArray sa 0
---
--- And does not prevent 'sa' from being garbage collected.
---
--- Note that 'Identity' is not adequate for this use, as it is a newtype, and
--- cannot be evaluated without evaluating the element.
-indexSmallArrayM
-  :: Monad m
-  => SmallArray a -- ^ array
-  -> Int          -- ^ index
-  -> m a
-#if HAVE_SMALL_ARRAY
-indexSmallArrayM (SmallArray sa#) (I# i#) =
-  case indexSmallArray# sa# i# of
-    (# x #) -> pure x
-#else
-indexSmallArrayM (SmallArray a) = indexArrayM a
-#endif
-{-# INLINE indexSmallArrayM #-}
-
--- | Look up an element in an immutable array.
-indexSmallArray
-  :: SmallArray a -- ^ array
-  -> Int          -- ^ index
-  -> a
-#if HAVE_SMALL_ARRAY
-indexSmallArray sa i = runIdentity $ indexSmallArrayM sa i
-#else
-indexSmallArray (SmallArray a) = indexArray a
-#endif
-{-# INLINE indexSmallArray #-}
-
--- | Read a value from the immutable array at the given index, returning
--- the result in an unboxed unary tuple. This is currently used to implement
--- folds.
-indexSmallArray## :: SmallArray a -> Int -> (# a #)
-#if HAVE_SMALL_ARRAY
-indexSmallArray## (SmallArray ary) (I# i) = indexSmallArray# ary i
-#else
-indexSmallArray## (SmallArray a) = indexArray## a
-#endif
-{-# INLINE indexSmallArray## #-}
-
--- | Create a copy of a slice of an immutable array.
-cloneSmallArray
-  :: SmallArray a -- ^ source
-  -> Int          -- ^ offset
-  -> Int          -- ^ length
-  -> SmallArray a
-#if HAVE_SMALL_ARRAY
-cloneSmallArray (SmallArray sa#) (I# i#) (I# j#) =
-  SmallArray (cloneSmallArray# sa# i# j#)
-#else
-cloneSmallArray (SmallArray a) i j = SmallArray $ cloneArray a i j
-#endif
-{-# INLINE cloneSmallArray #-}
-
--- | Create a copy of a slice of a mutable array.
-cloneSmallMutableArray
-  :: PrimMonad m
-  => SmallMutableArray (PrimState m) a -- ^ source
-  -> Int                               -- ^ offset
-  -> Int                               -- ^ length
-  -> m (SmallMutableArray (PrimState m) a)
-#if HAVE_SMALL_ARRAY
-cloneSmallMutableArray (SmallMutableArray sma#) (I# o#) (I# l#) =
-  primitive $ \s -> case cloneSmallMutableArray# sma# o# l# s of
-    (# s', smb# #) -> (# s', SmallMutableArray smb# #)
-#else
-cloneSmallMutableArray (SmallMutableArray ma) i j =
-  SmallMutableArray `liftM` cloneMutableArray ma i j
-#endif
-{-# INLINE cloneSmallMutableArray #-}
-
--- | Create an immutable array corresponding to a slice of a mutable array.
---
--- This operation copies the portion of the array to be frozen.
-freezeSmallArray
-  :: PrimMonad m
-  => SmallMutableArray (PrimState m) a -- ^ source
-  -> Int                               -- ^ offset
-  -> Int                               -- ^ length
-  -> m (SmallArray a)
-#if HAVE_SMALL_ARRAY
-freezeSmallArray (SmallMutableArray sma#) (I# i#) (I# j#) =
-  primitive $ \s -> case freezeSmallArray# sma# i# j# s of
-    (# s', sa# #) -> (# s', SmallArray sa# #)
-#else
-freezeSmallArray (SmallMutableArray ma) i j =
-  SmallArray `liftM` freezeArray ma i j
-#endif
-{-# INLINE freezeSmallArray #-}
-
--- | Render a mutable array immutable.
---
--- This operation performs no copying, so care must be taken not to modify the
--- input array after freezing.
-unsafeFreezeSmallArray
-  :: PrimMonad m => SmallMutableArray (PrimState m) a -> m (SmallArray a)
-#if HAVE_SMALL_ARRAY
-unsafeFreezeSmallArray (SmallMutableArray sma#) =
-  primitive $ \s -> case unsafeFreezeSmallArray# sma# s of
-    (# s', sa# #) -> (# s', SmallArray sa# #)
-#else
-unsafeFreezeSmallArray (SmallMutableArray ma) =
-  SmallArray `liftM` unsafeFreezeArray ma
-#endif
-{-# INLINE unsafeFreezeSmallArray #-}
-
--- | Create a mutable array corresponding to a slice of an immutable array.
---
--- This operation copies the portion of the array to be thawed.
-thawSmallArray
-  :: PrimMonad m
-  => SmallArray a -- ^ source
-  -> Int          -- ^ offset
-  -> Int          -- ^ length
-  -> m (SmallMutableArray (PrimState m) a)
-#if HAVE_SMALL_ARRAY
-thawSmallArray (SmallArray sa#) (I# o#) (I# l#) =
-  primitive $ \s -> case thawSmallArray# sa# o# l# s of
-    (# s', sma# #) -> (# s', SmallMutableArray sma# #)
-#else
-thawSmallArray (SmallArray a) off len =
-  SmallMutableArray `liftM` thawArray a off len
-#endif
-{-# INLINE thawSmallArray #-}
-
--- | Render an immutable array mutable.
---
--- This operation performs no copying, so care must be taken with its use.
-unsafeThawSmallArray
-  :: PrimMonad m => SmallArray a -> m (SmallMutableArray (PrimState m) a)
-#if HAVE_SMALL_ARRAY
-unsafeThawSmallArray (SmallArray sa#) =
-  primitive $ \s -> case unsafeThawSmallArray# sa# s of
-    (# s', sma# #) -> (# s', SmallMutableArray sma# #)
-#else
-unsafeThawSmallArray (SmallArray a) = SmallMutableArray `liftM` unsafeThawArray a
-#endif
-{-# INLINE unsafeThawSmallArray #-}
-
--- | Copy a slice of an immutable array into a mutable array.
-copySmallArray
-  :: PrimMonad m
-  => SmallMutableArray (PrimState m) a -- ^ destination
-  -> Int                               -- ^ destination offset
-  -> SmallArray a                      -- ^ source
-  -> Int                               -- ^ source offset
-  -> Int                               -- ^ length
-  -> m ()
-#if HAVE_SMALL_ARRAY
-copySmallArray
-  (SmallMutableArray dst#) (I# do#) (SmallArray src#) (I# so#) (I# l#) =
-    primitive_ $ copySmallArray# src# so# dst# do# l#
-#else
-copySmallArray (SmallMutableArray dst) i (SmallArray src) = copyArray dst i src
-#endif
-{-# INLINE copySmallArray #-}
-
--- | Copy a slice of one mutable array into another.
-copySmallMutableArray
-  :: PrimMonad m
-  => SmallMutableArray (PrimState m) a -- ^ destination
-  -> Int                               -- ^ destination offset
-  -> SmallMutableArray (PrimState m) a -- ^ source
-  -> Int                               -- ^ source offset
-  -> Int                               -- ^ length
-  -> m ()
-#if HAVE_SMALL_ARRAY
-copySmallMutableArray
-  (SmallMutableArray dst#) (I# do#)
-  (SmallMutableArray src#) (I# so#)
-  (I# l#) =
-    primitive_ $ copySmallMutableArray# src# so# dst# do# l#
-#else
-copySmallMutableArray (SmallMutableArray dst) i (SmallMutableArray src) =
-  copyMutableArray dst i src
-#endif
-{-# INLINE copySmallMutableArray #-}
-
-sizeofSmallArray :: SmallArray a -> Int
-#if HAVE_SMALL_ARRAY
-sizeofSmallArray (SmallArray sa#) = I# (sizeofSmallArray# sa#)
-#else
-sizeofSmallArray (SmallArray a) = sizeofArray a
-#endif
-{-# INLINE sizeofSmallArray #-}
-
-sizeofSmallMutableArray :: SmallMutableArray s a -> Int
-#if HAVE_SMALL_ARRAY
-sizeofSmallMutableArray (SmallMutableArray sa#) =
-  I# (sizeofSmallMutableArray# sa#)
-#else
-sizeofSmallMutableArray (SmallMutableArray ma) = sizeofMutableArray ma
-#endif
-{-# INLINE sizeofSmallMutableArray #-}
-
--- | This is the fastest, most straightforward way to traverse
--- an array, but it only works correctly with a sufficiently
--- "affine" 'PrimMonad' instance. In particular, it must only produce
--- *one* result array. 'Control.Monad.Trans.List.ListT'-transformed
--- monads, for example, will not work right at all.
-traverseSmallArrayP
-  :: PrimMonad m
-  => (a -> m b)
-  -> SmallArray a
-  -> m (SmallArray b)
-#if HAVE_SMALL_ARRAY
-traverseSmallArrayP f = \ !ary ->
-  let
-    !sz = sizeofSmallArray ary
-    go !i !mary
-      | i == sz
-      = unsafeFreezeSmallArray mary
-      | otherwise
-      = do
-          a <- indexSmallArrayM ary i
-          b <- f a
-          writeSmallArray mary i b
-          go (i + 1) mary
-  in do
-    mary <- newSmallArray sz badTraverseValue
-    go 0 mary
-#else
-traverseSmallArrayP f (SmallArray ar) = SmallArray `liftM` traverseArrayP f ar
-#endif
-{-# INLINE traverseSmallArrayP #-}
-
--- | Strict map over the elements of the array.
-mapSmallArray' :: (a -> b) -> SmallArray a -> SmallArray b
-#if HAVE_SMALL_ARRAY
-mapSmallArray' f sa = createSmallArray (length sa) (die "mapSmallArray'" "impossible") $ \smb ->
-  fix ? 0 $ \go i ->
-    when (i < length sa) $ do
-      x <- indexSmallArrayM sa i
-      let !y = f x
-      writeSmallArray smb i y *> go (i+1)
-#else
-mapSmallArray' f (SmallArray ar) = SmallArray (mapArray' f ar)
-#endif
-{-# INLINE mapSmallArray' #-}
-
-#ifndef HAVE_SMALL_ARRAY
-runSmallArray
-  :: (forall s. ST s (SmallMutableArray s a))
-  -> SmallArray a
-runSmallArray m = SmallArray $ runArray $
-  m >>= \(SmallMutableArray mary) -> return mary
-
-#elif !MIN_VERSION_base(4,9,0)
-runSmallArray
-  :: (forall s. ST s (SmallMutableArray s a))
-  -> SmallArray a
-runSmallArray m = runST $ m >>= unsafeFreezeSmallArray
-
-#else
--- This low-level business is designed to work with GHC's worker-wrapper
--- transformation. A lot of the time, we don't actually need an Array
--- constructor. By putting it on the outside, and being careful about
--- how we special-case the empty array, we can make GHC smarter about this.
--- The only downside is that separately created 0-length arrays won't share
--- their Array constructors, although they'll share their underlying
--- Array#s.
-runSmallArray
-  :: (forall s. ST s (SmallMutableArray s a))
-  -> SmallArray a
-runSmallArray m = SmallArray (runSmallArray# m)
-
-runSmallArray#
-  :: (forall s. ST s (SmallMutableArray s a))
-  -> SmallArray# a
-runSmallArray# m = case runRW# $ \s ->
-  case unST m s of { (# s', SmallMutableArray mary# #) ->
-  unsafeFreezeSmallArray# mary# s'} of (# _, ary# #) -> ary#
-
-unST :: ST s a -> State# s -> (# State# s, a #)
-unST (GHCST.ST f) = f
-
-#endif
-
-#if HAVE_SMALL_ARRAY
--- See the comment on runSmallArray for why we use emptySmallArray#.
-createSmallArray
-  :: Int
-  -> a
-  -> (forall s. SmallMutableArray s a -> ST s ())
-  -> SmallArray a
-createSmallArray 0 _ _ = SmallArray (emptySmallArray# (# #))
-createSmallArray n x f = runSmallArray $ do
-  mary <- newSmallArray n x
-  f mary
-  pure mary
-
-emptySmallArray# :: (# #) -> SmallArray# a
-emptySmallArray# _ = case emptySmallArray of SmallArray ar -> ar
-{-# NOINLINE emptySmallArray# #-}
-
-die :: String -> String -> a
-die fun problem = error $ "Data.Primitive.SmallArray." ++ fun ++ ": " ++ problem
-
-emptySmallArray :: SmallArray a
-emptySmallArray =
-  runST $ newSmallArray 0 (die "emptySmallArray" "impossible")
-            >>= unsafeFreezeSmallArray
-{-# NOINLINE emptySmallArray #-}
-
-
-infixl 1 ?
-(?) :: (a -> b -> c) -> (b -> a -> c)
-(?) = flip
-{-# INLINE (?) #-}
-
-noOp :: a -> ST s ()
-noOp = const $ pure ()
-
-smallArrayLiftEq :: (a -> b -> Bool) -> SmallArray a -> SmallArray b -> Bool
-smallArrayLiftEq p sa1 sa2 = length sa1 == length sa2 && loop (length sa1 - 1)
-  where
-  loop i
-    | i < 0
-    = True
-    | (# x #) <- indexSmallArray## sa1 i
-    , (# y #) <- indexSmallArray## sa2 i
-    = p x y && loop (i-1)
-
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
--- | @since 0.6.4.0
-instance Eq1 SmallArray where
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,5,0)
-  liftEq = smallArrayLiftEq
-#else
-  eq1 = smallArrayLiftEq (==)
-#endif
-#endif
-
-instance Eq a => Eq (SmallArray a) where
-  sa1 == sa2 = smallArrayLiftEq (==) sa1 sa2
-
-instance Eq (SmallMutableArray s a) where
-  SmallMutableArray sma1# == SmallMutableArray sma2# =
-    isTrue# (sameSmallMutableArray# sma1# sma2#)
-
-smallArrayLiftCompare :: (a -> b -> Ordering) -> SmallArray a -> SmallArray b -> Ordering
-smallArrayLiftCompare elemCompare a1 a2 = loop 0
-  where
-  mn = length a1 `min` length a2
-  loop i
-    | i < mn
-    , (# x1 #) <- indexSmallArray## a1 i
-    , (# x2 #) <- indexSmallArray## a2 i
-    = elemCompare x1 x2 `mappend` loop (i+1)
-    | otherwise = compare (length a1) (length a2)
-
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
--- | @since 0.6.4.0
-instance Ord1 SmallArray where
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,5,0)
-  liftCompare = smallArrayLiftCompare
-#else
-  compare1 = smallArrayLiftCompare compare
-#endif
-#endif
-
--- | Lexicographic ordering. Subject to change between major versions.
-instance Ord a => Ord (SmallArray a) where
-  compare sa1 sa2 = smallArrayLiftCompare compare sa1 sa2
-
-instance Foldable SmallArray where
-  -- Note: we perform the array lookups eagerly so we won't
-  -- create thunks to perform lookups even if GHC can't see
-  -- that the folding function is strict.
-  foldr f = \z !ary ->
-    let
-      !sz = sizeofSmallArray ary
-      go i
-        | i == sz = z
-        | (# x #) <- indexSmallArray## ary i
-        = f x (go (i+1))
-    in go 0
-  {-# INLINE foldr #-}
-  foldl f = \z !ary ->
-    let
-      go i
-        | i < 0 = z
-        | (# x #) <- indexSmallArray## ary i
-        = f (go (i-1)) x
-    in go (sizeofSmallArray ary - 1)
-  {-# INLINE foldl #-}
-  foldr1 f = \ !ary ->
-    let
-      !sz = sizeofSmallArray ary - 1
-      go i =
-        case indexSmallArray## ary i of
-          (# x #) | i == sz -> x
-                  | otherwise -> f x (go (i+1))
-    in if sz < 0
-       then die "foldr1" "Empty SmallArray"
-       else go 0
-  {-# INLINE foldr1 #-}
-  foldl1 f = \ !ary ->
-    let
-      !sz = sizeofSmallArray ary - 1
-      go i =
-        case indexSmallArray## ary i of
-          (# x #) | i == 0 -> x
-                  | otherwise -> f (go (i - 1)) x
-    in if sz < 0
-       then die "foldl1" "Empty SmallArray"
-       else go sz
-  {-# INLINE foldl1 #-}
-  foldr' f = \z !ary ->
-    let
-      go i !acc
-        | i == -1 = acc
-        | (# x #) <- indexSmallArray## ary i
-        = go (i-1) (f x acc)
-    in go (sizeofSmallArray ary - 1) z
-  {-# INLINE foldr' #-}
-  foldl' f = \z !ary ->
-    let
-      !sz = sizeofSmallArray ary
-      go i !acc
-        | i == sz = acc
-        | (# x #) <- indexSmallArray## ary i
-        = go (i+1) (f acc x)
-    in go 0 z
-  {-# INLINE foldl' #-}
-  null a = sizeofSmallArray a == 0
-  {-# INLINE null #-}
-  length = sizeofSmallArray
-  {-# INLINE length #-}
-  maximum ary | sz == 0   = die "maximum" "Empty SmallArray"
-              | (# frst #) <- indexSmallArray## ary 0
-              = go 1 frst
-   where
-     sz = sizeofSmallArray ary
-     go i !e
-       | i == sz = e
-       | (# x #) <- indexSmallArray## ary i
-       = go (i+1) (max e x)
-  {-# INLINE maximum #-}
-  minimum ary | sz == 0   = die "minimum" "Empty SmallArray"
-              | (# frst #) <- indexSmallArray## ary 0
-              = go 1 frst
-   where sz = sizeofSmallArray ary
-         go i !e
-           | i == sz = e
-           | (# x #) <- indexSmallArray## ary i
-           = go (i+1) (min e x)
-  {-# INLINE minimum #-}
-  sum = foldl' (+) 0
-  {-# INLINE sum #-}
-  product = foldl' (*) 1
-  {-# INLINE product #-}
-
-newtype STA a = STA {_runSTA :: forall s. SmallMutableArray# s a -> ST s (SmallArray a)}
-
-runSTA :: Int -> STA a -> SmallArray a
-runSTA !sz = \ (STA m) -> runST $ newSmallArray_ sz >>=
-                        \ (SmallMutableArray ar#) -> m ar#
-{-# INLINE runSTA #-}
-
-newSmallArray_ :: Int -> ST s (SmallMutableArray s a)
-newSmallArray_ !n = newSmallArray n badTraverseValue
-
-badTraverseValue :: a
-badTraverseValue = die "traverse" "bad indexing"
-{-# NOINLINE badTraverseValue #-}
-
-instance Traversable SmallArray where
-  traverse f = traverseSmallArray f
-  {-# INLINE traverse #-}
-
-traverseSmallArray
-  :: Applicative f
-  => (a -> f b) -> SmallArray a -> f (SmallArray b)
-traverseSmallArray f = \ !ary ->
-  let
-    !len = sizeofSmallArray ary
-    go !i
-      | i == len
-      = pure $ STA $ \mary -> unsafeFreezeSmallArray (SmallMutableArray mary)
-      | (# x #) <- indexSmallArray## ary i
-      = liftA2 (\b (STA m) -> STA $ \mary ->
-                  writeSmallArray (SmallMutableArray mary) i b >> m mary)
-               (f x) (go (i + 1))
-  in if len == 0
-     then pure emptySmallArray
-     else runSTA len <$> go 0
-{-# INLINE [1] traverseSmallArray #-}
-
-{-# RULES
-"traverse/ST" forall (f :: a -> ST s b). traverseSmallArray f = traverseSmallArrayP f
-"traverse/IO" forall (f :: a -> IO b). traverseSmallArray f = traverseSmallArrayP f
-"traverse/Id" forall (f :: a -> Identity b). traverseSmallArray f =
-   (coerce :: (SmallArray a -> SmallArray (Identity b))
-           -> SmallArray a -> Identity (SmallArray b)) (fmap f)
- #-}
-
-
-instance Functor SmallArray where
-  fmap f sa = createSmallArray (length sa) (die "fmap" "impossible") $ \smb ->
-    fix ? 0 $ \go i ->
-      when (i < length sa) $ do
-        x <- indexSmallArrayM sa i
-        writeSmallArray smb i (f x) *> go (i+1)
-  {-# INLINE fmap #-}
-
-  x <$ sa = createSmallArray (length sa) x noOp
-
-instance Applicative SmallArray where
-  pure x = createSmallArray 1 x noOp
-
-  sa *> sb = createSmallArray (la*lb) (die "*>" "impossible") $ \smb ->
-    fix ? 0 $ \go i ->
-      when (i < la) $
-        copySmallArray smb 0 sb 0 lb *> go (i+1)
-   where
-   la = length sa ; lb = length sb
-
-  a <* b = createSmallArray (sza*szb) (die "<*" "impossible") $ \ma ->
-    let fill off i e = when (i < szb) $
-                         writeSmallArray ma (off+i) e >> fill off (i+1) e
-        go i = when (i < sza) $ do
-                 x <- indexSmallArrayM a i
-                 fill (i*szb) 0 x
-                 go (i+1)
-     in go 0
-   where sza = sizeofSmallArray a ; szb = sizeofSmallArray b
-
-  ab <*> a = createSmallArray (szab*sza) (die "<*>" "impossible") $ \mb ->
-    let go1 i = when (i < szab) $
-            do
-              f <- indexSmallArrayM ab i
-              go2 (i*sza) f 0
-              go1 (i+1)
-        go2 off f j = when (j < sza) $
-            do
-              x <- indexSmallArrayM a j
-              writeSmallArray mb (off + j) (f x)
-              go2 off f (j + 1)
-    in go1 0
-   where szab = sizeofSmallArray ab ; sza = sizeofSmallArray a
-
-instance Alternative SmallArray where
-  empty = emptySmallArray
-
-  sl <|> sr =
-    createSmallArray (length sl + length sr) (die "<|>" "impossible") $ \sma ->
-      copySmallArray sma 0 sl 0 (length sl)
-        *> copySmallArray sma (length sl) sr 0 (length sr)
-
-  many sa | null sa   = pure []
-          | otherwise = die "many" "infinite arrays are not well defined"
-
-  some sa | null sa   = emptySmallArray
-          | otherwise = die "some" "infinite arrays are not well defined"
-
-data ArrayStack a
-  = PushArray !(SmallArray a) !(ArrayStack a)
-  | EmptyStack
--- TODO: This isn't terribly efficient. It would be better to wrap
--- ArrayStack with a type like
---
--- data NES s a = NES !Int !(SmallMutableArray s a) !(ArrayStack a)
---
--- We'd copy incoming arrays into the mutable array until we would
--- overflow it. Then we'd freeze it, push it on the stack, and continue.
--- Any sufficiently large incoming arrays would go straight on the stack.
--- Such a scheme would make the stack much more compact in the case
--- of many small arrays.
-
-instance Monad SmallArray where
-  return = pure
-  (>>) = (*>)
-
-  sa >>= f = collect 0 EmptyStack (la-1)
-   where
-   la = length sa
-   collect sz stk i
-     | i < 0 = createSmallArray sz (die ">>=" "impossible") $ fill 0 stk
-     | (# x #) <- indexSmallArray## sa i
-     , let sb = f x
-           lsb = length sb
-       -- If we don't perform this check, we could end up allocating
-       -- a stack full of empty arrays if someone is filtering most
-       -- things out. So we refrain from pushing empty arrays.
-     = if lsb == 0
-       then collect sz stk (i-1)
-       else collect (sz + lsb) (PushArray sb stk) (i-1)
-
-   fill _ EmptyStack _ = return ()
-   fill off (PushArray sb sbs) smb =
-     copySmallArray smb off sb 0 (length sb)
-       *> fill (off + length sb) sbs smb
-
-  fail _ = emptySmallArray
-
-instance MonadPlus SmallArray where
-  mzero = empty
-  mplus = (<|>)
-
-zipW :: String -> (a -> b -> c) -> SmallArray a -> SmallArray b -> SmallArray c
-zipW nm = \f sa sb -> let mn = length sa `min` length sb in
-  createSmallArray mn (die nm "impossible") $ \mc ->
-    fix ? 0 $ \go i -> when (i < mn) $ do
-      x <- indexSmallArrayM sa i
-      y <- indexSmallArrayM sb i
-      writeSmallArray mc i (f x y)
-      go (i+1)
-{-# INLINE zipW #-}
-
-instance MonadZip SmallArray where
-  mzip = zipW "mzip" (,)
-  mzipWith = zipW "mzipWith"
-  {-# INLINE mzipWith #-}
-  munzip sab = runST $ do
-    let sz = length sab
-    sma <- newSmallArray sz $ die "munzip" "impossible"
-    smb <- newSmallArray sz $ die "munzip" "impossible"
-    fix ? 0 $ \go i ->
-      when (i < sz) $ case indexSmallArray sab i of
-        (x, y) -> do writeSmallArray sma i x
-                     writeSmallArray smb i y
-                     go $ i+1
-    (,) <$> unsafeFreezeSmallArray sma
-        <*> unsafeFreezeSmallArray smb
-
-instance MonadFix SmallArray where
-  mfix f = createSmallArray (sizeofSmallArray (f err))
-                            (die "mfix" "impossible") $ flip fix 0 $
-    \r !i !mary -> when (i < sz) $ do
-                      writeSmallArray mary i (fix (\xi -> f xi `indexSmallArray` i))
-                      r (i + 1) mary
-    where
-      sz = sizeofSmallArray (f err)
-      err = error "mfix for Data.Primitive.SmallArray applied to strict function."
-
-#if MIN_VERSION_base(4,9,0)
--- | @since 0.6.3.0
-instance Sem.Semigroup (SmallArray a) where
-  (<>) = (<|>)
-  sconcat = mconcat . toList
-#endif
-
-instance Monoid (SmallArray a) where
-  mempty = empty
-#if !(MIN_VERSION_base(4,11,0))
-  mappend = (<|>)
-#endif
-  mconcat l = createSmallArray n (die "mconcat" "impossible") $ \ma ->
-    let go !_  [    ] = return ()
-        go off (a:as) =
-          copySmallArray ma off a 0 (sizeofSmallArray a) >> go (off + sizeofSmallArray a) as
-     in go 0 l
-   where n = sum . fmap length $ l
-
-instance IsList (SmallArray a) where
-  type Item (SmallArray a) = a
-  fromListN = smallArrayFromListN
-  fromList = smallArrayFromList
-  toList = Foldable.toList
-
-smallArrayLiftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> SmallArray a -> ShowS
-smallArrayLiftShowsPrec elemShowsPrec elemListShowsPrec p sa = showParen (p > 10) $
-  showString "fromListN " . shows (length sa) . showString " "
-    . listLiftShowsPrec elemShowsPrec elemListShowsPrec 11 (toList sa)
-
--- this need to be included for older ghcs
-listLiftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> [a] -> ShowS
-listLiftShowsPrec _ sl _ = sl
-
-instance Show a => Show (SmallArray a) where
-  showsPrec p sa = smallArrayLiftShowsPrec showsPrec showList p sa
-
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
--- | @since 0.6.4.0
-instance Show1 SmallArray where
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,5,0)
-  liftShowsPrec = smallArrayLiftShowsPrec
-#else
-  showsPrec1 = smallArrayLiftShowsPrec showsPrec showList
-#endif
-#endif
-
-smallArrayLiftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (SmallArray a)
-smallArrayLiftReadsPrec _ listReadsPrec p = readParen (p > 10) . readP_to_S $ do
-  () <$ string "fromListN"
-  skipSpaces
-  n <- readS_to_P reads
-  skipSpaces
-  l <- readS_to_P listReadsPrec
-  return $ smallArrayFromListN n l
-
-instance Read a => Read (SmallArray a) where
-  readsPrec = smallArrayLiftReadsPrec readsPrec readList
-
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
--- | @since 0.6.4.0
-instance Read1 SmallArray where
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,5,0)
-  liftReadsPrec = smallArrayLiftReadsPrec
-#else
-  readsPrec1 = smallArrayLiftReadsPrec readsPrec readList
-#endif
-#endif
-
-
-
-smallArrayDataType :: DataType
-smallArrayDataType =
-  mkDataType "Data.Primitive.SmallArray.SmallArray" [fromListConstr]
-
-fromListConstr :: Constr
-fromListConstr = mkConstr smallArrayDataType "fromList" [] Prefix
-
-instance Data a => Data (SmallArray a) where
-  toConstr _ = fromListConstr
-  dataTypeOf _ = smallArrayDataType
-  gunfold k z c = case constrIndex c of
-    1 -> k (z fromList)
-    _ -> die "gunfold" "SmallArray"
-  gfoldl f z m = z fromList `f` toList m
-
-instance (Typeable s, Typeable a) => Data (SmallMutableArray s a) where
-  toConstr _ = die "toConstr" "SmallMutableArray"
-  gunfold _ _ = die "gunfold" "SmallMutableArray"
-  dataTypeOf _ = mkNoRepType "Data.Primitive.SmallArray.SmallMutableArray"
-#endif
-
--- | Create a 'SmallArray' from a list of a known length. If the length
---   of the list does not match the given length, this throws an exception.
-smallArrayFromListN :: Int -> [a] -> SmallArray a
-#if HAVE_SMALL_ARRAY
-smallArrayFromListN n l =
-  createSmallArray n
-      (die "smallArrayFromListN" "uninitialized element") $ \sma ->
-  let go !ix [] = if ix == n
-        then return ()
-        else die "smallArrayFromListN" "list length less than specified size"
-      go !ix (x : xs) = if ix < n
-        then do
-          writeSmallArray sma ix x
-          go (ix+1) xs
-        else die "smallArrayFromListN" "list length greater than specified size"
-  in go 0 l
-#else
-smallArrayFromListN n l = SmallArray (Array.fromListN n l)
-#endif
-
--- | Create a 'SmallArray' from a list.
-smallArrayFromList :: [a] -> SmallArray a
-smallArrayFromList l = smallArrayFromListN (length l) l
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Types.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Types.hs
deleted file mode 100644
index fd36ea0c9455..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/Types.hs
+++ /dev/null
@@ -1,395 +0,0 @@
-{-# LANGUAGE CPP, UnboxedTuples, MagicHash, DeriveDataTypeable #-}
-{-# LANGUAGE GeneralizedNewtypeDeriving, StandaloneDeriving #-}
-{-# LANGUAGE ScopedTypeVariables #-}
-#if __GLASGOW_HASKELL__ >= 800
-{-# LANGUAGE TypeInType #-}
-#endif
-
-#include "HsBaseConfig.h"
-
--- |
--- Module      : Data.Primitive.Types
--- Copyright   : (c) Roman Leshchinskiy 2009-2012
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Portability : non-portable
---
--- Basic types and classes for primitive array operations
---
-
-module Data.Primitive.Types (
-  Prim(..),
-  sizeOf, alignment, defaultSetByteArray#, defaultSetOffAddr#,
-
-  Addr(..),
-  PrimStorable(..)
-) where
-
-import Control.Monad.Primitive
-import Data.Primitive.MachDeps
-import Data.Primitive.Internal.Operations
-import Foreign.C.Types
-import System.Posix.Types
-
-import GHC.Base (
-    Int(..), Char(..),
-  )
-import GHC.Float (
-    Float(..), Double(..)
-  )
-import GHC.Word (
-    Word(..), Word8(..), Word16(..), Word32(..), Word64(..)
-  )
-import GHC.Int (
-    Int8(..), Int16(..), Int32(..), Int64(..)
-  )
-
-import GHC.Ptr (
-    Ptr(..), FunPtr(..)
-  )
-
-import GHC.Prim
-#if __GLASGOW_HASKELL__ >= 706
-    hiding (setByteArray#)
-#endif
-
-import Data.Typeable ( Typeable )
-import Data.Data ( Data(..) )
-import Data.Primitive.Internal.Compat ( isTrue#, mkNoRepType )
-import Foreign.Storable (Storable)
-import Numeric
-
-import qualified Foreign.Storable as FS
-
--- | A machine address
-data Addr = Addr Addr# deriving ( Typeable )
-
-instance Show Addr where
-  showsPrec _ (Addr a) =
-    showString "0x" . showHex (fromIntegral (I# (addr2Int# a)) :: Word)
-
-instance Eq Addr where
-  Addr a# == Addr b# = isTrue# (eqAddr# a# b#)
-  Addr a# /= Addr b# = isTrue# (neAddr# a# b#)
-
-instance Ord Addr where
-  Addr a# > Addr b# = isTrue# (gtAddr# a# b#)
-  Addr a# >= Addr b# = isTrue# (geAddr# a# b#)
-  Addr a# < Addr b# = isTrue# (ltAddr# a# b#)
-  Addr a# <= Addr b# = isTrue# (leAddr# a# b#)
-
-instance Data Addr where
-  toConstr _ = error "toConstr"
-  gunfold _ _ = error "gunfold"
-  dataTypeOf _ = mkNoRepType "Data.Primitive.Types.Addr"
-
-
--- | Class of types supporting primitive array operations
-class Prim a where
-
-  -- | Size of values of type @a@. The argument is not used.
-  sizeOf#    :: a -> Int#
-
-  -- | Alignment of values of type @a@. The argument is not used.
-  alignment# :: a -> Int#
-
-  -- | Read a value from the array. The offset is in elements of type
-  -- @a@ rather than in bytes.
-  indexByteArray# :: ByteArray# -> Int# -> a
-
-  -- | Read a value from the mutable array. The offset is in elements of type
-  -- @a@ rather than in bytes.
-  readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, a #)
-
-  -- | Write a value to the mutable array. The offset is in elements of type
-  -- @a@ rather than in bytes.
-  writeByteArray# :: MutableByteArray# s -> Int# -> a -> State# s -> State# s
-
-  -- | Fill a slice of the mutable array with a value. The offset and length
-  -- of the chunk are in elements of type @a@ rather than in bytes.
-  setByteArray# :: MutableByteArray# s -> Int# -> Int# -> a -> State# s -> State# s
-
-  -- | Read a value from a memory position given by an address and an offset.
-  -- The memory block the address refers to must be immutable. The offset is in
-  -- elements of type @a@ rather than in bytes.
-  indexOffAddr# :: Addr# -> Int# -> a
-
-  -- | Read a value from a memory position given by an address and an offset.
-  -- The offset is in elements of type @a@ rather than in bytes.
-  readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, a #)
-
-  -- | Write a value to a memory position given by an address and an offset.
-  -- The offset is in elements of type @a@ rather than in bytes.
-  writeOffAddr# :: Addr# -> Int# -> a -> State# s -> State# s
-
-  -- | Fill a memory block given by an address, an offset and a length.
-  -- The offset and length are in elements of type @a@ rather than in bytes.
-  setOffAddr# :: Addr# -> Int# -> Int# -> a -> State# s -> State# s
-
--- | Size of values of type @a@. The argument is not used.
---
--- This function has existed since 0.1, but was moved from 'Data.Primitive'
--- to 'Data.Primitive.Types' in version 0.6.3.0
-sizeOf :: Prim a => a -> Int
-sizeOf x = I# (sizeOf# x)
-
--- | Alignment of values of type @a@. The argument is not used.
---
--- This function has existed since 0.1, but was moved from 'Data.Primitive'
--- to 'Data.Primitive.Types' in version 0.6.3.0
-alignment :: Prim a => a -> Int
-alignment x = I# (alignment# x)
-
--- | An implementation of 'setByteArray#' that calls 'writeByteArray#'
--- to set each element. This is helpful when writing a 'Prim' instance
--- for a multi-word data type for which there is no cpu-accelerated way
--- to broadcast a value to contiguous memory. It is typically used
--- alongside 'defaultSetOffAddr#'. For example:
---
--- > data Trip = Trip Int Int Int
--- >
--- > instance Prim Trip
--- >   sizeOf# _ = 3# *# sizeOf# (undefined :: Int)
--- >   alignment# _ = alignment# (undefined :: Int)
--- >   indexByteArray# arr# i# = ...
--- >   readByteArray# arr# i# = ...
--- >   writeByteArray# arr# i# (Trip a b c) =
--- >     \s0 -> case writeByteArray# arr# (3# *# i#) a s0 of
--- >        s1 -> case writeByteArray# arr# ((3# *# i#) +# 1#) b s1 of
--- >          s2 -> case writeByteArray# arr# ((3# *# i#) +# 2# ) c s2 of
--- >            s3 -> s3
--- >   setByteArray# = defaultSetByteArray#
--- >   indexOffAddr# addr# i# = ...
--- >   readOffAddr# addr# i# = ...
--- >   writeOffAddr# addr# i# (Trip a b c) =
--- >     \s0 -> case writeOffAddr# addr# (3# *# i#) a s0 of
--- >        s1 -> case writeOffAddr# addr# ((3# *# i#) +# 1#) b s1 of
--- >          s2 -> case writeOffAddr# addr# ((3# *# i#) +# 2# ) c s2 of
--- >            s3 -> s3
--- >   setOffAddr# = defaultSetOffAddr#
-defaultSetByteArray# :: Prim a => MutableByteArray# s -> Int# -> Int# -> a -> State# s -> State# s
-defaultSetByteArray# arr# i# len# ident = go 0#
-  where
-  go ix# s0 = if isTrue# (ix# <# len#)
-    then case writeByteArray# arr# (i# +# ix#) ident s0 of
-      s1 -> go (ix# +# 1#) s1
-    else s0
-
--- | An implementation of 'setOffAddr#' that calls 'writeOffAddr#'
--- to set each element. The documentation of 'defaultSetByteArray#'
--- provides an example of how to use this.
-defaultSetOffAddr# :: Prim a => Addr# -> Int# -> Int# -> a -> State# s -> State# s
-defaultSetOffAddr# addr# i# len# ident = go 0#
-  where
-  go ix# s0 = if isTrue# (ix# <# len#)
-    then case writeOffAddr# addr# (i# +# ix#) ident s0 of
-      s1 -> go (ix# +# 1#) s1
-    else s0
-
--- | Newtype that uses a 'Prim' instance to give rise to a 'Storable' instance.
--- This type is intended to be used with the @DerivingVia@ extension available
--- in GHC 8.6 and up. For example, consider a user-defined 'Prim' instance for
--- a multi-word data type.
---
--- > data Uuid = Uuid Word64 Word64
--- >   deriving Storable via (PrimStorable Uuid)
--- > instance Prim Uuid where ...
---
--- Writing the 'Prim' instance is tedious and unavoidable, but the 'Storable'
--- instance comes for free once the 'Prim' instance is written.
-newtype PrimStorable a = PrimStorable { getPrimStorable :: a }
-
-instance Prim a => Storable (PrimStorable a) where
-  sizeOf _ = sizeOf (undefined :: a)
-  alignment _ = alignment (undefined :: a)
-  peekElemOff (Ptr addr#) (I# i#) =
-    primitive $ \s0# -> case readOffAddr# addr# i# s0# of
-      (# s1, x #) -> (# s1, PrimStorable x #)
-  pokeElemOff (Ptr addr#) (I# i#) (PrimStorable a) = primitive_ $ \s# ->
-    writeOffAddr# addr# i# a s#
-
-#define derivePrim(ty, ctr, sz, align, idx_arr, rd_arr, wr_arr, set_arr, idx_addr, rd_addr, wr_addr, set_addr) \
-instance Prim (ty) where {                                      \
-  sizeOf# _ = unI# sz                                           \
-; alignment# _ = unI# align                                     \
-; indexByteArray# arr# i# = ctr (idx_arr arr# i#)               \
-; readByteArray#  arr# i# s# = case rd_arr arr# i# s# of        \
-                        { (# s1#, x# #) -> (# s1#, ctr x# #) }  \
-; writeByteArray# arr# i# (ctr x#) s# = wr_arr arr# i# x# s#    \
-; setByteArray# arr# i# n# (ctr x#) s#                          \
-    = let { i = fromIntegral (I# i#)                            \
-          ; n = fromIntegral (I# n#)                            \
-          } in                                                  \
-      case unsafeCoerce# (internal (set_arr arr# i n x#)) s# of \
-        { (# s1#, _ #) -> s1# }                                 \
-                                                                \
-; indexOffAddr# addr# i# = ctr (idx_addr addr# i#)              \
-; readOffAddr#  addr# i# s# = case rd_addr addr# i# s# of       \
-                        { (# s1#, x# #) -> (# s1#, ctr x# #) }  \
-; writeOffAddr# addr# i# (ctr x#) s# = wr_addr addr# i# x# s#   \
-; setOffAddr# addr# i# n# (ctr x#) s#                           \
-    = let { i = fromIntegral (I# i#)                            \
-          ; n = fromIntegral (I# n#)                            \
-          } in                                                  \
-      case unsafeCoerce# (internal (set_addr addr# i n x#)) s# of \
-        { (# s1#, _ #) -> s1# }                                 \
-; {-# INLINE sizeOf# #-}                                        \
-; {-# INLINE alignment# #-}                                     \
-; {-# INLINE indexByteArray# #-}                                \
-; {-# INLINE readByteArray# #-}                                 \
-; {-# INLINE writeByteArray# #-}                                \
-; {-# INLINE setByteArray# #-}                                  \
-; {-# INLINE indexOffAddr# #-}                                  \
-; {-# INLINE readOffAddr# #-}                                   \
-; {-# INLINE writeOffAddr# #-}                                  \
-; {-# INLINE setOffAddr# #-}                                    \
-}
-
-unI# :: Int -> Int#
-unI# (I# n#) = n#
-
-derivePrim(Word, W#, sIZEOF_WORD, aLIGNMENT_WORD,
-           indexWordArray#, readWordArray#, writeWordArray#, setWordArray#,
-           indexWordOffAddr#, readWordOffAddr#, writeWordOffAddr#, setWordOffAddr#)
-derivePrim(Word8, W8#, sIZEOF_WORD8, aLIGNMENT_WORD8,
-           indexWord8Array#, readWord8Array#, writeWord8Array#, setWord8Array#,
-           indexWord8OffAddr#, readWord8OffAddr#, writeWord8OffAddr#, setWord8OffAddr#)
-derivePrim(Word16, W16#, sIZEOF_WORD16, aLIGNMENT_WORD16,
-           indexWord16Array#, readWord16Array#, writeWord16Array#, setWord16Array#,
-           indexWord16OffAddr#, readWord16OffAddr#, writeWord16OffAddr#, setWord16OffAddr#)
-derivePrim(Word32, W32#, sIZEOF_WORD32, aLIGNMENT_WORD32,
-           indexWord32Array#, readWord32Array#, writeWord32Array#, setWord32Array#,
-           indexWord32OffAddr#, readWord32OffAddr#, writeWord32OffAddr#, setWord32OffAddr#)
-derivePrim(Word64, W64#, sIZEOF_WORD64, aLIGNMENT_WORD64,
-           indexWord64Array#, readWord64Array#, writeWord64Array#, setWord64Array#,
-           indexWord64OffAddr#, readWord64OffAddr#, writeWord64OffAddr#, setWord64OffAddr#)
-derivePrim(Int, I#, sIZEOF_INT, aLIGNMENT_INT,
-           indexIntArray#, readIntArray#, writeIntArray#, setIntArray#,
-           indexIntOffAddr#, readIntOffAddr#, writeIntOffAddr#, setIntOffAddr#)
-derivePrim(Int8, I8#, sIZEOF_INT8, aLIGNMENT_INT8,
-           indexInt8Array#, readInt8Array#, writeInt8Array#, setInt8Array#,
-           indexInt8OffAddr#, readInt8OffAddr#, writeInt8OffAddr#, setInt8OffAddr#)
-derivePrim(Int16, I16#, sIZEOF_INT16, aLIGNMENT_INT16,
-           indexInt16Array#, readInt16Array#, writeInt16Array#, setInt16Array#,
-           indexInt16OffAddr#, readInt16OffAddr#, writeInt16OffAddr#, setInt16OffAddr#)
-derivePrim(Int32, I32#, sIZEOF_INT32, aLIGNMENT_INT32,
-           indexInt32Array#, readInt32Array#, writeInt32Array#, setInt32Array#,
-           indexInt32OffAddr#, readInt32OffAddr#, writeInt32OffAddr#, setInt32OffAddr#)
-derivePrim(Int64, I64#, sIZEOF_INT64, aLIGNMENT_INT64,
-           indexInt64Array#, readInt64Array#, writeInt64Array#, setInt64Array#,
-           indexInt64OffAddr#, readInt64OffAddr#, writeInt64OffAddr#, setInt64OffAddr#)
-derivePrim(Float, F#, sIZEOF_FLOAT, aLIGNMENT_FLOAT,
-           indexFloatArray#, readFloatArray#, writeFloatArray#, setFloatArray#,
-           indexFloatOffAddr#, readFloatOffAddr#, writeFloatOffAddr#, setFloatOffAddr#)
-derivePrim(Double, D#, sIZEOF_DOUBLE, aLIGNMENT_DOUBLE,
-           indexDoubleArray#, readDoubleArray#, writeDoubleArray#, setDoubleArray#,
-           indexDoubleOffAddr#, readDoubleOffAddr#, writeDoubleOffAddr#, setDoubleOffAddr#)
-derivePrim(Char, C#, sIZEOF_CHAR, aLIGNMENT_CHAR,
-           indexWideCharArray#, readWideCharArray#, writeWideCharArray#, setWideCharArray#,
-           indexWideCharOffAddr#, readWideCharOffAddr#, writeWideCharOffAddr#, setWideCharOffAddr#)
-derivePrim(Addr, Addr, sIZEOF_PTR, aLIGNMENT_PTR,
-           indexAddrArray#, readAddrArray#, writeAddrArray#, setAddrArray#,
-           indexAddrOffAddr#, readAddrOffAddr#, writeAddrOffAddr#, setAddrOffAddr#)
-derivePrim(Ptr a, Ptr, sIZEOF_PTR, aLIGNMENT_PTR,
-           indexAddrArray#, readAddrArray#, writeAddrArray#, setAddrArray#,
-           indexAddrOffAddr#, readAddrOffAddr#, writeAddrOffAddr#, setAddrOffAddr#)
-derivePrim(FunPtr a, FunPtr, sIZEOF_PTR, aLIGNMENT_PTR,
-           indexAddrArray#, readAddrArray#, writeAddrArray#, setAddrArray#,
-           indexAddrOffAddr#, readAddrOffAddr#, writeAddrOffAddr#, setAddrOffAddr#)
-
--- Prim instances for newtypes in Foreign.C.Types
-deriving instance Prim CChar
-deriving instance Prim CSChar
-deriving instance Prim CUChar
-deriving instance Prim CShort
-deriving instance Prim CUShort
-deriving instance Prim CInt
-deriving instance Prim CUInt
-deriving instance Prim CLong
-deriving instance Prim CULong
-deriving instance Prim CPtrdiff
-deriving instance Prim CSize
-deriving instance Prim CWchar
-deriving instance Prim CSigAtomic
-deriving instance Prim CLLong
-deriving instance Prim CULLong
-#if MIN_VERSION_base(4,10,0)
-deriving instance Prim CBool
-#endif
-deriving instance Prim CIntPtr
-deriving instance Prim CUIntPtr
-deriving instance Prim CIntMax
-deriving instance Prim CUIntMax
-deriving instance Prim CClock
-deriving instance Prim CTime
-deriving instance Prim CUSeconds
-deriving instance Prim CSUSeconds
-deriving instance Prim CFloat
-deriving instance Prim CDouble
-
--- Prim instances for newtypes in System.Posix.Types
-#if defined(HTYPE_DEV_T)
-deriving instance Prim CDev
-#endif
-#if defined(HTYPE_INO_T)
-deriving instance Prim CIno
-#endif
-#if defined(HTYPE_MODE_T)
-deriving instance Prim CMode
-#endif
-#if defined(HTYPE_OFF_T)
-deriving instance Prim COff
-#endif
-#if defined(HTYPE_PID_T)
-deriving instance Prim CPid
-#endif
-#if defined(HTYPE_SSIZE_T)
-deriving instance Prim CSsize
-#endif
-#if defined(HTYPE_GID_T)
-deriving instance Prim CGid
-#endif
-#if defined(HTYPE_NLINK_T)
-deriving instance Prim CNlink
-#endif
-#if defined(HTYPE_UID_T)
-deriving instance Prim CUid
-#endif
-#if defined(HTYPE_CC_T)
-deriving instance Prim CCc
-#endif
-#if defined(HTYPE_SPEED_T)
-deriving instance Prim CSpeed
-#endif
-#if defined(HTYPE_TCFLAG_T)
-deriving instance Prim CTcflag
-#endif
-#if defined(HTYPE_RLIM_T)
-deriving instance Prim CRLim
-#endif
-#if defined(HTYPE_BLKSIZE_T)
-deriving instance Prim CBlkSize
-#endif
-#if defined(HTYPE_BLKCNT_T)
-deriving instance Prim CBlkCnt
-#endif
-#if defined(HTYPE_CLOCKID_T)
-deriving instance Prim CClockId
-#endif
-#if defined(HTYPE_FSBLKCNT_T)
-deriving instance Prim CFsBlkCnt
-#endif
-#if defined(HTYPE_FSFILCNT_T)
-deriving instance Prim CFsFilCnt
-#endif
-#if defined(HTYPE_ID_T)
-deriving instance Prim CId
-#endif
-#if defined(HTYPE_KEY_T)
-deriving instance Prim CKey
-#endif
-#if defined(HTYPE_TIMER_T)
-deriving instance Prim CTimer
-#endif
-deriving instance Prim Fd
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/UnliftedArray.hs b/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/UnliftedArray.hs
deleted file mode 100644
index 75a4847364dc..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Data/Primitive/UnliftedArray.hs
+++ /dev/null
@@ -1,638 +0,0 @@
-{-# Language BangPatterns #-}
-{-# Language CPP #-}
-{-# Language DeriveDataTypeable #-}
-{-# Language MagicHash #-}
-{-# Language RankNTypes #-}
-{-# Language ScopedTypeVariables #-}
-{-# Language TypeFamilies #-}
-{-# Language UnboxedTuples #-}
-
--- |
--- Module      : Data.Primitive.UnliftedArray
--- Copyright   : (c) Dan Doel 2016
--- License     : BSD-style
---
--- Maintainer  : Libraries <libraries@haskell.org>
--- Portability : non-portable
---
--- GHC contains three general classes of value types:
---
---   1. Unboxed types: values are machine values made up of fixed numbers of bytes
---   2. Unlifted types: values are pointers, but strictly evaluated
---   3. Lifted types: values are pointers, lazily evaluated
---
--- The first category can be stored in a 'ByteArray', and this allows types in
--- category 3 that are simple wrappers around category 1 types to be stored
--- more efficiently using a 'ByteArray'. This module provides the same facility
--- for category 2 types.
---
--- GHC has two primitive types, 'ArrayArray#' and 'MutableArrayArray#'. These
--- are arrays of pointers, but of category 2 values, so they are known to not
--- be bottom. This allows types that are wrappers around such types to be stored
--- in an array without an extra level of indirection.
---
--- The way that the 'ArrayArray#' API works is that one can read and write
--- 'ArrayArray#' values to the positions. This works because all category 2
--- types share a uniform representation, unlike unboxed values which are
--- represented by varying (by type) numbers of bytes. However, using the
--- this makes the internal API very unsafe to use, as one has to coerce values
--- to and from 'ArrayArray#'.
---
--- The API presented by this module is more type safe. 'UnliftedArray' and
--- 'MutableUnliftedArray' are parameterized by the type of arrays they contain, and
--- the coercions necessary are abstracted into a class, 'PrimUnlifted', of things
--- that are eligible to be stored.
-
-module Data.Primitive.UnliftedArray
-  ( -- * Types
-    UnliftedArray(..)
-  , MutableUnliftedArray(..)
-  , PrimUnlifted(..)
-    -- * Operations
-  , unsafeNewUnliftedArray
-  , newUnliftedArray
-  , setUnliftedArray
-  , sizeofUnliftedArray
-  , sizeofMutableUnliftedArray
-  , readUnliftedArray
-  , writeUnliftedArray
-  , indexUnliftedArray
-  , indexUnliftedArrayM
-  , unsafeFreezeUnliftedArray
-  , freezeUnliftedArray
-  , thawUnliftedArray
-  , runUnliftedArray
-  , sameMutableUnliftedArray
-  , copyUnliftedArray
-  , copyMutableUnliftedArray
-  , cloneUnliftedArray
-  , cloneMutableUnliftedArray
-    -- * List Conversion
-  , unliftedArrayToList
-  , unliftedArrayFromList
-  , unliftedArrayFromListN
-    -- * Folding
-  , foldrUnliftedArray
-  , foldrUnliftedArray'
-  , foldlUnliftedArray
-  , foldlUnliftedArray'
-    -- * Mapping
-  , mapUnliftedArray
--- Missing operations:
---  , unsafeThawUnliftedArray
-  ) where
-
-import Data.Typeable
-import Control.Applicative
-
-import GHC.Prim
-import GHC.Base (Int(..),build)
-
-import Control.Monad.Primitive
-
-import Control.Monad.ST (runST,ST)
-
-import Data.Monoid (Monoid,mappend)
-import Data.Primitive.Internal.Compat ( isTrue# )
-
-import qualified Data.List as L
-import           Data.Primitive.Array (Array)
-import qualified Data.Primitive.Array as A
-import           Data.Primitive.ByteArray (ByteArray)
-import qualified Data.Primitive.ByteArray as BA
-import qualified Data.Primitive.PrimArray as PA
-import qualified Data.Primitive.SmallArray as SA
-import qualified Data.Primitive.MutVar as MV
-import qualified Data.Monoid
-import qualified GHC.MVar as GM (MVar(..))
-import qualified GHC.Conc as GC (TVar(..))
-import qualified GHC.Stable as GSP (StablePtr(..))
-import qualified GHC.Weak as GW (Weak(..))
-import qualified GHC.Conc.Sync as GCS (ThreadId(..))
-import qualified GHC.Exts as E
-import qualified GHC.ST as GHCST
-
-#if MIN_VERSION_base(4,9,0)
-import Data.Semigroup (Semigroup)
-import qualified Data.Semigroup
-#endif
-
-#if MIN_VERSION_base(4,10,0)
-import GHC.Exts (runRW#)
-#elif MIN_VERSION_base(4,9,0)
-import GHC.Base (runRW#)
-#endif
-
--- | Immutable arrays that efficiently store types that are simple wrappers
--- around unlifted primitive types. The values of the unlifted type are
--- stored directly, eliminating a layer of indirection.
-data UnliftedArray e = UnliftedArray ArrayArray#
-  deriving (Typeable)
-
--- | Mutable arrays that efficiently store types that are simple wrappers
--- around unlifted primitive types. The values of the unlifted type are
--- stored directly, eliminating a layer of indirection.
-data MutableUnliftedArray s e = MutableUnliftedArray (MutableArrayArray# s)
-  deriving (Typeable)
-
--- | Classifies the types that are able to be stored in 'UnliftedArray' and
--- 'MutableUnliftedArray'. These should be types that are just liftings of the
--- unlifted pointer types, so that their internal contents can be safely coerced
--- into an 'ArrayArray#'.
-class PrimUnlifted a where
-  toArrayArray# :: a -> ArrayArray#
-  fromArrayArray# :: ArrayArray# -> a
-
-instance PrimUnlifted (UnliftedArray e) where
-  toArrayArray# (UnliftedArray aa#) = aa#
-  fromArrayArray# aa# = UnliftedArray aa#
-
-instance PrimUnlifted (MutableUnliftedArray s e) where
-  toArrayArray# (MutableUnliftedArray maa#) = unsafeCoerce# maa#
-  fromArrayArray# aa# = MutableUnliftedArray (unsafeCoerce# aa#)
-
-instance PrimUnlifted (Array a) where
-  toArrayArray# (A.Array a#) = unsafeCoerce# a#
-  fromArrayArray# aa# = A.Array (unsafeCoerce# aa#)
-
-instance PrimUnlifted (A.MutableArray s a) where
-  toArrayArray# (A.MutableArray ma#) = unsafeCoerce# ma#
-  fromArrayArray# aa# = A.MutableArray (unsafeCoerce# aa#)
-
-instance PrimUnlifted ByteArray where
-  toArrayArray# (BA.ByteArray ba#) = unsafeCoerce# ba#
-  fromArrayArray# aa# = BA.ByteArray (unsafeCoerce# aa#)
-
-instance PrimUnlifted (BA.MutableByteArray s) where
-  toArrayArray# (BA.MutableByteArray mba#) = unsafeCoerce# mba#
-  fromArrayArray# aa# = BA.MutableByteArray (unsafeCoerce# aa#)
-
--- | @since 0.6.4.0
-instance PrimUnlifted (PA.PrimArray a) where
-  toArrayArray# (PA.PrimArray ba#) = unsafeCoerce# ba#
-  fromArrayArray# aa# = PA.PrimArray (unsafeCoerce# aa#)
-
--- | @since 0.6.4.0
-instance PrimUnlifted (PA.MutablePrimArray s a) where
-  toArrayArray# (PA.MutablePrimArray mba#) = unsafeCoerce# mba#
-  fromArrayArray# aa# = PA.MutablePrimArray (unsafeCoerce# aa#)
-
-instance PrimUnlifted (SA.SmallArray a) where
-  toArrayArray# (SA.SmallArray sa#) = unsafeCoerce# sa#
-  fromArrayArray# aa# = SA.SmallArray (unsafeCoerce# aa#)
-
-instance PrimUnlifted (SA.SmallMutableArray s a) where
-  toArrayArray# (SA.SmallMutableArray sma#) = unsafeCoerce# sma#
-  fromArrayArray# aa# = SA.SmallMutableArray (unsafeCoerce# aa#)
-
-instance PrimUnlifted (MV.MutVar s a) where
-  toArrayArray# (MV.MutVar mv#) = unsafeCoerce# mv#
-  fromArrayArray# aa# = MV.MutVar (unsafeCoerce# aa#)
-
--- | @since 0.6.4.0
-instance PrimUnlifted (GM.MVar a) where
-  toArrayArray# (GM.MVar mv#) = unsafeCoerce# mv#
-  fromArrayArray# mv# = GM.MVar (unsafeCoerce# mv#)
-
--- | @since 0.6.4.0
-instance PrimUnlifted (GC.TVar a) where
-  toArrayArray# (GC.TVar tv#) = unsafeCoerce# tv#
-  fromArrayArray# tv# = GC.TVar (unsafeCoerce# tv#)
-
--- | @since 0.6.4.0
-instance PrimUnlifted (GSP.StablePtr a) where
-  toArrayArray# (GSP.StablePtr tv#) = unsafeCoerce# tv#
-  fromArrayArray# tv# = GSP.StablePtr (unsafeCoerce# tv#)
-
--- | @since 0.6.4.0
-instance PrimUnlifted (GW.Weak a) where
-  toArrayArray# (GW.Weak tv#) = unsafeCoerce# tv#
-  fromArrayArray# tv# = GW.Weak (unsafeCoerce# tv#)
-
--- | @since 0.6.4.0
-instance PrimUnlifted GCS.ThreadId where
-  toArrayArray# (GCS.ThreadId tv#) = unsafeCoerce# tv#
-  fromArrayArray# tv# = GCS.ThreadId (unsafeCoerce# tv#)
-
-die :: String -> String -> a
-die fun problem = error $ "Data.Primitive.UnliftedArray." ++ fun ++ ": " ++ problem
-
--- | Creates a new 'MutableUnliftedArray'. This function is unsafe because it
--- initializes all elements of the array as pointers to the array itself. Attempting
--- to read one of these elements before writing to it is in effect an unsafe
--- coercion from the @MutableUnliftedArray s a@ to the element type.
-unsafeNewUnliftedArray
-  :: (PrimMonad m)
-  => Int -- ^ size
-  -> m (MutableUnliftedArray (PrimState m) a)
-unsafeNewUnliftedArray (I# i#) = primitive $ \s -> case newArrayArray# i# s of
-  (# s', maa# #) -> (# s', MutableUnliftedArray maa# #)
-{-# inline unsafeNewUnliftedArray #-}
-
--- | Sets all the positions in an unlifted array to the designated value.
-setUnliftedArray
-  :: (PrimMonad m, PrimUnlifted a)
-  => MutableUnliftedArray (PrimState m) a -- ^ destination
-  -> a -- ^ value to fill with
-  -> m ()
-setUnliftedArray mua v = loop $ sizeofMutableUnliftedArray mua - 1
- where
- loop i | i < 0     = return ()
-        | otherwise = writeUnliftedArray mua i v >> loop (i-1)
-{-# inline setUnliftedArray #-}
-
--- | Creates a new 'MutableUnliftedArray' with the specified value as initial
--- contents. This is slower than 'unsafeNewUnliftedArray', but safer.
-newUnliftedArray
-  :: (PrimMonad m, PrimUnlifted a)
-  => Int -- ^ size
-  -> a -- ^ initial value
-  -> m (MutableUnliftedArray (PrimState m) a)
-newUnliftedArray len v =
-  unsafeNewUnliftedArray len >>= \mua -> setUnliftedArray mua v >> return mua
-{-# inline newUnliftedArray #-}
-
--- | Yields the length of an 'UnliftedArray'.
-sizeofUnliftedArray :: UnliftedArray e -> Int
-sizeofUnliftedArray (UnliftedArray aa#) = I# (sizeofArrayArray# aa#)
-{-# inline sizeofUnliftedArray #-}
-
--- | Yields the length of a 'MutableUnliftedArray'.
-sizeofMutableUnliftedArray :: MutableUnliftedArray s e -> Int
-sizeofMutableUnliftedArray (MutableUnliftedArray maa#)
-  = I# (sizeofMutableArrayArray# maa#)
-{-# inline sizeofMutableUnliftedArray #-}
-
--- Internal indexing function.
---
--- Note: ArrayArray# is strictly evaluated, so this should have similar
--- consequences to indexArray#, where matching on the unboxed single causes the
--- array access to happen.
-indexUnliftedArrayU
-  :: PrimUnlifted a
-  => UnliftedArray a
-  -> Int
-  -> (# a #)
-indexUnliftedArrayU (UnliftedArray src#) (I# i#)
-  = case indexArrayArrayArray# src# i# of
-      aa# -> (# fromArrayArray# aa# #)
-{-# inline indexUnliftedArrayU #-}
-
--- | Gets the value at the specified position of an 'UnliftedArray'.
-indexUnliftedArray
-  :: PrimUnlifted a
-  => UnliftedArray a -- ^ source
-  -> Int -- ^ index
-  -> a
-indexUnliftedArray ua i
-  = case indexUnliftedArrayU ua i of (# v #) -> v
-{-# inline indexUnliftedArray #-}
-
--- | Gets the value at the specified position of an 'UnliftedArray'.
--- The purpose of the 'Monad' is to allow for being eager in the
--- 'UnliftedArray' value without having to introduce a data dependency
--- directly on the result value.
---
--- It should be noted that this is not as much of a problem as with a normal
--- 'Array', because elements of an 'UnliftedArray' are guaranteed to not
--- be exceptional. This function is provided in case it is more desirable
--- than being strict in the result value.
-indexUnliftedArrayM
-  :: (PrimUnlifted a, Monad m)
-  => UnliftedArray a -- ^ source
-  -> Int -- ^ index
-  -> m a
-indexUnliftedArrayM ua i
-  = case indexUnliftedArrayU ua i of
-      (# v #) -> return v
-{-# inline indexUnliftedArrayM #-}
-
--- | Gets the value at the specified position of a 'MutableUnliftedArray'.
-readUnliftedArray
-  :: (PrimMonad m, PrimUnlifted a)
-  => MutableUnliftedArray (PrimState m) a -- ^ source
-  -> Int -- ^ index
-  -> m a
-readUnliftedArray (MutableUnliftedArray maa#) (I# i#)
-  = primitive $ \s -> case readArrayArrayArray# maa# i# s of
-      (# s', aa# #) -> (# s',  fromArrayArray# aa# #)
-{-# inline readUnliftedArray #-}
-
--- | Sets the value at the specified position of a 'MutableUnliftedArray'.
-writeUnliftedArray
-  :: (PrimMonad m, PrimUnlifted a)
-  => MutableUnliftedArray (PrimState m) a -- ^ destination
-  -> Int -- ^ index
-  -> a -- ^ value
-  -> m ()
-writeUnliftedArray (MutableUnliftedArray maa#) (I# i#) a
-  = primitive_ (writeArrayArrayArray# maa# i# (toArrayArray# a))
-{-# inline writeUnliftedArray #-}
-
--- | Freezes a 'MutableUnliftedArray', yielding an 'UnliftedArray'. This simply
--- marks the array as frozen in place, so it should only be used when no further
--- modifications to the mutable array will be performed.
-unsafeFreezeUnliftedArray
-  :: (PrimMonad m)
-  => MutableUnliftedArray (PrimState m) a
-  -> m (UnliftedArray a)
-unsafeFreezeUnliftedArray (MutableUnliftedArray maa#)
-  = primitive $ \s -> case unsafeFreezeArrayArray# maa# s of
-      (# s', aa# #) -> (# s', UnliftedArray aa# #)
-{-# inline unsafeFreezeUnliftedArray #-}
-
--- | Determines whether two 'MutableUnliftedArray' values are the same. This is
--- object/pointer identity, not based on the contents.
-sameMutableUnliftedArray
-  :: MutableUnliftedArray s a
-  -> MutableUnliftedArray s a
-  -> Bool
-sameMutableUnliftedArray (MutableUnliftedArray maa1#) (MutableUnliftedArray maa2#)
-  = isTrue# (sameMutableArrayArray# maa1# maa2#)
-{-# inline sameMutableUnliftedArray #-}
-
--- | Copies the contents of an immutable array into a mutable array.
-copyUnliftedArray
-  :: (PrimMonad m)
-  => MutableUnliftedArray (PrimState m) a -- ^ destination
-  -> Int -- ^ offset into destination
-  -> UnliftedArray a -- ^ source
-  -> Int -- ^ offset into source
-  -> Int -- ^ number of elements to copy
-  -> m ()
-copyUnliftedArray
-  (MutableUnliftedArray dst) (I# doff)
-  (UnliftedArray src) (I# soff) (I# ln) =
-    primitive_ $ copyArrayArray# src soff dst doff ln
-{-# inline copyUnliftedArray #-}
-
--- | Copies the contents of one mutable array into another.
-copyMutableUnliftedArray
-  :: (PrimMonad m)
-  => MutableUnliftedArray (PrimState m) a -- ^ destination
-  -> Int -- ^ offset into destination
-  -> MutableUnliftedArray (PrimState m) a -- ^ source
-  -> Int -- ^ offset into source
-  -> Int -- ^ number of elements to copy
-  -> m ()
-copyMutableUnliftedArray
-  (MutableUnliftedArray dst) (I# doff)
-  (MutableUnliftedArray src) (I# soff) (I# ln) =
-    primitive_ $ copyMutableArrayArray# src soff dst doff ln
-{-# inline copyMutableUnliftedArray #-}
-
--- | Freezes a portion of a 'MutableUnliftedArray', yielding an 'UnliftedArray'.
--- This operation is safe, in that it copies the frozen portion, and the
--- existing mutable array may still be used afterward.
-freezeUnliftedArray
-  :: (PrimMonad m)
-  => MutableUnliftedArray (PrimState m) a -- ^ source
-  -> Int -- ^ offset
-  -> Int -- ^ length
-  -> m (UnliftedArray a)
-freezeUnliftedArray src off len = do
-  dst <- unsafeNewUnliftedArray len
-  copyMutableUnliftedArray dst 0 src off len
-  unsafeFreezeUnliftedArray dst
-{-# inline freezeUnliftedArray #-}
-
--- | Thaws a portion of an 'UnliftedArray', yielding a 'MutableUnliftedArray'.
--- This copies the thawed portion, so mutations will not affect the original
--- array.
-thawUnliftedArray
-  :: (PrimMonad m)
-  => UnliftedArray a -- ^ source
-  -> Int -- ^ offset
-  -> Int -- ^ length
-  -> m (MutableUnliftedArray (PrimState m) a)
-thawUnliftedArray src off len = do
-  dst <- unsafeNewUnliftedArray len
-  copyUnliftedArray dst 0 src off len
-  return dst
-{-# inline thawUnliftedArray #-}
-
-#if !MIN_VERSION_base(4,9,0)
-unsafeCreateUnliftedArray
-  :: Int
-  -> (forall s. MutableUnliftedArray s a -> ST s ())
-  -> UnliftedArray a
-unsafeCreateUnliftedArray 0 _ = emptyUnliftedArray
-unsafeCreateUnliftedArray n f = runUnliftedArray $ do
-  mary <- unsafeNewUnliftedArray n
-  f mary
-  pure mary
-
--- | Execute a stateful computation and freeze the resulting array.
-runUnliftedArray
-  :: (forall s. ST s (MutableUnliftedArray s a))
-  -> UnliftedArray a
-runUnliftedArray m = runST $ m >>= unsafeFreezeUnliftedArray
-
-#else /* Below, runRW# is available. */
-
--- This low-level business is designed to work with GHC's worker-wrapper
--- transformation. A lot of the time, we don't actually need an Array
--- constructor. By putting it on the outside, and being careful about
--- how we special-case the empty array, we can make GHC smarter about this.
--- The only downside is that separately created 0-length arrays won't share
--- their Array constructors, although they'll share their underlying
--- Array#s.
-unsafeCreateUnliftedArray
-  :: Int
-  -> (forall s. MutableUnliftedArray s a -> ST s ())
-  -> UnliftedArray a
-unsafeCreateUnliftedArray 0 _ = UnliftedArray (emptyArrayArray# (# #))
-unsafeCreateUnliftedArray n f = runUnliftedArray $ do
-  mary <- unsafeNewUnliftedArray n
-  f mary
-  pure mary
-
--- | Execute a stateful computation and freeze the resulting array.
-runUnliftedArray
-  :: (forall s. ST s (MutableUnliftedArray s a))
-  -> UnliftedArray a
-runUnliftedArray m = UnliftedArray (runUnliftedArray# m)
-
-runUnliftedArray#
-  :: (forall s. ST s (MutableUnliftedArray s a))
-  -> ArrayArray#
-runUnliftedArray# m = case runRW# $ \s ->
-  case unST m s of { (# s', MutableUnliftedArray mary# #) ->
-  unsafeFreezeArrayArray# mary# s'} of (# _, ary# #) -> ary#
-
-unST :: ST s a -> State# s -> (# State# s, a #)
-unST (GHCST.ST f) = f
-
-emptyArrayArray# :: (# #) -> ArrayArray#
-emptyArrayArray# _ = case emptyUnliftedArray of UnliftedArray ar -> ar
-{-# NOINLINE emptyArrayArray# #-}
-#endif
-
--- | Creates a copy of a portion of an 'UnliftedArray'
-cloneUnliftedArray
-  :: UnliftedArray a -- ^ source
-  -> Int -- ^ offset
-  -> Int -- ^ length
-  -> UnliftedArray a
-cloneUnliftedArray src off len =
-  runUnliftedArray (thawUnliftedArray src off len)
-{-# inline cloneUnliftedArray #-}
-
--- | Creates a new 'MutableUnliftedArray' containing a copy of a portion of
--- another mutable array.
-cloneMutableUnliftedArray
-  :: (PrimMonad m)
-  => MutableUnliftedArray (PrimState m) a -- ^ source
-  -> Int -- ^ offset
-  -> Int -- ^ length
-  -> m (MutableUnliftedArray (PrimState m) a)
-cloneMutableUnliftedArray src off len = do
-  dst <- unsafeNewUnliftedArray len
-  copyMutableUnliftedArray dst 0 src off len
-  return dst
-{-# inline cloneMutableUnliftedArray #-}
-
-instance Eq (MutableUnliftedArray s a) where
-  (==) = sameMutableUnliftedArray
-
-instance (Eq a, PrimUnlifted a) => Eq (UnliftedArray a) where
-  aa1 == aa2 = sizeofUnliftedArray aa1 == sizeofUnliftedArray aa2
-            && loop (sizeofUnliftedArray aa1 - 1)
-   where
-   loop i
-     | i < 0 = True
-     | otherwise = indexUnliftedArray aa1 i == indexUnliftedArray aa2 i && loop (i-1)
-
--- | Lexicographic ordering. Subject to change between major versions.
---
---   @since 0.6.4.0
-instance (Ord a, PrimUnlifted a) => Ord (UnliftedArray a) where
-  compare a1 a2 = loop 0
-    where
-    mn = sizeofUnliftedArray a1 `min` sizeofUnliftedArray a2
-    loop i
-      | i < mn
-      , x1 <- indexUnliftedArray a1 i
-      , x2 <- indexUnliftedArray a2 i
-      = compare x1 x2 `mappend` loop (i+1)
-      | otherwise = compare (sizeofUnliftedArray a1) (sizeofUnliftedArray a2)
-
--- | @since 0.6.4.0
-instance (Show a, PrimUnlifted a) => Show (UnliftedArray a) where
-  showsPrec p a = showParen (p > 10) $
-    showString "fromListN " . shows (sizeofUnliftedArray a) . showString " "
-      . shows (unliftedArrayToList a)
-
-#if MIN_VERSION_base(4,9,0)
--- | @since 0.6.4.0
-instance PrimUnlifted a => Semigroup (UnliftedArray a) where
-  (<>) = concatUnliftedArray
-#endif
-
--- | @since 0.6.4.0
-instance PrimUnlifted a => Monoid (UnliftedArray a) where
-  mempty = emptyUnliftedArray
-#if !(MIN_VERSION_base(4,11,0))
-  mappend = concatUnliftedArray
-#endif
-
-emptyUnliftedArray :: UnliftedArray a
-emptyUnliftedArray = runUnliftedArray (unsafeNewUnliftedArray 0)
-{-# NOINLINE emptyUnliftedArray #-}
-
-concatUnliftedArray :: UnliftedArray a -> UnliftedArray a -> UnliftedArray a
-concatUnliftedArray x y = unsafeCreateUnliftedArray (sizeofUnliftedArray x + sizeofUnliftedArray y) $ \m -> do
-  copyUnliftedArray m 0 x 0 (sizeofUnliftedArray x)
-  copyUnliftedArray m (sizeofUnliftedArray x) y 0 (sizeofUnliftedArray y)
-
--- | Lazy right-associated fold over the elements of an 'UnliftedArray'.
-{-# INLINE foldrUnliftedArray #-}
-foldrUnliftedArray :: forall a b. PrimUnlifted a => (a -> b -> b) -> b -> UnliftedArray a -> b
-foldrUnliftedArray f z arr = go 0
-  where
-    !sz = sizeofUnliftedArray arr
-    go !i
-      | sz > i = f (indexUnliftedArray arr i) (go (i+1))
-      | otherwise = z
-
--- | Strict right-associated fold over the elements of an 'UnliftedArray.
-{-# INLINE foldrUnliftedArray' #-}
-foldrUnliftedArray' :: forall a b. PrimUnlifted a => (a -> b -> b) -> b -> UnliftedArray a -> b
-foldrUnliftedArray' f z0 arr = go (sizeofUnliftedArray arr - 1) z0
-  where
-    go !i !acc
-      | i < 0 = acc
-      | otherwise = go (i - 1) (f (indexUnliftedArray arr i) acc)
-
--- | Lazy left-associated fold over the elements of an 'UnliftedArray'.
-{-# INLINE foldlUnliftedArray #-}
-foldlUnliftedArray :: forall a b. PrimUnlifted a => (b -> a -> b) -> b -> UnliftedArray a -> b
-foldlUnliftedArray f z arr = go (sizeofUnliftedArray arr - 1)
-  where
-    go !i
-      | i < 0 = z
-      | otherwise = f (go (i - 1)) (indexUnliftedArray arr i)
-
--- | Strict left-associated fold over the elements of an 'UnliftedArray'.
-{-# INLINE foldlUnliftedArray' #-}
-foldlUnliftedArray' :: forall a b. PrimUnlifted a => (b -> a -> b) -> b -> UnliftedArray a -> b
-foldlUnliftedArray' f z0 arr = go 0 z0
-  where
-    !sz = sizeofUnliftedArray arr
-    go !i !acc
-      | i < sz = go (i + 1) (f acc (indexUnliftedArray arr i))
-      | otherwise = acc
-
--- | Map over the elements of an 'UnliftedArray'.
-{-# INLINE mapUnliftedArray #-}
-mapUnliftedArray :: (PrimUnlifted a, PrimUnlifted b)
-  => (a -> b)
-  -> UnliftedArray a
-  -> UnliftedArray b
-mapUnliftedArray f arr = unsafeCreateUnliftedArray sz $ \marr -> do
-  let go !ix = if ix < sz
-        then do
-          let b = f (indexUnliftedArray arr ix)
-          writeUnliftedArray marr ix b
-          go (ix + 1)
-        else return ()
-  go 0
-  where
-  !sz = sizeofUnliftedArray arr
-
--- | Convert the unlifted array to a list.
-{-# INLINE unliftedArrayToList #-}
-unliftedArrayToList :: PrimUnlifted a => UnliftedArray a -> [a]
-unliftedArrayToList xs = build (\c n -> foldrUnliftedArray c n xs)
-
-unliftedArrayFromList :: PrimUnlifted a => [a] -> UnliftedArray a
-unliftedArrayFromList xs = unliftedArrayFromListN (L.length xs) xs
-
-unliftedArrayFromListN :: forall a. PrimUnlifted a => Int -> [a] -> UnliftedArray a
-unliftedArrayFromListN len vs = unsafeCreateUnliftedArray len run where
-  run :: forall s. MutableUnliftedArray s a -> ST s ()
-  run arr = do
-    let go :: [a] -> Int -> ST s ()
-        go [] !ix = if ix == len
-          -- The size check is mandatory since failure to initialize all elements
-          -- introduces the possibility of a segfault happening when someone attempts
-          -- to read the unitialized element. See the docs for unsafeNewUnliftedArray.
-          then return ()
-          else die "unliftedArrayFromListN" "list length less than specified size"
-        go (a : as) !ix = if ix < len
-          then do
-            writeUnliftedArray arr ix a
-            go as (ix + 1)
-          else die "unliftedArrayFromListN" "list length greater than specified size"
-    go vs 0
-
-
-#if MIN_VERSION_base(4,7,0)
--- | @since 0.6.4.0
-instance PrimUnlifted a => E.IsList (UnliftedArray a) where
-  type Item (UnliftedArray a) = a
-  fromList = unliftedArrayFromList
-  fromListN = unliftedArrayFromListN
-  toList = unliftedArrayToList
-#endif
-
diff --git a/third_party/bazel/rules_haskell/examples/primitive/LICENSE b/third_party/bazel/rules_haskell/examples/primitive/LICENSE
deleted file mode 100644
index fc213a6ffbfe..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/LICENSE
+++ /dev/null
@@ -1,30 +0,0 @@
-Copyright (c) 2008-2009, Roman Leshchinskiy
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
-- Redistributions of source code must retain the above copyright notice,
-this list of conditions and the following disclaimer.
- 
-- Redistributions in binary form must reproduce the above copyright notice,
-this list of conditions and the following disclaimer in the documentation
-and/or other materials provided with the distribution.
- 
-- Neither name of the University nor the names of its contributors may be
-used to endorse or promote products derived from this software without
-specific prior written permission. 
-
-THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
-GLASGOW AND THE CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
-INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
-FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE CONTRIBUTORS BE LIABLE
-FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-DAMAGE.
-
diff --git a/third_party/bazel/rules_haskell/examples/primitive/Setup.hs b/third_party/bazel/rules_haskell/examples/primitive/Setup.hs
deleted file mode 100644
index 200a2e51d0b4..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/Setup.hs
+++ /dev/null
@@ -1,3 +0,0 @@
-import Distribution.Simple
-main = defaultMain
-
diff --git a/third_party/bazel/rules_haskell/examples/primitive/cbits/primitive-memops.c b/third_party/bazel/rules_haskell/examples/primitive/cbits/primitive-memops.c
deleted file mode 100644
index 81b1d6f57530..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/cbits/primitive-memops.c
+++ /dev/null
@@ -1,56 +0,0 @@
-#include <string.h>
-#include "primitive-memops.h"
-
-void hsprimitive_memcpy( void *dst, ptrdiff_t doff, void *src, ptrdiff_t soff, size_t len )
-{
-  memcpy( (char *)dst + doff, (char *)src + soff, len );
-}
-
-void hsprimitive_memmove( void *dst, ptrdiff_t doff, void *src, ptrdiff_t soff, size_t len )
-{
-  memmove( (char *)dst + doff, (char *)src + soff, len );
-}
-
-#define MEMSET(TYPE, ATYPE)                                                  \
-void hsprimitive_memset_ ## TYPE (Hs ## TYPE *p, ptrdiff_t off, size_t n, ATYPE x) \
-{                                                                            \
-  p += off;                                                                  \
-  if (x == 0)                                                                \
-    memset(p, 0, n * sizeof(Hs ## TYPE));                                    \
-  else if (sizeof(Hs ## TYPE) == sizeof(int)*2) {                            \
-    int *q = (int *)p;                                                       \
-    const int *r = (const int *)(void *)&x;                                  \
-    while (n>0) {                                                            \
-      q[0] = r[0];                                                           \
-      q[1] = r[1];                                                           \
-      q += 2;                                                                \
-      --n;                                                                   \
-    }                                                                        \
-  }                                                                          \
-  else {                                                                     \
-    while (n>0) {                                                            \
-      *p++ = x;                                                              \
-      --n;                                                                   \
-    }                                                                        \
-  }                                                                          \
-}
-
-int hsprimitive_memcmp( HsWord8 *s1, HsWord8 *s2, size_t n )
-{
-  return memcmp( s1, s2, n );
-}
-
-void hsprimitive_memset_Word8 (HsWord8 *p, ptrdiff_t off, size_t n, HsWord x)
-{
-  memset( (char *)(p+off), x, n );
-}
-
-/* MEMSET(HsWord8, HsWord) */
-MEMSET(Word16, HsWord)
-MEMSET(Word32, HsWord)
-MEMSET(Word64, HsWord64)
-MEMSET(Word, HsWord)
-MEMSET(Ptr, HsPtr)
-MEMSET(Float, HsFloat)
-MEMSET(Double, HsDouble)
-MEMSET(Char, HsChar)
diff --git a/third_party/bazel/rules_haskell/examples/primitive/cbits/primitive-memops.h b/third_party/bazel/rules_haskell/examples/primitive/cbits/primitive-memops.h
deleted file mode 100644
index d7c3396f8f8b..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/cbits/primitive-memops.h
+++ /dev/null
@@ -1,23 +0,0 @@
-#ifndef haskell_primitive_memops_h
-#define haskell_primitive_memops_h
-
-#include <stdlib.h>
-#include <stddef.h>
-#include <HsFFI.h>
-
-void hsprimitive_memcpy( void *dst, ptrdiff_t doff, void *src, ptrdiff_t soff, size_t len );
-void hsprimitive_memmove( void *dst, ptrdiff_t doff, void *src, ptrdiff_t soff, size_t len );
-int  hsprimitive_memcmp( HsWord8 *s1, HsWord8 *s2, size_t n );
-
-void hsprimitive_memset_Word8 (HsWord8 *, ptrdiff_t, size_t, HsWord);
-void hsprimitive_memset_Word16 (HsWord16 *, ptrdiff_t, size_t, HsWord);
-void hsprimitive_memset_Word32 (HsWord32 *, ptrdiff_t, size_t, HsWord);
-void hsprimitive_memset_Word64 (HsWord64 *, ptrdiff_t, size_t, HsWord64);
-void hsprimitive_memset_Word (HsWord *, ptrdiff_t, size_t, HsWord);
-void hsprimitive_memset_Ptr (HsPtr *, ptrdiff_t, size_t, HsPtr);
-void hsprimitive_memset_Float (HsFloat *, ptrdiff_t, size_t, HsFloat);
-void hsprimitive_memset_Double (HsDouble *, ptrdiff_t, size_t, HsDouble);
-void hsprimitive_memset_Char (HsChar *, ptrdiff_t, size_t, HsChar);
-
-#endif
-
diff --git a/third_party/bazel/rules_haskell/examples/primitive/changelog.md b/third_party/bazel/rules_haskell/examples/primitive/changelog.md
deleted file mode 100644
index 53485f664428..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/changelog.md
+++ /dev/null
@@ -1,164 +0,0 @@
-## Changes in version 0.6.4.0
-
- * Introduce `Data.Primitive.PrimArray`, which offers types and function
-   for dealing with a `ByteArray` tagged with a phantom type variable for
-   tracking the element type.
-
- * Implement `isByteArrayPinned` and `isMutableByteArrayPinned`.
-
- * Add `Eq1`, `Ord1`, `Show1`, and `Read1` instances for `Array` and
-   `SmallArray`.
-
- * Improve the test suite. This includes having property tests for
-   typeclasses from `base` such as `Eq`, `Ord`, `Functor`, `Applicative`,
-   `Monad`, `IsList`, `Monoid`, `Foldable`, and `Traversable`.
-
- * Fix the broken `IsList` instance for `ByteArray`. The old definition
-   would allocate a byte array of the correct size and then leave the
-   memory unitialized instead of writing the list elements to it.
-
- * Fix the broken `Functor` instance for `Array`. The old definition
-   would allocate an array of the correct size with thunks for erroring
-   installed at every index. It failed to replace these thunks with
-   the result of the function applied to the elements of the argument array.
-
- * Fix the broken `Applicative` instances of `Array` and `SmallArray`.
-   The old implementation of `<*>` for `Array` failed to initialize
-   some elements but correctly initialized others in the resulting
-   `Array`. It is unclear what the old behavior of `<*>` was for
-   `SmallArray`, but it was incorrect.
-
- * Fix the broken `Monad` instances for `Array` and `SmallArray`.
-
- * Fix the implementation of `foldl1` in the `Foldable` instances for
-   `Array` and `SmallArray`. In both cases, the old implementation
-   simply returned the first element of the array and made no use of
-   the other elements in the array.
-
- * Fix the implementation of `mconcat` in the `Monoid` instance for
-   `SmallArray`.
- 
- * Implement `Data.Primitive.Ptr`, implementations of `Ptr` functions
-   that require a `Prim` constraint instead of a `Storable` constraint.
-
-
- * Add `PrimUnlifted` instances for `TVar` and `MVar`.
-
- * Use `compareByteArrays#` for the `Eq` and `Ord` instances of
-   `ByteArray` when building with GHC 8.4 and newer.
-
- * Add `Prim` instances for lots of types in `Foreign.C.Types` and
-   `System.Posix.Types`.
-
- * Reexport `Data.Primitive.SmallArray` and `Data.Primitive.UnliftedArray`
-   from `Data.Primitive`.
-
- * Add fold functions and map function to `Data.Primitive.UnliftedArray`.
-   Add typeclass instances for `IsList`, `Ord`, and `Show`.
-
- * Add `defaultSetByteArray#` and `defaultSetOffAddr#` to
-   `Data.Primitive.Types`.
-
-## Changes in version 0.6.3.0
-
- * Add `PrimMonad` instances for `ContT`, `AccumT`, and `SelectT` from
-   `transformers`
-
- * Add `Eq`, `Ord`, `Show`, and `IsList` instances for `ByteArray`
-
- * Add `Semigroup` instances for `Array` and `SmallArray`. This allows
-   `primitive` to build on GHC 8.4 and later.
-
-## Changes in version 0.6.2.0
-
- * Drop support for GHCs before 7.4
-
- * `SmallArray` support
-
- * `ArrayArray#` based support for more efficient arrays of unlifted pointer types
-
- * Make `Array` and the like instances of various classes for convenient use
-
- * Add `Prim` instances for Ptr and FunPtr
-
- * Add `ioToPrim`, `stToPrim` and unsafe counterparts for situations that would
-   otherwise require type ascriptions on `primToPrim`
-
- * Add `evalPrim`
-
- * Add `PrimBase` instance for `IdentityT`
-
-## Changes in version 0.6.1.0
-
- * Use more appropriate types in internal memset functions, which prevents
-   overflows/segfaults on 64-bit systems.
-
- * Fixed a warning on GHC 7.10
-
- * Worked around a -dcore-lint bug in GHC 7.6/7.7
-
-## Changes in version 0.6
-
- * Split PrimMonad into two classes to allow automatic lifting of primitive
-   operations into monad transformers. The `internal` operation has moved to the
-   `PrimBase` class.
-
- * Fixed the test suite on older GHCs
-
-## Changes in version 0.5.4.0
-
- * Changed primitive_ to work around an oddity with GHC's code generation
-   on certain versions that led to side effects not happening when used
-   in conjunction with certain very unsafe IO performers.
-
- * Allow primitive to build on GHC 7.9
-
-## Changes in version 0.5.3.0
-
- * Implement `cloneArray` and `cloneMutableArray` primitives
-   (with fall-back implementations for GHCs prior to version 7.2.1)
-
-## Changes in version 0.5.2.1
-
- * Add strict variants of `MutVar` modification functions
-   `atomicModifyMutVar'` and `modifyMutVar'`
-
- * Fix compilation on Solaris 10 with GNU C 3.4.3
-
-## Changes in version 0.5.1.0
-
- * Add support for GHC 7.7's new primitive `Bool` representation
-
-## Changes in version 0.5.0.1
-
- * Disable array copying primitives for GHC 7.6.* and earlier
-
-## Changes in version 0.5
-
- * New in `Data.Primitive.MutVar`: `atomicModifyMutVar`
-
- * Efficient block fill operations: `setByteArray`, `setAddr`
-
-## Changes in version 0.4.1
-
- * New module `Data.Primitive.MutVar`
-
-## Changes in version 0.4.0.1
-
- * Critical bug fix in `fillByteArray`
-
-## Changes in version 0.4
-
- * Support for GHC 7.2 array copying primitives
-
- * New in `Data.Primitive.ByteArray`: `copyByteArray`,
-   `copyMutableByteArray`, `moveByteArray`, `fillByteArray`
-
- * Deprecated in `Data.Primitive.ByteArray`: `memcpyByteArray`,
-   `memcpyByteArray'`, `memmoveByteArray`, `memsetByteArray`
-
- * New in `Data.Primitive.Array`: `copyArray`, `copyMutableByteArray`
-
- * New in `Data.Primitive.Addr`: `copyAddr`, `moveAddr`
-
- * Deprecated in `Data.Primitive.Addr`: `memcpyAddr`
diff --git a/third_party/bazel/rules_haskell/examples/primitive/primitive.cabal b/third_party/bazel/rules_haskell/examples/primitive/primitive.cabal
deleted file mode 100644
index e370f6d005a1..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/primitive.cabal
+++ /dev/null
@@ -1,74 +0,0 @@
-Name:           primitive

-Version:        0.6.4.0

-x-revision: 1

-License:        BSD3

-License-File:   LICENSE

-

-Author:         Roman Leshchinskiy <rl@cse.unsw.edu.au>

-Maintainer:     libraries@haskell.org

-Copyright:      (c) Roman Leshchinskiy 2009-2012

-Homepage:       https://github.com/haskell/primitive

-Bug-Reports:    https://github.com/haskell/primitive/issues

-Category:       Data

-Synopsis:       Primitive memory-related operations

-Cabal-Version:  >= 1.10

-Build-Type:     Simple

-Description:    This package provides various primitive memory-related operations.

-

-Extra-Source-Files: changelog.md

-                    test/*.hs

-                    test/LICENSE

-                    test/primitive-tests.cabal

-

-Tested-With:

-  GHC == 7.4.2,

-  GHC == 7.6.3,

-  GHC == 7.8.4,

-  GHC == 7.10.3,

-  GHC == 8.0.2,

-  GHC == 8.2.2,

-  GHC == 8.4.2

-

-Library

-  Default-Language: Haskell2010

-  Other-Extensions:

-        BangPatterns, CPP, DeriveDataTypeable,

-        MagicHash, TypeFamilies, UnboxedTuples, UnliftedFFITypes

-

-  Exposed-Modules:

-        Control.Monad.Primitive

-        Data.Primitive

-        Data.Primitive.MachDeps

-        Data.Primitive.Types

-        Data.Primitive.Array

-        Data.Primitive.ByteArray

-        Data.Primitive.PrimArray

-        Data.Primitive.SmallArray

-        Data.Primitive.UnliftedArray

-        Data.Primitive.Addr

-        Data.Primitive.Ptr

-        Data.Primitive.MutVar

-        Data.Primitive.MVar

-

-  Other-Modules:

-        Data.Primitive.Internal.Compat

-        Data.Primitive.Internal.Operations

-

-  Build-Depends: base >= 4.5 && < 4.13

-               , ghc-prim >= 0.2 && < 0.6

-               , transformers >= 0.2 && < 0.6

-

-  Ghc-Options: -O2

-

-  Include-Dirs: cbits

-  Install-Includes: primitive-memops.h

-  includes: primitive-memops.h

-  c-sources: cbits/primitive-memops.c

-  if !os(solaris)

-      cc-options: -ftree-vectorize

-  if arch(i386) || arch(x86_64)

-      cc-options: -msse2

-

-source-repository head

-  type:     git

-  location: https://github.com/haskell/primitive

diff --git a/third_party/bazel/rules_haskell/examples/primitive/test/LICENSE b/third_party/bazel/rules_haskell/examples/primitive/test/LICENSE
deleted file mode 100644
index fc213a6ffbfe..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/test/LICENSE
+++ /dev/null
@@ -1,30 +0,0 @@
-Copyright (c) 2008-2009, Roman Leshchinskiy
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
-- Redistributions of source code must retain the above copyright notice,
-this list of conditions and the following disclaimer.
- 
-- Redistributions in binary form must reproduce the above copyright notice,
-this list of conditions and the following disclaimer in the documentation
-and/or other materials provided with the distribution.
- 
-- Neither name of the University nor the names of its contributors may be
-used to endorse or promote products derived from this software without
-specific prior written permission. 
-
-THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
-GLASGOW AND THE CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
-INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
-FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE CONTRIBUTORS BE LIABLE
-FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-DAMAGE.
-
diff --git a/third_party/bazel/rules_haskell/examples/primitive/test/main.hs b/third_party/bazel/rules_haskell/examples/primitive/test/main.hs
deleted file mode 100644
index abec96df032d..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/test/main.hs
+++ /dev/null
@@ -1,342 +0,0 @@
-{-# LANGUAGE BangPatterns #-}
-{-# LANGUAGE CPP #-}
-{-# LANGUAGE GeneralizedNewtypeDeriving #-}
-{-# LANGUAGE KindSignatures #-}
-{-# LANGUAGE MagicHash #-}
-{-# LANGUAGE UnboxedTuples #-}
-{-# LANGUAGE ScopedTypeVariables #-}
-
-import Control.Applicative
-import Control.Monad
-import Control.Monad.Fix (fix)
-import Control.Monad.Primitive
-import Control.Monad.ST
-import Data.Monoid
-import Data.Primitive
-import Data.Primitive.Array
-import Data.Primitive.ByteArray
-import Data.Primitive.Types
-import Data.Primitive.SmallArray
-import Data.Primitive.PrimArray
-import Data.Word
-import Data.Proxy (Proxy(..))
-import GHC.Int
-import GHC.IO
-import GHC.Prim
-import Data.Function (on)
-#if MIN_VERSION_base(4,9,0)
-import Data.Semigroup (stimes)
-#endif
-
-import Test.Tasty (defaultMain,testGroup,TestTree)
-import Test.QuickCheck (Arbitrary,Arbitrary1,Gen,(===),CoArbitrary,Function)
-import qualified Test.Tasty.QuickCheck as TQC
-import qualified Test.QuickCheck as QC
-import qualified Test.QuickCheck.Classes as QCC
-import qualified Test.QuickCheck.Classes.IsList as QCCL
-import qualified Data.List as L
-
-main :: IO ()
-main = do
-  testArray
-  testByteArray
-  defaultMain $ testGroup "properties"
-    [ testGroup "Array"
-      [ lawsToTest (QCC.eqLaws (Proxy :: Proxy (Array Int)))
-      , lawsToTest (QCC.ordLaws (Proxy :: Proxy (Array Int)))
-      , lawsToTest (QCC.monoidLaws (Proxy :: Proxy (Array Int)))
-      , lawsToTest (QCC.showReadLaws (Proxy :: Proxy (Array Int)))
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
-      , lawsToTest (QCC.functorLaws (Proxy1 :: Proxy1 Array))
-      , lawsToTest (QCC.applicativeLaws (Proxy1 :: Proxy1 Array))
-      , lawsToTest (QCC.monadLaws (Proxy1 :: Proxy1 Array))
-      , lawsToTest (QCC.foldableLaws (Proxy1 :: Proxy1 Array))
-      , lawsToTest (QCC.traversableLaws (Proxy1 :: Proxy1 Array))
-#endif
-#if MIN_VERSION_base(4,7,0)
-      , lawsToTest (QCC.isListLaws (Proxy :: Proxy (Array Int)))
-      , TQC.testProperty "mapArray'" (QCCL.mapProp int16 int32 mapArray')
-#endif
-      ]
-    , testGroup "SmallArray"
-      [ lawsToTest (QCC.eqLaws (Proxy :: Proxy (SmallArray Int)))
-      , lawsToTest (QCC.ordLaws (Proxy :: Proxy (SmallArray Int)))
-      , lawsToTest (QCC.monoidLaws (Proxy :: Proxy (SmallArray Int)))
-      , lawsToTest (QCC.showReadLaws (Proxy :: Proxy (Array Int)))
-#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
-      , lawsToTest (QCC.functorLaws (Proxy1 :: Proxy1 SmallArray))
-      , lawsToTest (QCC.applicativeLaws (Proxy1 :: Proxy1 SmallArray))
-      , lawsToTest (QCC.monadLaws (Proxy1 :: Proxy1 SmallArray))
-      , lawsToTest (QCC.foldableLaws (Proxy1 :: Proxy1 SmallArray))
-      , lawsToTest (QCC.traversableLaws (Proxy1 :: Proxy1 SmallArray))
-#endif
-#if MIN_VERSION_base(4,7,0)
-      , lawsToTest (QCC.isListLaws (Proxy :: Proxy (SmallArray Int)))
-      , TQC.testProperty "mapSmallArray'" (QCCL.mapProp int16 int32 mapSmallArray')
-#endif
-      ]
-    , testGroup "ByteArray"
-      [ testGroup "Ordering"
-        [ TQC.testProperty "equality" byteArrayEqProp
-        , TQC.testProperty "compare" byteArrayCompareProp
-        ]
-      , testGroup "Resize"
-        [ TQC.testProperty "shrink" byteArrayShrinkProp
-        , TQC.testProperty "grow" byteArrayGrowProp
-        ]
-      , lawsToTest (QCC.eqLaws (Proxy :: Proxy ByteArray))
-      , lawsToTest (QCC.ordLaws (Proxy :: Proxy ByteArray))
-      , lawsToTest (QCC.showReadLaws (Proxy :: Proxy (Array Int)))
-#if MIN_VERSION_base(4,7,0)
-      , lawsToTest (QCC.isListLaws (Proxy :: Proxy ByteArray))
-#endif
-      ]
-    , testGroup "PrimArray"
-      [ lawsToTest (QCC.eqLaws (Proxy :: Proxy (PrimArray Word16)))
-      , lawsToTest (QCC.ordLaws (Proxy :: Proxy (PrimArray Word16)))
-      , lawsToTest (QCC.monoidLaws (Proxy :: Proxy (PrimArray Word16)))
-#if MIN_VERSION_base(4,7,0)
-      , lawsToTest (QCC.isListLaws (Proxy :: Proxy (PrimArray Word16)))
-      , TQC.testProperty "foldrPrimArray" (QCCL.foldrProp int16 foldrPrimArray)
-      , TQC.testProperty "foldrPrimArray'" (QCCL.foldrProp int16 foldrPrimArray')
-      , TQC.testProperty "foldlPrimArray" (QCCL.foldlProp int16 foldlPrimArray)
-      , TQC.testProperty "foldlPrimArray'" (QCCL.foldlProp int16 foldlPrimArray')
-      , TQC.testProperty "foldlPrimArrayM'" (QCCL.foldlMProp int16 foldlPrimArrayM')
-      , TQC.testProperty "mapPrimArray" (QCCL.mapProp int16 int32 mapPrimArray)
-      , TQC.testProperty "traversePrimArray" (QCCL.traverseProp int16 int32 traversePrimArray)
-      , TQC.testProperty "traversePrimArrayP" (QCCL.traverseProp int16 int32 traversePrimArrayP)
-      , TQC.testProperty "imapPrimArray" (QCCL.imapProp int16 int32 imapPrimArray)
-      , TQC.testProperty "itraversePrimArray" (QCCL.imapMProp int16 int32 itraversePrimArray)
-      , TQC.testProperty "itraversePrimArrayP" (QCCL.imapMProp int16 int32 itraversePrimArrayP)
-      , TQC.testProperty "generatePrimArray" (QCCL.generateProp int16 generatePrimArray)
-      , TQC.testProperty "generatePrimArrayA" (QCCL.generateMProp int16 generatePrimArrayA)
-      , TQC.testProperty "generatePrimArrayP" (QCCL.generateMProp int16 generatePrimArrayP)
-      , TQC.testProperty "replicatePrimArray" (QCCL.replicateProp int16 replicatePrimArray)
-      , TQC.testProperty "replicatePrimArrayA" (QCCL.replicateMProp int16 replicatePrimArrayA)
-      , TQC.testProperty "replicatePrimArrayP" (QCCL.replicateMProp int16 replicatePrimArrayP)
-      , TQC.testProperty "filterPrimArray" (QCCL.filterProp int16 filterPrimArray)
-      , TQC.testProperty "filterPrimArrayA" (QCCL.filterMProp int16 filterPrimArrayA)
-      , TQC.testProperty "filterPrimArrayP" (QCCL.filterMProp int16 filterPrimArrayP)
-      , TQC.testProperty "mapMaybePrimArray" (QCCL.mapMaybeProp int16 int32 mapMaybePrimArray)
-      , TQC.testProperty "mapMaybePrimArrayA" (QCCL.mapMaybeMProp int16 int32 mapMaybePrimArrayA)
-      , TQC.testProperty "mapMaybePrimArrayP" (QCCL.mapMaybeMProp int16 int32 mapMaybePrimArrayP)
-#endif
-      ]
-    , testGroup "UnliftedArray"
-      [ lawsToTest (QCC.eqLaws (Proxy :: Proxy (UnliftedArray (PrimArray Int16))))
-      , lawsToTest (QCC.ordLaws (Proxy :: Proxy (UnliftedArray (PrimArray Int16))))
-      , lawsToTest (QCC.monoidLaws (Proxy :: Proxy (UnliftedArray (PrimArray Int16))))
-#if MIN_VERSION_base(4,7,0)
-      , lawsToTest (QCC.isListLaws (Proxy :: Proxy (UnliftedArray (PrimArray Int16))))
-      , TQC.testProperty "mapUnliftedArray" (QCCL.mapProp arrInt16 arrInt32 mapUnliftedArray)
-      , TQC.testProperty "foldrUnliftedArray" (QCCL.foldrProp arrInt16 foldrUnliftedArray)
-      , TQC.testProperty "foldrUnliftedArray'" (QCCL.foldrProp arrInt16 foldrUnliftedArray')
-      , TQC.testProperty "foldlUnliftedArray" (QCCL.foldlProp arrInt16 foldlUnliftedArray)
-      , TQC.testProperty "foldlUnliftedArray'" (QCCL.foldlProp arrInt16 foldlUnliftedArray')
-#endif
-      ]
-    , testGroup "DefaultSetMethod"
-      [ lawsToTest (QCC.primLaws (Proxy :: Proxy DefaultSetMethod))
-      ]
-    -- , testGroup "PrimStorable"
-    --   [ lawsToTest (QCC.storableLaws (Proxy :: Proxy Derived))
-    --   ]
-    ]
-
-int16 :: Proxy Int16
-int16 = Proxy
-
-int32 :: Proxy Int32
-int32 = Proxy
-
-arrInt16 :: Proxy (PrimArray Int16)
-arrInt16 = Proxy
-
-arrInt32 :: Proxy (PrimArray Int16)
-arrInt32 = Proxy
-
--- Tests that using resizeByteArray to shrink a byte array produces
--- the same results as calling Data.List.take on the list that the
--- byte array corresponds to.
-byteArrayShrinkProp :: QC.Property
-byteArrayShrinkProp = QC.property $ \(QC.NonNegative (n :: Int)) (QC.NonNegative (m :: Int)) ->
-  let large = max n m
-      small = min n m
-      xs = intsLessThan large
-      ys = byteArrayFromList xs
-      largeBytes = large * sizeOf (undefined :: Int)
-      smallBytes = small * sizeOf (undefined :: Int)
-      expected = byteArrayFromList (L.take small xs)
-      actual = runST $ do
-        mzs0 <- newByteArray largeBytes
-        copyByteArray mzs0 0 ys 0 largeBytes
-        mzs1 <- resizeMutableByteArray mzs0 smallBytes
-        unsafeFreezeByteArray mzs1
-   in expected === actual
-
--- Tests that using resizeByteArray with copyByteArray (to fill in the
--- new empty space) to grow a byte array produces the same results as
--- calling Data.List.++ on the lists corresponding to the original
--- byte array and the appended byte array.
-byteArrayGrowProp :: QC.Property
-byteArrayGrowProp = QC.property $ \(QC.NonNegative (n :: Int)) (QC.NonNegative (m :: Int)) ->
-  let large = max n m
-      small = min n m
-      xs1 = intsLessThan small
-      xs2 = intsLessThan (large - small)
-      ys1 = byteArrayFromList xs1
-      ys2 = byteArrayFromList xs2
-      largeBytes = large * sizeOf (undefined :: Int)
-      smallBytes = small * sizeOf (undefined :: Int)
-      expected = byteArrayFromList (xs1 ++ xs2)
-      actual = runST $ do
-        mzs0 <- newByteArray smallBytes
-        copyByteArray mzs0 0 ys1 0 smallBytes
-        mzs1 <- resizeMutableByteArray mzs0 largeBytes
-        copyByteArray mzs1 smallBytes ys2 0 ((large - small) * sizeOf (undefined :: Int))
-        unsafeFreezeByteArray mzs1
-   in expected === actual
-
--- Provide the non-negative integers up to the bound. For example:
---
--- >>> intsLessThan 5
--- [0,1,2,3,4]
-intsLessThan :: Int -> [Int]
-intsLessThan i = if i < 1
-  then []
-  else (i - 1) : intsLessThan (i - 1)
-  
-byteArrayCompareProp :: QC.Property
-byteArrayCompareProp = QC.property $ \(xs :: [Word8]) (ys :: [Word8]) ->
-  compareLengthFirst xs ys === compare (byteArrayFromList xs) (byteArrayFromList ys)
-
-byteArrayEqProp :: QC.Property
-byteArrayEqProp = QC.property $ \(xs :: [Word8]) (ys :: [Word8]) ->
-  (compareLengthFirst xs ys == EQ) === (byteArrayFromList xs == byteArrayFromList ys)
-
-compareLengthFirst :: [Word8] -> [Word8] -> Ordering
-compareLengthFirst xs ys = (compare `on` length) xs ys <> compare xs ys
-
--- on GHC 7.4, Proxy is not polykinded, so we need this instead.
-data Proxy1 (f :: * -> *) = Proxy1
-
-lawsToTest :: QCC.Laws -> TestTree
-lawsToTest (QCC.Laws name pairs) = testGroup name (map (uncurry TQC.testProperty) pairs)
-
-testArray :: IO ()
-testArray = do
-    arr <- newArray 1 'A'
-    let unit =
-            case writeArray arr 0 'B' of
-                IO f ->
-                    case f realWorld# of
-                        (# _, _ #) -> ()
-    c1 <- readArray arr 0
-    return $! unit
-    c2 <- readArray arr 0
-    if c1 == 'A' && c2 == 'B'
-        then return ()
-        else error $ "Expected AB, got: " ++ show (c1, c2)
-
-testByteArray :: IO ()
-testByteArray = do
-    let arr1 = mkByteArray ([0xde, 0xad, 0xbe, 0xef] :: [Word8])
-        arr2 = mkByteArray ([0xde, 0xad, 0xbe, 0xef] :: [Word8])
-        arr3 = mkByteArray ([0xde, 0xad, 0xbe, 0xee] :: [Word8])
-        arr4 = mkByteArray ([0xde, 0xad, 0xbe, 0xdd] :: [Word8])
-        arr5 = mkByteArray ([0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xdd] :: [Word8])
-    when (show arr1 /= "[0xde, 0xad, 0xbe, 0xef]") $
-        fail $ "ByteArray Show incorrect: "++show arr1
-    unless (arr1 > arr3) $
-        fail $ "ByteArray Ord incorrect"
-    unless (arr1 == arr2) $
-        fail $ "ByteArray Eq incorrect"
-    unless (mappend arr1 arr4 == arr5) $
-        fail $ "ByteArray Monoid mappend incorrect"
-    unless (mappend arr1 (mappend arr3 arr4) == mappend (mappend arr1 arr3) arr4) $
-        fail $ "ByteArray Monoid mappend not associative"
-    unless (mconcat [arr1,arr2,arr3,arr4,arr5] == (arr1 <> arr2 <> arr3 <> arr4 <> arr5)) $
-        fail $ "ByteArray Monoid mconcat incorrect"
-#if MIN_VERSION_base(4,9,0)
-    unless (stimes (3 :: Int) arr4 == (arr4 <> arr4 <> arr4)) $
-        fail $ "ByteArray Semigroup stimes incorrect"
-#endif
-
-mkByteArray :: Prim a => [a] -> ByteArray
-mkByteArray xs = runST $ do
-    marr <- newByteArray (length xs * sizeOf (head xs))
-    sequence $ zipWith (writeByteArray marr) [0..] xs
-    unsafeFreezeByteArray marr
-
-instance Arbitrary1 Array where
-  liftArbitrary elemGen = fmap fromList (QC.liftArbitrary elemGen)
-
-instance Arbitrary a => Arbitrary (Array a) where
-  arbitrary = fmap fromList QC.arbitrary
-
-instance Arbitrary1 SmallArray where
-  liftArbitrary elemGen = fmap smallArrayFromList (QC.liftArbitrary elemGen)
-
-instance Arbitrary a => Arbitrary (SmallArray a) where
-  arbitrary = fmap smallArrayFromList QC.arbitrary
-
-instance Arbitrary ByteArray where
-  arbitrary = do
-    xs <- QC.arbitrary :: Gen [Word8]
-    return $ runST $ do
-      a <- newByteArray (L.length xs)
-      iforM_ xs $ \ix x -> do
-        writeByteArray a ix x
-      unsafeFreezeByteArray a
-
-instance (Arbitrary a, Prim a) => Arbitrary (PrimArray a) where
-  arbitrary = do
-    xs <- QC.arbitrary :: Gen [a]
-    return $ runST $ do
-      a <- newPrimArray (L.length xs)
-      iforM_ xs $ \ix x -> do
-        writePrimArray a ix x
-      unsafeFreezePrimArray a
-
-instance (Arbitrary a, PrimUnlifted a) => Arbitrary (UnliftedArray a) where
-  arbitrary = do
-    xs <- QC.vector =<< QC.choose (0,3)
-    return (unliftedArrayFromList xs)
-
-instance (Prim a, CoArbitrary a) => CoArbitrary (PrimArray a) where
-  coarbitrary x = QC.coarbitrary (primArrayToList x)
-
-instance (Prim a, Function a) => Function (PrimArray a) where
-  function = QC.functionMap primArrayToList primArrayFromList
-
-iforM_ :: Monad m => [a] -> (Int -> a -> m b) -> m ()
-iforM_ xs0 f = go 0 xs0 where
-  go !_ [] = return ()
-  go !ix (x : xs) = f ix x >> go (ix + 1) xs
-
-newtype DefaultSetMethod = DefaultSetMethod Int16
-  deriving (Eq,Show,Arbitrary)
-
-instance Prim DefaultSetMethod where
-  sizeOf# _ = sizeOf# (undefined :: Int16)
-  alignment# _ = alignment# (undefined :: Int16)
-  indexByteArray# arr ix = DefaultSetMethod (indexByteArray# arr ix)
-  readByteArray# arr ix s0 = case readByteArray# arr ix s0 of
-    (# s1, n #) -> (# s1, DefaultSetMethod n #)
-  writeByteArray# arr ix (DefaultSetMethod n) s0 = writeByteArray# arr ix n s0
-  setByteArray# = defaultSetByteArray#
-  indexOffAddr# addr off = DefaultSetMethod (indexOffAddr# addr off)
-  readOffAddr# addr off s0 = case readOffAddr# addr off s0 of
-    (# s1, n #) -> (# s1, DefaultSetMethod n #)
-  writeOffAddr# addr off (DefaultSetMethod n) s0 = writeOffAddr# addr off n s0
-  setOffAddr# = defaultSetOffAddr#
-
--- TODO: Uncomment this out when GHC 8.6 is release. Also, uncomment
--- the corresponding PrimStorable test group above.
---
--- newtype Derived = Derived Int16
---   deriving newtype (Prim)
---   deriving Storable via (PrimStorable Derived)
-
-
-
diff --git a/third_party/bazel/rules_haskell/examples/primitive/test/primitive-tests.cabal b/third_party/bazel/rules_haskell/examples/primitive/test/primitive-tests.cabal
deleted file mode 100644
index 957fe5ee1f64..000000000000
--- a/third_party/bazel/rules_haskell/examples/primitive/test/primitive-tests.cabal
+++ /dev/null
@@ -1,45 +0,0 @@
-Name:           primitive-tests
-Version:        0.1
-License:        BSD3
-License-File:   LICENSE
-
-Author:         Roman Leshchinskiy <rl@cse.unsw.edu.au>
-Maintainer:     libraries@haskell.org
-Copyright:      (c) Roman Leshchinskiy 2009-2012
-Homepage:       https://github.com/haskell/primitive
-Bug-Reports:    https://github.com/haskell/primitive/issues
-Category:       Data
-Synopsis:       primitive tests
-Cabal-Version:  >= 1.10
-Build-Type:     Simple
-Description:    @primitive@ tests
-
-Tested-With:
-  GHC == 7.4.2,
-  GHC == 7.6.3,
-  GHC == 7.8.4,
-  GHC == 7.10.3,
-  GHC == 8.0.2,
-  GHC == 8.2.2,
-  GHC == 8.4.2
-
-test-suite test
-  Default-Language: Haskell2010
-  hs-source-dirs: .
-  main-is: main.hs
-  type: exitcode-stdio-1.0
-  build-depends: base >= 4.5 && < 4.12
-               , ghc-prim
-               , primitive
-               , QuickCheck
-               , tasty
-               , tasty-quickcheck
-               , tagged
-               , transformers >= 0.3
-               , quickcheck-classes >= 0.4.11.1
-  ghc-options: -O2
-
-source-repository head
-  type:     git
-  location: https://github.com/haskell/primitive
-  subdir:   test
diff --git a/third_party/bazel/rules_haskell/examples/rts/BUILD.bazel b/third_party/bazel/rules_haskell/examples/rts/BUILD.bazel
deleted file mode 100644
index 1bbf94b1c0a9..000000000000
--- a/third_party/bazel/rules_haskell/examples/rts/BUILD.bazel
+++ /dev/null
@@ -1,29 +0,0 @@
-load(
-    "@io_tweag_rules_haskell//haskell:haskell.bzl",
-    "cc_haskell_import",
-    "haskell_library",
-    "haskell_toolchain_library",
-)
-
-haskell_toolchain_library(name = "base")
-
-haskell_library(
-    name = "add-one-hs",
-    srcs = ["One.hs"],
-    deps = [":base"],
-)
-
-cc_haskell_import(
-    name = "add-one-so",
-    dep = ":add-one-hs",
-)
-
-cc_test(
-    name = "add-one",
-    srcs = [
-        "main.c",
-        ":add-one-so",
-    ],
-    visibility = ["//visibility:public"],
-    deps = ["@ghc//:threaded-rts"],
-)
diff --git a/third_party/bazel/rules_haskell/examples/rts/One.hs b/third_party/bazel/rules_haskell/examples/rts/One.hs
deleted file mode 100644
index bc24fb7cb274..000000000000
--- a/third_party/bazel/rules_haskell/examples/rts/One.hs
+++ /dev/null
@@ -1,6 +0,0 @@
-module One () where
-
-add_one_hs :: Int -> Int
-add_one_hs x = x + 1
-
-foreign export ccall add_one_hs :: Int -> Int
diff --git a/third_party/bazel/rules_haskell/examples/rts/main.c b/third_party/bazel/rules_haskell/examples/rts/main.c
deleted file mode 100644
index 28624227d8c0..000000000000
--- a/third_party/bazel/rules_haskell/examples/rts/main.c
+++ /dev/null
@@ -1,11 +0,0 @@
-#include <stdio.h>
-#include "HsFFI.h"
-
-extern HsInt add_one_hs(HsInt a0);
-
-int main(int argc, char *argv[]) {
-  hs_init(&argc, &argv);
-  printf("Adding one to 5 through Haskell is %ld\n", add_one_hs(5));
-  hs_exit();
-  return 0;
-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/BUILD.bazel b/third_party/bazel/rules_haskell/examples/transformers/BUILD.bazel
deleted file mode 100644
index 092111f9f19a..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/BUILD.bazel
+++ /dev/null
@@ -1,19 +0,0 @@
-load(
-    "@io_tweag_rules_haskell//haskell:haskell.bzl",
-    "haskell_cc_import",
-    "haskell_library",
-    "haskell_toolchain_library",
-)
-
-haskell_toolchain_library(name = "base")
-
-haskell_library(
-    name = "transformers",
-    srcs = glob([
-        "Data/**/*.hs",
-        "Control/**/*.hs",
-    ]),
-    version = "0",
-    visibility = ["//visibility:public"],
-    deps = [":base"],
-)
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Applicative/Backwards.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Applicative/Backwards.hs
deleted file mode 100644
index 7ed74acbace0..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Applicative/Backwards.hs
+++ /dev/null
@@ -1,112 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 706
-{-# LANGUAGE PolyKinds #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Applicative.Backwards
--- Copyright   :  (c) Russell O'Connor 2009
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Making functors with an 'Applicative' instance that performs actions
--- in the reverse order.
------------------------------------------------------------------------------
-
-module Control.Applicative.Backwards (
-    Backwards(..),
-  ) where
-
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-
-import Prelude hiding (foldr, foldr1, foldl, foldl1, null, length)
-import Control.Applicative
-import Data.Foldable
-import Data.Traversable
-
--- | The same functor, but with an 'Applicative' instance that performs
--- actions in the reverse order.
-newtype Backwards f a = Backwards { forwards :: f a }
-
-instance (Eq1 f) => Eq1 (Backwards f) where
-    liftEq eq (Backwards x) (Backwards y) = liftEq eq x y
-    {-# INLINE liftEq #-}
-
-instance (Ord1 f) => Ord1 (Backwards f) where
-    liftCompare comp (Backwards x) (Backwards y) = liftCompare comp x y
-    {-# INLINE liftCompare #-}
-
-instance (Read1 f) => Read1 (Backwards f) where
-    liftReadsPrec rp rl = readsData $
-        readsUnaryWith (liftReadsPrec rp rl) "Backwards" Backwards
-
-instance (Show1 f) => Show1 (Backwards f) where
-    liftShowsPrec sp sl d (Backwards x) =
-        showsUnaryWith (liftShowsPrec sp sl) "Backwards" d x
-
-instance (Eq1 f, Eq a) => Eq (Backwards f a) where (==) = eq1
-instance (Ord1 f, Ord a) => Ord (Backwards f a) where compare = compare1
-instance (Read1 f, Read a) => Read (Backwards f a) where readsPrec = readsPrec1
-instance (Show1 f, Show a) => Show (Backwards f a) where showsPrec = showsPrec1
-
--- | Derived instance.
-instance (Functor f) => Functor (Backwards f) where
-    fmap f (Backwards a) = Backwards (fmap f a)
-    {-# INLINE fmap #-}
-
--- | Apply @f@-actions in the reverse order.
-instance (Applicative f) => Applicative (Backwards f) where
-    pure a = Backwards (pure a)
-    {-# INLINE pure #-}
-    Backwards f <*> Backwards a = Backwards (a <**> f)
-    {-# INLINE (<*>) #-}
-
--- | Try alternatives in the same order as @f@.
-instance (Alternative f) => Alternative (Backwards f) where
-    empty = Backwards empty
-    {-# INLINE empty #-}
-    Backwards x <|> Backwards y = Backwards (x <|> y)
-    {-# INLINE (<|>) #-}
-
--- | Derived instance.
-instance (Foldable f) => Foldable (Backwards f) where
-    foldMap f (Backwards t) = foldMap f t
-    {-# INLINE foldMap #-}
-    foldr f z (Backwards t) = foldr f z t
-    {-# INLINE foldr #-}
-    foldl f z (Backwards t) = foldl f z t
-    {-# INLINE foldl #-}
-    foldr1 f (Backwards t) = foldr1 f t
-    {-# INLINE foldr1 #-}
-    foldl1 f (Backwards t) = foldl1 f t
-    {-# INLINE foldl1 #-}
-#if MIN_VERSION_base(4,8,0)
-    null (Backwards t) = null t
-    length (Backwards t) = length t
-#endif
-
--- | Derived instance.
-instance (Traversable f) => Traversable (Backwards f) where
-    traverse f (Backwards t) = fmap Backwards (traverse f t)
-    {-# INLINE traverse #-}
-    sequenceA (Backwards t) = fmap Backwards (sequenceA t)
-    {-# INLINE sequenceA #-}
-
-#if MIN_VERSION_base(4,12,0)
--- | Derived instance.
-instance Contravariant f => Contravariant (Backwards f) where
-    contramap f = Backwards . contramap f . forwards
-    {-# INLINE contramap #-}
-#endif
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Applicative/Lift.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Applicative/Lift.hs
deleted file mode 100644
index 8d35e288c025..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Applicative/Lift.hs
+++ /dev/null
@@ -1,165 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Applicative.Lift
--- Copyright   :  (c) Ross Paterson 2010
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Adding a new kind of pure computation to an applicative functor.
------------------------------------------------------------------------------
-
-module Control.Applicative.Lift (
-    -- * Lifting an applicative
-    Lift(..),
-    unLift,
-    mapLift,
-    elimLift,
-    -- * Collecting errors
-    Errors,
-    runErrors,
-    failure,
-    eitherToErrors
-  ) where
-
-import Data.Functor.Classes
-
-import Control.Applicative
-import Data.Foldable (Foldable(foldMap))
-import Data.Functor.Constant
-import Data.Monoid (Monoid(..))
-import Data.Traversable (Traversable(traverse))
-
--- | Applicative functor formed by adding pure computations to a given
--- applicative functor.
-data Lift f a = Pure a | Other (f a)
-
-instance (Eq1 f) => Eq1 (Lift f) where
-    liftEq eq (Pure x1) (Pure x2) = eq x1 x2
-    liftEq _ (Pure _) (Other _) = False
-    liftEq _ (Other _) (Pure _) = False
-    liftEq eq (Other y1) (Other y2) = liftEq eq y1 y2
-    {-# INLINE liftEq #-}
-
-instance (Ord1 f) => Ord1 (Lift f) where
-    liftCompare comp (Pure x1) (Pure x2) = comp x1 x2
-    liftCompare _ (Pure _) (Other _) = LT
-    liftCompare _ (Other _) (Pure _) = GT
-    liftCompare comp (Other y1) (Other y2) = liftCompare comp y1 y2
-    {-# INLINE liftCompare #-}
-
-instance (Read1 f) => Read1 (Lift f) where
-    liftReadsPrec rp rl = readsData $
-        readsUnaryWith rp "Pure" Pure `mappend`
-        readsUnaryWith (liftReadsPrec rp rl) "Other" Other
-
-instance (Show1 f) => Show1 (Lift f) where
-    liftShowsPrec sp _ d (Pure x) = showsUnaryWith sp "Pure" d x
-    liftShowsPrec sp sl d (Other y) =
-        showsUnaryWith (liftShowsPrec sp sl) "Other" d y
-
-instance (Eq1 f, Eq a) => Eq (Lift f a) where (==) = eq1
-instance (Ord1 f, Ord a) => Ord (Lift f a) where compare = compare1
-instance (Read1 f, Read a) => Read (Lift f a) where readsPrec = readsPrec1
-instance (Show1 f, Show a) => Show (Lift f a) where showsPrec = showsPrec1
-
-instance (Functor f) => Functor (Lift f) where
-    fmap f (Pure x) = Pure (f x)
-    fmap f (Other y) = Other (fmap f y)
-    {-# INLINE fmap #-}
-
-instance (Foldable f) => Foldable (Lift f) where
-    foldMap f (Pure x) = f x
-    foldMap f (Other y) = foldMap f y
-    {-# INLINE foldMap #-}
-
-instance (Traversable f) => Traversable (Lift f) where
-    traverse f (Pure x) = Pure <$> f x
-    traverse f (Other y) = Other <$> traverse f y
-    {-# INLINE traverse #-}
-
--- | A combination is 'Pure' only if both parts are.
-instance (Applicative f) => Applicative (Lift f) where
-    pure = Pure
-    {-# INLINE pure #-}
-    Pure f <*> Pure x = Pure (f x)
-    Pure f <*> Other y = Other (f <$> y)
-    Other f <*> Pure x = Other (($ x) <$> f)
-    Other f <*> Other y = Other (f <*> y)
-    {-# INLINE (<*>) #-}
-
--- | A combination is 'Pure' only either part is.
-instance (Alternative f) => Alternative (Lift f) where
-    empty = Other empty
-    {-# INLINE empty #-}
-    Pure x <|> _ = Pure x
-    Other _ <|> Pure y = Pure y
-    Other x <|> Other y = Other (x <|> y)
-    {-# INLINE (<|>) #-}
-
--- | Projection to the other functor.
-unLift :: (Applicative f) => Lift f a -> f a
-unLift (Pure x) = pure x
-unLift (Other e) = e
-{-# INLINE unLift #-}
-
--- | Apply a transformation to the other computation.
-mapLift :: (f a -> g a) -> Lift f a -> Lift g a
-mapLift _ (Pure x) = Pure x
-mapLift f (Other e) = Other (f e)
-{-# INLINE mapLift #-}
-
--- | Eliminator for 'Lift'.
---
--- * @'elimLift' f g . 'pure' = f@
---
--- * @'elimLift' f g . 'Other' = g@
---
-elimLift :: (a -> r) -> (f a -> r) -> Lift f a -> r
-elimLift f _ (Pure x) = f x
-elimLift _ g (Other e) = g e
-{-# INLINE elimLift #-}
-
--- | An applicative functor that collects a monoid (e.g. lists) of errors.
--- A sequence of computations fails if any of its components do, but
--- unlike monads made with 'ExceptT' from "Control.Monad.Trans.Except",
--- these computations continue after an error, collecting all the errors.
---
--- * @'pure' f '<*>' 'pure' x = 'pure' (f x)@
---
--- * @'pure' f '<*>' 'failure' e = 'failure' e@
---
--- * @'failure' e '<*>' 'pure' x = 'failure' e@
---
--- * @'failure' e1 '<*>' 'failure' e2 = 'failure' (e1 '<>' e2)@
---
-type Errors e = Lift (Constant e)
-
--- | Extractor for computations with accumulating errors.
---
--- * @'runErrors' ('pure' x) = 'Right' x@
---
--- * @'runErrors' ('failure' e) = 'Left' e@
---
-runErrors :: Errors e a -> Either e a
-runErrors (Other (Constant e)) = Left e
-runErrors (Pure x) = Right x
-{-# INLINE runErrors #-}
-
--- | Report an error.
-failure :: e -> Errors e a
-failure e = Other (Constant e)
-{-# INLINE failure #-}
-
--- | Convert from 'Either' to 'Errors' (inverse of 'runErrors').
-eitherToErrors :: Either e a -> Errors e a
-eitherToErrors = either failure Pure
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Signatures.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Signatures.hs
deleted file mode 100644
index ce128ee182e1..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Signatures.hs
+++ /dev/null
@@ -1,56 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 706
-{-# LANGUAGE PolyKinds #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Signatures
--- Copyright   :  (c) Ross Paterson 2012
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Signatures for monad operations that require specialized lifting.
--- Each signature has a uniformity property that the lifting should satisfy.
------------------------------------------------------------------------------
-
-module Control.Monad.Signatures (
-    CallCC, Catch, Listen, Pass
-  ) where
-
--- | Signature of the @callCC@ operation,
--- introduced in "Control.Monad.Trans.Cont".
--- Any lifting function @liftCallCC@ should satisfy
---
--- * @'lift' (f k) = f' ('lift' . k) => 'lift' (cf f) = liftCallCC cf f'@
---
-type CallCC m a b = ((a -> m b) -> m a) -> m a
-
--- | Signature of the @catchE@ operation,
--- introduced in "Control.Monad.Trans.Except".
--- Any lifting function @liftCatch@ should satisfy
---
--- * @'lift' (cf m f) = liftCatch ('lift' . cf) ('lift' f)@
---
-type Catch e m a = m a -> (e -> m a) -> m a
-
--- | Signature of the @listen@ operation,
--- introduced in "Control.Monad.Trans.Writer".
--- Any lifting function @liftListen@ should satisfy
---
--- * @'lift' . liftListen = liftListen . 'lift'@
---
-type Listen w m a = m a -> m (a, w)
-
--- | Signature of the @pass@ operation,
--- introduced in "Control.Monad.Trans.Writer".
--- Any lifting function @liftPass@ should satisfy
---
--- * @'lift' . liftPass = liftPass . 'lift'@
---
-type Pass w m a =  m (a, w -> w) -> m a
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Accum.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Accum.hs
deleted file mode 100644
index 0a85c43f62bb..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Accum.hs
+++ /dev/null
@@ -1,292 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Accum
--- Copyright   :  (c) Nickolay Kudasov 2016
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- The lazy 'AccumT' monad transformer, which adds accumulation
--- capabilities (such as declarations or document patches) to a given monad.
---
--- This monad transformer provides append-only accumulation
--- during the computation. For more general access, use
--- "Control.Monad.Trans.State" instead.
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Accum (
-    -- * The Accum monad
-    Accum,
-    accum,
-    runAccum,
-    execAccum,
-    evalAccum,
-    mapAccum,
-    -- * The AccumT monad transformer
-    AccumT(AccumT),
-    runAccumT,
-    execAccumT,
-    evalAccumT,
-    mapAccumT,
-    -- * Accum operations
-    look,
-    looks,
-    add,
-    -- * Lifting other operations
-    liftCallCC,
-    liftCallCC',
-    liftCatch,
-    liftListen,
-    liftPass,
-    -- * Monad transformations
-    readerToAccumT,
-    writerToAccumT,
-    accumToStateT,
-  ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Trans.Class
-import Control.Monad.Trans.Reader (ReaderT(..))
-import Control.Monad.Trans.Writer (WriterT(..))
-import Control.Monad.Trans.State  (StateT(..))
-import Data.Functor.Identity
-
-import Control.Applicative
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix
-import Control.Monad.Signatures
-#if !MIN_VERSION_base(4,8,0)
-import Data.Monoid
-#endif
-
--- ---------------------------------------------------------------------------
--- | An accumulation monad parameterized by the type @w@ of output to accumulate.
---
--- The 'return' function produces the output 'mempty', while @>>=@
--- combines the outputs of the subcomputations using 'mappend'.
-type Accum w = AccumT w Identity
-
--- | Construct an accumulation computation from a (result, output) pair.
--- (The inverse of 'runAccum'.)
-accum :: (Monad m) => (w -> (a, w)) -> AccumT w m a
-accum f = AccumT $ \ w -> return (f w)
-{-# INLINE accum #-}
-
--- | Unwrap an accumulation computation as a (result, output) pair.
--- (The inverse of 'accum'.)
-runAccum :: Accum w a -> w -> (a, w)
-runAccum m = runIdentity . runAccumT m
-{-# INLINE runAccum #-}
-
--- | Extract the output from an accumulation computation.
---
--- * @'execAccum' m w = 'snd' ('runAccum' m w)@
-execAccum :: Accum w a -> w -> w
-execAccum m w = snd (runAccum m w)
-{-# INLINE execAccum #-}
-
--- | Evaluate an accumulation computation with the given initial output history
--- and return the final value, discarding the final output.
---
--- * @'evalAccum' m w = 'fst' ('runAccum' m w)@
-evalAccum :: (Monoid w) => Accum w a -> w -> a
-evalAccum m w = fst (runAccum m w)
-{-# INLINE evalAccum #-}
-
--- | Map both the return value and output of a computation using
--- the given function.
---
--- * @'runAccum' ('mapAccum' f m) = f . 'runAccum' m@
-mapAccum :: ((a, w) -> (b, w)) -> Accum w a -> Accum w b
-mapAccum f = mapAccumT (Identity . f . runIdentity)
-{-# INLINE mapAccum #-}
-
--- ---------------------------------------------------------------------------
--- | An accumulation monad parameterized by:
---
---   * @w@ - the output to accumulate.
---
---   * @m@ - The inner monad.
---
--- The 'return' function produces the output 'mempty', while @>>=@
--- combines the outputs of the subcomputations using 'mappend'.
---
--- This monad transformer is similar to both state and writer monad transformers.
--- Thus it can be seen as
---
---  * a restricted append-only version of a state monad transformer or
---
---  * a writer monad transformer with the extra ability to read all previous output.
-newtype AccumT w m a = AccumT (w -> m (a, w))
-
--- | Unwrap an accumulation computation.
-runAccumT :: AccumT w m a -> w -> m (a, w)
-runAccumT (AccumT f) = f
-{-# INLINE runAccumT #-}
-
--- | Extract the output from an accumulation computation.
---
--- * @'execAccumT' m w = 'liftM' 'snd' ('runAccumT' m w)@
-execAccumT :: (Monad m) => AccumT w m a -> w -> m w
-execAccumT m w = do
-    ~(_, w') <- runAccumT m w
-    return w'
-{-# INLINE execAccumT #-}
-
--- | Evaluate an accumulation computation with the given initial output history
--- and return the final value, discarding the final output.
---
--- * @'evalAccumT' m w = 'liftM' 'fst' ('runAccumT' m w)@
-evalAccumT :: (Monad m, Monoid w) => AccumT w m a -> w -> m a
-evalAccumT m w = do
-    ~(a, _) <- runAccumT m w
-    return a
-{-# INLINE evalAccumT #-}
-
--- | Map both the return value and output of a computation using
--- the given function.
---
--- * @'runAccumT' ('mapAccumT' f m) = f . 'runAccumT' m@
-mapAccumT :: (m (a, w) -> n (b, w)) -> AccumT w m a -> AccumT w n b
-mapAccumT f m = AccumT (f . runAccumT m)
-{-# INLINE mapAccumT #-}
-
-instance (Functor m) => Functor (AccumT w m) where
-    fmap f = mapAccumT $ fmap $ \ ~(a, w) -> (f a, w)
-    {-# INLINE fmap #-}
-
-instance (Monoid w, Functor m, Monad m) => Applicative (AccumT w m) where
-    pure a  = AccumT $ const $ return (a, mempty)
-    {-# INLINE pure #-}
-    mf <*> mv = AccumT $ \ w -> do
-      ~(f, w')  <- runAccumT mf w
-      ~(v, w'') <- runAccumT mv (w `mappend` w')
-      return (f v, w' `mappend` w'')
-    {-# INLINE (<*>) #-}
-
-instance (Monoid w, Functor m, MonadPlus m) => Alternative (AccumT w m) where
-    empty   = AccumT $ const mzero
-    {-# INLINE empty #-}
-    m <|> n = AccumT $ \ w -> runAccumT m w `mplus` runAccumT n w
-    {-# INLINE (<|>) #-}
-
-instance (Monoid w, Functor m, Monad m) => Monad (AccumT w m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a  = AccumT $ const $ return (a, mempty)
-    {-# INLINE return #-}
-#endif
-    m >>= k  = AccumT $ \ w -> do
-        ~(a, w')  <- runAccumT m w
-        ~(b, w'') <- runAccumT (k a) (w `mappend` w')
-        return (b, w' `mappend` w'')
-    {-# INLINE (>>=) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail msg = AccumT $ const (fail msg)
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Monoid w, Fail.MonadFail m) => Fail.MonadFail (AccumT w m) where
-    fail msg = AccumT $ const (Fail.fail msg)
-    {-# INLINE fail #-}
-#endif
-
-instance (Monoid w, Functor m, MonadPlus m) => MonadPlus (AccumT w m) where
-    mzero       = AccumT $ const mzero
-    {-# INLINE mzero #-}
-    m `mplus` n = AccumT $ \ w -> runAccumT m w `mplus` runAccumT n w
-    {-# INLINE mplus #-}
-
-instance (Monoid w, Functor m, MonadFix m) => MonadFix (AccumT w m) where
-    mfix m = AccumT $ \ w -> mfix $ \ ~(a, _) -> runAccumT (m a) w
-    {-# INLINE mfix #-}
-
-instance (Monoid w) => MonadTrans (AccumT w) where
-    lift m = AccumT $ const $ do
-        a <- m
-        return (a, mempty)
-    {-# INLINE lift #-}
-
-instance (Monoid w, Functor m, MonadIO m) => MonadIO (AccumT w m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
--- | @'look'@ is an action that fetches all the previously accumulated output.
-look :: (Monoid w, Monad m) => AccumT w m w
-look = AccumT $ \ w -> return (w, mempty)
-
--- | @'look'@ is an action that retrieves a function of the previously accumulated output.
-looks :: (Monoid w, Monad m) => (w -> a) -> AccumT w m a
-looks f = AccumT $ \ w -> return (f w, mempty)
-
--- | @'add' w@ is an action that produces the output @w@.
-add :: (Monad m) => w -> AccumT w m ()
-add w = accum $ const ((), w)
-{-# INLINE add #-}
-
--- | Uniform lifting of a @callCC@ operation to the new monad.
--- This version rolls back to the original output history on entering the
--- continuation.
-liftCallCC :: CallCC m (a, w) (b, w) -> CallCC (AccumT w m) a b
-liftCallCC callCC f = AccumT $ \ w ->
-    callCC $ \ c ->
-    runAccumT (f (\ a -> AccumT $ \ _ -> c (a, w))) w
-{-# INLINE liftCallCC #-}
-
--- | In-situ lifting of a @callCC@ operation to the new monad.
--- This version uses the current output history on entering the continuation.
--- It does not satisfy the uniformity property (see "Control.Monad.Signatures").
-liftCallCC' :: CallCC m (a, w) (b, w) -> CallCC (AccumT w m) a b
-liftCallCC' callCC f = AccumT $ \ s ->
-    callCC $ \ c ->
-    runAccumT (f (\ a -> AccumT $ \ s' -> c (a, s'))) s
-{-# INLINE liftCallCC' #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m (a, w) -> Catch e (AccumT w m) a
-liftCatch catchE m h =
-    AccumT $ \ w -> runAccumT m w `catchE` \ e -> runAccumT (h e) w
-{-# INLINE liftCatch #-}
-
--- | Lift a @listen@ operation to the new monad.
-liftListen :: (Monad m) => Listen w m (a, s) -> Listen w (AccumT s m) a
-liftListen listen m = AccumT $ \ s -> do
-    ~((a, s'), w) <- listen (runAccumT m s)
-    return ((a, w), s')
-{-# INLINE liftListen #-}
-
--- | Lift a @pass@ operation to the new monad.
-liftPass :: (Monad m) => Pass w m (a, s) -> Pass w (AccumT s m) a
-liftPass pass m = AccumT $ \ s -> pass $ do
-    ~((a, f), s') <- runAccumT m s
-    return ((a, s'), f)
-{-# INLINE liftPass #-}
-
--- | Convert a read-only computation into an accumulation computation.
-readerToAccumT :: (Functor m, Monoid w) => ReaderT w m a -> AccumT w m a
-readerToAccumT (ReaderT f) = AccumT $ \ w -> fmap (\ a -> (a, mempty)) (f w)
-{-# INLINE readerToAccumT #-}
-
--- | Convert a writer computation into an accumulation computation.
-writerToAccumT :: WriterT w m a -> AccumT w m a
-writerToAccumT (WriterT m) = AccumT $ const $ m
-{-# INLINE writerToAccumT #-}
-
--- | Convert an accumulation (append-only) computation into a fully
--- stateful computation.
-accumToStateT :: (Functor m, Monoid s) => AccumT s m a -> StateT s m a
-accumToStateT (AccumT f) =
-    StateT $ \ w -> fmap (\ ~(a, w') -> (a, w `mappend` w')) (f w)
-{-# INLINE accumToStateT #-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Class.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Class.hs
deleted file mode 100644
index b92bc0e8b0f6..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Class.hs
+++ /dev/null
@@ -1,262 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Class
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- The class of monad transformers.
---
--- A monad transformer makes a new monad out of an existing monad, such
--- that computations of the old monad may be embedded in the new one.
--- To construct a monad with a desired set of features, one typically
--- starts with a base monad, such as 'Data.Functor.Identity.Identity', @[]@ or 'IO', and
--- applies a sequence of monad transformers.
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Class (
-    -- * Transformer class
-    MonadTrans(..)
-
-    -- * Conventions
-    -- $conventions
-
-    -- * Strict monads
-    -- $strict
-
-    -- * Examples
-    -- ** Parsing
-    -- $example1
-
-    -- ** Parsing and counting
-    -- $example2
-
-    -- ** Interpreter monad
-    -- $example3
-  ) where
-
--- | The class of monad transformers.  Instances should satisfy the
--- following laws, which state that 'lift' is a monad transformation:
---
--- * @'lift' . 'return' = 'return'@
---
--- * @'lift' (m >>= f) = 'lift' m >>= ('lift' . f)@
-
-class MonadTrans t where
-    -- | Lift a computation from the argument monad to the constructed monad.
-    lift :: (Monad m) => m a -> t m a
-
-{- $conventions
-Most monad transformer modules include the special case of applying
-the transformer to 'Data.Functor.Identity.Identity'.  For example,
-@'Control.Monad.Trans.State.Lazy.State' s@ is an abbreviation for
-@'Control.Monad.Trans.State.Lazy.StateT' s 'Data.Functor.Identity.Identity'@.
-
-Each monad transformer also comes with an operation @run@/XXX/@T@ to
-unwrap the transformer, exposing a computation of the inner monad.
-(Currently these functions are defined as field labels, but in the next
-major release they will be separate functions.)
-
-All of the monad transformers except 'Control.Monad.Trans.Cont.ContT'
-and 'Control.Monad.Trans.Cont.SelectT' are functors on the category
-of monads: in addition to defining a mapping of monads, they
-also define a mapping from transformations between base monads to
-transformations between transformed monads, called @map@/XXX/@T@.
-Thus given a monad transformation @t :: M a -> N a@, the combinator
-'Control.Monad.Trans.State.Lazy.mapStateT' constructs a monad
-transformation
-
-> mapStateT t :: StateT s M a -> StateT s N a
-
-For these monad transformers, 'lift' is a natural transformation in the
-category of monads, i.e. for any monad transformation @t :: M a -> N a@,
-
-* @map@/XXX/@T t . 'lift' = 'lift' . t@
-
-Each of the monad transformers introduces relevant operations.
-In a sequence of monad transformers, most of these operations.can be
-lifted through other transformers using 'lift' or the @map@/XXX/@T@
-combinator, but a few with more complex type signatures require
-specialized lifting combinators, called @lift@/Op/
-(see "Control.Monad.Signatures").
--}
-
-{- $strict
-
-A monad is said to be /strict/ if its '>>=' operation is strict in its first
-argument.  The base monads 'Maybe', @[]@ and 'IO' are strict:
-
->>> undefined >> return 2 :: Maybe Integer
-*** Exception: Prelude.undefined
-
-However the monad 'Data.Functor.Identity.Identity' is not:
-
->>> runIdentity (undefined >> return 2)
-2
-
-In a strict monad you know when each action is executed, but the monad
-is not necessarily strict in the return value, or in other components
-of the monad, such as a state.  However you can use 'seq' to create
-an action that is strict in the component you want evaluated.
--}
-
-{- $example1
-
-The first example is a parser monad in the style of
-
-* \"Monadic parsing in Haskell\", by Graham Hutton and Erik Meijer,
-/Journal of Functional Programming/ 8(4):437-444, July 1998
-(<http://www.cs.nott.ac.uk/~pszgmh/bib.html#pearl>).
-
-We can define such a parser monad by adding a state (the 'String' remaining
-to be parsed) to the @[]@ monad, which provides non-determinism:
-
-> import Control.Monad.Trans.State
->
-> type Parser = StateT String []
-
-Then @Parser@ is an instance of @MonadPlus@: monadic sequencing implements
-concatenation of parsers, while @mplus@ provides choice.  To use parsers,
-we need a primitive to run a constructed parser on an input string:
-
-> runParser :: Parser a -> String -> [a]
-> runParser p s = [x | (x, "") <- runStateT p s]
-
-Finally, we need a primitive parser that matches a single character,
-from which arbitrarily complex parsers may be constructed:
-
-> item :: Parser Char
-> item = do
->     c:cs <- get
->     put cs
->     return c
-
-In this example we use the operations @get@ and @put@ from
-"Control.Monad.Trans.State", which are defined only for monads that are
-applications of 'Control.Monad.Trans.State.Lazy.StateT'.  Alternatively one
-could use monad classes from the @mtl@ package or similar, which contain
-methods @get@ and @put@ with types generalized over all suitable monads.
--}
-
-{- $example2
-
-We can define a parser that also counts by adding a
-'Control.Monad.Trans.Writer.Lazy.WriterT' transformer:
-
-> import Control.Monad.Trans.Class
-> import Control.Monad.Trans.State
-> import Control.Monad.Trans.Writer
-> import Data.Monoid
->
-> type Parser = WriterT (Sum Int) (StateT String [])
-
-The function that applies a parser must now unwrap each of the monad
-transformers in turn:
-
-> runParser :: Parser a -> String -> [(a, Int)]
-> runParser p s = [(x, n) | ((x, Sum n), "") <- runStateT (runWriterT p) s]
-
-To define the @item@ parser, we need to lift the
-'Control.Monad.Trans.State.Lazy.StateT' operations through the
-'Control.Monad.Trans.Writer.Lazy.WriterT' transformer.
-
-> item :: Parser Char
-> item = do
->     c:cs <- lift get
->     lift (put cs)
->     return c
-
-In this case, we were able to do this with 'lift', but operations with
-more complex types require special lifting functions, which are provided
-by monad transformers for which they can be implemented.  If you use the
-monad classes of the @mtl@ package or similar, this lifting is handled
-automatically by the instances of the classes, and you need only use
-the generalized methods @get@ and @put@.
-
-We can also define a primitive using the Writer:
-
-> tick :: Parser ()
-> tick = tell (Sum 1)
-
-Then the parser will keep track of how many @tick@s it executes.
--}
-
-{- $example3
-
-This example is a cut-down version of the one in
-
-* \"Monad Transformers and Modular Interpreters\",
-by Sheng Liang, Paul Hudak and Mark Jones in /POPL'95/
-(<http://web.cecs.pdx.edu/~mpj/pubs/modinterp.html>).
-
-Suppose we want to define an interpreter that can do I\/O and has
-exceptions, an environment and a modifiable store.  We can define
-a monad that supports all these things as a stack of monad transformers:
-
-> import Control.Monad.Trans.Class
-> import Control.Monad.Trans.State
-> import qualified Control.Monad.Trans.Reader as R
-> import qualified Control.Monad.Trans.Except as E
-> import Control.Monad.IO.Class
->
-> type InterpM = StateT Store (R.ReaderT Env (E.ExceptT Err IO))
-
-for suitable types @Store@, @Env@ and @Err@.
-
-Now we would like to be able to use the operations associated with each
-of those monad transformers on @InterpM@ actions.  Since the uppermost
-monad transformer of @InterpM@ is 'Control.Monad.Trans.State.Lazy.StateT',
-it already has the state operations @get@ and @set@.
-
-The first of the 'Control.Monad.Trans.Reader.ReaderT' operations,
-'Control.Monad.Trans.Reader.ask', is a simple action, so we can lift it
-through 'Control.Monad.Trans.State.Lazy.StateT' to @InterpM@ using 'lift':
-
-> ask :: InterpM Env
-> ask = lift R.ask
-
-The other 'Control.Monad.Trans.Reader.ReaderT' operation,
-'Control.Monad.Trans.Reader.local', has a suitable type for lifting
-using 'Control.Monad.Trans.State.Lazy.mapStateT':
-
-> local :: (Env -> Env) -> InterpM a -> InterpM a
-> local f = mapStateT (R.local f)
-
-We also wish to lift the operations of 'Control.Monad.Trans.Except.ExceptT'
-through both 'Control.Monad.Trans.Reader.ReaderT' and
-'Control.Monad.Trans.State.Lazy.StateT'.  For the operation
-'Control.Monad.Trans.Except.throwE', we know @throwE e@ is a simple
-action, so we can lift it through the two monad transformers to @InterpM@
-with two 'lift's:
-
-> throwE :: Err -> InterpM a
-> throwE e = lift (lift (E.throwE e))
-
-The 'Control.Monad.Trans.Except.catchE' operation has a more
-complex type, so we need to use the special-purpose lifting function
-@liftCatch@ provided by most monad transformers.  Here we use
-the 'Control.Monad.Trans.Reader.ReaderT' version followed by the
-'Control.Monad.Trans.State.Lazy.StateT' version:
-
-> catchE :: InterpM a -> (Err -> InterpM a) -> InterpM a
-> catchE = liftCatch (R.liftCatch E.catchE)
-
-We could lift 'IO' actions to @InterpM@ using three 'lift's, but @InterpM@
-is automatically an instance of 'Control.Monad.IO.Class.MonadIO',
-so we can use 'Control.Monad.IO.Class.liftIO' instead:
-
-> putStr :: String -> InterpM ()
-> putStr s = liftIO (Prelude.putStr s)
-
--}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Cont.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Cont.hs
deleted file mode 100644
index ce2005d4b29f..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Cont.hs
+++ /dev/null
@@ -1,240 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 706
-{-# LANGUAGE PolyKinds #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Cont
--- Copyright   :  (c) The University of Glasgow 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Continuation monads.
---
--- Delimited continuation operators are taken from Kenichi Asai and Oleg
--- Kiselyov's tutorial at CW 2011, \"Introduction to programming with
--- shift and reset\" (<http://okmij.org/ftp/continuations/#tutorial>).
---
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Cont (
-    -- * The Cont monad
-    Cont,
-    cont,
-    runCont,
-    evalCont,
-    mapCont,
-    withCont,
-    -- ** Delimited continuations
-    reset, shift,
-    -- * The ContT monad transformer
-    ContT(..),
-    evalContT,
-    mapContT,
-    withContT,
-    callCC,
-    -- ** Delimited continuations
-    resetT, shiftT,
-    -- * Lifting other operations
-    liftLocal,
-  ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Trans.Class
-import Data.Functor.Identity
-
-import Control.Applicative
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-
-{- |
-Continuation monad.
-@Cont r a@ is a CPS ("continuation-passing style") computation that produces an
-intermediate result of type @a@ within a CPS computation whose final result type
-is @r@.
-
-The @return@ function simply creates a continuation which passes the value on.
-
-The @>>=@ operator adds the bound function into the continuation chain.
--}
-type Cont r = ContT r Identity
-
--- | Construct a continuation-passing computation from a function.
--- (The inverse of 'runCont')
-cont :: ((a -> r) -> r) -> Cont r a
-cont f = ContT (\ c -> Identity (f (runIdentity . c)))
-{-# INLINE cont #-}
-
--- | The result of running a CPS computation with a given final continuation.
--- (The inverse of 'cont')
-runCont
-    :: Cont r a         -- ^ continuation computation (@Cont@).
-    -> (a -> r)         -- ^ the final continuation, which produces
-                        -- the final result (often 'id').
-    -> r
-runCont m k = runIdentity (runContT m (Identity . k))
-{-# INLINE runCont #-}
-
--- | The result of running a CPS computation with the identity as the
--- final continuation.
---
--- * @'evalCont' ('return' x) = x@
-evalCont :: Cont r r -> r
-evalCont m = runIdentity (evalContT m)
-{-# INLINE evalCont #-}
-
--- | Apply a function to transform the result of a continuation-passing
--- computation.
---
--- * @'runCont' ('mapCont' f m) = f . 'runCont' m@
-mapCont :: (r -> r) -> Cont r a -> Cont r a
-mapCont f = mapContT (Identity . f . runIdentity)
-{-# INLINE mapCont #-}
-
--- | Apply a function to transform the continuation passed to a CPS
--- computation.
---
--- * @'runCont' ('withCont' f m) = 'runCont' m . f@
-withCont :: ((b -> r) -> (a -> r)) -> Cont r a -> Cont r b
-withCont f = withContT ((Identity .) . f . (runIdentity .))
-{-# INLINE withCont #-}
-
--- | @'reset' m@ delimits the continuation of any 'shift' inside @m@.
---
--- * @'reset' ('return' m) = 'return' m@
---
-reset :: Cont r r -> Cont r' r
-reset = resetT
-{-# INLINE reset #-}
-
--- | @'shift' f@ captures the continuation up to the nearest enclosing
--- 'reset' and passes it to @f@:
---
--- * @'reset' ('shift' f >>= k) = 'reset' (f ('evalCont' . k))@
---
-shift :: ((a -> r) -> Cont r r) -> Cont r a
-shift f = shiftT (f . (runIdentity .))
-{-# INLINE shift #-}
-
--- | The continuation monad transformer.
--- Can be used to add continuation handling to any type constructor:
--- the 'Monad' instance and most of the operations do not require @m@
--- to be a monad.
---
--- 'ContT' is not a functor on the category of monads, and many operations
--- cannot be lifted through it.
-newtype ContT r m a = ContT { runContT :: (a -> m r) -> m r }
-
--- | The result of running a CPS computation with 'return' as the
--- final continuation.
---
--- * @'evalContT' ('lift' m) = m@
-evalContT :: (Monad m) => ContT r m r -> m r
-evalContT m = runContT m return
-{-# INLINE evalContT #-}
-
--- | Apply a function to transform the result of a continuation-passing
--- computation.  This has a more restricted type than the @map@ operations
--- for other monad transformers, because 'ContT' does not define a functor
--- in the category of monads.
---
--- * @'runContT' ('mapContT' f m) = f . 'runContT' m@
-mapContT :: (m r -> m r) -> ContT r m a -> ContT r m a
-mapContT f m = ContT $ f . runContT m
-{-# INLINE mapContT #-}
-
--- | Apply a function to transform the continuation passed to a CPS
--- computation.
---
--- * @'runContT' ('withContT' f m) = 'runContT' m . f@
-withContT :: ((b -> m r) -> (a -> m r)) -> ContT r m a -> ContT r m b
-withContT f m = ContT $ runContT m . f
-{-# INLINE withContT #-}
-
-instance Functor (ContT r m) where
-    fmap f m = ContT $ \ c -> runContT m (c . f)
-    {-# INLINE fmap #-}
-
-instance Applicative (ContT r m) where
-    pure x  = ContT ($ x)
-    {-# INLINE pure #-}
-    f <*> v = ContT $ \ c -> runContT f $ \ g -> runContT v (c . g)
-    {-# INLINE (<*>) #-}
-    m *> k = m >>= \_ -> k
-    {-# INLINE (*>) #-}
-
-instance Monad (ContT r m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return x = ContT ($ x)
-    {-# INLINE return #-}
-#endif
-    m >>= k  = ContT $ \ c -> runContT m (\ x -> runContT (k x) c)
-    {-# INLINE (>>=) #-}
-
-#if MIN_VERSION_base(4,9,0)
-instance (Fail.MonadFail m) => Fail.MonadFail (ContT r m) where
-    fail msg = ContT $ \ _ -> Fail.fail msg
-    {-# INLINE fail #-}
-#endif
-
-instance MonadTrans (ContT r) where
-    lift m = ContT (m >>=)
-    {-# INLINE lift #-}
-
-instance (MonadIO m) => MonadIO (ContT r m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
--- | @callCC@ (call-with-current-continuation) calls its argument
--- function, passing it the current continuation.  It provides
--- an escape continuation mechanism for use with continuation
--- monads.  Escape continuations one allow to abort the current
--- computation and return a value immediately.  They achieve
--- a similar effect to 'Control.Monad.Trans.Except.throwE'
--- and 'Control.Monad.Trans.Except.catchE' within an
--- 'Control.Monad.Trans.Except.ExceptT' monad.  The advantage of this
--- function over calling 'return' is that it makes the continuation
--- explicit, allowing more flexibility and better control.
---
--- The standard idiom used with @callCC@ is to provide a lambda-expression
--- to name the continuation. Then calling the named continuation anywhere
--- within its scope will escape from the computation, even if it is many
--- layers deep within nested computations.
-callCC :: ((a -> ContT r m b) -> ContT r m a) -> ContT r m a
-callCC f = ContT $ \ c -> runContT (f (\ x -> ContT $ \ _ -> c x)) c
-{-# INLINE callCC #-}
-
--- | @'resetT' m@ delimits the continuation of any 'shiftT' inside @m@.
---
--- * @'resetT' ('lift' m) = 'lift' m@
---
-resetT :: (Monad m) => ContT r m r -> ContT r' m r
-resetT = lift . evalContT
-{-# INLINE resetT #-}
-
--- | @'shiftT' f@ captures the continuation up to the nearest enclosing
--- 'resetT' and passes it to @f@:
---
--- * @'resetT' ('shiftT' f >>= k) = 'resetT' (f ('evalContT' . k))@
---
-shiftT :: (Monad m) => ((a -> m r) -> ContT r m r) -> ContT r m a
-shiftT f = ContT (evalContT . f)
-{-# INLINE shiftT #-}
-
--- | @'liftLocal' ask local@ yields a @local@ function for @'ContT' r m@.
-liftLocal :: (Monad m) => m r' -> ((r' -> r') -> m r -> m r) ->
-    (r' -> r') -> ContT r m a -> ContT r m a
-liftLocal ask local f m = ContT $ \ c -> do
-    r <- ask
-    local f (runContT m (local (const r) . c))
-{-# INLINE liftLocal #-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Error.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Error.hs
deleted file mode 100644
index 6eda4b3e015a..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Error.hs
+++ /dev/null
@@ -1,333 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
-#if !(MIN_VERSION_base(4,9,0))
-{-# OPTIONS_GHC -fno-warn-orphans #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Error
--- Copyright   :  (c) Michael Weber <michael.weber@post.rwth-aachen.de> 2001,
---                (c) Jeff Newbern 2003-2006,
---                (c) Andriy Palamarchuk 2006
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- This monad transformer adds the ability to fail or throw exceptions
--- to a monad.
---
--- A sequence of actions succeeds, producing a value, only if all the
--- actions in the sequence are successful.  If one fails with an error,
--- the rest of the sequence is skipped and the composite action fails
--- with that error.
---
--- If the value of the error is not required, the variant in
--- "Control.Monad.Trans.Maybe" may be used instead.
---
--- /Note:/ This module will be removed in a future release.
--- Instead, use "Control.Monad.Trans.Except", which does not restrict
--- the exception type, and also includes a base exception monad.
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Error
-  {-# DEPRECATED "Use Control.Monad.Trans.Except instead" #-} (
-    -- * The ErrorT monad transformer
-    Error(..),
-    ErrorList(..),
-    ErrorT(..),
-    mapErrorT,
-    -- * Error operations
-    throwError,
-    catchError,
-    -- * Lifting other operations
-    liftCallCC,
-    liftListen,
-    liftPass,
-    -- * Examples
-    -- $examples
-  ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Signatures
-import Control.Monad.Trans.Class
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-
-import Control.Applicative
-import Control.Exception (IOException)
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix
-#if !(MIN_VERSION_base(4,6,0))
-import Control.Monad.Instances ()  -- deprecated from base-4.6
-#endif
-import Data.Foldable (Foldable(foldMap))
-import Data.Monoid (mempty)
-import Data.Traversable (Traversable(traverse))
-import System.IO.Error
-
-#if !(MIN_VERSION_base(4,9,0))
--- These instances are in base-4.9.0
-
-instance MonadPlus IO where
-    mzero       = ioError (userError "mzero")
-    m `mplus` n = m `catchIOError` \ _ -> n
-
-instance Alternative IO where
-    empty = mzero
-    (<|>) = mplus
-
-# if !(MIN_VERSION_base(4,4,0))
--- exported by System.IO.Error from base-4.4
-catchIOError :: IO a -> (IOError -> IO a) -> IO a
-catchIOError = catch
-# endif
-#endif
-
-instance (Error e) => Alternative (Either e) where
-    empty        = Left noMsg
-    Left _ <|> n = n
-    m      <|> _ = m
-
-instance (Error e) => MonadPlus (Either e) where
-    mzero            = Left noMsg
-    Left _ `mplus` n = n
-    m      `mplus` _ = m
-
-#if !(MIN_VERSION_base(4,3,0))
--- These instances are in base-4.3
-
-instance Applicative (Either e) where
-    pure          = Right
-    Left  e <*> _ = Left e
-    Right f <*> r = fmap f r
-
-instance Monad (Either e) where
-    return        = Right
-    Left  l >>= _ = Left l
-    Right r >>= k = k r
-
-instance MonadFix (Either e) where
-    mfix f = let
-        a = f $ case a of
-            Right r -> r
-            _       -> error "empty mfix argument"
-        in a
-
-#endif /* base to 4.2.0.x */
-
--- | An exception to be thrown.
---
--- Minimal complete definition: 'noMsg' or 'strMsg'.
-class Error a where
-    -- | Creates an exception without a message.
-    -- The default implementation is @'strMsg' \"\"@.
-    noMsg  :: a
-    -- | Creates an exception with a message.
-    -- The default implementation of @'strMsg' s@ is 'noMsg'.
-    strMsg :: String -> a
-
-    noMsg    = strMsg ""
-    strMsg _ = noMsg
-
-instance Error IOException where
-    strMsg = userError
-
--- | A string can be thrown as an error.
-instance (ErrorList a) => Error [a] where
-    strMsg = listMsg
-
--- | Workaround so that we can have a Haskell 98 instance @'Error' 'String'@.
-class ErrorList a where
-    listMsg :: String -> [a]
-
-instance ErrorList Char where
-    listMsg = id
-
--- | The error monad transformer. It can be used to add error handling
--- to other monads.
---
--- The @ErrorT@ Monad structure is parameterized over two things:
---
--- * e - The error type.
---
--- * m - The inner monad.
---
--- The 'return' function yields a successful computation, while @>>=@
--- sequences two subcomputations, failing on the first error.
-newtype ErrorT e m a = ErrorT { runErrorT :: m (Either e a) }
-
-instance (Eq e, Eq1 m) => Eq1 (ErrorT e m) where
-    liftEq eq (ErrorT x) (ErrorT y) = liftEq (liftEq eq) x y
-
-instance (Ord e, Ord1 m) => Ord1 (ErrorT e m) where
-    liftCompare comp (ErrorT x) (ErrorT y) = liftCompare (liftCompare comp) x y
-
-instance (Read e, Read1 m) => Read1 (ErrorT e m) where
-    liftReadsPrec rp rl = readsData $
-        readsUnaryWith (liftReadsPrec rp' rl') "ErrorT" ErrorT
-      where
-        rp' = liftReadsPrec rp rl
-        rl' = liftReadList rp rl
-
-instance (Show e, Show1 m) => Show1 (ErrorT e m) where
-    liftShowsPrec sp sl d (ErrorT m) =
-        showsUnaryWith (liftShowsPrec sp' sl') "ErrorT" d m
-      where
-        sp' = liftShowsPrec sp sl
-        sl' = liftShowList sp sl
-
-instance (Eq e, Eq1 m, Eq a) => Eq (ErrorT e m a) where (==) = eq1
-instance (Ord e, Ord1 m, Ord a) => Ord (ErrorT e m a) where compare = compare1
-instance (Read e, Read1 m, Read a) => Read (ErrorT e m a) where
-    readsPrec = readsPrec1
-instance (Show e, Show1 m, Show a) => Show (ErrorT e m a) where
-    showsPrec = showsPrec1
-
--- | Map the unwrapped computation using the given function.
---
--- * @'runErrorT' ('mapErrorT' f m) = f ('runErrorT' m)@
-mapErrorT :: (m (Either e a) -> n (Either e' b))
-          -> ErrorT e m a
-          -> ErrorT e' n b
-mapErrorT f m = ErrorT $ f (runErrorT m)
-
-instance (Functor m) => Functor (ErrorT e m) where
-    fmap f = ErrorT . fmap (fmap f) . runErrorT
-
-instance (Foldable f) => Foldable (ErrorT e f) where
-    foldMap f (ErrorT a) = foldMap (either (const mempty) f) a
-
-instance (Traversable f) => Traversable (ErrorT e f) where
-    traverse f (ErrorT a) =
-        ErrorT <$> traverse (either (pure . Left) (fmap Right . f)) a
-
-instance (Functor m, Monad m) => Applicative (ErrorT e m) where
-    pure a  = ErrorT $ return (Right a)
-    f <*> v = ErrorT $ do
-        mf <- runErrorT f
-        case mf of
-            Left  e -> return (Left e)
-            Right k -> do
-                mv <- runErrorT v
-                case mv of
-                    Left  e -> return (Left e)
-                    Right x -> return (Right (k x))
-
-instance (Functor m, Monad m, Error e) => Alternative (ErrorT e m) where
-    empty = mzero
-    (<|>) = mplus
-
-instance (Monad m, Error e) => Monad (ErrorT e m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a = ErrorT $ return (Right a)
-#endif
-    m >>= k  = ErrorT $ do
-        a <- runErrorT m
-        case a of
-            Left  l -> return (Left l)
-            Right r -> runErrorT (k r)
-#if !(MIN_VERSION_base(4,13,0))
-    fail msg = ErrorT $ return (Left (strMsg msg))
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Monad m, Error e) => Fail.MonadFail (ErrorT e m) where
-    fail msg = ErrorT $ return (Left (strMsg msg))
-#endif
-
-instance (Monad m, Error e) => MonadPlus (ErrorT e m) where
-    mzero       = ErrorT $ return (Left noMsg)
-    m `mplus` n = ErrorT $ do
-        a <- runErrorT m
-        case a of
-            Left  _ -> runErrorT n
-            Right r -> return (Right r)
-
-instance (MonadFix m, Error e) => MonadFix (ErrorT e m) where
-    mfix f = ErrorT $ mfix $ \ a -> runErrorT $ f $ case a of
-        Right r -> r
-        _       -> error "empty mfix argument"
-
-instance MonadTrans (ErrorT e) where
-    lift m = ErrorT $ do
-        a <- m
-        return (Right a)
-
-instance (Error e, MonadIO m) => MonadIO (ErrorT e m) where
-    liftIO = lift . liftIO
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant m => Contravariant (ErrorT e m) where
-    contramap f = ErrorT . contramap (fmap f) . runErrorT
-#endif
-
--- | Signal an error value @e@.
---
--- * @'runErrorT' ('throwError' e) = 'return' ('Left' e)@
---
--- * @'throwError' e >>= m = 'throwError' e@
-throwError :: (Monad m) => e -> ErrorT e m a
-throwError l = ErrorT $ return (Left l)
-
--- | Handle an error.
---
--- * @'catchError' h ('lift' m) = 'lift' m@
---
--- * @'catchError' h ('throwError' e) = h e@
-catchError :: (Monad m) =>
-    ErrorT e m a                -- ^ the inner computation
-    -> (e -> ErrorT e m a)      -- ^ a handler for errors in the inner
-                                -- computation
-    -> ErrorT e m a
-m `catchError` h = ErrorT $ do
-    a <- runErrorT m
-    case a of
-        Left  l -> runErrorT (h l)
-        Right r -> return (Right r)
-
--- | Lift a @callCC@ operation to the new monad.
-liftCallCC :: CallCC m (Either e a) (Either e b) -> CallCC (ErrorT e m) a b
-liftCallCC callCC f = ErrorT $
-    callCC $ \ c ->
-    runErrorT (f (\ a -> ErrorT $ c (Right a)))
-
--- | Lift a @listen@ operation to the new monad.
-liftListen :: (Monad m) => Listen w m (Either e a) -> Listen w (ErrorT e m) a
-liftListen listen = mapErrorT $ \ m -> do
-    (a, w) <- listen m
-    return $! fmap (\ r -> (r, w)) a
-
--- | Lift a @pass@ operation to the new monad.
-liftPass :: (Monad m) => Pass w m (Either e a) -> Pass w (ErrorT e m) a
-liftPass pass = mapErrorT $ \ m -> pass $ do
-    a <- m
-    return $! case a of
-        Left  l      -> (Left  l, id)
-        Right (r, f) -> (Right r, f)
-
-{- $examples
-
-Wrapping an IO action that can throw an error @e@:
-
-> type ErrorWithIO e a = ErrorT e IO a
-> ==> ErrorT (IO (Either e a))
-
-An IO monad wrapped in @StateT@ inside of @ErrorT@:
-
-> type ErrorAndStateWithIO e s a = ErrorT e (StateT s IO) a
-> ==> ErrorT (StateT s IO (Either e a))
-> ==> ErrorT (StateT (s -> IO (Either e a,s)))
-
--}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Except.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Except.hs
deleted file mode 100644
index 477b9dd4826c..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Except.hs
+++ /dev/null
@@ -1,316 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Except
--- Copyright   :  (C) 2013 Ross Paterson
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- This monad transformer extends a monad with the ability to throw exceptions.
---
--- A sequence of actions terminates normally, producing a value,
--- only if none of the actions in the sequence throws an exception.
--- If one throws an exception, the rest of the sequence is skipped and
--- the composite action exits with that exception.
---
--- If the value of the exception is not required, the variant in
--- "Control.Monad.Trans.Maybe" may be used instead.
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Except (
-    -- * The Except monad
-    Except,
-    except,
-    runExcept,
-    mapExcept,
-    withExcept,
-    -- * The ExceptT monad transformer
-    ExceptT(ExceptT),
-    runExceptT,
-    mapExceptT,
-    withExceptT,
-    -- * Exception operations
-    throwE,
-    catchE,
-    -- * Lifting other operations
-    liftCallCC,
-    liftListen,
-    liftPass,
-  ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Signatures
-import Control.Monad.Trans.Class
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-import Data.Functor.Identity
-
-import Control.Applicative
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix
-#if MIN_VERSION_base(4,4,0)
-import Control.Monad.Zip (MonadZip(mzipWith))
-#endif
-import Data.Foldable (Foldable(foldMap))
-import Data.Monoid
-import Data.Traversable (Traversable(traverse))
-
--- | The parameterizable exception monad.
---
--- Computations are either exceptions or normal values.
---
--- The 'return' function returns a normal value, while @>>=@ exits on
--- the first exception.  For a variant that continues after an error
--- and collects all the errors, see 'Control.Applicative.Lift.Errors'.
-type Except e = ExceptT e Identity
-
--- | Constructor for computations in the exception monad.
--- (The inverse of 'runExcept').
-except :: (Monad m) => Either e a -> ExceptT e m a
-except m = ExceptT (return m)
-{-# INLINE except #-}
-
--- | Extractor for computations in the exception monad.
--- (The inverse of 'except').
-runExcept :: Except e a -> Either e a
-runExcept (ExceptT m) = runIdentity m
-{-# INLINE runExcept #-}
-
--- | Map the unwrapped computation using the given function.
---
--- * @'runExcept' ('mapExcept' f m) = f ('runExcept' m)@
-mapExcept :: (Either e a -> Either e' b)
-        -> Except e a
-        -> Except e' b
-mapExcept f = mapExceptT (Identity . f . runIdentity)
-{-# INLINE mapExcept #-}
-
--- | Transform any exceptions thrown by the computation using the given
--- function (a specialization of 'withExceptT').
-withExcept :: (e -> e') -> Except e a -> Except e' a
-withExcept = withExceptT
-{-# INLINE withExcept #-}
-
--- | A monad transformer that adds exceptions to other monads.
---
--- @ExceptT@ constructs a monad parameterized over two things:
---
--- * e - The exception type.
---
--- * m - The inner monad.
---
--- The 'return' function yields a computation that produces the given
--- value, while @>>=@ sequences two subcomputations, exiting on the
--- first exception.
-newtype ExceptT e m a = ExceptT (m (Either e a))
-
-instance (Eq e, Eq1 m) => Eq1 (ExceptT e m) where
-    liftEq eq (ExceptT x) (ExceptT y) = liftEq (liftEq eq) x y
-    {-# INLINE liftEq #-}
-
-instance (Ord e, Ord1 m) => Ord1 (ExceptT e m) where
-    liftCompare comp (ExceptT x) (ExceptT y) =
-        liftCompare (liftCompare comp) x y
-    {-# INLINE liftCompare #-}
-
-instance (Read e, Read1 m) => Read1 (ExceptT e m) where
-    liftReadsPrec rp rl = readsData $
-        readsUnaryWith (liftReadsPrec rp' rl') "ExceptT" ExceptT
-      where
-        rp' = liftReadsPrec rp rl
-        rl' = liftReadList rp rl
-
-instance (Show e, Show1 m) => Show1 (ExceptT e m) where
-    liftShowsPrec sp sl d (ExceptT m) =
-        showsUnaryWith (liftShowsPrec sp' sl') "ExceptT" d m
-      where
-        sp' = liftShowsPrec sp sl
-        sl' = liftShowList sp sl
-
-instance (Eq e, Eq1 m, Eq a) => Eq (ExceptT e m a)
-    where (==) = eq1
-instance (Ord e, Ord1 m, Ord a) => Ord (ExceptT e m a)
-    where compare = compare1
-instance (Read e, Read1 m, Read a) => Read (ExceptT e m a) where
-    readsPrec = readsPrec1
-instance (Show e, Show1 m, Show a) => Show (ExceptT e m a) where
-    showsPrec = showsPrec1
-
--- | The inverse of 'ExceptT'.
-runExceptT :: ExceptT e m a -> m (Either e a)
-runExceptT (ExceptT m) = m
-{-# INLINE runExceptT #-}
-
--- | Map the unwrapped computation using the given function.
---
--- * @'runExceptT' ('mapExceptT' f m) = f ('runExceptT' m)@
-mapExceptT :: (m (Either e a) -> n (Either e' b))
-        -> ExceptT e m a
-        -> ExceptT e' n b
-mapExceptT f m = ExceptT $ f (runExceptT m)
-{-# INLINE mapExceptT #-}
-
--- | Transform any exceptions thrown by the computation using the
--- given function.
-withExceptT :: (Functor m) => (e -> e') -> ExceptT e m a -> ExceptT e' m a
-withExceptT f = mapExceptT $ fmap $ either (Left . f) Right
-{-# INLINE withExceptT #-}
-
-instance (Functor m) => Functor (ExceptT e m) where
-    fmap f = ExceptT . fmap (fmap f) . runExceptT
-    {-# INLINE fmap #-}
-
-instance (Foldable f) => Foldable (ExceptT e f) where
-    foldMap f (ExceptT a) = foldMap (either (const mempty) f) a
-    {-# INLINE foldMap #-}
-
-instance (Traversable f) => Traversable (ExceptT e f) where
-    traverse f (ExceptT a) =
-        ExceptT <$> traverse (either (pure . Left) (fmap Right . f)) a
-    {-# INLINE traverse #-}
-
-instance (Functor m, Monad m) => Applicative (ExceptT e m) where
-    pure a = ExceptT $ return (Right a)
-    {-# INLINE pure #-}
-    ExceptT f <*> ExceptT v = ExceptT $ do
-        mf <- f
-        case mf of
-            Left e -> return (Left e)
-            Right k -> do
-                mv <- v
-                case mv of
-                    Left e -> return (Left e)
-                    Right x -> return (Right (k x))
-    {-# INLINEABLE (<*>) #-}
-    m *> k = m >>= \_ -> k
-    {-# INLINE (*>) #-}
-
-instance (Functor m, Monad m, Monoid e) => Alternative (ExceptT e m) where
-    empty = ExceptT $ return (Left mempty)
-    {-# INLINE empty #-}
-    ExceptT mx <|> ExceptT my = ExceptT $ do
-        ex <- mx
-        case ex of
-            Left e -> liftM (either (Left . mappend e) Right) my
-            Right x -> return (Right x)
-    {-# INLINEABLE (<|>) #-}
-
-instance (Monad m) => Monad (ExceptT e m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a = ExceptT $ return (Right a)
-    {-# INLINE return #-}
-#endif
-    m >>= k = ExceptT $ do
-        a <- runExceptT m
-        case a of
-            Left e -> return (Left e)
-            Right x -> runExceptT (k x)
-    {-# INLINE (>>=) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail = ExceptT . fail
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Fail.MonadFail m) => Fail.MonadFail (ExceptT e m) where
-    fail = ExceptT . Fail.fail
-    {-# INLINE fail #-}
-#endif
-
-instance (Monad m, Monoid e) => MonadPlus (ExceptT e m) where
-    mzero = ExceptT $ return (Left mempty)
-    {-# INLINE mzero #-}
-    ExceptT mx `mplus` ExceptT my = ExceptT $ do
-        ex <- mx
-        case ex of
-            Left e -> liftM (either (Left . mappend e) Right) my
-            Right x -> return (Right x)
-    {-# INLINEABLE mplus #-}
-
-instance (MonadFix m) => MonadFix (ExceptT e m) where
-    mfix f = ExceptT (mfix (runExceptT . f . either (const bomb) id))
-      where bomb = error "mfix (ExceptT): inner computation returned Left value"
-    {-# INLINE mfix #-}
-
-instance MonadTrans (ExceptT e) where
-    lift = ExceptT . liftM Right
-    {-# INLINE lift #-}
-
-instance (MonadIO m) => MonadIO (ExceptT e m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
-#if MIN_VERSION_base(4,4,0)
-instance (MonadZip m) => MonadZip (ExceptT e m) where
-    mzipWith f (ExceptT a) (ExceptT b) = ExceptT $ mzipWith (liftA2 f) a b
-    {-# INLINE mzipWith #-}
-#endif
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant m => Contravariant (ExceptT e m) where
-    contramap f = ExceptT . contramap (fmap f) . runExceptT
-    {-# INLINE contramap #-}
-#endif
-
--- | Signal an exception value @e@.
---
--- * @'runExceptT' ('throwE' e) = 'return' ('Left' e)@
---
--- * @'throwE' e >>= m = 'throwE' e@
-throwE :: (Monad m) => e -> ExceptT e m a
-throwE = ExceptT . return . Left
-{-# INLINE throwE #-}
-
--- | Handle an exception.
---
--- * @'catchE' ('lift' m) h = 'lift' m@
---
--- * @'catchE' ('throwE' e) h = h e@
-catchE :: (Monad m) =>
-    ExceptT e m a               -- ^ the inner computation
-    -> (e -> ExceptT e' m a)    -- ^ a handler for exceptions in the inner
-                                -- computation
-    -> ExceptT e' m a
-m `catchE` h = ExceptT $ do
-    a <- runExceptT m
-    case a of
-        Left  l -> runExceptT (h l)
-        Right r -> return (Right r)
-{-# INLINE catchE #-}
-
--- | Lift a @callCC@ operation to the new monad.
-liftCallCC :: CallCC m (Either e a) (Either e b) -> CallCC (ExceptT e m) a b
-liftCallCC callCC f = ExceptT $
-    callCC $ \ c ->
-    runExceptT (f (\ a -> ExceptT $ c (Right a)))
-{-# INLINE liftCallCC #-}
-
--- | Lift a @listen@ operation to the new monad.
-liftListen :: (Monad m) => Listen w m (Either e a) -> Listen w (ExceptT e m) a
-liftListen listen = mapExceptT $ \ m -> do
-    (a, w) <- listen m
-    return $! fmap (\ r -> (r, w)) a
-{-# INLINE liftListen #-}
-
--- | Lift a @pass@ operation to the new monad.
-liftPass :: (Monad m) => Pass w m (Either e a) -> Pass w (ExceptT e m) a
-liftPass pass = mapExceptT $ \ m -> pass $ do
-    a <- m
-    return $! case a of
-        Left l -> (Left l, id)
-        Right (r, f) -> (Right r, f)
-{-# INLINE liftPass #-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Identity.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Identity.hs
deleted file mode 100644
index 2a0db5e5a165..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Identity.hs
+++ /dev/null
@@ -1,188 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 706
-{-# LANGUAGE PolyKinds #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Identity
--- Copyright   :  (c) 2007 Magnus Therning
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- The identity monad transformer.
---
--- This is useful for functions parameterized by a monad transformer.
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Identity (
-    -- * The identity monad transformer
-    IdentityT(..),
-    mapIdentityT,
-    -- * Lifting other operations
-    liftCatch,
-    liftCallCC,
-  ) where
-
-import Control.Monad.IO.Class (MonadIO(liftIO))
-import Control.Monad.Signatures
-import Control.Monad.Trans.Class (MonadTrans(lift))
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-
-import Control.Applicative
-import Control.Monad (MonadPlus(mzero, mplus))
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix (MonadFix(mfix))
-#if MIN_VERSION_base(4,4,0)
-import Control.Monad.Zip (MonadZip(mzipWith))
-#endif
-import Data.Foldable
-import Data.Traversable (Traversable(traverse))
-import Prelude hiding (foldr, foldr1, foldl, foldl1, null, length)
-
--- | The trivial monad transformer, which maps a monad to an equivalent monad.
-newtype IdentityT f a = IdentityT { runIdentityT :: f a }
-
-instance (Eq1 f) => Eq1 (IdentityT f) where
-    liftEq eq (IdentityT x) (IdentityT y) = liftEq eq x y
-    {-# INLINE liftEq #-}
-
-instance (Ord1 f) => Ord1 (IdentityT f) where
-    liftCompare comp (IdentityT x) (IdentityT y) = liftCompare comp x y
-    {-# INLINE liftCompare #-}
-
-instance (Read1 f) => Read1 (IdentityT f) where
-    liftReadsPrec rp rl = readsData $
-        readsUnaryWith (liftReadsPrec rp rl) "IdentityT" IdentityT
-
-instance (Show1 f) => Show1 (IdentityT f) where
-    liftShowsPrec sp sl d (IdentityT m) =
-        showsUnaryWith (liftShowsPrec sp sl) "IdentityT" d m
-
-instance (Eq1 f, Eq a) => Eq (IdentityT f a) where (==) = eq1
-instance (Ord1 f, Ord a) => Ord (IdentityT f a) where compare = compare1
-instance (Read1 f, Read a) => Read (IdentityT f a) where readsPrec = readsPrec1
-instance (Show1 f, Show a) => Show (IdentityT f a) where showsPrec = showsPrec1
-
-instance (Functor m) => Functor (IdentityT m) where
-    fmap f = mapIdentityT (fmap f)
-    {-# INLINE fmap #-}
-
-instance (Foldable f) => Foldable (IdentityT f) where
-    foldMap f (IdentityT t) = foldMap f t
-    {-# INLINE foldMap #-}
-    foldr f z (IdentityT t) = foldr f z t
-    {-# INLINE foldr #-}
-    foldl f z (IdentityT t) = foldl f z t
-    {-# INLINE foldl #-}
-    foldr1 f (IdentityT t) = foldr1 f t
-    {-# INLINE foldr1 #-}
-    foldl1 f (IdentityT t) = foldl1 f t
-    {-# INLINE foldl1 #-}
-#if MIN_VERSION_base(4,8,0)
-    null (IdentityT t) = null t
-    length (IdentityT t) = length t
-#endif
-
-instance (Traversable f) => Traversable (IdentityT f) where
-    traverse f (IdentityT a) = IdentityT <$> traverse f a
-    {-# INLINE traverse #-}
-
-instance (Applicative m) => Applicative (IdentityT m) where
-    pure x = IdentityT (pure x)
-    {-# INLINE pure #-}
-    (<*>) = lift2IdentityT (<*>)
-    {-# INLINE (<*>) #-}
-    (*>) = lift2IdentityT (*>)
-    {-# INLINE (*>) #-}
-    (<*) = lift2IdentityT (<*)
-    {-# INLINE (<*) #-}
-
-instance (Alternative m) => Alternative (IdentityT m) where
-    empty = IdentityT empty
-    {-# INLINE empty #-}
-    (<|>) = lift2IdentityT (<|>)
-    {-# INLINE (<|>) #-}
-
-instance (Monad m) => Monad (IdentityT m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return = IdentityT . return
-    {-# INLINE return #-}
-#endif
-    m >>= k = IdentityT $ runIdentityT . k =<< runIdentityT m
-    {-# INLINE (>>=) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail msg = IdentityT $ fail msg
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Fail.MonadFail m) => Fail.MonadFail (IdentityT m) where
-    fail msg = IdentityT $ Fail.fail msg
-    {-# INLINE fail #-}
-#endif
-
-instance (MonadPlus m) => MonadPlus (IdentityT m) where
-    mzero = IdentityT mzero
-    {-# INLINE mzero #-}
-    mplus = lift2IdentityT mplus
-    {-# INLINE mplus #-}
-
-instance (MonadFix m) => MonadFix (IdentityT m) where
-    mfix f = IdentityT (mfix (runIdentityT . f))
-    {-# INLINE mfix #-}
-
-instance (MonadIO m) => MonadIO (IdentityT m) where
-    liftIO = IdentityT . liftIO
-    {-# INLINE liftIO #-}
-
-#if MIN_VERSION_base(4,4,0)
-instance (MonadZip m) => MonadZip (IdentityT m) where
-    mzipWith f = lift2IdentityT (mzipWith f)
-    {-# INLINE mzipWith #-}
-#endif
-
-instance MonadTrans IdentityT where
-    lift = IdentityT
-    {-# INLINE lift #-}
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant f => Contravariant (IdentityT f) where
-    contramap f = IdentityT . contramap f . runIdentityT
-    {-# INLINE contramap #-}
-#endif
-
--- | Lift a unary operation to the new monad.
-mapIdentityT :: (m a -> n b) -> IdentityT m a -> IdentityT n b
-mapIdentityT f = IdentityT . f . runIdentityT
-{-# INLINE mapIdentityT #-}
-
--- | Lift a binary operation to the new monad.
-lift2IdentityT ::
-    (m a -> n b -> p c) -> IdentityT m a -> IdentityT n b -> IdentityT p c
-lift2IdentityT f a b = IdentityT (f (runIdentityT a) (runIdentityT b))
-{-# INLINE lift2IdentityT #-}
-
--- | Lift a @callCC@ operation to the new monad.
-liftCallCC :: CallCC m a b -> CallCC (IdentityT m) a b
-liftCallCC callCC f =
-    IdentityT $ callCC $ \ c -> runIdentityT (f (IdentityT . c))
-{-# INLINE liftCallCC #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m a -> Catch e (IdentityT m) a
-liftCatch f m h = IdentityT $ f (runIdentityT m) (runIdentityT . h)
-{-# INLINE liftCatch #-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/List.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/List.hs
deleted file mode 100644
index 0bdbcc732e83..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/List.hs
+++ /dev/null
@@ -1,185 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.List
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- The ListT monad transformer, adding backtracking to a given monad,
--- which must be commutative.
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.List
-  {-# DEPRECATED "This transformer is invalid on most monads" #-} (
-    -- * The ListT monad transformer
-    ListT(..),
-    mapListT,
-    -- * Lifting other operations
-    liftCallCC,
-    liftCatch,
-  ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Signatures
-import Control.Monad.Trans.Class
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-
-import Control.Applicative
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix
-#if MIN_VERSION_base(4,4,0)
-import Control.Monad.Zip (MonadZip(mzipWith))
-#endif
-import Data.Foldable (Foldable(foldMap))
-import Data.Traversable (Traversable(traverse))
-
--- | Parameterizable list monad, with an inner monad.
---
--- /Note:/ this does not yield a monad unless the argument monad is commutative.
-newtype ListT m a = ListT { runListT :: m [a] }
-
-instance (Eq1 m) => Eq1 (ListT m) where
-    liftEq eq (ListT x) (ListT y) = liftEq (liftEq eq) x y
-    {-# INLINE liftEq #-}
-
-instance (Ord1 m) => Ord1 (ListT m) where
-    liftCompare comp (ListT x) (ListT y) = liftCompare (liftCompare comp) x y
-    {-# INLINE liftCompare #-}
-
-instance (Read1 m) => Read1 (ListT m) where
-    liftReadsPrec rp rl = readsData $
-        readsUnaryWith (liftReadsPrec rp' rl') "ListT" ListT
-      where
-        rp' = liftReadsPrec rp rl
-        rl' = liftReadList rp rl
-
-instance (Show1 m) => Show1 (ListT m) where
-    liftShowsPrec sp sl d (ListT m) =
-        showsUnaryWith (liftShowsPrec sp' sl') "ListT" d m
-      where
-        sp' = liftShowsPrec sp sl
-        sl' = liftShowList sp sl
-
-instance (Eq1 m, Eq a) => Eq (ListT m a) where (==) = eq1
-instance (Ord1 m, Ord a) => Ord (ListT m a) where compare = compare1
-instance (Read1 m, Read a) => Read (ListT m a) where readsPrec = readsPrec1
-instance (Show1 m, Show a) => Show (ListT m a) where showsPrec = showsPrec1
-
--- | Map between 'ListT' computations.
---
--- * @'runListT' ('mapListT' f m) = f ('runListT' m)@
-mapListT :: (m [a] -> n [b]) -> ListT m a -> ListT n b
-mapListT f m = ListT $ f (runListT m)
-{-# INLINE mapListT #-}
-
-instance (Functor m) => Functor (ListT m) where
-    fmap f = mapListT $ fmap $ map f
-    {-# INLINE fmap #-}
-
-instance (Foldable f) => Foldable (ListT f) where
-    foldMap f (ListT a) = foldMap (foldMap f) a
-    {-# INLINE foldMap #-}
-
-instance (Traversable f) => Traversable (ListT f) where
-    traverse f (ListT a) = ListT <$> traverse (traverse f) a
-    {-# INLINE traverse #-}
-
-instance (Applicative m) => Applicative (ListT m) where
-    pure a  = ListT $ pure [a]
-    {-# INLINE pure #-}
-    f <*> v = ListT $ (<*>) <$> runListT f <*> runListT v
-    {-# INLINE (<*>) #-}
-
-instance (Applicative m) => Alternative (ListT m) where
-    empty   = ListT $ pure []
-    {-# INLINE empty #-}
-    m <|> n = ListT $ (++) <$> runListT m <*> runListT n
-    {-# INLINE (<|>) #-}
-
-instance (Monad m) => Monad (ListT m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a = ListT $ return [a]
-    {-# INLINE return #-}
-#endif
-    m >>= k  = ListT $ do
-        a <- runListT m
-        b <- mapM (runListT . k) a
-        return (concat b)
-    {-# INLINE (>>=) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail _ = ListT $ return []
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Monad m) => Fail.MonadFail (ListT m) where
-    fail _ = ListT $ return []
-    {-# INLINE fail #-}
-#endif
-
-instance (Monad m) => MonadPlus (ListT m) where
-    mzero       = ListT $ return []
-    {-# INLINE mzero #-}
-    m `mplus` n = ListT $ do
-        a <- runListT m
-        b <- runListT n
-        return (a ++ b)
-    {-# INLINE mplus #-}
-
-instance (MonadFix m) => MonadFix (ListT m) where
-    mfix f = ListT $ mfix (runListT . f . head) >>= \ xs -> case xs of
-        [] -> return []
-        x:_ -> liftM (x:) (runListT (mfix (mapListT (liftM tail) . f)))
-    {-# INLINE mfix #-}
-
-instance MonadTrans ListT where
-    lift m = ListT $ do
-        a <- m
-        return [a]
-    {-# INLINE lift #-}
-
-instance (MonadIO m) => MonadIO (ListT m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
-#if MIN_VERSION_base(4,4,0)
-instance (MonadZip m) => MonadZip (ListT m) where
-    mzipWith f (ListT a) (ListT b) = ListT $ mzipWith (zipWith f) a b
-    {-# INLINE mzipWith #-}
-#endif
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant m => Contravariant (ListT m) where
-    contramap f = ListT . contramap (fmap f) . runListT
-    {-# INLINE contramap #-}
-#endif
-
--- | Lift a @callCC@ operation to the new monad.
-liftCallCC :: CallCC m [a] [b] -> CallCC (ListT m) a b
-liftCallCC callCC f = ListT $
-    callCC $ \ c ->
-    runListT (f (\ a -> ListT $ c [a]))
-{-# INLINE liftCallCC #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m [a] -> Catch e (ListT m) a
-liftCatch catchE m h = ListT $ runListT m
-    `catchE` \ e -> runListT (h e)
-{-# INLINE liftCatch #-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Maybe.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Maybe.hs
deleted file mode 100644
index f02b225444f8..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Maybe.hs
+++ /dev/null
@@ -1,241 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Maybe
--- Copyright   :  (c) 2007 Yitzak Gale, Eric Kidd
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- The 'MaybeT' monad transformer extends a monad with the ability to exit
--- the computation without returning a value.
---
--- A sequence of actions produces a value only if all the actions in
--- the sequence do.  If one exits, the rest of the sequence is skipped
--- and the composite action exits.
---
--- For a variant allowing a range of exception values, see
--- "Control.Monad.Trans.Except".
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Maybe (
-    -- * The MaybeT monad transformer
-    MaybeT(..),
-    mapMaybeT,
-    -- * Monad transformations
-    maybeToExceptT,
-    exceptToMaybeT,
-    -- * Lifting other operations
-    liftCallCC,
-    liftCatch,
-    liftListen,
-    liftPass,
-  ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Signatures
-import Control.Monad.Trans.Class
-import Control.Monad.Trans.Except (ExceptT(..))
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-
-import Control.Applicative
-import Control.Monad (MonadPlus(mzero, mplus), liftM)
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix (MonadFix(mfix))
-#if MIN_VERSION_base(4,4,0)
-import Control.Monad.Zip (MonadZip(mzipWith))
-#endif
-import Data.Foldable (Foldable(foldMap))
-import Data.Maybe (fromMaybe)
-import Data.Traversable (Traversable(traverse))
-
--- | The parameterizable maybe monad, obtained by composing an arbitrary
--- monad with the 'Maybe' monad.
---
--- Computations are actions that may produce a value or exit.
---
--- The 'return' function yields a computation that produces that
--- value, while @>>=@ sequences two subcomputations, exiting if either
--- computation does.
-newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }
-
-instance (Eq1 m) => Eq1 (MaybeT m) where
-    liftEq eq (MaybeT x) (MaybeT y) = liftEq (liftEq eq) x y
-    {-# INLINE liftEq #-}
-
-instance (Ord1 m) => Ord1 (MaybeT m) where
-    liftCompare comp (MaybeT x) (MaybeT y) = liftCompare (liftCompare comp) x y
-    {-# INLINE liftCompare #-}
-
-instance (Read1 m) => Read1 (MaybeT m) where
-    liftReadsPrec rp rl = readsData $
-        readsUnaryWith (liftReadsPrec rp' rl') "MaybeT" MaybeT
-      where
-        rp' = liftReadsPrec rp rl
-        rl' = liftReadList rp rl
-
-instance (Show1 m) => Show1 (MaybeT m) where
-    liftShowsPrec sp sl d (MaybeT m) =
-        showsUnaryWith (liftShowsPrec sp' sl') "MaybeT" d m
-      where
-        sp' = liftShowsPrec sp sl
-        sl' = liftShowList sp sl
-
-instance (Eq1 m, Eq a) => Eq (MaybeT m a) where (==) = eq1
-instance (Ord1 m, Ord a) => Ord (MaybeT m a) where compare = compare1
-instance (Read1 m, Read a) => Read (MaybeT m a) where readsPrec = readsPrec1
-instance (Show1 m, Show a) => Show (MaybeT m a) where showsPrec = showsPrec1
-
--- | Transform the computation inside a @MaybeT@.
---
--- * @'runMaybeT' ('mapMaybeT' f m) = f ('runMaybeT' m)@
-mapMaybeT :: (m (Maybe a) -> n (Maybe b)) -> MaybeT m a -> MaybeT n b
-mapMaybeT f = MaybeT . f . runMaybeT
-{-# INLINE mapMaybeT #-}
-
--- | Convert a 'MaybeT' computation to 'ExceptT', with a default
--- exception value.
-maybeToExceptT :: (Functor m) => e -> MaybeT m a -> ExceptT e m a
-maybeToExceptT e (MaybeT m) = ExceptT $ fmap (maybe (Left e) Right) m
-{-# INLINE maybeToExceptT #-}
-
--- | Convert a 'ExceptT' computation to 'MaybeT', discarding the
--- value of any exception.
-exceptToMaybeT :: (Functor m) => ExceptT e m a -> MaybeT m a
-exceptToMaybeT (ExceptT m) = MaybeT $ fmap (either (const Nothing) Just) m
-{-# INLINE exceptToMaybeT #-}
-
-instance (Functor m) => Functor (MaybeT m) where
-    fmap f = mapMaybeT (fmap (fmap f))
-    {-# INLINE fmap #-}
-
-instance (Foldable f) => Foldable (MaybeT f) where
-    foldMap f (MaybeT a) = foldMap (foldMap f) a
-    {-# INLINE foldMap #-}
-
-instance (Traversable f) => Traversable (MaybeT f) where
-    traverse f (MaybeT a) = MaybeT <$> traverse (traverse f) a
-    {-# INLINE traverse #-}
-
-instance (Functor m, Monad m) => Applicative (MaybeT m) where
-    pure = MaybeT . return . Just
-    {-# INLINE pure #-}
-    mf <*> mx = MaybeT $ do
-        mb_f <- runMaybeT mf
-        case mb_f of
-            Nothing -> return Nothing
-            Just f  -> do
-                mb_x <- runMaybeT mx
-                case mb_x of
-                    Nothing -> return Nothing
-                    Just x  -> return (Just (f x))
-    {-# INLINE (<*>) #-}
-    m *> k = m >>= \_ -> k
-    {-# INLINE (*>) #-}
-
-instance (Functor m, Monad m) => Alternative (MaybeT m) where
-    empty = MaybeT (return Nothing)
-    {-# INLINE empty #-}
-    x <|> y = MaybeT $ do
-        v <- runMaybeT x
-        case v of
-            Nothing -> runMaybeT y
-            Just _  -> return v
-    {-# INLINE (<|>) #-}
-
-instance (Monad m) => Monad (MaybeT m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return = MaybeT . return . Just
-    {-# INLINE return #-}
-#endif
-    x >>= f = MaybeT $ do
-        v <- runMaybeT x
-        case v of
-            Nothing -> return Nothing
-            Just y  -> runMaybeT (f y)
-    {-# INLINE (>>=) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail _ = MaybeT (return Nothing)
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Monad m) => Fail.MonadFail (MaybeT m) where
-    fail _ = MaybeT (return Nothing)
-    {-# INLINE fail #-}
-#endif
-
-instance (Monad m) => MonadPlus (MaybeT m) where
-    mzero = MaybeT (return Nothing)
-    {-# INLINE mzero #-}
-    mplus x y = MaybeT $ do
-        v <- runMaybeT x
-        case v of
-            Nothing -> runMaybeT y
-            Just _  -> return v
-    {-# INLINE mplus #-}
-
-instance (MonadFix m) => MonadFix (MaybeT m) where
-    mfix f = MaybeT (mfix (runMaybeT . f . fromMaybe bomb))
-      where bomb = error "mfix (MaybeT): inner computation returned Nothing"
-    {-# INLINE mfix #-}
-
-instance MonadTrans MaybeT where
-    lift = MaybeT . liftM Just
-    {-# INLINE lift #-}
-
-instance (MonadIO m) => MonadIO (MaybeT m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
-#if MIN_VERSION_base(4,4,0)
-instance (MonadZip m) => MonadZip (MaybeT m) where
-    mzipWith f (MaybeT a) (MaybeT b) = MaybeT $ mzipWith (liftA2 f) a b
-    {-# INLINE mzipWith #-}
-#endif
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant m => Contravariant (MaybeT m) where
-    contramap f = MaybeT . contramap (fmap f) . runMaybeT
-    {-# INLINE contramap #-}
-#endif
-
--- | Lift a @callCC@ operation to the new monad.
-liftCallCC :: CallCC m (Maybe a) (Maybe b) -> CallCC (MaybeT m) a b
-liftCallCC callCC f =
-    MaybeT $ callCC $ \ c -> runMaybeT (f (MaybeT . c . Just))
-{-# INLINE liftCallCC #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m (Maybe a) -> Catch e (MaybeT m) a
-liftCatch f m h = MaybeT $ f (runMaybeT m) (runMaybeT . h)
-{-# INLINE liftCatch #-}
-
--- | Lift a @listen@ operation to the new monad.
-liftListen :: (Monad m) => Listen w m (Maybe a) -> Listen w (MaybeT m) a
-liftListen listen = mapMaybeT $ \ m -> do
-    (a, w) <- listen m
-    return $! fmap (\ r -> (r, w)) a
-{-# INLINE liftListen #-}
-
--- | Lift a @pass@ operation to the new monad.
-liftPass :: (Monad m) => Pass w m (Maybe a) -> Pass w (MaybeT m) a
-liftPass pass = mapMaybeT $ \ m -> pass $ do
-    a <- m
-    return $! case a of
-        Nothing     -> (Nothing, id)
-        Just (v, f) -> (Just v, f)
-{-# INLINE liftPass #-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS.hs
deleted file mode 100644
index b4cc6adaad78..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS.hs
+++ /dev/null
@@ -1,25 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.RWS
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- A monad transformer that combines 'ReaderT', 'WriterT' and 'StateT'.
--- This version is lazy; for a constant-space version with almost the
--- same interface, see "Control.Monad.Trans.RWS.CPS".
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.RWS (
-    module Control.Monad.Trans.RWS.Lazy
-  ) where
-
-import Control.Monad.Trans.RWS.Lazy
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/CPS.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/CPS.hs
deleted file mode 100644
index 8a565e1652c3..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/CPS.hs
+++ /dev/null
@@ -1,406 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.RWS.CPS
--- Copyright   :  (c) Daniel Mendler 2016,
---                (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- A monad transformer that combines 'ReaderT', 'WriterT' and 'StateT'.
--- This version uses continuation-passing-style for the writer part
--- to achieve constant space usage.
--- For a lazy version with the same interface,
--- see "Control.Monad.Trans.RWS.Lazy".
------------------------------------------------------------------------------
-  
-module Control.Monad.Trans.RWS.CPS (
-    -- * The RWS monad
-    RWS,
-    rws,
-    runRWS,
-    evalRWS,
-    execRWS,
-    mapRWS,
-    withRWS,
-    -- * The RWST monad transformer
-    RWST,
-    rwsT,
-    runRWST,
-    evalRWST,
-    execRWST,
-    mapRWST,
-    withRWST,
-    -- * Reader operations
-    reader,
-    ask,
-    local,
-    asks,
-    -- * Writer operations
-    writer,
-    tell,
-    listen,
-    listens,
-    pass,
-    censor,
-    -- * State operations
-    state,
-    get,
-    put,
-    modify,
-    gets,
-    -- * Lifting other operations
-    liftCallCC,
-    liftCallCC',
-    liftCatch,
-  ) where
-
-import Control.Applicative
-import Control.Monad
-import Control.Monad.Fix
-import Control.Monad.IO.Class
-import Control.Monad.Trans.Class
-import Control.Monad.Signatures
-import Data.Functor.Identity
-
-#if !(MIN_VERSION_base(4,8,0))
-import Data.Monoid
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-
--- | A monad containing an environment of type @r@, output of type @w@
--- and an updatable state of type @s@.
-type RWS r w s = RWST r w s Identity
-
--- | Construct an RWS computation from a function.
--- (The inverse of 'runRWS'.)
-rws :: (Monoid w) => (r -> s -> (a, s, w)) -> RWS r w s a
-rws f = RWST $ \ r s w ->
-    let (a, s', w') = f r s; wt = w `mappend` w' in wt `seq` return (a, s', wt)
-{-# INLINE rws #-}
-
--- | Unwrap an RWS computation as a function.
--- (The inverse of 'rws'.)
-runRWS :: (Monoid w) => RWS r w s a -> r -> s -> (a, s, w)
-runRWS m r s = runIdentity (runRWST m r s)
-{-# INLINE runRWS #-}
-
--- | Evaluate a computation with the given initial state and environment,
--- returning the final value and output, discarding the final state.
-evalRWS :: (Monoid w)
-        => RWS r w s a  -- ^RWS computation to execute
-        -> r            -- ^initial environment
-        -> s            -- ^initial value
-        -> (a, w)       -- ^final value and output
-evalRWS m r s = let
-    (a, _, w) = runRWS m r s
-    in (a, w)
-{-# INLINE evalRWS #-}
-
--- | Evaluate a computation with the given initial state and environment,
--- returning the final state and output, discarding the final value.
-execRWS :: (Monoid w)
-        => RWS r w s a  -- ^RWS computation to execute
-        -> r            -- ^initial environment
-        -> s            -- ^initial value
-        -> (s, w)       -- ^final state and output
-execRWS m r s = let
-    (_, s', w) = runRWS m r s
-    in (s', w)
-{-# INLINE execRWS #-}
-
--- | Map the return value, final state and output of a computation using
--- the given function.
---
--- * @'runRWS' ('mapRWS' f m) r s = f ('runRWS' m r s)@
-mapRWS :: (Monoid w, Monoid w') => ((a, s, w) -> (b, s, w')) -> RWS r w s a -> RWS r w' s b
-mapRWS f = mapRWST (Identity . f . runIdentity)
-{-# INLINE mapRWS #-}
-
--- | @'withRWS' f m@ executes action @m@ with an initial environment
--- and state modified by applying @f@.
---
--- * @'runRWS' ('withRWS' f m) r s = 'uncurry' ('runRWS' m) (f r s)@
-withRWS :: (r' -> s -> (r, s)) -> RWS r w s a -> RWS r' w s a
-withRWS = withRWST
-{-# INLINE withRWS #-}
-
--- ---------------------------------------------------------------------------
--- | A monad transformer adding reading an environment of type @r@,
--- collecting an output of type @w@ and updating a state of type @s@
--- to an inner monad @m@.
-newtype RWST r w s m a = RWST { unRWST :: r -> s -> w -> m (a, s, w) }
-
--- | Construct an RWST computation from a function.
--- (The inverse of 'runRWST'.)
-rwsT :: (Functor m, Monoid w) => (r -> s -> m (a, s, w)) -> RWST r w s m a
-rwsT f = RWST $ \ r s w ->
-     (\ (a, s', w') -> let wt = w `mappend` w' in wt `seq` (a, s', wt)) <$> f r s
-{-# INLINE rwsT #-}
-
--- | Unwrap an RWST computation as a function.
--- (The inverse of 'rwsT'.)
-runRWST :: (Monoid w) => RWST r w s m a -> r -> s -> m (a, s, w)
-runRWST m r s = unRWST m r s mempty
-{-# INLINE runRWST #-}
-
--- | Evaluate a computation with the given initial state and environment,
--- returning the final value and output, discarding the final state.
-evalRWST :: (Monad m, Monoid w)
-         => RWST r w s m a      -- ^computation to execute
-         -> r                   -- ^initial environment
-         -> s                   -- ^initial value
-         -> m (a, w)            -- ^computation yielding final value and output
-evalRWST m r s = do
-    (a, _, w) <- runRWST m r s
-    return (a, w)
-{-# INLINE evalRWST #-}
-
--- | Evaluate a computation with the given initial state and environment,
--- returning the final state and output, discarding the final value.
-execRWST :: (Monad m, Monoid w)
-         => RWST r w s m a      -- ^computation to execute
-         -> r                   -- ^initial environment
-         -> s                   -- ^initial value
-         -> m (s, w)            -- ^computation yielding final state and output
-execRWST m r s = do
-    (_, s', w) <- runRWST m r s
-    return (s', w)
-{-# INLINE execRWST #-}
-
--- | Map the inner computation using the given function.
---
--- * @'runRWST' ('mapRWST' f m) r s = f ('runRWST' m r s)@
---mapRWST :: (m (a, s, w) -> n (b, s, w')) -> RWST r w s m a -> RWST r w' s n b
-mapRWST :: (Monad n, Monoid w, Monoid w') =>
-    (m (a, s, w) -> n (b, s, w')) -> RWST r w s m a -> RWST r w' s n b
-mapRWST f m = RWST $ \ r s w -> do
-    (a, s', w') <- f (runRWST m r s)
-    let wt = w `mappend` w'
-    wt `seq` return (a, s', wt)
-{-# INLINE mapRWST #-}
-
--- | @'withRWST' f m@ executes action @m@ with an initial environment
--- and state modified by applying @f@.
---
--- * @'runRWST' ('withRWST' f m) r s = 'uncurry' ('runRWST' m) (f r s)@
-withRWST :: (r' -> s -> (r, s)) -> RWST r w s m a -> RWST r' w s m a
-withRWST f m = RWST $ \ r s -> uncurry (unRWST m) (f r s)
-{-# INLINE withRWST #-}
-
-instance (Functor m) => Functor (RWST r w s m) where
-    fmap f m = RWST $ \ r s w -> (\ (a, s', w') -> (f a, s', w')) <$> unRWST m r s w
-    {-# INLINE fmap #-}
-
-instance (Functor m, Monad m) => Applicative (RWST r w s m) where
-    pure a = RWST $ \ _ s w -> return (a, s, w)
-    {-# INLINE pure #-}
-
-    RWST mf <*> RWST mx = RWST $ \ r s w -> do
-        (f, s', w')    <- mf r s w
-        (x, s'', w'') <- mx r s' w'
-        return (f x, s'', w'')
-    {-# INLINE (<*>) #-}
-
-instance (Functor m, MonadPlus m) => Alternative (RWST r w s m) where
-    empty = RWST $ \ _ _ _ -> mzero
-    {-# INLINE empty #-}
-
-    RWST m <|> RWST n = RWST $ \ r s w -> m r s w `mplus` n r s w
-    {-# INLINE (<|>) #-}
-
-instance (Monad m) => Monad (RWST r w s m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a = RWST $ \ _ s w -> return (a, s, w)
-    {-# INLINE return #-}
-#endif
-
-    m >>= k = RWST $ \ r s w -> do
-        (a, s', w')    <- unRWST m r s w
-        unRWST (k a) r s' w'
-    {-# INLINE (>>=) #-}
-
-#if !(MIN_VERSION_base(4,13,0))
-    fail msg = RWST $ \ _ _ _ -> fail msg
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Fail.MonadFail m) => Fail.MonadFail (RWST r w s m) where
-    fail msg = RWST $ \ _ _ _ -> Fail.fail msg
-    {-# INLINE fail #-}
-#endif
-
-instance (Functor m, MonadPlus m) => MonadPlus (RWST r w s m) where
-    mzero = empty
-    {-# INLINE mzero #-}
-    mplus = (<|>)
-    {-# INLINE mplus #-}
-
-instance (MonadFix m) => MonadFix (RWST r w s m) where
-    mfix f = RWST $ \ r s w -> mfix $ \ ~(a, _, _) -> unRWST (f a) r s w
-    {-# INLINE mfix #-}
-
-instance MonadTrans (RWST r w s) where
-    lift m = RWST $ \ _ s w -> do
-        a <- m
-        return (a, s, w)
-    {-# INLINE lift #-}
-
-instance (MonadIO m) => MonadIO (RWST r w s m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
--- ---------------------------------------------------------------------------
--- Reader operations
-
--- | Constructor for computations in the reader monad (equivalent to 'asks').
-reader :: (Monad m) => (r -> a) -> RWST r w s m a
-reader = asks
-{-# INLINE reader #-}
-
--- | Fetch the value of the environment.
-ask :: (Monad m) => RWST r w s m r
-ask = asks id
-{-# INLINE ask #-}
-
--- | Execute a computation in a modified environment
---
--- * @'runRWST' ('local' f m) r s = 'runRWST' m (f r) s@
-local :: (r -> r) -> RWST r w s m a -> RWST r w s m a
-local f m = RWST $ \ r s w -> unRWST m (f r) s w
-{-# INLINE local #-}
-
--- | Retrieve a function of the current environment.
---
--- * @'asks' f = 'liftM' f 'ask'@
-asks :: (Monad m) => (r -> a) -> RWST r w s m a
-asks f = RWST $ \ r s w -> return (f r, s, w)
-{-# INLINE asks #-}
-
--- ---------------------------------------------------------------------------
--- Writer operations
-
--- | Construct a writer computation from a (result, output) pair.
-writer :: (Monoid w, Monad m) => (a, w) -> RWST r w s m a
-writer (a, w') = RWST $ \ _ s w -> let wt = w `mappend` w' in wt `seq` return (a, s, wt)
-{-# INLINE writer #-}
-
--- | @'tell' w@ is an action that produces the output @w@.
-tell :: (Monoid w, Monad m) => w -> RWST r w s m ()
-tell w' = writer ((), w')
-{-# INLINE tell #-}
-
--- | @'listen' m@ is an action that executes the action @m@ and adds its
--- output to the value of the computation.
---
--- * @'runRWST' ('listen' m) r s = 'liftM' (\\ (a, w) -> ((a, w), w)) ('runRWST' m r s)@
-listen :: (Monoid w, Monad m) => RWST r w s m a -> RWST r w s m (a, w)
-listen = listens id
-{-# INLINE listen #-}
-
--- | @'listens' f m@ is an action that executes the action @m@ and adds
--- the result of applying @f@ to the output to the value of the computation.
---
--- * @'listens' f m = 'liftM' (id *** f) ('listen' m)@
---
--- * @'runRWST' ('listens' f m) r s = 'liftM' (\\ (a, w) -> ((a, f w), w)) ('runRWST' m r s)@
-listens :: (Monoid w, Monad m) => (w -> b) -> RWST r w s m a -> RWST r w s m (a, b)
-listens f m = RWST $ \ r s w -> do
-    (a, s', w') <- runRWST m r s
-    let wt = w `mappend` w'
-    wt `seq` return ((a, f w'), s', wt)
-{-# INLINE listens #-}
-
--- | @'pass' m@ is an action that executes the action @m@, which returns
--- a value and a function, and returns the value, applying the function
--- to the output.
---
--- * @'runRWST' ('pass' m) r s = 'liftM' (\\ ((a, f), w) -> (a, f w)) ('runRWST' m r s)@
-pass :: (Monoid w, Monoid w', Monad m) => RWST r w s m (a, w -> w') -> RWST r w' s m a
-pass m = RWST $ \ r s w -> do
-    ((a, f), s', w') <- runRWST m r s
-    let wt = w `mappend` f w'
-    wt `seq` return (a, s', wt)
-{-# INLINE pass #-}
-
--- | @'censor' f m@ is an action that executes the action @m@ and
--- applies the function @f@ to its output, leaving the return value
--- unchanged.
---
--- * @'censor' f m = 'pass' ('liftM' (\\ x -> (x,f)) m)@
---
--- * @'runRWST' ('censor' f m) r s = 'liftM' (\\ (a, w) -> (a, f w)) ('runRWST' m r s)@
-censor :: (Monoid w, Monad m) => (w -> w) -> RWST r w s m a -> RWST r w s m a
-censor f m = RWST $ \ r s w -> do
-    (a, s', w') <- runRWST m r s
-    let wt = w `mappend` f w'
-    wt `seq` return (a, s', wt)
-{-# INLINE censor #-}
-
--- ---------------------------------------------------------------------------
--- State operations
-
--- | Construct a state monad computation from a state transformer function.
-state :: (Monad m) => (s -> (a, s)) -> RWST r w s m a
-state f = RWST $ \ _ s w -> let (a, s') = f s in return (a, s', w)
-{-# INLINE state #-}
-
--- | Fetch the current value of the state within the monad.
-get :: (Monad m) =>RWST r w s m s
-get = gets id
-{-# INLINE get #-}
-
--- | @'put' s@ sets the state within the monad to @s@.
-put :: (Monad m) =>s -> RWST r w s m ()
-put s = RWST $ \ _ _ w -> return ((), s, w)
-{-# INLINE put #-}
-
--- | @'modify' f@ is an action that updates the state to the result of
--- applying @f@ to the current state.
---
--- * @'modify' f = 'get' >>= ('put' . f)@
-modify :: (Monad m) =>(s -> s) -> RWST r w s m ()
-modify f = RWST $ \ _ s w -> return ((), f s, w)
-{-# INLINE modify #-}
-
--- | Get a specific component of the state, using a projection function
--- supplied.
---
--- * @'gets' f = 'liftM' f 'get'@
-gets :: (Monad m) =>(s -> a) -> RWST r w s m a
-gets f = RWST $ \ _ s w -> return (f s, s, w)
-{-# INLINE gets #-}
-
--- | Uniform lifting of a @callCC@ operation to the new monad.
--- This version rolls back to the original state on entering the
--- continuation.
-liftCallCC :: CallCC m (a,s,w) (b,s,w) -> CallCC (RWST r w s m) a b
-liftCallCC callCC f = RWST $ \ r s w ->
-    callCC $ \ c -> unRWST (f (\ a -> RWST $ \ _ _ _ -> c (a, s, w))) r s w
-{-# INLINE liftCallCC #-}
-
--- | In-situ lifting of a @callCC@ operation to the new monad.
--- This version uses the current state on entering the continuation.
-liftCallCC' :: CallCC m (a,s,w) (b,s,w) -> CallCC (RWST r w s m) a b
-liftCallCC' callCC f = RWST $ \ r s w ->
-    callCC $ \ c -> unRWST (f (\ a -> RWST $ \ _ s' _ -> c (a, s', w))) r s w
-{-# INLINE liftCallCC' #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m (a,s,w) -> Catch e (RWST r w s m) a
-liftCatch catchE m h =
-    RWST $ \ r s w -> unRWST m r s w `catchE` \ e -> unRWST (h e) r s w
-{-# INLINE liftCatch #-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/Lazy.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/Lazy.hs
deleted file mode 100644
index 8f98b2c5e05a..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/Lazy.hs
+++ /dev/null
@@ -1,389 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.RWS.Lazy
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- A monad transformer that combines 'ReaderT', 'WriterT' and 'StateT'.
--- This version is lazy; for a constant-space version with almost the
--- same interface, see "Control.Monad.Trans.RWS.CPS".
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.RWS.Lazy (
-    -- * The RWS monad
-    RWS,
-    rws,
-    runRWS,
-    evalRWS,
-    execRWS,
-    mapRWS,
-    withRWS,
-    -- * The RWST monad transformer
-    RWST(..),
-    evalRWST,
-    execRWST,
-    mapRWST,
-    withRWST,
-    -- * Reader operations
-    reader,
-    ask,
-    local,
-    asks,
-    -- * Writer operations
-    writer,
-    tell,
-    listen,
-    listens,
-    pass,
-    censor,
-    -- * State operations
-    state,
-    get,
-    put,
-    modify,
-    gets,
-    -- * Lifting other operations
-    liftCallCC,
-    liftCallCC',
-    liftCatch,
-  ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Signatures
-import Control.Monad.Trans.Class
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-import Data.Functor.Identity
-
-import Control.Applicative
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix
-import Data.Monoid
-
--- | A monad containing an environment of type @r@, output of type @w@
--- and an updatable state of type @s@.
-type RWS r w s = RWST r w s Identity
-
--- | Construct an RWS computation from a function.
--- (The inverse of 'runRWS'.)
-rws :: (r -> s -> (a, s, w)) -> RWS r w s a
-rws f = RWST (\ r s -> Identity (f r s))
-{-# INLINE rws #-}
-
--- | Unwrap an RWS computation as a function.
--- (The inverse of 'rws'.)
-runRWS :: RWS r w s a -> r -> s -> (a, s, w)
-runRWS m r s = runIdentity (runRWST m r s)
-{-# INLINE runRWS #-}
-
--- | Evaluate a computation with the given initial state and environment,
--- returning the final value and output, discarding the final state.
-evalRWS :: RWS r w s a  -- ^RWS computation to execute
-        -> r            -- ^initial environment
-        -> s            -- ^initial value
-        -> (a, w)       -- ^final value and output
-evalRWS m r s = let
-    (a, _, w) = runRWS m r s
-    in (a, w)
-{-# INLINE evalRWS #-}
-
--- | Evaluate a computation with the given initial state and environment,
--- returning the final state and output, discarding the final value.
-execRWS :: RWS r w s a  -- ^RWS computation to execute
-        -> r            -- ^initial environment
-        -> s            -- ^initial value
-        -> (s, w)       -- ^final state and output
-execRWS m r s = let
-    (_, s', w) = runRWS m r s
-    in (s', w)
-{-# INLINE execRWS #-}
-
--- | Map the return value, final state and output of a computation using
--- the given function.
---
--- * @'runRWS' ('mapRWS' f m) r s = f ('runRWS' m r s)@
-mapRWS :: ((a, s, w) -> (b, s, w')) -> RWS r w s a -> RWS r w' s b
-mapRWS f = mapRWST (Identity . f . runIdentity)
-{-# INLINE mapRWS #-}
-
--- | @'withRWS' f m@ executes action @m@ with an initial environment
--- and state modified by applying @f@.
---
--- * @'runRWS' ('withRWS' f m) r s = 'uncurry' ('runRWS' m) (f r s)@
-withRWS :: (r' -> s -> (r, s)) -> RWS r w s a -> RWS r' w s a
-withRWS = withRWST
-{-# INLINE withRWS #-}
-
--- ---------------------------------------------------------------------------
--- | A monad transformer adding reading an environment of type @r@,
--- collecting an output of type @w@ and updating a state of type @s@
--- to an inner monad @m@.
-newtype RWST r w s m a = RWST { runRWST :: r -> s -> m (a, s, w) }
-
--- | Evaluate a computation with the given initial state and environment,
--- returning the final value and output, discarding the final state.
-evalRWST :: (Monad m)
-         => RWST r w s m a      -- ^computation to execute
-         -> r                   -- ^initial environment
-         -> s                   -- ^initial value
-         -> m (a, w)            -- ^computation yielding final value and output
-evalRWST m r s = do
-    ~(a, _, w) <- runRWST m r s
-    return (a, w)
-{-# INLINE evalRWST #-}
-
--- | Evaluate a computation with the given initial state and environment,
--- returning the final state and output, discarding the final value.
-execRWST :: (Monad m)
-         => RWST r w s m a      -- ^computation to execute
-         -> r                   -- ^initial environment
-         -> s                   -- ^initial value
-         -> m (s, w)            -- ^computation yielding final state and output
-execRWST m r s = do
-    ~(_, s', w) <- runRWST m r s
-    return (s', w)
-{-# INLINE execRWST #-}
-
--- | Map the inner computation using the given function.
---
--- * @'runRWST' ('mapRWST' f m) r s = f ('runRWST' m r s)@
-mapRWST :: (m (a, s, w) -> n (b, s, w')) -> RWST r w s m a -> RWST r w' s n b
-mapRWST f m = RWST $ \ r s -> f (runRWST m r s)
-{-# INLINE mapRWST #-}
-
--- | @'withRWST' f m@ executes action @m@ with an initial environment
--- and state modified by applying @f@.
---
--- * @'runRWST' ('withRWST' f m) r s = 'uncurry' ('runRWST' m) (f r s)@
-withRWST :: (r' -> s -> (r, s)) -> RWST r w s m a -> RWST r' w s m a
-withRWST f m = RWST $ \ r s -> uncurry (runRWST m) (f r s)
-{-# INLINE withRWST #-}
-
-instance (Functor m) => Functor (RWST r w s m) where
-    fmap f m = RWST $ \ r s ->
-        fmap (\ ~(a, s', w) -> (f a, s', w)) $ runRWST m r s
-    {-# INLINE fmap #-}
-
-instance (Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) where
-    pure a = RWST $ \ _ s -> return (a, s, mempty)
-    {-# INLINE pure #-}
-    RWST mf <*> RWST mx  = RWST $ \ r s -> do
-        ~(f, s', w)  <- mf r s
-        ~(x, s'',w') <- mx r s'
-        return (f x, s'', w `mappend` w')
-    {-# INLINE (<*>) #-}
-
-instance (Monoid w, Functor m, MonadPlus m) => Alternative (RWST r w s m) where
-    empty = RWST $ \ _ _ -> mzero
-    {-# INLINE empty #-}
-    RWST m <|> RWST n = RWST $ \ r s -> m r s `mplus` n r s
-    {-# INLINE (<|>) #-}
-
-instance (Monoid w, Monad m) => Monad (RWST r w s m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a = RWST $ \ _ s -> return (a, s, mempty)
-    {-# INLINE return #-}
-#endif
-    m >>= k  = RWST $ \ r s -> do
-        ~(a, s', w)  <- runRWST m r s
-        ~(b, s'',w') <- runRWST (k a) r s'
-        return (b, s'', w `mappend` w')
-    {-# INLINE (>>=) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail msg = RWST $ \ _ _ -> fail msg
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Monoid w, Fail.MonadFail m) => Fail.MonadFail (RWST r w s m) where
-    fail msg = RWST $ \ _ _ -> Fail.fail msg
-    {-# INLINE fail #-}
-#endif
-
-instance (Monoid w, MonadPlus m) => MonadPlus (RWST r w s m) where
-    mzero = RWST $ \ _ _ -> mzero
-    {-# INLINE mzero #-}
-    RWST m `mplus` RWST n = RWST $ \ r s -> m r s `mplus` n r s
-    {-# INLINE mplus #-}
-
-instance (Monoid w, MonadFix m) => MonadFix (RWST r w s m) where
-    mfix f = RWST $ \ r s -> mfix $ \ ~(a, _, _) -> runRWST (f a) r s
-    {-# INLINE mfix #-}
-
-instance (Monoid w) => MonadTrans (RWST r w s) where
-    lift m = RWST $ \ _ s -> do
-        a <- m
-        return (a, s, mempty)
-    {-# INLINE lift #-}
-
-instance (Monoid w, MonadIO m) => MonadIO (RWST r w s m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant m => Contravariant (RWST r w s m) where
-    contramap f m = RWST $ \r s ->
-      contramap (\ ~(a, s', w) -> (f a, s', w)) $ runRWST m r s
-    {-# INLINE contramap #-}
-#endif
-
--- ---------------------------------------------------------------------------
--- Reader operations
-
--- | Constructor for computations in the reader monad (equivalent to 'asks').
-reader :: (Monoid w, Monad m) => (r -> a) -> RWST r w s m a
-reader = asks
-{-# INLINE reader #-}
-
--- | Fetch the value of the environment.
-ask :: (Monoid w, Monad m) => RWST r w s m r
-ask = RWST $ \ r s -> return (r, s, mempty)
-{-# INLINE ask #-}
-
--- | Execute a computation in a modified environment
---
--- * @'runRWST' ('local' f m) r s = 'runRWST' m (f r) s@
-local :: (r -> r) -> RWST r w s m a -> RWST r w s m a
-local f m = RWST $ \ r s -> runRWST m (f r) s
-{-# INLINE local #-}
-
--- | Retrieve a function of the current environment.
---
--- * @'asks' f = 'liftM' f 'ask'@
-asks :: (Monoid w, Monad m) => (r -> a) -> RWST r w s m a
-asks f = RWST $ \ r s -> return (f r, s, mempty)
-{-# INLINE asks #-}
-
--- ---------------------------------------------------------------------------
--- Writer operations
-
--- | Construct a writer computation from a (result, output) pair.
-writer :: (Monad m) => (a, w) -> RWST r w s m a
-writer (a, w) = RWST $ \ _ s -> return (a, s, w)
-{-# INLINE writer #-}
-
--- | @'tell' w@ is an action that produces the output @w@.
-tell :: (Monad m) => w -> RWST r w s m ()
-tell w = RWST $ \ _ s -> return ((),s,w)
-{-# INLINE tell #-}
-
--- | @'listen' m@ is an action that executes the action @m@ and adds its
--- output to the value of the computation.
---
--- * @'runRWST' ('listen' m) r s = 'liftM' (\\ (a, w) -> ((a, w), w)) ('runRWST' m r s)@
-listen :: (Monad m) => RWST r w s m a -> RWST r w s m (a, w)
-listen m = RWST $ \ r s -> do
-    ~(a, s', w) <- runRWST m r s
-    return ((a, w), s', w)
-{-# INLINE listen #-}
-
--- | @'listens' f m@ is an action that executes the action @m@ and adds
--- the result of applying @f@ to the output to the value of the computation.
---
--- * @'listens' f m = 'liftM' (id *** f) ('listen' m)@
---
--- * @'runRWST' ('listens' f m) r s = 'liftM' (\\ (a, w) -> ((a, f w), w)) ('runRWST' m r s)@
-listens :: (Monad m) => (w -> b) -> RWST r w s m a -> RWST r w s m (a, b)
-listens f m = RWST $ \ r s -> do
-    ~(a, s', w) <- runRWST m r s
-    return ((a, f w), s', w)
-{-# INLINE listens #-}
-
--- | @'pass' m@ is an action that executes the action @m@, which returns
--- a value and a function, and returns the value, applying the function
--- to the output.
---
--- * @'runRWST' ('pass' m) r s = 'liftM' (\\ ((a, f), w) -> (a, f w)) ('runRWST' m r s)@
-pass :: (Monad m) => RWST r w s m (a, w -> w) -> RWST r w s m a
-pass m = RWST $ \ r s -> do
-    ~((a, f), s', w) <- runRWST m r s
-    return (a, s', f w)
-{-# INLINE pass #-}
-
--- | @'censor' f m@ is an action that executes the action @m@ and
--- applies the function @f@ to its output, leaving the return value
--- unchanged.
---
--- * @'censor' f m = 'pass' ('liftM' (\\ x -> (x,f)) m)@
---
--- * @'runRWST' ('censor' f m) r s = 'liftM' (\\ (a, w) -> (a, f w)) ('runRWST' m r s)@
-censor :: (Monad m) => (w -> w) -> RWST r w s m a -> RWST r w s m a
-censor f m = RWST $ \ r s -> do
-    ~(a, s', w) <- runRWST m r s
-    return (a, s', f w)
-{-# INLINE censor #-}
-
--- ---------------------------------------------------------------------------
--- State operations
-
--- | Construct a state monad computation from a state transformer function.
-state :: (Monoid w, Monad m) => (s -> (a,s)) -> RWST r w s m a
-state f = RWST $ \ _ s -> let (a,s') = f s  in  return (a, s', mempty)
-{-# INLINE state #-}
-
--- | Fetch the current value of the state within the monad.
-get :: (Monoid w, Monad m) => RWST r w s m s
-get = RWST $ \ _ s -> return (s, s, mempty)
-{-# INLINE get #-}
-
--- | @'put' s@ sets the state within the monad to @s@.
-put :: (Monoid w, Monad m) => s -> RWST r w s m ()
-put s = RWST $ \ _ _ -> return ((), s, mempty)
-{-# INLINE put #-}
-
--- | @'modify' f@ is an action that updates the state to the result of
--- applying @f@ to the current state.
---
--- * @'modify' f = 'get' >>= ('put' . f)@
-modify :: (Monoid w, Monad m) => (s -> s) -> RWST r w s m ()
-modify f = RWST $ \ _ s -> return ((), f s, mempty)
-{-# INLINE modify #-}
-
--- | Get a specific component of the state, using a projection function
--- supplied.
---
--- * @'gets' f = 'liftM' f 'get'@
-gets :: (Monoid w, Monad m) => (s -> a) -> RWST r w s m a
-gets f = RWST $ \ _ s -> return (f s, s, mempty)
-{-# INLINE gets #-}
-
--- | Uniform lifting of a @callCC@ operation to the new monad.
--- This version rolls back to the original state on entering the
--- continuation.
-liftCallCC :: (Monoid w) =>
-    CallCC m (a,s,w) (b,s,w) -> CallCC (RWST r w s m) a b
-liftCallCC callCC f = RWST $ \ r s ->
-    callCC $ \ c ->
-    runRWST (f (\ a -> RWST $ \ _ _ -> c (a, s, mempty))) r s
-{-# INLINE liftCallCC #-}
-
--- | In-situ lifting of a @callCC@ operation to the new monad.
--- This version uses the current state on entering the continuation.
-liftCallCC' :: (Monoid w) =>
-    CallCC m (a,s,w) (b,s,w) -> CallCC (RWST r w s m) a b
-liftCallCC' callCC f = RWST $ \ r s ->
-    callCC $ \ c ->
-    runRWST (f (\ a -> RWST $ \ _ s' -> c (a, s', mempty))) r s
-{-# INLINE liftCallCC' #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m (a,s,w) -> Catch e (RWST r w s m) a
-liftCatch catchE m h =
-    RWST $ \ r s -> runRWST m r s `catchE` \ e -> runRWST (h e) r s
-{-# INLINE liftCatch #-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/Strict.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/Strict.hs
deleted file mode 100644
index 557dd2028dd0..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/Strict.hs
+++ /dev/null
@@ -1,392 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.RWS.Strict
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- A monad transformer that combines 'ReaderT', 'WriterT' and 'StateT'.
--- This version is strict; for a lazy version with the same interface,
--- see "Control.Monad.Trans.RWS.Lazy".
--- Although the output is built strictly, it is not possible to
--- achieve constant space behaviour with this transformer: for that,
--- use "Control.Monad.Trans.RWS.CPS" instead.
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.RWS.Strict (
-    -- * The RWS monad
-    RWS,
-    rws,
-    runRWS,
-    evalRWS,
-    execRWS,
-    mapRWS,
-    withRWS,
-    -- * The RWST monad transformer
-    RWST(..),
-    evalRWST,
-    execRWST,
-    mapRWST,
-    withRWST,
-    -- * Reader operations
-    reader,
-    ask,
-    local,
-    asks,
-    -- * Writer operations
-    writer,
-    tell,
-    listen,
-    listens,
-    pass,
-    censor,
-    -- * State operations
-    state,
-    get,
-    put,
-    modify,
-    gets,
-    -- * Lifting other operations
-    liftCallCC,
-    liftCallCC',
-    liftCatch,
-  ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Signatures
-import Control.Monad.Trans.Class
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-import Data.Functor.Identity
-
-import Control.Applicative
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix
-import Data.Monoid
-
--- | A monad containing an environment of type @r@, output of type @w@
--- and an updatable state of type @s@.
-type RWS r w s = RWST r w s Identity
-
--- | Construct an RWS computation from a function.
--- (The inverse of 'runRWS'.)
-rws :: (r -> s -> (a, s, w)) -> RWS r w s a
-rws f = RWST (\ r s -> Identity (f r s))
-{-# INLINE rws #-}
-
--- | Unwrap an RWS computation as a function.
--- (The inverse of 'rws'.)
-runRWS :: RWS r w s a -> r -> s -> (a, s, w)
-runRWS m r s = runIdentity (runRWST m r s)
-{-# INLINE runRWS #-}
-
--- | Evaluate a computation with the given initial state and environment,
--- returning the final value and output, discarding the final state.
-evalRWS :: RWS r w s a  -- ^RWS computation to execute
-        -> r            -- ^initial environment
-        -> s            -- ^initial value
-        -> (a, w)       -- ^final value and output
-evalRWS m r s = let
-    (a, _, w) = runRWS m r s
-    in (a, w)
-{-# INLINE evalRWS #-}
-
--- | Evaluate a computation with the given initial state and environment,
--- returning the final state and output, discarding the final value.
-execRWS :: RWS r w s a  -- ^RWS computation to execute
-        -> r            -- ^initial environment
-        -> s            -- ^initial value
-        -> (s, w)       -- ^final state and output
-execRWS m r s = let
-    (_, s', w) = runRWS m r s
-    in (s', w)
-{-# INLINE execRWS #-}
-
--- | Map the return value, final state and output of a computation using
--- the given function.
---
--- * @'runRWS' ('mapRWS' f m) r s = f ('runRWS' m r s)@
-mapRWS :: ((a, s, w) -> (b, s, w')) -> RWS r w s a -> RWS r w' s b
-mapRWS f = mapRWST (Identity . f . runIdentity)
-{-# INLINE mapRWS #-}
-
--- | @'withRWS' f m@ executes action @m@ with an initial environment
--- and state modified by applying @f@.
---
--- * @'runRWS' ('withRWS' f m) r s = 'uncurry' ('runRWS' m) (f r s)@
-withRWS :: (r' -> s -> (r, s)) -> RWS r w s a -> RWS r' w s a
-withRWS = withRWST
-{-# INLINE withRWS #-}
-
--- ---------------------------------------------------------------------------
--- | A monad transformer adding reading an environment of type @r@,
--- collecting an output of type @w@ and updating a state of type @s@
--- to an inner monad @m@.
-newtype RWST r w s m a = RWST { runRWST :: r -> s -> m (a, s, w) }
-
--- | Evaluate a computation with the given initial state and environment,
--- returning the final value and output, discarding the final state.
-evalRWST :: (Monad m)
-         => RWST r w s m a      -- ^computation to execute
-         -> r                   -- ^initial environment
-         -> s                   -- ^initial value
-         -> m (a, w)            -- ^computation yielding final value and output
-evalRWST m r s = do
-    (a, _, w) <- runRWST m r s
-    return (a, w)
-{-# INLINE evalRWST #-}
-
--- | Evaluate a computation with the given initial state and environment,
--- returning the final state and output, discarding the final value.
-execRWST :: (Monad m)
-         => RWST r w s m a      -- ^computation to execute
-         -> r                   -- ^initial environment
-         -> s                   -- ^initial value
-         -> m (s, w)            -- ^computation yielding final state and output
-execRWST m r s = do
-    (_, s', w) <- runRWST m r s
-    return (s', w)
-{-# INLINE execRWST #-}
-
--- | Map the inner computation using the given function.
---
--- * @'runRWST' ('mapRWST' f m) r s = f ('runRWST' m r s)@
-mapRWST :: (m (a, s, w) -> n (b, s, w')) -> RWST r w s m a -> RWST r w' s n b
-mapRWST f m = RWST $ \ r s -> f (runRWST m r s)
-{-# INLINE mapRWST #-}
-
--- | @'withRWST' f m@ executes action @m@ with an initial environment
--- and state modified by applying @f@.
---
--- * @'runRWST' ('withRWST' f m) r s = 'uncurry' ('runRWST' m) (f r s)@
-withRWST :: (r' -> s -> (r, s)) -> RWST r w s m a -> RWST r' w s m a
-withRWST f m = RWST $ \ r s -> uncurry (runRWST m) (f r s)
-{-# INLINE withRWST #-}
-
-instance (Functor m) => Functor (RWST r w s m) where
-    fmap f m = RWST $ \ r s ->
-        fmap (\ (a, s', w) -> (f a, s', w)) $ runRWST m r s
-    {-# INLINE fmap #-}
-
-instance (Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) where
-    pure a = RWST $ \ _ s -> return (a, s, mempty)
-    {-# INLINE pure #-}
-    RWST mf <*> RWST mx = RWST $ \ r s -> do
-        (f, s', w)  <- mf r s
-        (x, s'',w') <- mx r s'
-        return (f x, s'', w `mappend` w')
-    {-# INLINE (<*>) #-}
-
-instance (Monoid w, Functor m, MonadPlus m) => Alternative (RWST r w s m) where
-    empty = RWST $ \ _ _ -> mzero
-    {-# INLINE empty #-}
-    RWST m <|> RWST n = RWST $ \ r s -> m r s `mplus` n r s
-    {-# INLINE (<|>) #-}
-
-instance (Monoid w, Monad m) => Monad (RWST r w s m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a = RWST $ \ _ s -> return (a, s, mempty)
-    {-# INLINE return #-}
-#endif
-    m >>= k  = RWST $ \ r s -> do
-        (a, s', w)  <- runRWST m r s
-        (b, s'',w') <- runRWST (k a) r s'
-        return (b, s'', w `mappend` w')
-    {-# INLINE (>>=) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail msg = RWST $ \ _ _ -> fail msg
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Monoid w, Fail.MonadFail m) => Fail.MonadFail (RWST r w s m) where
-    fail msg = RWST $ \ _ _ -> Fail.fail msg
-    {-# INLINE fail #-}
-#endif
-
-instance (Monoid w, MonadPlus m) => MonadPlus (RWST r w s m) where
-    mzero = RWST $ \ _ _ -> mzero
-    {-# INLINE mzero #-}
-    RWST m `mplus` RWST n = RWST $ \ r s -> m r s `mplus` n r s
-    {-# INLINE mplus #-}
-
-instance (Monoid w, MonadFix m) => MonadFix (RWST r w s m) where
-    mfix f = RWST $ \ r s -> mfix $ \ ~(a, _, _) -> runRWST (f a) r s
-    {-# INLINE mfix #-}
-
-instance (Monoid w) => MonadTrans (RWST r w s) where
-    lift m = RWST $ \ _ s -> do
-        a <- m
-        return (a, s, mempty)
-    {-# INLINE lift #-}
-
-instance (Monoid w, MonadIO m) => MonadIO (RWST r w s m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant m => Contravariant (RWST r w s m) where
-    contramap f m = RWST $ \r s ->
-      contramap (\ (a, s', w) -> (f a, s', w)) $ runRWST m r s
-    {-# INLINE contramap #-}
-#endif
-
--- ---------------------------------------------------------------------------
--- Reader operations
-
--- | Constructor for computations in the reader monad (equivalent to 'asks').
-reader :: (Monoid w, Monad m) => (r -> a) -> RWST r w s m a
-reader = asks
-{-# INLINE reader #-}
-
--- | Fetch the value of the environment.
-ask :: (Monoid w, Monad m) => RWST r w s m r
-ask = RWST $ \ r s -> return (r, s, mempty)
-{-# INLINE ask #-}
-
--- | Execute a computation in a modified environment
---
--- * @'runRWST' ('local' f m) r s = 'runRWST' m (f r) s@
-local :: (r -> r) -> RWST r w s m a -> RWST r w s m a
-local f m = RWST $ \ r s -> runRWST m (f r) s
-{-# INLINE local #-}
-
--- | Retrieve a function of the current environment.
---
--- * @'asks' f = 'liftM' f 'ask'@
-asks :: (Monoid w, Monad m) => (r -> a) -> RWST r w s m a
-asks f = RWST $ \ r s -> return (f r, s, mempty)
-{-# INLINE asks #-}
-
--- ---------------------------------------------------------------------------
--- Writer operations
-
--- | Construct a writer computation from a (result, output) pair.
-writer :: (Monad m) => (a, w) -> RWST r w s m a
-writer (a, w) = RWST $ \ _ s -> return (a, s, w)
-{-# INLINE writer #-}
-
--- | @'tell' w@ is an action that produces the output @w@.
-tell :: (Monad m) => w -> RWST r w s m ()
-tell w = RWST $ \ _ s -> return ((),s,w)
-{-# INLINE tell #-}
-
--- | @'listen' m@ is an action that executes the action @m@ and adds its
--- output to the value of the computation.
---
--- * @'runRWST' ('listen' m) r s = 'liftM' (\\ (a, w) -> ((a, w), w)) ('runRWST' m r s)@
-listen :: (Monad m) => RWST r w s m a -> RWST r w s m (a, w)
-listen m = RWST $ \ r s -> do
-    (a, s', w) <- runRWST m r s
-    return ((a, w), s', w)
-{-# INLINE listen #-}
-
--- | @'listens' f m@ is an action that executes the action @m@ and adds
--- the result of applying @f@ to the output to the value of the computation.
---
--- * @'listens' f m = 'liftM' (id *** f) ('listen' m)@
---
--- * @'runRWST' ('listens' f m) r s = 'liftM' (\\ (a, w) -> ((a, f w), w)) ('runRWST' m r s)@
-listens :: (Monad m) => (w -> b) -> RWST r w s m a -> RWST r w s m (a, b)
-listens f m = RWST $ \ r s -> do
-    (a, s', w) <- runRWST m r s
-    return ((a, f w), s', w)
-{-# INLINE listens #-}
-
--- | @'pass' m@ is an action that executes the action @m@, which returns
--- a value and a function, and returns the value, applying the function
--- to the output.
---
--- * @'runRWST' ('pass' m) r s = 'liftM' (\\ ((a, f), w) -> (a, f w)) ('runRWST' m r s)@
-pass :: (Monad m) => RWST r w s m (a, w -> w) -> RWST r w s m a
-pass m = RWST $ \ r s -> do
-    ((a, f), s', w) <- runRWST m r s
-    return (a, s', f w)
-{-# INLINE pass #-}
-
--- | @'censor' f m@ is an action that executes the action @m@ and
--- applies the function @f@ to its output, leaving the return value
--- unchanged.
---
--- * @'censor' f m = 'pass' ('liftM' (\\ x -> (x,f)) m)@
---
--- * @'runRWST' ('censor' f m) r s = 'liftM' (\\ (a, w) -> (a, f w)) ('runRWST' m r s)@
-censor :: (Monad m) => (w -> w) -> RWST r w s m a -> RWST r w s m a
-censor f m = RWST $ \ r s -> do
-    (a, s', w) <- runRWST m r s
-    return (a, s', f w)
-{-# INLINE censor #-}
-
--- ---------------------------------------------------------------------------
--- State operations
-
--- | Construct a state monad computation from a state transformer function.
-state :: (Monoid w, Monad m) => (s -> (a,s)) -> RWST r w s m a
-state f = RWST $ \ _ s -> case f s of (a,s') -> return (a, s', mempty)
-{-# INLINE state #-}
-
--- | Fetch the current value of the state within the monad.
-get :: (Monoid w, Monad m) => RWST r w s m s
-get = RWST $ \ _ s -> return (s, s, mempty)
-{-# INLINE get #-}
-
--- | @'put' s@ sets the state within the monad to @s@.
-put :: (Monoid w, Monad m) => s -> RWST r w s m ()
-put s = RWST $ \ _ _ -> return ((), s, mempty)
-{-# INLINE put #-}
-
--- | @'modify' f@ is an action that updates the state to the result of
--- applying @f@ to the current state.
---
--- * @'modify' f = 'get' >>= ('put' . f)@
-modify :: (Monoid w, Monad m) => (s -> s) -> RWST r w s m ()
-modify f = RWST $ \ _ s -> return ((), f s, mempty)
-{-# INLINE modify #-}
-
--- | Get a specific component of the state, using a projection function
--- supplied.
---
--- * @'gets' f = 'liftM' f 'get'@
-gets :: (Monoid w, Monad m) => (s -> a) -> RWST r w s m a
-gets f = RWST $ \ _ s -> return (f s, s, mempty)
-{-# INLINE gets #-}
-
--- | Uniform lifting of a @callCC@ operation to the new monad.
--- This version rolls back to the original state on entering the
--- continuation.
-liftCallCC :: (Monoid w) =>
-    CallCC m (a,s,w) (b,s,w) -> CallCC (RWST r w s m) a b
-liftCallCC callCC f = RWST $ \ r s ->
-    callCC $ \ c ->
-    runRWST (f (\ a -> RWST $ \ _ _ -> c (a, s, mempty))) r s
-{-# INLINE liftCallCC #-}
-
--- | In-situ lifting of a @callCC@ operation to the new monad.
--- This version uses the current state on entering the continuation.
-liftCallCC' :: (Monoid w) =>
-    CallCC m (a,s,w) (b,s,w) -> CallCC (RWST r w s m) a b
-liftCallCC' callCC f = RWST $ \ r s ->
-    callCC $ \ c ->
-    runRWST (f (\ a -> RWST $ \ _ s' -> c (a, s', mempty))) r s
-{-# INLINE liftCallCC' #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m (a,s,w) -> Catch e (RWST r w s m) a
-liftCatch catchE m h =
-    RWST $ \ r s -> runRWST m r s `catchE` \ e -> runRWST (h e) r s
-{-# INLINE liftCatch #-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Reader.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Reader.hs
deleted file mode 100644
index 25e3ad27c3c6..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Reader.hs
+++ /dev/null
@@ -1,262 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Reader
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Declaration of the 'ReaderT' monad transformer, which adds a static
--- environment to a given monad.
---
--- If the computation is to modify the stored information, use
--- "Control.Monad.Trans.State" instead.
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Reader (
-    -- * The Reader monad
-    Reader,
-    reader,
-    runReader,
-    mapReader,
-    withReader,
-    -- * The ReaderT monad transformer
-    ReaderT(..),
-    mapReaderT,
-    withReaderT,
-    -- * Reader operations
-    ask,
-    local,
-    asks,
-    -- * Lifting other operations
-    liftCallCC,
-    liftCatch,
-    ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Signatures
-import Control.Monad.Trans.Class
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-import Data.Functor.Identity
-
-import Control.Applicative
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix
-#if !(MIN_VERSION_base(4,6,0))
-import Control.Monad.Instances ()  -- deprecated from base-4.6
-#endif
-#if MIN_VERSION_base(4,4,0)
-import Control.Monad.Zip (MonadZip(mzipWith))
-#endif
-#if MIN_VERSION_base(4,2,0)
-import Data.Functor(Functor(..))
-#endif
-
--- | The parameterizable reader monad.
---
--- Computations are functions of a shared environment.
---
--- The 'return' function ignores the environment, while @>>=@ passes
--- the inherited environment to both subcomputations.
-type Reader r = ReaderT r Identity
-
--- | Constructor for computations in the reader monad (equivalent to 'asks').
-reader :: (Monad m) => (r -> a) -> ReaderT r m a
-reader f = ReaderT (return . f)
-{-# INLINE reader #-}
-
--- | Runs a @Reader@ and extracts the final value from it.
--- (The inverse of 'reader'.)
-runReader
-    :: Reader r a       -- ^ A @Reader@ to run.
-    -> r                -- ^ An initial environment.
-    -> a
-runReader m = runIdentity . runReaderT m
-{-# INLINE runReader #-}
-
--- | Transform the value returned by a @Reader@.
---
--- * @'runReader' ('mapReader' f m) = f . 'runReader' m@
-mapReader :: (a -> b) -> Reader r a -> Reader r b
-mapReader f = mapReaderT (Identity . f . runIdentity)
-{-# INLINE mapReader #-}
-
--- | Execute a computation in a modified environment
--- (a specialization of 'withReaderT').
---
--- * @'runReader' ('withReader' f m) = 'runReader' m . f@
-withReader
-    :: (r' -> r)        -- ^ The function to modify the environment.
-    -> Reader r a       -- ^ Computation to run in the modified environment.
-    -> Reader r' a
-withReader = withReaderT
-{-# INLINE withReader #-}
-
--- | The reader monad transformer,
--- which adds a read-only environment to the given monad.
---
--- The 'return' function ignores the environment, while @>>=@ passes
--- the inherited environment to both subcomputations.
-newtype ReaderT r m a = ReaderT { runReaderT :: r -> m a }
-
--- | Transform the computation inside a @ReaderT@.
---
--- * @'runReaderT' ('mapReaderT' f m) = f . 'runReaderT' m@
-mapReaderT :: (m a -> n b) -> ReaderT r m a -> ReaderT r n b
-mapReaderT f m = ReaderT $ f . runReaderT m
-{-# INLINE mapReaderT #-}
-
--- | Execute a computation in a modified environment
--- (a more general version of 'local').
---
--- * @'runReaderT' ('withReaderT' f m) = 'runReaderT' m . f@
-withReaderT
-    :: (r' -> r)        -- ^ The function to modify the environment.
-    -> ReaderT r m a    -- ^ Computation to run in the modified environment.
-    -> ReaderT r' m a
-withReaderT f m = ReaderT $ runReaderT m . f
-{-# INLINE withReaderT #-}
-
-instance (Functor m) => Functor (ReaderT r m) where
-    fmap f  = mapReaderT (fmap f)
-    {-# INLINE fmap #-}
-#if MIN_VERSION_base(4,2,0)
-    x <$ v = mapReaderT (x <$) v
-    {-# INLINE (<$) #-}
-#endif
-
-instance (Applicative m) => Applicative (ReaderT r m) where
-    pure    = liftReaderT . pure
-    {-# INLINE pure #-}
-    f <*> v = ReaderT $ \ r -> runReaderT f r <*> runReaderT v r
-    {-# INLINE (<*>) #-}
-#if MIN_VERSION_base(4,2,0)
-    u *> v = ReaderT $ \ r -> runReaderT u r *> runReaderT v r
-    {-# INLINE (*>) #-}
-    u <* v = ReaderT $ \ r -> runReaderT u r <* runReaderT v r
-    {-# INLINE (<*) #-}
-#endif
-#if MIN_VERSION_base(4,10,0)
-    liftA2 f x y = ReaderT $ \ r -> liftA2 f (runReaderT x r) (runReaderT y r)
-    {-# INLINE liftA2 #-}
-#endif
-
-instance (Alternative m) => Alternative (ReaderT r m) where
-    empty   = liftReaderT empty
-    {-# INLINE empty #-}
-    m <|> n = ReaderT $ \ r -> runReaderT m r <|> runReaderT n r
-    {-# INLINE (<|>) #-}
-
-instance (Monad m) => Monad (ReaderT r m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return   = lift . return
-    {-# INLINE return #-}
-#endif
-    m >>= k  = ReaderT $ \ r -> do
-        a <- runReaderT m r
-        runReaderT (k a) r
-    {-# INLINE (>>=) #-}
-#if MIN_VERSION_base(4,8,0)
-    (>>) = (*>)
-#else
-    m >> k = ReaderT $ \ r -> runReaderT m r >> runReaderT k r
-#endif
-    {-# INLINE (>>) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail msg = lift (fail msg)
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Fail.MonadFail m) => Fail.MonadFail (ReaderT r m) where
-    fail msg = lift (Fail.fail msg)
-    {-# INLINE fail #-}
-#endif
-
-instance (MonadPlus m) => MonadPlus (ReaderT r m) where
-    mzero       = lift mzero
-    {-# INLINE mzero #-}
-    m `mplus` n = ReaderT $ \ r -> runReaderT m r `mplus` runReaderT n r
-    {-# INLINE mplus #-}
-
-instance (MonadFix m) => MonadFix (ReaderT r m) where
-    mfix f = ReaderT $ \ r -> mfix $ \ a -> runReaderT (f a) r
-    {-# INLINE mfix #-}
-
-instance MonadTrans (ReaderT r) where
-    lift   = liftReaderT
-    {-# INLINE lift #-}
-
-instance (MonadIO m) => MonadIO (ReaderT r m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
-#if MIN_VERSION_base(4,4,0)
-instance (MonadZip m) => MonadZip (ReaderT r m) where
-    mzipWith f (ReaderT m) (ReaderT n) = ReaderT $ \ a ->
-        mzipWith f (m a) (n a)
-    {-# INLINE mzipWith #-}
-#endif
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant m => Contravariant (ReaderT r m) where
-    contramap f = ReaderT . fmap (contramap f) . runReaderT
-    {-# INLINE contramap #-}
-#endif
-
-liftReaderT :: m a -> ReaderT r m a
-liftReaderT m = ReaderT (const m)
-{-# INLINE liftReaderT #-}
-
--- | Fetch the value of the environment.
-ask :: (Monad m) => ReaderT r m r
-ask = ReaderT return
-{-# INLINE ask #-}
-
--- | Execute a computation in a modified environment
--- (a specialization of 'withReaderT').
---
--- * @'runReaderT' ('local' f m) = 'runReaderT' m . f@
-local
-    :: (r -> r)         -- ^ The function to modify the environment.
-    -> ReaderT r m a    -- ^ Computation to run in the modified environment.
-    -> ReaderT r m a
-local = withReaderT
-{-# INLINE local #-}
-
--- | Retrieve a function of the current environment.
---
--- * @'asks' f = 'liftM' f 'ask'@
-asks :: (Monad m)
-    => (r -> a)         -- ^ The selector function to apply to the environment.
-    -> ReaderT r m a
-asks f = ReaderT (return . f)
-{-# INLINE asks #-}
-
--- | Lift a @callCC@ operation to the new monad.
-liftCallCC :: CallCC m a b -> CallCC (ReaderT r m) a b
-liftCallCC callCC f = ReaderT $ \ r ->
-    callCC $ \ c ->
-    runReaderT (f (ReaderT . const . c)) r
-{-# INLINE liftCallCC #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m a -> Catch e (ReaderT r m) a
-liftCatch f m h =
-    ReaderT $ \ r -> f (runReaderT m r) (\ e -> runReaderT (h e) r)
-{-# INLINE liftCatch #-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Select.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Select.hs
deleted file mode 100644
index 22fdf8fd8abc..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Select.hs
+++ /dev/null
@@ -1,161 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 706
-{-# LANGUAGE PolyKinds #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Select
--- Copyright   :  (c) Ross Paterson 2017
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Selection monad transformer, modelling search algorithms.
---
--- * Martin Escardo and Paulo Oliva.
---   "Selection functions, bar recursion and backward induction",
---   /Mathematical Structures in Computer Science/ 20:2 (2010), pp. 127-168.
---   <https://www.cs.bham.ac.uk/~mhe/papers/selection-escardo-oliva.pdf>
---
--- * Jules Hedges. "Monad transformers for backtracking search".
---   In /Proceedings of MSFP 2014/. <https://arxiv.org/abs/1406.2058>
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Select (
-    -- * The Select monad
-    Select,
-    select,
-    runSelect,
-    mapSelect,
-    -- * The SelectT monad transformer
-    SelectT(SelectT),
-    runSelectT,
-    mapSelectT,
-    -- * Monad transformation
-    selectToContT,
-    selectToCont,
-    ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Trans.Class
-import Control.Monad.Trans.Cont
-
-import Control.Applicative
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Data.Functor.Identity
-
--- | Selection monad.
-type Select r = SelectT r Identity
-
--- | Constructor for computations in the selection monad.
-select :: ((a -> r) -> a) -> Select r a
-select f = SelectT $ \ k -> Identity (f (runIdentity . k))
-{-# INLINE select #-}
-
--- | Runs a @Select@ computation with a function for evaluating answers
--- to select a particular answer.  (The inverse of 'select'.)
-runSelect :: Select r a -> (a -> r) -> a
-runSelect m k = runIdentity (runSelectT m (Identity . k))
-{-# INLINE runSelect #-}
-
--- | Apply a function to transform the result of a selection computation.
---
--- * @'runSelect' ('mapSelect' f m) = f . 'runSelect' m@
-mapSelect :: (a -> a) -> Select r a -> Select r a
-mapSelect f = mapSelectT (Identity . f . runIdentity)
-{-# INLINE mapSelect #-}
-
--- | Selection monad transformer.
---
--- 'SelectT' is not a functor on the category of monads, and many operations
--- cannot be lifted through it.
-newtype SelectT r m a = SelectT ((a -> m r) -> m a)
-
--- | Runs a @SelectT@ computation with a function for evaluating answers
--- to select a particular answer.  (The inverse of 'select'.)
-runSelectT :: SelectT r m a -> (a -> m r) -> m a
-runSelectT (SelectT g) = g
-{-# INLINE runSelectT #-}
-
--- | Apply a function to transform the result of a selection computation.
--- This has a more restricted type than the @map@ operations for other
--- monad transformers, because 'SelectT' does not define a functor in
--- the category of monads.
---
--- * @'runSelectT' ('mapSelectT' f m) = f . 'runSelectT' m@
-mapSelectT :: (m a -> m a) -> SelectT r m a -> SelectT r m a
-mapSelectT f m = SelectT $ f . runSelectT m
-{-# INLINE mapSelectT #-}
-
-instance (Functor m) => Functor (SelectT r m) where
-    fmap f (SelectT g) = SelectT (fmap f . g . (. f))
-    {-# INLINE fmap #-}
-
-instance (Functor m, Monad m) => Applicative (SelectT r m) where
-    pure = lift . return
-    {-# INLINE pure #-}
-    SelectT gf <*> SelectT gx = SelectT $ \ k -> do
-        let h f = liftM f (gx (k . f))
-        f <- gf ((>>= k) . h)
-        h f
-    {-# INLINE (<*>) #-}
-    m *> k = m >>= \_ -> k
-    {-# INLINE (*>) #-}
-
-instance (Functor m, MonadPlus m) => Alternative (SelectT r m) where
-    empty = mzero
-    {-# INLINE empty #-}
-    (<|>) = mplus
-    {-# INLINE (<|>) #-}
-
-instance (Monad m) => Monad (SelectT r m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return = lift . return
-    {-# INLINE return #-}
-#endif
-    SelectT g >>= f = SelectT $ \ k -> do
-        let h x = runSelectT (f x) k
-        y <- g ((>>= k) . h)
-        h y
-    {-# INLINE (>>=) #-}
-
-#if MIN_VERSION_base(4,9,0)
-instance (Fail.MonadFail m) => Fail.MonadFail (SelectT r m) where
-    fail msg = lift (Fail.fail msg)
-    {-# INLINE fail #-}
-#endif
-
-instance (MonadPlus m) => MonadPlus (SelectT r m) where
-    mzero = SelectT (const mzero)
-    {-# INLINE mzero #-}
-    SelectT f `mplus` SelectT g = SelectT $ \ k -> f k `mplus` g k
-    {-# INLINE mplus #-}
-
-instance MonadTrans (SelectT r) where
-    lift = SelectT . const
-    {-# INLINE lift #-}
-
-instance (MonadIO m) => MonadIO (SelectT r m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
--- | Convert a selection computation to a continuation-passing computation.
-selectToContT :: (Monad m) => SelectT r m a -> ContT r m a
-selectToContT (SelectT g) = ContT $ \ k -> g k >>= k
-{-# INLINE selectToCont #-}
-
--- | Deprecated name for 'selectToContT'.
-{-# DEPRECATED selectToCont "Use selectToContT instead" #-}
-selectToCont :: (Monad m) => SelectT r m a -> ContT r m a
-selectToCont = selectToContT
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/State.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/State.hs
deleted file mode 100644
index 36de964ea1d3..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/State.hs
+++ /dev/null
@@ -1,33 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.State
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- State monads, passing an updatable state through a computation.
---
--- Some computations may not require the full power of state transformers:
---
--- * For a read-only state, see "Control.Monad.Trans.Reader".
---
--- * To accumulate a value without using it on the way, see
---   "Control.Monad.Trans.Writer".
---
--- This version is lazy; for a strict version, see
--- "Control.Monad.Trans.State.Strict", which has the same interface.
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.State (
-  module Control.Monad.Trans.State.Lazy
-  ) where
-
-import Control.Monad.Trans.State.Lazy
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/State/Lazy.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/State/Lazy.hs
deleted file mode 100644
index d7cdde5444a8..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/State/Lazy.hs
+++ /dev/null
@@ -1,428 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.State.Lazy
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Lazy state monads, passing an updatable state through a computation.
--- See below for examples.
---
--- Some computations may not require the full power of state transformers:
---
--- * For a read-only state, see "Control.Monad.Trans.Reader".
---
--- * To accumulate a value without using it on the way, see
---   "Control.Monad.Trans.Writer".
---
--- In this version, sequencing of computations is lazy, so that for
--- example the following produces a usable result:
---
--- > evalState (sequence $ repeat $ do { n <- get; put (n*2); return n }) 1
---
--- For a strict version with the same interface, see
--- "Control.Monad.Trans.State.Strict".
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.State.Lazy (
-    -- * The State monad
-    State,
-    state,
-    runState,
-    evalState,
-    execState,
-    mapState,
-    withState,
-    -- * The StateT monad transformer
-    StateT(..),
-    evalStateT,
-    execStateT,
-    mapStateT,
-    withStateT,
-    -- * State operations
-    get,
-    put,
-    modify,
-    modify',
-    gets,
-    -- * Lifting other operations
-    liftCallCC,
-    liftCallCC',
-    liftCatch,
-    liftListen,
-    liftPass,
-    -- * Examples
-    -- ** State monads
-    -- $examples
-
-    -- ** Counting
-    -- $counting
-
-    -- ** Labelling trees
-    -- $labelling
-  ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Signatures
-import Control.Monad.Trans.Class
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-import Data.Functor.Identity
-
-import Control.Applicative
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix
-
--- ---------------------------------------------------------------------------
--- | A state monad parameterized by the type @s@ of the state to carry.
---
--- The 'return' function leaves the state unchanged, while @>>=@ uses
--- the final state of the first computation as the initial state of
--- the second.
-type State s = StateT s Identity
-
--- | Construct a state monad computation from a function.
--- (The inverse of 'runState'.)
-state :: (Monad m)
-      => (s -> (a, s))  -- ^pure state transformer
-      -> StateT s m a   -- ^equivalent state-passing computation
-state f = StateT (return . f)
-{-# INLINE state #-}
-
--- | Unwrap a state monad computation as a function.
--- (The inverse of 'state'.)
-runState :: State s a   -- ^state-passing computation to execute
-         -> s           -- ^initial state
-         -> (a, s)      -- ^return value and final state
-runState m = runIdentity . runStateT m
-{-# INLINE runState #-}
-
--- | Evaluate a state computation with the given initial state
--- and return the final value, discarding the final state.
---
--- * @'evalState' m s = 'fst' ('runState' m s)@
-evalState :: State s a  -- ^state-passing computation to execute
-          -> s          -- ^initial value
-          -> a          -- ^return value of the state computation
-evalState m s = fst (runState m s)
-{-# INLINE evalState #-}
-
--- | Evaluate a state computation with the given initial state
--- and return the final state, discarding the final value.
---
--- * @'execState' m s = 'snd' ('runState' m s)@
-execState :: State s a  -- ^state-passing computation to execute
-          -> s          -- ^initial value
-          -> s          -- ^final state
-execState m s = snd (runState m s)
-{-# INLINE execState #-}
-
--- | Map both the return value and final state of a computation using
--- the given function.
---
--- * @'runState' ('mapState' f m) = f . 'runState' m@
-mapState :: ((a, s) -> (b, s)) -> State s a -> State s b
-mapState f = mapStateT (Identity . f . runIdentity)
-{-# INLINE mapState #-}
-
--- | @'withState' f m@ executes action @m@ on a state modified by
--- applying @f@.
---
--- * @'withState' f m = 'modify' f >> m@
-withState :: (s -> s) -> State s a -> State s a
-withState = withStateT
-{-# INLINE withState #-}
-
--- ---------------------------------------------------------------------------
--- | A state transformer monad parameterized by:
---
---   * @s@ - The state.
---
---   * @m@ - The inner monad.
---
--- The 'return' function leaves the state unchanged, while @>>=@ uses
--- the final state of the first computation as the initial state of
--- the second.
-newtype StateT s m a = StateT { runStateT :: s -> m (a,s) }
-
--- | Evaluate a state computation with the given initial state
--- and return the final value, discarding the final state.
---
--- * @'evalStateT' m s = 'liftM' 'fst' ('runStateT' m s)@
-evalStateT :: (Monad m) => StateT s m a -> s -> m a
-evalStateT m s = do
-    ~(a, _) <- runStateT m s
-    return a
-{-# INLINE evalStateT #-}
-
--- | Evaluate a state computation with the given initial state
--- and return the final state, discarding the final value.
---
--- * @'execStateT' m s = 'liftM' 'snd' ('runStateT' m s)@
-execStateT :: (Monad m) => StateT s m a -> s -> m s
-execStateT m s = do
-    ~(_, s') <- runStateT m s
-    return s'
-{-# INLINE execStateT #-}
-
--- | Map both the return value and final state of a computation using
--- the given function.
---
--- * @'runStateT' ('mapStateT' f m) = f . 'runStateT' m@
-mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b
-mapStateT f m = StateT $ f . runStateT m
-{-# INLINE mapStateT #-}
-
--- | @'withStateT' f m@ executes action @m@ on a state modified by
--- applying @f@.
---
--- * @'withStateT' f m = 'modify' f >> m@
-withStateT :: (s -> s) -> StateT s m a -> StateT s m a
-withStateT f m = StateT $ runStateT m . f
-{-# INLINE withStateT #-}
-
-instance (Functor m) => Functor (StateT s m) where
-    fmap f m = StateT $ \ s ->
-        fmap (\ ~(a, s') -> (f a, s')) $ runStateT m s
-    {-# INLINE fmap #-}
-
-instance (Functor m, Monad m) => Applicative (StateT s m) where
-    pure a = StateT $ \ s -> return (a, s)
-    {-# INLINE pure #-}
-    StateT mf <*> StateT mx = StateT $ \ s -> do
-        ~(f, s') <- mf s
-        ~(x, s'') <- mx s'
-        return (f x, s'')
-    {-# INLINE (<*>) #-}
-    m *> k = m >>= \_ -> k
-    {-# INLINE (*>) #-}
-
-instance (Functor m, MonadPlus m) => Alternative (StateT s m) where
-    empty = StateT $ \ _ -> mzero
-    {-# INLINE empty #-}
-    StateT m <|> StateT n = StateT $ \ s -> m s `mplus` n s
-    {-# INLINE (<|>) #-}
-
-instance (Monad m) => Monad (StateT s m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a = StateT $ \ s -> return (a, s)
-    {-# INLINE return #-}
-#endif
-    m >>= k  = StateT $ \ s -> do
-        ~(a, s') <- runStateT m s
-        runStateT (k a) s'
-    {-# INLINE (>>=) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail str = StateT $ \ _ -> fail str
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Fail.MonadFail m) => Fail.MonadFail (StateT s m) where
-    fail str = StateT $ \ _ -> Fail.fail str
-    {-# INLINE fail #-}
-#endif
-
-instance (MonadPlus m) => MonadPlus (StateT s m) where
-    mzero       = StateT $ \ _ -> mzero
-    {-# INLINE mzero #-}
-    StateT m `mplus` StateT n = StateT $ \ s -> m s `mplus` n s
-    {-# INLINE mplus #-}
-
-instance (MonadFix m) => MonadFix (StateT s m) where
-    mfix f = StateT $ \ s -> mfix $ \ ~(a, _) -> runStateT (f a) s
-    {-# INLINE mfix #-}
-
-instance MonadTrans (StateT s) where
-    lift m = StateT $ \ s -> do
-        a <- m
-        return (a, s)
-    {-# INLINE lift #-}
-
-instance (MonadIO m) => MonadIO (StateT s m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant m => Contravariant (StateT s m) where
-    contramap f m = StateT $ \s ->
-      contramap (\ ~(a, s') -> (f a, s')) $ runStateT m s
-    {-# INLINE contramap #-}
-#endif
-
--- | Fetch the current value of the state within the monad.
-get :: (Monad m) => StateT s m s
-get = state $ \ s -> (s, s)
-{-# INLINE get #-}
-
--- | @'put' s@ sets the state within the monad to @s@.
-put :: (Monad m) => s -> StateT s m ()
-put s = state $ \ _ -> ((), s)
-{-# INLINE put #-}
-
--- | @'modify' f@ is an action that updates the state to the result of
--- applying @f@ to the current state.
---
--- * @'modify' f = 'get' >>= ('put' . f)@
-modify :: (Monad m) => (s -> s) -> StateT s m ()
-modify f = state $ \ s -> ((), f s)
-{-# INLINE modify #-}
-
--- | A variant of 'modify' in which the computation is strict in the
--- new state.
---
--- * @'modify'' f = 'get' >>= (('$!') 'put' . f)@
-modify' :: (Monad m) => (s -> s) -> StateT s m ()
-modify' f = do
-    s <- get
-    put $! f s
-{-# INLINE modify' #-}
-
--- | Get a specific component of the state, using a projection function
--- supplied.
---
--- * @'gets' f = 'liftM' f 'get'@
-gets :: (Monad m) => (s -> a) -> StateT s m a
-gets f = state $ \ s -> (f s, s)
-{-# INLINE gets #-}
-
--- | Uniform lifting of a @callCC@ operation to the new monad.
--- This version rolls back to the original state on entering the
--- continuation.
-liftCallCC :: CallCC m (a,s) (b,s) -> CallCC (StateT s m) a b
-liftCallCC callCC f = StateT $ \ s ->
-    callCC $ \ c ->
-    runStateT (f (\ a -> StateT $ \ _ -> c (a, s))) s
-{-# INLINE liftCallCC #-}
-
--- | In-situ lifting of a @callCC@ operation to the new monad.
--- This version uses the current state on entering the continuation.
--- It does not satisfy the uniformity property (see "Control.Monad.Signatures").
-liftCallCC' :: CallCC m (a,s) (b,s) -> CallCC (StateT s m) a b
-liftCallCC' callCC f = StateT $ \ s ->
-    callCC $ \ c ->
-    runStateT (f (\ a -> StateT $ \ s' -> c (a, s'))) s
-{-# INLINE liftCallCC' #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m (a,s) -> Catch e (StateT s m) a
-liftCatch catchE m h =
-    StateT $ \ s -> runStateT m s `catchE` \ e -> runStateT (h e) s
-{-# INLINE liftCatch #-}
-
--- | Lift a @listen@ operation to the new monad.
-liftListen :: (Monad m) => Listen w m (a,s) -> Listen w (StateT s m) a
-liftListen listen m = StateT $ \ s -> do
-    ~((a, s'), w) <- listen (runStateT m s)
-    return ((a, w), s')
-{-# INLINE liftListen #-}
-
--- | Lift a @pass@ operation to the new monad.
-liftPass :: (Monad m) => Pass w m (a,s) -> Pass w (StateT s m) a
-liftPass pass m = StateT $ \ s -> pass $ do
-    ~((a, f), s') <- runStateT m s
-    return ((a, s'), f)
-{-# INLINE liftPass #-}
-
-{- $examples
-
-Parser from ParseLib with Hugs:
-
-> type Parser a = StateT String [] a
->    ==> StateT (String -> [(a,String)])
-
-For example, item can be written as:
-
-> item = do (x:xs) <- get
->        put xs
->        return x
->
-> type BoringState s a = StateT s Identity a
->      ==> StateT (s -> Identity (a,s))
->
-> type StateWithIO s a = StateT s IO a
->      ==> StateT (s -> IO (a,s))
->
-> type StateWithErr s a = StateT s Maybe a
->      ==> StateT (s -> Maybe (a,s))
-
--}
-
-{- $counting
-
-A function to increment a counter.
-Taken from the paper \"Generalising Monads to Arrows\",
-John Hughes (<http://www.cse.chalmers.se/~rjmh/>), November 1998:
-
-> tick :: State Int Int
-> tick = do n <- get
->           put (n+1)
->           return n
-
-Add one to the given number using the state monad:
-
-> plusOne :: Int -> Int
-> plusOne n = execState tick n
-
-A contrived addition example. Works only with positive numbers:
-
-> plus :: Int -> Int -> Int
-> plus n x = execState (sequence $ replicate n tick) x
-
--}
-
-{- $labelling
-
-An example from /The Craft of Functional Programming/, Simon
-Thompson (<http://www.cs.kent.ac.uk/people/staff/sjt/>),
-Addison-Wesley 1999: \"Given an arbitrary tree, transform it to a
-tree of integers in which the original elements are replaced by
-natural numbers, starting from 0.  The same element has to be
-replaced by the same number at every occurrence, and when we meet
-an as-yet-unvisited element we have to find a \'new\' number to match
-it with:\"
-
-> data Tree a = Nil | Node a (Tree a) (Tree a) deriving (Show, Eq)
-> type Table a = [a]
-
-> numberTree :: Eq a => Tree a -> State (Table a) (Tree Int)
-> numberTree Nil = return Nil
-> numberTree (Node x t1 t2) = do
->     num <- numberNode x
->     nt1 <- numberTree t1
->     nt2 <- numberTree t2
->     return (Node num nt1 nt2)
->   where
->     numberNode :: Eq a => a -> State (Table a) Int
->     numberNode x = do
->         table <- get
->         case elemIndex x table of
->             Nothing -> do
->                 put (table ++ [x])
->                 return (length table)
->             Just i -> return i
-
-numTree applies numberTree with an initial state:
-
-> numTree :: (Eq a) => Tree a -> Tree Int
-> numTree t = evalState (numberTree t) []
-
-> testTree = Node "Zero" (Node "One" (Node "Two" Nil Nil) (Node "One" (Node "Zero" Nil Nil) Nil)) Nil
-> numTree testTree => Node 0 (Node 1 (Node 2 Nil Nil) (Node 1 (Node 0 Nil Nil) Nil)) Nil
-
--}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/State/Strict.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/State/Strict.hs
deleted file mode 100644
index d0fb58edb4cf..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/State/Strict.hs
+++ /dev/null
@@ -1,425 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.State.Strict
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Strict state monads, passing an updatable state through a computation.
--- See below for examples.
---
--- Some computations may not require the full power of state transformers:
---
--- * For a read-only state, see "Control.Monad.Trans.Reader".
---
--- * To accumulate a value without using it on the way, see
---   "Control.Monad.Trans.Writer".
---
--- In this version, sequencing of computations is strict (but computations
--- are not strict in the state unless you force it with 'seq' or the like).
--- For a lazy version with the same interface, see
--- "Control.Monad.Trans.State.Lazy".
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.State.Strict (
-    -- * The State monad
-    State,
-    state,
-    runState,
-    evalState,
-    execState,
-    mapState,
-    withState,
-    -- * The StateT monad transformer
-    StateT(..),
-    evalStateT,
-    execStateT,
-    mapStateT,
-    withStateT,
-    -- * State operations
-    get,
-    put,
-    modify,
-    modify',
-    gets,
-    -- * Lifting other operations
-    liftCallCC,
-    liftCallCC',
-    liftCatch,
-    liftListen,
-    liftPass,
-    -- * Examples
-    -- ** State monads
-    -- $examples
-
-    -- ** Counting
-    -- $counting
-
-    -- ** Labelling trees
-    -- $labelling
-  ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Signatures
-import Control.Monad.Trans.Class
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-import Data.Functor.Identity
-
-import Control.Applicative
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix
-
--- ---------------------------------------------------------------------------
--- | A state monad parameterized by the type @s@ of the state to carry.
---
--- The 'return' function leaves the state unchanged, while @>>=@ uses
--- the final state of the first computation as the initial state of
--- the second.
-type State s = StateT s Identity
-
--- | Construct a state monad computation from a function.
--- (The inverse of 'runState'.)
-state :: (Monad m)
-      => (s -> (a, s))  -- ^pure state transformer
-      -> StateT s m a   -- ^equivalent state-passing computation
-state f = StateT (return . f)
-{-# INLINE state #-}
-
--- | Unwrap a state monad computation as a function.
--- (The inverse of 'state'.)
-runState :: State s a   -- ^state-passing computation to execute
-         -> s           -- ^initial state
-         -> (a, s)      -- ^return value and final state
-runState m = runIdentity . runStateT m
-{-# INLINE runState #-}
-
--- | Evaluate a state computation with the given initial state
--- and return the final value, discarding the final state.
---
--- * @'evalState' m s = 'fst' ('runState' m s)@
-evalState :: State s a  -- ^state-passing computation to execute
-          -> s          -- ^initial value
-          -> a          -- ^return value of the state computation
-evalState m s = fst (runState m s)
-{-# INLINE evalState #-}
-
--- | Evaluate a state computation with the given initial state
--- and return the final state, discarding the final value.
---
--- * @'execState' m s = 'snd' ('runState' m s)@
-execState :: State s a  -- ^state-passing computation to execute
-          -> s          -- ^initial value
-          -> s          -- ^final state
-execState m s = snd (runState m s)
-{-# INLINE execState #-}
-
--- | Map both the return value and final state of a computation using
--- the given function.
---
--- * @'runState' ('mapState' f m) = f . 'runState' m@
-mapState :: ((a, s) -> (b, s)) -> State s a -> State s b
-mapState f = mapStateT (Identity . f . runIdentity)
-{-# INLINE mapState #-}
-
--- | @'withState' f m@ executes action @m@ on a state modified by
--- applying @f@.
---
--- * @'withState' f m = 'modify' f >> m@
-withState :: (s -> s) -> State s a -> State s a
-withState = withStateT
-{-# INLINE withState #-}
-
--- ---------------------------------------------------------------------------
--- | A state transformer monad parameterized by:
---
---   * @s@ - The state.
---
---   * @m@ - The inner monad.
---
--- The 'return' function leaves the state unchanged, while @>>=@ uses
--- the final state of the first computation as the initial state of
--- the second.
-newtype StateT s m a = StateT { runStateT :: s -> m (a,s) }
-
--- | Evaluate a state computation with the given initial state
--- and return the final value, discarding the final state.
---
--- * @'evalStateT' m s = 'liftM' 'fst' ('runStateT' m s)@
-evalStateT :: (Monad m) => StateT s m a -> s -> m a
-evalStateT m s = do
-    (a, _) <- runStateT m s
-    return a
-{-# INLINE evalStateT #-}
-
--- | Evaluate a state computation with the given initial state
--- and return the final state, discarding the final value.
---
--- * @'execStateT' m s = 'liftM' 'snd' ('runStateT' m s)@
-execStateT :: (Monad m) => StateT s m a -> s -> m s
-execStateT m s = do
-    (_, s') <- runStateT m s
-    return s'
-{-# INLINE execStateT #-}
-
--- | Map both the return value and final state of a computation using
--- the given function.
---
--- * @'runStateT' ('mapStateT' f m) = f . 'runStateT' m@
-mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b
-mapStateT f m = StateT $ f . runStateT m
-{-# INLINE mapStateT #-}
-
--- | @'withStateT' f m@ executes action @m@ on a state modified by
--- applying @f@.
---
--- * @'withStateT' f m = 'modify' f >> m@
-withStateT :: (s -> s) -> StateT s m a -> StateT s m a
-withStateT f m = StateT $ runStateT m . f
-{-# INLINE withStateT #-}
-
-instance (Functor m) => Functor (StateT s m) where
-    fmap f m = StateT $ \ s ->
-        fmap (\ (a, s') -> (f a, s')) $ runStateT m s
-    {-# INLINE fmap #-}
-
-instance (Functor m, Monad m) => Applicative (StateT s m) where
-    pure a = StateT $ \ s -> return (a, s)
-    {-# INLINE pure #-}
-    StateT mf <*> StateT mx = StateT $ \ s -> do
-        (f, s') <- mf s
-        (x, s'') <- mx s'
-        return (f x, s'')
-    {-# INLINE (<*>) #-}
-    m *> k = m >>= \_ -> k
-    {-# INLINE (*>) #-}
-
-instance (Functor m, MonadPlus m) => Alternative (StateT s m) where
-    empty = StateT $ \ _ -> mzero
-    {-# INLINE empty #-}
-    StateT m <|> StateT n = StateT $ \ s -> m s `mplus` n s
-    {-# INLINE (<|>) #-}
-
-instance (Monad m) => Monad (StateT s m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a = StateT $ \ s -> return (a, s)
-    {-# INLINE return #-}
-#endif
-    m >>= k  = StateT $ \ s -> do
-        (a, s') <- runStateT m s
-        runStateT (k a) s'
-    {-# INLINE (>>=) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail str = StateT $ \ _ -> fail str
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Fail.MonadFail m) => Fail.MonadFail (StateT s m) where
-    fail str = StateT $ \ _ -> Fail.fail str
-    {-# INLINE fail #-}
-#endif
-
-instance (MonadPlus m) => MonadPlus (StateT s m) where
-    mzero       = StateT $ \ _ -> mzero
-    {-# INLINE mzero #-}
-    StateT m `mplus` StateT n = StateT $ \ s -> m s `mplus` n s
-    {-# INLINE mplus #-}
-
-instance (MonadFix m) => MonadFix (StateT s m) where
-    mfix f = StateT $ \ s -> mfix $ \ ~(a, _) -> runStateT (f a) s
-    {-# INLINE mfix #-}
-
-instance MonadTrans (StateT s) where
-    lift m = StateT $ \ s -> do
-        a <- m
-        return (a, s)
-    {-# INLINE lift #-}
-
-instance (MonadIO m) => MonadIO (StateT s m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant m => Contravariant (StateT s m) where
-    contramap f m = StateT $ \s ->
-      contramap (\ (a, s') -> (f a, s')) $ runStateT m s
-    {-# INLINE contramap #-}
-#endif
-
--- | Fetch the current value of the state within the monad.
-get :: (Monad m) => StateT s m s
-get = state $ \ s -> (s, s)
-{-# INLINE get #-}
-
--- | @'put' s@ sets the state within the monad to @s@.
-put :: (Monad m) => s -> StateT s m ()
-put s = state $ \ _ -> ((), s)
-{-# INLINE put #-}
-
--- | @'modify' f@ is an action that updates the state to the result of
--- applying @f@ to the current state.
---
--- * @'modify' f = 'get' >>= ('put' . f)@
-modify :: (Monad m) => (s -> s) -> StateT s m ()
-modify f = state $ \ s -> ((), f s)
-{-# INLINE modify #-}
-
--- | A variant of 'modify' in which the computation is strict in the
--- new state.
---
--- * @'modify'' f = 'get' >>= (('$!') 'put' . f)@
-modify' :: (Monad m) => (s -> s) -> StateT s m ()
-modify' f = do
-    s <- get
-    put $! f s
-{-# INLINE modify' #-}
-
--- | Get a specific component of the state, using a projection function
--- supplied.
---
--- * @'gets' f = 'liftM' f 'get'@
-gets :: (Monad m) => (s -> a) -> StateT s m a
-gets f = state $ \ s -> (f s, s)
-{-# INLINE gets #-}
-
--- | Uniform lifting of a @callCC@ operation to the new monad.
--- This version rolls back to the original state on entering the
--- continuation.
-liftCallCC :: CallCC m (a,s) (b,s) -> CallCC (StateT s m) a b
-liftCallCC callCC f = StateT $ \ s ->
-    callCC $ \ c ->
-    runStateT (f (\ a -> StateT $ \ _ -> c (a, s))) s
-{-# INLINE liftCallCC #-}
-
--- | In-situ lifting of a @callCC@ operation to the new monad.
--- This version uses the current state on entering the continuation.
--- It does not satisfy the uniformity property (see "Control.Monad.Signatures").
-liftCallCC' :: CallCC m (a,s) (b,s) -> CallCC (StateT s m) a b
-liftCallCC' callCC f = StateT $ \ s ->
-    callCC $ \ c ->
-    runStateT (f (\ a -> StateT $ \ s' -> c (a, s'))) s
-{-# INLINE liftCallCC' #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m (a,s) -> Catch e (StateT s m) a
-liftCatch catchE m h =
-    StateT $ \ s -> runStateT m s `catchE` \ e -> runStateT (h e) s
-{-# INLINE liftCatch #-}
-
--- | Lift a @listen@ operation to the new monad.
-liftListen :: (Monad m) => Listen w m (a,s) -> Listen w (StateT s m) a
-liftListen listen m = StateT $ \ s -> do
-    ((a, s'), w) <- listen (runStateT m s)
-    return ((a, w), s')
-{-# INLINE liftListen #-}
-
--- | Lift a @pass@ operation to the new monad.
-liftPass :: (Monad m) => Pass w m (a,s) -> Pass w (StateT s m) a
-liftPass pass m = StateT $ \ s -> pass $ do
-    ((a, f), s') <- runStateT m s
-    return ((a, s'), f)
-{-# INLINE liftPass #-}
-
-{- $examples
-
-Parser from ParseLib with Hugs:
-
-> type Parser a = StateT String [] a
->    ==> StateT (String -> [(a,String)])
-
-For example, item can be written as:
-
-> item = do (x:xs) <- get
->        put xs
->        return x
->
-> type BoringState s a = StateT s Identity a
->      ==> StateT (s -> Identity (a,s))
->
-> type StateWithIO s a = StateT s IO a
->      ==> StateT (s -> IO (a,s))
->
-> type StateWithErr s a = StateT s Maybe a
->      ==> StateT (s -> Maybe (a,s))
-
--}
-
-{- $counting
-
-A function to increment a counter.
-Taken from the paper \"Generalising Monads to Arrows\",
-John Hughes (<http://www.cse.chalmers.se/~rjmh/>), November 1998:
-
-> tick :: State Int Int
-> tick = do n <- get
->           put (n+1)
->           return n
-
-Add one to the given number using the state monad:
-
-> plusOne :: Int -> Int
-> plusOne n = execState tick n
-
-A contrived addition example. Works only with positive numbers:
-
-> plus :: Int -> Int -> Int
-> plus n x = execState (sequence $ replicate n tick) x
-
--}
-
-{- $labelling
-
-An example from /The Craft of Functional Programming/, Simon
-Thompson (<http://www.cs.kent.ac.uk/people/staff/sjt/>),
-Addison-Wesley 1999: \"Given an arbitrary tree, transform it to a
-tree of integers in which the original elements are replaced by
-natural numbers, starting from 0.  The same element has to be
-replaced by the same number at every occurrence, and when we meet
-an as-yet-unvisited element we have to find a \'new\' number to match
-it with:\"
-
-> data Tree a = Nil | Node a (Tree a) (Tree a) deriving (Show, Eq)
-> type Table a = [a]
-
-> numberTree :: Eq a => Tree a -> State (Table a) (Tree Int)
-> numberTree Nil = return Nil
-> numberTree (Node x t1 t2) = do
->     num <- numberNode x
->     nt1 <- numberTree t1
->     nt2 <- numberTree t2
->     return (Node num nt1 nt2)
->   where
->     numberNode :: Eq a => a -> State (Table a) Int
->     numberNode x = do
->         table <- get
->         case elemIndex x table of
->             Nothing -> do
->                 put (table ++ [x])
->                 return (length table)
->             Just i -> return i
-
-numTree applies numberTree with an initial state:
-
-> numTree :: (Eq a) => Tree a -> Tree Int
-> numTree t = evalState (numberTree t) []
-
-> testTree = Node "Zero" (Node "One" (Node "Two" Nil Nil) (Node "One" (Node "Zero" Nil Nil) Nil)) Nil
-> numTree testTree => Node 0 (Node 1 (Node 2 Nil Nil) (Node 1 (Node 0 Nil Nil) Nil)) Nil
-
--}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer.hs
deleted file mode 100644
index f45f4d27687c..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer.hs
+++ /dev/null
@@ -1,25 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Writer
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- The WriterT monad transformer.
--- This version builds its output lazily; for a constant-space version
--- with almost the same interface, see "Control.Monad.Trans.Writer.CPS".
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Writer (
-    module Control.Monad.Trans.Writer.Lazy
-  ) where
-
-import Control.Monad.Trans.Writer.Lazy
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/CPS.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/CPS.hs
deleted file mode 100644
index 28951016cf81..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/CPS.hs
+++ /dev/null
@@ -1,283 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Writer.CPS
--- Copyright   :  (c) Daniel Mendler 2016,
---                (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- The strict 'WriterT' monad transformer, which adds collection of
--- outputs (such as a count or string output) to a given monad.
---
--- This monad transformer provides only limited access to the output
--- during the computation. For more general access, use
--- "Control.Monad.Trans.State" instead.
---
--- This version builds its output strictly and uses continuation-passing-style
--- to achieve constant space usage. This transformer can be used as a
--- drop-in replacement for "Control.Monad.Trans.Writer.Strict".
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Writer.CPS (
-    -- * The Writer monad
-    Writer,
-    writer,
-    runWriter,
-    execWriter,
-    mapWriter,
-    -- * The WriterT monad transformer
-    WriterT,
-    writerT,
-    runWriterT,
-    execWriterT,
-    mapWriterT,
-    -- * Writer operations
-    tell,
-    listen,
-    listens,
-    pass,
-    censor,
-    -- * Lifting other operations
-    liftCallCC,
-    liftCatch,
-  ) where
-
-import Control.Applicative
-import Control.Monad
-import Control.Monad.Fix
-import Control.Monad.IO.Class
-import Control.Monad.Trans.Class
-import Control.Monad.Signatures
-import Data.Functor.Identity
-
-#if !(MIN_VERSION_base(4,8,0))
-import Data.Monoid
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-
--- ---------------------------------------------------------------------------
--- | A writer monad parameterized by the type @w@ of output to accumulate.
---
--- The 'return' function produces the output 'mempty', while '>>='
--- combines the outputs of the subcomputations using 'mappend'.
-type Writer w = WriterT w Identity
-
--- | Construct a writer computation from a (result, output) pair.
--- (The inverse of 'runWriter'.)
-writer :: (Monoid w, Monad m) => (a, w) -> WriterT w m a
-writer (a, w') = WriterT $ \ w ->
-    let wt = w `mappend` w' in wt `seq` return (a, wt)
-{-# INLINE writer #-}
-
--- | Unwrap a writer computation as a (result, output) pair.
--- (The inverse of 'writer'.)
-runWriter :: (Monoid w) => Writer w a -> (a, w)
-runWriter = runIdentity . runWriterT
-{-# INLINE runWriter #-}
-
--- | Extract the output from a writer computation.
---
--- * @'execWriter' m = 'snd' ('runWriter' m)@
-execWriter :: (Monoid w) => Writer w a -> w
-execWriter = runIdentity . execWriterT
-{-# INLINE execWriter #-}
-
--- | Map both the return value and output of a computation using
--- the given function.
---
--- * @'runWriter' ('mapWriter' f m) = f ('runWriter' m)@
-mapWriter :: (Monoid w, Monoid w') =>
-    ((a, w) -> (b, w')) -> Writer w a -> Writer w' b
-mapWriter f = mapWriterT (Identity . f . runIdentity)
-{-# INLINE mapWriter #-}
-
--- ---------------------------------------------------------------------------
--- | A writer monad parameterized by:
---
---   * @w@ - the output to accumulate.
---
---   * @m@ - The inner monad.
---
--- The 'return' function produces the output 'mempty', while '>>='
--- combines the outputs of the subcomputations using 'mappend'.
-
-newtype WriterT w m a = WriterT { unWriterT :: w -> m (a, w) }
-
--- | Construct a writer computation from a (result, output) computation.
--- (The inverse of 'runWriterT'.)
-writerT :: (Functor m, Monoid w) => m (a, w) -> WriterT w m a
-writerT f = WriterT $ \ w ->
-    (\ (a, w') -> let wt = w `mappend` w' in wt `seq` (a, wt)) <$> f
-{-# INLINE writerT #-}
-
--- | Unwrap a writer computation.
--- (The inverse of 'writerT'.)
-runWriterT :: (Monoid w) => WriterT w m a -> m (a, w)
-runWriterT m = unWriterT m mempty
-{-# INLINE runWriterT #-}
-
--- | Extract the output from a writer computation.
---
--- * @'execWriterT' m = 'liftM' 'snd' ('runWriterT' m)@
-execWriterT :: (Monad m, Monoid w) => WriterT w m a -> m w
-execWriterT m = do
-    (_, w) <- runWriterT m
-    return w
-{-# INLINE execWriterT #-}
-
--- | Map both the return value and output of a computation using
--- the given function.
---
--- * @'runWriterT' ('mapWriterT' f m) = f ('runWriterT' m)@
-mapWriterT :: (Monad n, Monoid w, Monoid w') =>
-    (m (a, w) -> n (b, w')) -> WriterT w m a -> WriterT w' n b
-mapWriterT f m = WriterT $ \ w -> do
-    (a, w') <- f (runWriterT m)
-    let wt = w `mappend` w'
-    wt `seq` return (a, wt)
-{-# INLINE mapWriterT #-}
-
-instance (Functor m) => Functor (WriterT w m) where
-    fmap f m = WriterT $ \ w -> (\ (a, w') -> (f a, w')) <$> unWriterT m w
-    {-# INLINE fmap #-}
-
-instance (Functor m, Monad m) => Applicative (WriterT w m) where
-    pure a = WriterT $ \ w -> return (a, w)
-    {-# INLINE pure #-}
-
-    WriterT mf <*> WriterT mx = WriterT $ \ w -> do
-        (f, w') <- mf w
-        (x, w'') <- mx w'
-        return (f x, w'')
-    {-# INLINE (<*>) #-}
-
-instance (Functor m, MonadPlus m) => Alternative (WriterT w m) where
-    empty = WriterT $ const mzero
-    {-# INLINE empty #-}
-
-    WriterT m <|> WriterT n = WriterT $ \ w -> m w `mplus` n w
-    {-# INLINE (<|>) #-}
-
-instance (Monad m) => Monad (WriterT w m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a = WriterT $ \ w -> return (a, w)
-    {-# INLINE return #-}
-#endif
-
-    m >>= k = WriterT $ \ w -> do
-        (a, w') <- unWriterT m w
-        unWriterT (k a) w'
-    {-# INLINE (>>=) #-}
-
-#if !(MIN_VERSION_base(4,13,0))
-    fail msg = WriterT $ \ _ -> fail msg
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Fail.MonadFail m) => Fail.MonadFail (WriterT w m) where
-    fail msg = WriterT $ \ _ -> Fail.fail msg
-    {-# INLINE fail #-}
-#endif
-
-instance (Functor m, MonadPlus m) => MonadPlus (WriterT w m) where
-    mzero = empty
-    {-# INLINE mzero #-}
-    mplus = (<|>)
-    {-# INLINE mplus #-}
-
-instance (MonadFix m) => MonadFix (WriterT w m) where
-    mfix f = WriterT $ \ w -> mfix $ \ ~(a, _) -> unWriterT (f a) w
-    {-# INLINE mfix #-}
-
-instance MonadTrans (WriterT w) where
-    lift m = WriterT $ \ w -> do
-        a <- m
-        return (a, w)
-    {-# INLINE lift #-}
-
-instance (MonadIO m) => MonadIO (WriterT w m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
--- | @'tell' w@ is an action that produces the output @w@.
-tell :: (Monoid w, Monad m) => w -> WriterT w m ()
-tell w = writer ((), w)
-{-# INLINE tell #-}
-
--- | @'listen' m@ is an action that executes the action @m@ and adds its
--- output to the value of the computation.
---
--- * @'runWriterT' ('listen' m) = 'liftM' (\\ (a, w) -> ((a, w), w)) ('runWriterT' m)@
-listen :: (Monoid w, Monad m) => WriterT w m a -> WriterT w m (a, w)
-listen = listens id
-{-# INLINE listen #-}
-
--- | @'listens' f m@ is an action that executes the action @m@ and adds
--- the result of applying @f@ to the output to the value of the computation.
---
--- * @'listens' f m = 'liftM' (id *** f) ('listen' m)@
---
--- * @'runWriterT' ('listens' f m) = 'liftM' (\\ (a, w) -> ((a, f w), w)) ('runWriterT' m)@
-listens :: (Monoid w, Monad m) =>
-    (w -> b) -> WriterT w m a -> WriterT w m (a, b)
-listens f m = WriterT $ \ w -> do
-    (a, w') <- runWriterT m
-    let wt = w `mappend` w'
-    wt `seq` return ((a, f w'), wt)
-{-# INLINE listens #-}
-
--- | @'pass' m@ is an action that executes the action @m@, which returns
--- a value and a function, and returns the value, applying the function
--- to the output.
---
--- * @'runWriterT' ('pass' m) = 'liftM' (\\ ((a, f), w) -> (a, f w)) ('runWriterT' m)@
-pass :: (Monoid w, Monoid w', Monad m) =>
-    WriterT w m (a, w -> w') -> WriterT w' m a
-pass m = WriterT $ \ w -> do
-    ((a, f), w') <- runWriterT m
-    let wt = w `mappend` f w'
-    wt `seq` return (a, wt)
-{-# INLINE pass #-}
-
--- | @'censor' f m@ is an action that executes the action @m@ and
--- applies the function @f@ to its output, leaving the return value
--- unchanged.
---
--- * @'censor' f m = 'pass' ('liftM' (\\ x -> (x,f)) m)@
---
--- * @'runWriterT' ('censor' f m) = 'liftM' (\\ (a, w) -> (a, f w)) ('runWriterT' m)@
-censor :: (Monoid w, Monad m) => (w -> w) -> WriterT w m a -> WriterT w m a
-censor f m = WriterT $ \ w -> do
-    (a, w') <- runWriterT m
-    let wt = w `mappend` f w'
-    wt `seq` return (a, wt)
-{-# INLINE censor #-}
-
--- | Uniform lifting of a @callCC@ operation to the new monad.
--- This version rolls back to the original state on entering the
--- continuation.
-liftCallCC :: CallCC m (a, w) (b, w) -> CallCC (WriterT w m) a b
-liftCallCC callCC f = WriterT $ \ w ->
-    callCC $ \ c -> unWriterT (f (\ a -> WriterT $ \ _ -> c (a, w))) w
-{-# INLINE liftCallCC #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m (a, w) -> Catch e (WriterT w m) a
-liftCatch catchE m h = WriterT $ \ w ->
-    unWriterT m w `catchE` \ e -> unWriterT (h e) w
-{-# INLINE liftCatch #-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Lazy.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Lazy.hs
deleted file mode 100644
index d12b0e7d583c..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Lazy.hs
+++ /dev/null
@@ -1,313 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Writer.Lazy
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- The lazy 'WriterT' monad transformer, which adds collection of
--- outputs (such as a count or string output) to a given monad.
---
--- This monad transformer provides only limited access to the output
--- during the computation.  For more general access, use
--- "Control.Monad.Trans.State" instead.
---
--- This version builds its output lazily; for a constant-space version
--- with almost the same interface, see "Control.Monad.Trans.Writer.CPS".
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Writer.Lazy (
-    -- * The Writer monad
-    Writer,
-    writer,
-    runWriter,
-    execWriter,
-    mapWriter,
-    -- * The WriterT monad transformer
-    WriterT(..),
-    execWriterT,
-    mapWriterT,
-    -- * Writer operations
-    tell,
-    listen,
-    listens,
-    pass,
-    censor,
-    -- * Lifting other operations
-    liftCallCC,
-    liftCatch,
-  ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Trans.Class
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-import Data.Functor.Identity
-
-import Control.Applicative
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix
-import Control.Monad.Signatures
-#if MIN_VERSION_base(4,4,0)
-import Control.Monad.Zip (MonadZip(mzipWith))
-#endif
-import Data.Foldable
-import Data.Monoid
-import Data.Traversable (Traversable(traverse))
-import Prelude hiding (null, length)
-
--- ---------------------------------------------------------------------------
--- | A writer monad parameterized by the type @w@ of output to accumulate.
---
--- The 'return' function produces the output 'mempty', while @>>=@
--- combines the outputs of the subcomputations using 'mappend'.
-type Writer w = WriterT w Identity
-
--- | Construct a writer computation from a (result, output) pair.
--- (The inverse of 'runWriter'.)
-writer :: (Monad m) => (a, w) -> WriterT w m a
-writer = WriterT . return
-{-# INLINE writer #-}
-
--- | Unwrap a writer computation as a (result, output) pair.
--- (The inverse of 'writer'.)
-runWriter :: Writer w a -> (a, w)
-runWriter = runIdentity . runWriterT
-{-# INLINE runWriter #-}
-
--- | Extract the output from a writer computation.
---
--- * @'execWriter' m = 'snd' ('runWriter' m)@
-execWriter :: Writer w a -> w
-execWriter m = snd (runWriter m)
-{-# INLINE execWriter #-}
-
--- | Map both the return value and output of a computation using
--- the given function.
---
--- * @'runWriter' ('mapWriter' f m) = f ('runWriter' m)@
-mapWriter :: ((a, w) -> (b, w')) -> Writer w a -> Writer w' b
-mapWriter f = mapWriterT (Identity . f . runIdentity)
-{-# INLINE mapWriter #-}
-
--- ---------------------------------------------------------------------------
--- | A writer monad parameterized by:
---
---   * @w@ - the output to accumulate.
---
---   * @m@ - The inner monad.
---
--- The 'return' function produces the output 'mempty', while @>>=@
--- combines the outputs of the subcomputations using 'mappend'.
-newtype WriterT w m a = WriterT { runWriterT :: m (a, w) }
-
-instance (Eq w, Eq1 m) => Eq1 (WriterT w m) where
-    liftEq eq (WriterT m1) (WriterT m2) = liftEq (liftEq2 eq (==)) m1 m2
-    {-# INLINE liftEq #-}
-
-instance (Ord w, Ord1 m) => Ord1 (WriterT w m) where
-    liftCompare comp (WriterT m1) (WriterT m2) =
-        liftCompare (liftCompare2 comp compare) m1 m2
-    {-# INLINE liftCompare #-}
-
-instance (Read w, Read1 m) => Read1 (WriterT w m) where
-    liftReadsPrec rp rl = readsData $
-        readsUnaryWith (liftReadsPrec rp' rl') "WriterT" WriterT
-      where
-        rp' = liftReadsPrec2 rp rl readsPrec readList
-        rl' = liftReadList2 rp rl readsPrec readList
-
-instance (Show w, Show1 m) => Show1 (WriterT w m) where
-    liftShowsPrec sp sl d (WriterT m) =
-        showsUnaryWith (liftShowsPrec sp' sl') "WriterT" d m
-      where
-        sp' = liftShowsPrec2 sp sl showsPrec showList
-        sl' = liftShowList2 sp sl showsPrec showList
-
-instance (Eq w, Eq1 m, Eq a) => Eq (WriterT w m a) where (==) = eq1
-instance (Ord w, Ord1 m, Ord a) => Ord (WriterT w m a) where compare = compare1
-instance (Read w, Read1 m, Read a) => Read (WriterT w m a) where
-    readsPrec = readsPrec1
-instance (Show w, Show1 m, Show a) => Show (WriterT w m a) where
-    showsPrec = showsPrec1
-
--- | Extract the output from a writer computation.
---
--- * @'execWriterT' m = 'liftM' 'snd' ('runWriterT' m)@
-execWriterT :: (Monad m) => WriterT w m a -> m w
-execWriterT m = do
-    ~(_, w) <- runWriterT m
-    return w
-{-# INLINE execWriterT #-}
-
--- | Map both the return value and output of a computation using
--- the given function.
---
--- * @'runWriterT' ('mapWriterT' f m) = f ('runWriterT' m)@
-mapWriterT :: (m (a, w) -> n (b, w')) -> WriterT w m a -> WriterT w' n b
-mapWriterT f m = WriterT $ f (runWriterT m)
-{-# INLINE mapWriterT #-}
-
-instance (Functor m) => Functor (WriterT w m) where
-    fmap f = mapWriterT $ fmap $ \ ~(a, w) -> (f a, w)
-    {-# INLINE fmap #-}
-
-instance (Foldable f) => Foldable (WriterT w f) where
-    foldMap f = foldMap (f . fst) . runWriterT
-    {-# INLINE foldMap #-}
-#if MIN_VERSION_base(4,8,0)
-    null (WriterT t) = null t
-    length (WriterT t) = length t
-#endif
-
-instance (Traversable f) => Traversable (WriterT w f) where
-    traverse f = fmap WriterT . traverse f' . runWriterT where
-       f' (a, b) = fmap (\ c -> (c, b)) (f a)
-    {-# INLINE traverse #-}
-
-instance (Monoid w, Applicative m) => Applicative (WriterT w m) where
-    pure a  = WriterT $ pure (a, mempty)
-    {-# INLINE pure #-}
-    f <*> v = WriterT $ liftA2 k (runWriterT f) (runWriterT v)
-      where k ~(a, w) ~(b, w') = (a b, w `mappend` w')
-    {-# INLINE (<*>) #-}
-
-instance (Monoid w, Alternative m) => Alternative (WriterT w m) where
-    empty   = WriterT empty
-    {-# INLINE empty #-}
-    m <|> n = WriterT $ runWriterT m <|> runWriterT n
-    {-# INLINE (<|>) #-}
-
-instance (Monoid w, Monad m) => Monad (WriterT w m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a = writer (a, mempty)
-    {-# INLINE return #-}
-#endif
-    m >>= k  = WriterT $ do
-        ~(a, w)  <- runWriterT m
-        ~(b, w') <- runWriterT (k a)
-        return (b, w `mappend` w')
-    {-# INLINE (>>=) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail msg = WriterT $ fail msg
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Monoid w, Fail.MonadFail m) => Fail.MonadFail (WriterT w m) where
-    fail msg = WriterT $ Fail.fail msg
-    {-# INLINE fail #-}
-#endif
-
-instance (Monoid w, MonadPlus m) => MonadPlus (WriterT w m) where
-    mzero       = WriterT mzero
-    {-# INLINE mzero #-}
-    m `mplus` n = WriterT $ runWriterT m `mplus` runWriterT n
-    {-# INLINE mplus #-}
-
-instance (Monoid w, MonadFix m) => MonadFix (WriterT w m) where
-    mfix m = WriterT $ mfix $ \ ~(a, _) -> runWriterT (m a)
-    {-# INLINE mfix #-}
-
-instance (Monoid w) => MonadTrans (WriterT w) where
-    lift m = WriterT $ do
-        a <- m
-        return (a, mempty)
-    {-# INLINE lift #-}
-
-instance (Monoid w, MonadIO m) => MonadIO (WriterT w m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
-#if MIN_VERSION_base(4,4,0)
-instance (Monoid w, MonadZip m) => MonadZip (WriterT w m) where
-    mzipWith f (WriterT x) (WriterT y) = WriterT $
-        mzipWith (\ ~(a, w) ~(b, w') -> (f a b, w `mappend` w')) x y
-    {-# INLINE mzipWith #-}
-#endif
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant m => Contravariant (WriterT w m) where
-    contramap f = mapWriterT $ contramap $ \ ~(a, w) -> (f a, w)
-    {-# INLINE contramap #-}
-#endif
-
--- | @'tell' w@ is an action that produces the output @w@.
-tell :: (Monad m) => w -> WriterT w m ()
-tell w = writer ((), w)
-{-# INLINE tell #-}
-
--- | @'listen' m@ is an action that executes the action @m@ and adds its
--- output to the value of the computation.
---
--- * @'runWriterT' ('listen' m) = 'liftM' (\\ (a, w) -> ((a, w), w)) ('runWriterT' m)@
-listen :: (Monad m) => WriterT w m a -> WriterT w m (a, w)
-listen m = WriterT $ do
-    ~(a, w) <- runWriterT m
-    return ((a, w), w)
-{-# INLINE listen #-}
-
--- | @'listens' f m@ is an action that executes the action @m@ and adds
--- the result of applying @f@ to the output to the value of the computation.
---
--- * @'listens' f m = 'liftM' (id *** f) ('listen' m)@
---
--- * @'runWriterT' ('listens' f m) = 'liftM' (\\ (a, w) -> ((a, f w), w)) ('runWriterT' m)@
-listens :: (Monad m) => (w -> b) -> WriterT w m a -> WriterT w m (a, b)
-listens f m = WriterT $ do
-    ~(a, w) <- runWriterT m
-    return ((a, f w), w)
-{-# INLINE listens #-}
-
--- | @'pass' m@ is an action that executes the action @m@, which returns
--- a value and a function, and returns the value, applying the function
--- to the output.
---
--- * @'runWriterT' ('pass' m) = 'liftM' (\\ ((a, f), w) -> (a, f w)) ('runWriterT' m)@
-pass :: (Monad m) => WriterT w m (a, w -> w) -> WriterT w m a
-pass m = WriterT $ do
-    ~((a, f), w) <- runWriterT m
-    return (a, f w)
-{-# INLINE pass #-}
-
--- | @'censor' f m@ is an action that executes the action @m@ and
--- applies the function @f@ to its output, leaving the return value
--- unchanged.
---
--- * @'censor' f m = 'pass' ('liftM' (\\ x -> (x,f)) m)@
---
--- * @'runWriterT' ('censor' f m) = 'liftM' (\\ (a, w) -> (a, f w)) ('runWriterT' m)@
-censor :: (Monad m) => (w -> w) -> WriterT w m a -> WriterT w m a
-censor f m = WriterT $ do
-    ~(a, w) <- runWriterT m
-    return (a, f w)
-{-# INLINE censor #-}
-
--- | Lift a @callCC@ operation to the new monad.
-liftCallCC :: (Monoid w) => CallCC m (a,w) (b,w) -> CallCC (WriterT w m) a b
-liftCallCC callCC f = WriterT $
-    callCC $ \ c ->
-    runWriterT (f (\ a -> WriterT $ c (a, mempty)))
-{-# INLINE liftCallCC #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m (a,w) -> Catch e (WriterT w m) a
-liftCatch catchE m h =
-    WriterT $ runWriterT m `catchE` \ e -> runWriterT (h e)
-{-# INLINE liftCatch #-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Strict.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Strict.hs
deleted file mode 100644
index f39862c02044..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Strict.hs
+++ /dev/null
@@ -1,316 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Writer.Strict
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- The strict 'WriterT' monad transformer, which adds collection of
--- outputs (such as a count or string output) to a given monad.
---
--- This monad transformer provides only limited access to the output
--- during the computation.  For more general access, use
--- "Control.Monad.Trans.State" instead.
---
--- This version builds its output strictly; for a lazy version with
--- the same interface, see "Control.Monad.Trans.Writer.Lazy".
--- Although the output is built strictly, it is not possible to
--- achieve constant space behaviour with this transformer: for that,
--- use "Control.Monad.Trans.Writer.CPS" instead.
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Writer.Strict (
-    -- * The Writer monad
-    Writer,
-    writer,
-    runWriter,
-    execWriter,
-    mapWriter,
-    -- * The WriterT monad transformer
-    WriterT(..),
-    execWriterT,
-    mapWriterT,
-    -- * Writer operations
-    tell,
-    listen,
-    listens,
-    pass,
-    censor,
-    -- * Lifting other operations
-    liftCallCC,
-    liftCatch,
-  ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Trans.Class
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-import Data.Functor.Identity
-
-import Control.Applicative
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix
-import Control.Monad.Signatures
-#if MIN_VERSION_base(4,4,0)
-import Control.Monad.Zip (MonadZip(mzipWith))
-#endif
-import Data.Foldable
-import Data.Monoid
-import Data.Traversable (Traversable(traverse))
-import Prelude hiding (null, length)
-
--- ---------------------------------------------------------------------------
--- | A writer monad parameterized by the type @w@ of output to accumulate.
---
--- The 'return' function produces the output 'mempty', while @>>=@
--- combines the outputs of the subcomputations using 'mappend'.
-type Writer w = WriterT w Identity
-
--- | Construct a writer computation from a (result, output) pair.
--- (The inverse of 'runWriter'.)
-writer :: (Monad m) => (a, w) -> WriterT w m a
-writer = WriterT . return
-{-# INLINE writer #-}
-
--- | Unwrap a writer computation as a (result, output) pair.
--- (The inverse of 'writer'.)
-runWriter :: Writer w a -> (a, w)
-runWriter = runIdentity . runWriterT
-{-# INLINE runWriter #-}
-
--- | Extract the output from a writer computation.
---
--- * @'execWriter' m = 'snd' ('runWriter' m)@
-execWriter :: Writer w a -> w
-execWriter m = snd (runWriter m)
-{-# INLINE execWriter #-}
-
--- | Map both the return value and output of a computation using
--- the given function.
---
--- * @'runWriter' ('mapWriter' f m) = f ('runWriter' m)@
-mapWriter :: ((a, w) -> (b, w')) -> Writer w a -> Writer w' b
-mapWriter f = mapWriterT (Identity . f . runIdentity)
-{-# INLINE mapWriter #-}
-
--- ---------------------------------------------------------------------------
--- | A writer monad parameterized by:
---
---   * @w@ - the output to accumulate.
---
---   * @m@ - The inner monad.
---
--- The 'return' function produces the output 'mempty', while @>>=@
--- combines the outputs of the subcomputations using 'mappend'.
-newtype WriterT w m a = WriterT { runWriterT :: m (a, w) }
-
-instance (Eq w, Eq1 m) => Eq1 (WriterT w m) where
-    liftEq eq (WriterT m1) (WriterT m2) = liftEq (liftEq2 eq (==)) m1 m2
-    {-# INLINE liftEq #-}
-
-instance (Ord w, Ord1 m) => Ord1 (WriterT w m) where
-    liftCompare comp (WriterT m1) (WriterT m2) =
-        liftCompare (liftCompare2 comp compare) m1 m2
-    {-# INLINE liftCompare #-}
-
-instance (Read w, Read1 m) => Read1 (WriterT w m) where
-    liftReadsPrec rp rl = readsData $
-        readsUnaryWith (liftReadsPrec rp' rl') "WriterT" WriterT
-      where
-        rp' = liftReadsPrec2 rp rl readsPrec readList
-        rl' = liftReadList2 rp rl readsPrec readList
-
-instance (Show w, Show1 m) => Show1 (WriterT w m) where
-    liftShowsPrec sp sl d (WriterT m) =
-        showsUnaryWith (liftShowsPrec sp' sl') "WriterT" d m
-      where
-        sp' = liftShowsPrec2 sp sl showsPrec showList
-        sl' = liftShowList2 sp sl showsPrec showList
-
-instance (Eq w, Eq1 m, Eq a) => Eq (WriterT w m a) where (==) = eq1
-instance (Ord w, Ord1 m, Ord a) => Ord (WriterT w m a) where compare = compare1
-instance (Read w, Read1 m, Read a) => Read (WriterT w m a) where
-    readsPrec = readsPrec1
-instance (Show w, Show1 m, Show a) => Show (WriterT w m a) where
-    showsPrec = showsPrec1
-
--- | Extract the output from a writer computation.
---
--- * @'execWriterT' m = 'liftM' 'snd' ('runWriterT' m)@
-execWriterT :: (Monad m) => WriterT w m a -> m w
-execWriterT m = do
-    (_, w) <- runWriterT m
-    return w
-{-# INLINE execWriterT #-}
-
--- | Map both the return value and output of a computation using
--- the given function.
---
--- * @'runWriterT' ('mapWriterT' f m) = f ('runWriterT' m)@
-mapWriterT :: (m (a, w) -> n (b, w')) -> WriterT w m a -> WriterT w' n b
-mapWriterT f m = WriterT $ f (runWriterT m)
-{-# INLINE mapWriterT #-}
-
-instance (Functor m) => Functor (WriterT w m) where
-    fmap f = mapWriterT $ fmap $ \ (a, w) -> (f a, w)
-    {-# INLINE fmap #-}
-
-instance (Foldable f) => Foldable (WriterT w f) where
-    foldMap f = foldMap (f . fst) . runWriterT
-    {-# INLINE foldMap #-}
-#if MIN_VERSION_base(4,8,0)
-    null (WriterT t) = null t
-    length (WriterT t) = length t
-#endif
-
-instance (Traversable f) => Traversable (WriterT w f) where
-    traverse f = fmap WriterT . traverse f' . runWriterT where
-       f' (a, b) = fmap (\ c -> (c, b)) (f a)
-    {-# INLINE traverse #-}
-
-instance (Monoid w, Applicative m) => Applicative (WriterT w m) where
-    pure a  = WriterT $ pure (a, mempty)
-    {-# INLINE pure #-}
-    f <*> v = WriterT $ liftA2 k (runWriterT f) (runWriterT v)
-      where k (a, w) (b, w') = (a b, w `mappend` w')
-    {-# INLINE (<*>) #-}
-
-instance (Monoid w, Alternative m) => Alternative (WriterT w m) where
-    empty   = WriterT empty
-    {-# INLINE empty #-}
-    m <|> n = WriterT $ runWriterT m <|> runWriterT n
-    {-# INLINE (<|>) #-}
-
-instance (Monoid w, Monad m) => Monad (WriterT w m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a = writer (a, mempty)
-    {-# INLINE return #-}
-#endif
-    m >>= k  = WriterT $ do
-        (a, w)  <- runWriterT m
-        (b, w') <- runWriterT (k a)
-        return (b, w `mappend` w')
-    {-# INLINE (>>=) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail msg = WriterT $ fail msg
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Monoid w, Fail.MonadFail m) => Fail.MonadFail (WriterT w m) where
-    fail msg = WriterT $ Fail.fail msg
-    {-# INLINE fail #-}
-#endif
-
-instance (Monoid w, MonadPlus m) => MonadPlus (WriterT w m) where
-    mzero       = WriterT mzero
-    {-# INLINE mzero #-}
-    m `mplus` n = WriterT $ runWriterT m `mplus` runWriterT n
-    {-# INLINE mplus #-}
-
-instance (Monoid w, MonadFix m) => MonadFix (WriterT w m) where
-    mfix m = WriterT $ mfix $ \ ~(a, _) -> runWriterT (m a)
-    {-# INLINE mfix #-}
-
-instance (Monoid w) => MonadTrans (WriterT w) where
-    lift m = WriterT $ do
-        a <- m
-        return (a, mempty)
-    {-# INLINE lift #-}
-
-instance (Monoid w, MonadIO m) => MonadIO (WriterT w m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
-#if MIN_VERSION_base(4,4,0)
-instance (Monoid w, MonadZip m) => MonadZip (WriterT w m) where
-    mzipWith f (WriterT x) (WriterT y) = WriterT $
-        mzipWith (\ (a, w) (b, w') -> (f a b, w `mappend` w')) x y
-    {-# INLINE mzipWith #-}
-#endif
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant m => Contravariant (WriterT w m) where
-    contramap f = mapWriterT $ contramap $ \ (a, w) -> (f a, w)
-    {-# INLINE contramap #-}
-#endif
-
--- | @'tell' w@ is an action that produces the output @w@.
-tell :: (Monad m) => w -> WriterT w m ()
-tell w = writer ((), w)
-{-# INLINE tell #-}
-
--- | @'listen' m@ is an action that executes the action @m@ and adds its
--- output to the value of the computation.
---
--- * @'runWriterT' ('listen' m) = 'liftM' (\\ (a, w) -> ((a, w), w)) ('runWriterT' m)@
-listen :: (Monad m) => WriterT w m a -> WriterT w m (a, w)
-listen m = WriterT $ do
-    (a, w) <- runWriterT m
-    return ((a, w), w)
-{-# INLINE listen #-}
-
--- | @'listens' f m@ is an action that executes the action @m@ and adds
--- the result of applying @f@ to the output to the value of the computation.
---
--- * @'listens' f m = 'liftM' (id *** f) ('listen' m)@
---
--- * @'runWriterT' ('listens' f m) = 'liftM' (\\ (a, w) -> ((a, f w), w)) ('runWriterT' m)@
-listens :: (Monad m) => (w -> b) -> WriterT w m a -> WriterT w m (a, b)
-listens f m = WriterT $ do
-    (a, w) <- runWriterT m
-    return ((a, f w), w)
-{-# INLINE listens #-}
-
--- | @'pass' m@ is an action that executes the action @m@, which returns
--- a value and a function, and returns the value, applying the function
--- to the output.
---
--- * @'runWriterT' ('pass' m) = 'liftM' (\\ ((a, f), w) -> (a, f w)) ('runWriterT' m)@
-pass :: (Monad m) => WriterT w m (a, w -> w) -> WriterT w m a
-pass m = WriterT $ do
-    ((a, f), w) <- runWriterT m
-    return (a, f w)
-{-# INLINE pass #-}
-
--- | @'censor' f m@ is an action that executes the action @m@ and
--- applies the function @f@ to its output, leaving the return value
--- unchanged.
---
--- * @'censor' f m = 'pass' ('liftM' (\\ x -> (x,f)) m)@
---
--- * @'runWriterT' ('censor' f m) = 'liftM' (\\ (a, w) -> (a, f w)) ('runWriterT' m)@
-censor :: (Monad m) => (w -> w) -> WriterT w m a -> WriterT w m a
-censor f m = WriterT $ do
-    (a, w) <- runWriterT m
-    return (a, f w)
-{-# INLINE censor #-}
-
--- | Lift a @callCC@ operation to the new monad.
-liftCallCC :: (Monoid w) => CallCC m (a,w) (b,w) -> CallCC (WriterT w m) a b
-liftCallCC callCC f = WriterT $
-    callCC $ \ c ->
-    runWriterT (f (\ a -> WriterT $ c (a, mempty)))
-{-# INLINE liftCallCC #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m (a,w) -> Catch e (WriterT w m) a
-liftCatch catchE m h =
-    WriterT $ runWriterT m `catchE` \ e -> runWriterT (h e)
-{-# INLINE liftCatch #-}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Data/Functor/Constant.hs b/third_party/bazel/rules_haskell/examples/transformers/Data/Functor/Constant.hs
deleted file mode 100644
index 9c0b8d42dcad..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Data/Functor/Constant.hs
+++ /dev/null
@@ -1,152 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 706
-{-# LANGUAGE PolyKinds #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Data.Functor.Constant
--- Copyright   :  (c) Ross Paterson 2010
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- The constant functor.
------------------------------------------------------------------------------
-
-module Data.Functor.Constant (
-    Constant(..),
-  ) where
-
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-
-import Control.Applicative
-import Data.Foldable
-import Data.Monoid (Monoid(..))
-import Data.Traversable (Traversable(traverse))
-#if MIN_VERSION_base(4,8,0)
-import Data.Bifunctor (Bifunctor(..))
-#endif
-#if MIN_VERSION_base(4,9,0)
-import Data.Semigroup (Semigroup(..))
-#endif
-#if MIN_VERSION_base(4,10,0)
-import Data.Bifoldable (Bifoldable(..))
-import Data.Bitraversable (Bitraversable(..))
-#endif
-import Prelude hiding (null, length)
-
--- | Constant functor.
-newtype Constant a b = Constant { getConstant :: a }
-    deriving (Eq, Ord)
-
--- These instances would be equivalent to the derived instances of the
--- newtype if the field were removed.
-
-instance (Read a) => Read (Constant a b) where
-    readsPrec = readsData $
-         readsUnaryWith readsPrec "Constant" Constant
-
-instance (Show a) => Show (Constant a b) where
-    showsPrec d (Constant x) = showsUnaryWith showsPrec "Constant" d x
-
--- Instances of lifted Prelude classes
-
-instance Eq2 Constant where
-    liftEq2 eq _ (Constant x) (Constant y) = eq x y
-    {-# INLINE liftEq2 #-}
-
-instance Ord2 Constant where
-    liftCompare2 comp _ (Constant x) (Constant y) = comp x y
-    {-# INLINE liftCompare2 #-}
-
-instance Read2 Constant where
-    liftReadsPrec2 rp _ _ _ = readsData $
-         readsUnaryWith rp "Constant" Constant
-
-instance Show2 Constant where
-    liftShowsPrec2 sp _ _ _ d (Constant x) = showsUnaryWith sp "Constant" d x
-
-instance (Eq a) => Eq1 (Constant a) where
-    liftEq = liftEq2 (==)
-    {-# INLINE liftEq #-}
-instance (Ord a) => Ord1 (Constant a) where
-    liftCompare = liftCompare2 compare
-    {-# INLINE liftCompare #-}
-instance (Read a) => Read1 (Constant a) where
-    liftReadsPrec = liftReadsPrec2 readsPrec readList
-    {-# INLINE liftReadsPrec #-}
-instance (Show a) => Show1 (Constant a) where
-    liftShowsPrec = liftShowsPrec2 showsPrec showList
-    {-# INLINE liftShowsPrec #-}
-
-instance Functor (Constant a) where
-    fmap _ (Constant x) = Constant x
-    {-# INLINE fmap #-}
-
-instance Foldable (Constant a) where
-    foldMap _ (Constant _) = mempty
-    {-# INLINE foldMap #-}
-#if MIN_VERSION_base(4,8,0)
-    null (Constant _) = True
-    length (Constant _) = 0
-#endif
-
-instance Traversable (Constant a) where
-    traverse _ (Constant x) = pure (Constant x)
-    {-# INLINE traverse #-}
-
-#if MIN_VERSION_base(4,9,0)
-instance (Semigroup a) => Semigroup (Constant a b) where
-    Constant x <> Constant y = Constant (x <> y)
-    {-# INLINE (<>) #-}
-#endif
-
-instance (Monoid a) => Applicative (Constant a) where
-    pure _ = Constant mempty
-    {-# INLINE pure #-}
-    Constant x <*> Constant y = Constant (x `mappend` y)
-    {-# INLINE (<*>) #-}
-
-instance (Monoid a) => Monoid (Constant a b) where
-    mempty = Constant mempty
-    {-# INLINE mempty #-}
-#if !MIN_VERSION_base(4,11,0)
-    -- From base-4.11, Monoid(mappend) defaults to Semigroup((<>))
-    Constant x `mappend` Constant y = Constant (x `mappend` y)
-    {-# INLINE mappend #-}
-#endif
-
-#if MIN_VERSION_base(4,8,0)
-instance Bifunctor Constant where
-    first f (Constant x) = Constant (f x)
-    {-# INLINE first #-}
-    second _ (Constant x) = Constant x
-    {-# INLINE second #-}
-#endif
-
-#if MIN_VERSION_base(4,10,0)
-instance Bifoldable Constant where
-    bifoldMap f _ (Constant a) = f a
-    {-# INLINE bifoldMap #-}
-
-instance Bitraversable Constant where
-    bitraverse f _ (Constant a) = Constant <$> f a
-    {-# INLINE bitraverse #-}
-#endif
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant (Constant a) where
-    contramap _ (Constant a) = Constant a
-    {-# INLINE contramap #-}
-#endif
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Data/Functor/Reverse.hs b/third_party/bazel/rules_haskell/examples/transformers/Data/Functor/Reverse.hs
deleted file mode 100644
index 5d8c41fa15c1..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Data/Functor/Reverse.hs
+++ /dev/null
@@ -1,143 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 706
-{-# LANGUAGE PolyKinds #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Data.Functor.Reverse
--- Copyright   :  (c) Russell O'Connor 2009
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Making functors whose elements are notionally in the reverse order
--- from the original functor.
------------------------------------------------------------------------------
-
-module Data.Functor.Reverse (
-    Reverse(..),
-  ) where
-
-import Control.Applicative.Backwards
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-
-import Prelude hiding (foldr, foldr1, foldl, foldl1, null, length)
-import Control.Applicative
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Data.Foldable
-import Data.Traversable
-import Data.Monoid
-
--- | The same functor, but with 'Foldable' and 'Traversable' instances
--- that process the elements in the reverse order.
-newtype Reverse f a = Reverse { getReverse :: f a }
-
-instance (Eq1 f) => Eq1 (Reverse f) where
-    liftEq eq (Reverse x) (Reverse y) = liftEq eq x y
-    {-# INLINE liftEq #-}
-
-instance (Ord1 f) => Ord1 (Reverse f) where
-    liftCompare comp (Reverse x) (Reverse y) = liftCompare comp x y
-    {-# INLINE liftCompare #-}
-
-instance (Read1 f) => Read1 (Reverse f) where
-    liftReadsPrec rp rl = readsData $
-        readsUnaryWith (liftReadsPrec rp rl) "Reverse" Reverse
-
-instance (Show1 f) => Show1 (Reverse f) where
-    liftShowsPrec sp sl d (Reverse x) =
-        showsUnaryWith (liftShowsPrec sp sl) "Reverse" d x
-
-instance (Eq1 f, Eq a) => Eq (Reverse f a) where (==) = eq1
-instance (Ord1 f, Ord a) => Ord (Reverse f a) where compare = compare1
-instance (Read1 f, Read a) => Read (Reverse f a) where readsPrec = readsPrec1
-instance (Show1 f, Show a) => Show (Reverse f a) where showsPrec = showsPrec1
-
--- | Derived instance.
-instance (Functor f) => Functor (Reverse f) where
-    fmap f (Reverse a) = Reverse (fmap f a)
-    {-# INLINE fmap #-}
-
--- | Derived instance.
-instance (Applicative f) => Applicative (Reverse f) where
-    pure a = Reverse (pure a)
-    {-# INLINE pure #-}
-    Reverse f <*> Reverse a = Reverse (f <*> a)
-    {-# INLINE (<*>) #-}
-
--- | Derived instance.
-instance (Alternative f) => Alternative (Reverse f) where
-    empty = Reverse empty
-    {-# INLINE empty #-}
-    Reverse x <|> Reverse y = Reverse (x <|> y)
-    {-# INLINE (<|>) #-}
-
--- | Derived instance.
-instance (Monad m) => Monad (Reverse m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a = Reverse (return a)
-    {-# INLINE return #-}
-#endif
-    m >>= f = Reverse (getReverse m >>= getReverse . f)
-    {-# INLINE (>>=) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail msg = Reverse (fail msg)
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Fail.MonadFail m) => Fail.MonadFail (Reverse m) where
-    fail msg = Reverse (Fail.fail msg)
-    {-# INLINE fail #-}
-#endif
-
--- | Derived instance.
-instance (MonadPlus m) => MonadPlus (Reverse m) where
-    mzero = Reverse mzero
-    {-# INLINE mzero #-}
-    Reverse x `mplus` Reverse y = Reverse (x `mplus` y)
-    {-# INLINE mplus #-}
-
--- | Fold from right to left.
-instance (Foldable f) => Foldable (Reverse f) where
-    foldMap f (Reverse t) = getDual (foldMap (Dual . f) t)
-    {-# INLINE foldMap #-}
-    foldr f z (Reverse t) = foldl (flip f) z t
-    {-# INLINE foldr #-}
-    foldl f z (Reverse t) = foldr (flip f) z t
-    {-# INLINE foldl #-}
-    foldr1 f (Reverse t) = foldl1 (flip f) t
-    {-# INLINE foldr1 #-}
-    foldl1 f (Reverse t) = foldr1 (flip f) t
-    {-# INLINE foldl1 #-}
-#if MIN_VERSION_base(4,8,0)
-    null (Reverse t) = null t
-    length (Reverse t) = length t
-#endif
-
--- | Traverse from right to left.
-instance (Traversable f) => Traversable (Reverse f) where
-    traverse f (Reverse t) =
-        fmap Reverse . forwards $ traverse (Backwards . f) t
-    {-# INLINE traverse #-}
-
-#if MIN_VERSION_base(4,12,0)
--- | Derived instance.
-instance Contravariant f => Contravariant (Reverse f) where
-    contramap f = Reverse . contramap f . getReverse
-    {-# INLINE contramap #-}
-#endif
diff --git a/third_party/bazel/rules_haskell/examples/transformers/LICENSE b/third_party/bazel/rules_haskell/examples/transformers/LICENSE
deleted file mode 100644
index 92337b951eb0..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/LICENSE
+++ /dev/null
@@ -1,31 +0,0 @@
-The Glasgow Haskell Compiler License
-
-Copyright 2004, The University Court of the University of Glasgow.
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
-- Redistributions of source code must retain the above copyright notice,
-this list of conditions and the following disclaimer.
-
-- Redistributions in binary form must reproduce the above copyright notice,
-this list of conditions and the following disclaimer in the documentation
-and/or other materials provided with the distribution.
-
-- Neither name of the University nor the names of its contributors may be
-used to endorse or promote products derived from this software without
-specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
-GLASGOW AND THE CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
-INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
-FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE CONTRIBUTORS BE LIABLE
-FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-DAMAGE.
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Setup.hs b/third_party/bazel/rules_haskell/examples/transformers/Setup.hs
deleted file mode 100644
index 9a994af677b0..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Setup.hs
+++ /dev/null
@@ -1,2 +0,0 @@
-import Distribution.Simple
-main = defaultMain
diff --git a/third_party/bazel/rules_haskell/examples/transformers/changelog b/third_party/bazel/rules_haskell/examples/transformers/changelog
deleted file mode 100644
index 5dd688f35b78..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/changelog
+++ /dev/null
@@ -1,124 +0,0 @@
--*-change-log-*-
-
-0.5.6.2 Ross Paterson <R.Paterson@city.ac.uk> Feb 2019
-	* Further backward compatability fix
-
-0.5.6.1 Ross Paterson <R.Paterson@city.ac.uk> Feb 2019
-	* Backward compatability fix for MonadFix ListT instance
-
-0.5.6.0 Ross Paterson <R.Paterson@city.ac.uk> Feb 2019
-	* Generalized type of except
-	* Added Control.Monad.Trans.Writer.CPS and Control.Monad.Trans.RWS.CPS
-	* Added Contravariant instances
-	* Added MonadFix instance for ListT
-
-0.5.5.0 Ross Paterson <R.Paterson@city.ac.uk> Oct 2017
-	* Added mapSelect and mapSelectT
-	* Renamed selectToCont to selectToContT for consistency
-	* Defined explicit method definitions to fix space leaks
-	* Added missing Semigroup instance to `Constant` functor
-
-0.5.4.0 Ross Paterson <R.Paterson@city.ac.uk> Feb 2017
-	* Migrate Bifoldable and Bitraversable instances for Constant
-
-0.5.3.1 Ross Paterson <R.Paterson@city.ac.uk> Feb 2017
-	* Fixed for pre-AMP environments
-
-0.5.3.0 Ross Paterson <R.Paterson@city.ac.uk> Feb 2017
-	* Added AccumT and SelectT monad transformers
-	* Deprecated ListT
-	* Added Monad (and related) instances for Reverse
-	* Added elimLift and eitherToErrors
-	* Added specialized definitions of several methods for efficiency
-	* Removed specialized definition of sequenceA for Reverse
-	* Backported Eq1/Ord1/Read1/Show1 instances for Proxy
-
-0.5.2.0 Ross Paterson <R.Paterson@city.ac.uk> Feb 2016
-	* Re-added orphan instances for Either to deprecated module
-	* Added lots of INLINE pragmas
-
-0.5.1.0 Ross Paterson <R.Paterson@city.ac.uk> Jan 2016
-	* Bump minor version number, required by added instances
-
-0.5.0.2 Ross Paterson <R.Paterson@city.ac.uk> Jan 2016
-	* Backported extra instances for Identity
-
-0.5.0.1 Ross Paterson <R.Paterson@city.ac.uk> Jan 2016
-	* Tightened GHC bounds for PolyKinds and DeriveDataTypeable
-
-0.5.0.0 Ross Paterson <R.Paterson@city.ac.uk> Dec 2015
-	* Control.Monad.IO.Class in base for GHC >= 8.0
-	* Data.Functor.{Classes,Compose,Product,Sum} in base for GHC >= 8.0
-	* Added PolyKinds for GHC >= 7.4
-	* Added instances of base classes MonadZip and MonadFail
-	* Changed liftings of Prelude classes to use explicit dictionaries
-
-0.4.3.0 Ross Paterson <R.Paterson@city.ac.uk> Mar 2015
-	* Added Eq1, Ord1, Show1 and Read1 instances for Const
-
-0.4.2.0 Ross Paterson <ross@soi.city.ac.uk> Nov 2014
-	* Dropped compatibility with base-1.x
-	* Data.Functor.Identity in base for GHC >= 7.10
-	* Added mapLift and runErrors to Control.Applicative.Lift
-	* Added AutoDeriveTypeable for GHC >= 7.10
-	* Expanded messages from mfix on ExceptT and MaybeT
-
-0.4.1.0 Ross Paterson <ross@soi.city.ac.uk> May 2014
-	* Reverted to record syntax for newtypes until next major release
-
-0.4.0.0 Ross Paterson <ross@soi.city.ac.uk> May 2014
-	* Added Sum type
-	* Added modify', a strict version of modify, to the state monads
-	* Added ExceptT and deprecated ErrorT
-	* Added infixr 9 `Compose` to match (.)
-	* Added Eq, Ord, Read and Show instances where possible
-	* Replaced record syntax for newtypes with separate inverse functions
-	* Added delimited continuation functions to ContT
-	* Added instance Alternative IO to ErrorT
-	* Handled disappearance of Control.Monad.Instances
-
-0.3.0.0 Ross Paterson <ross@soi.city.ac.uk> Mar 2012
-	* Added type synonyms for signatures of complex operations
-	* Generalized state, reader and writer constructor functions
-	* Added Lift, Backwards/Reverse
-	* Added MonadFix instances for IdentityT and MaybeT
-	* Added Foldable and Traversable instances
-	* Added Monad instances for Product
-
-0.2.2.1 Ross Paterson <ross@soi.city.ac.uk> Oct 2013
-	* Backport of fix for disappearance of Control.Monad.Instances
-
-0.2.2.0 Ross Paterson <ross@soi.city.ac.uk> Sep 2010
-	* Handled move of Either instances to base package
-
-0.2.1.0 Ross Paterson <ross@soi.city.ac.uk> Apr 2010
-	* Added Alternative instance for Compose
-	* Added Data.Functor.Product
-
-0.2.0.0 Ross Paterson <ross@soi.city.ac.uk> Mar 2010
-	* Added Constant and Compose
-	* Renamed modules to avoid clash with mtl
-	* Removed Monad constraint from Monad instance for ContT
-
-0.1.4.0 Ross Paterson <ross@soi.city.ac.uk> Mar 2009
-	* Adjusted lifting of Identity and Maybe transformers
-
-0.1.3.0 Ross Paterson <ross@soi.city.ac.uk> Mar 2009
-	* Added IdentityT transformer
-	* Added Applicative and Alternative instances for (Either e)
-
-0.1.1.0 Ross Paterson <ross@soi.city.ac.uk> Jan 2009
-	* Made all Functor instances assume Functor
-
-0.1.0.1 Ross Paterson <ross@soi.city.ac.uk> Jan 2009
-	* Adjusted dependencies
-
-0.1.0.0 Ross Paterson <ross@soi.city.ac.uk> Jan 2009
-	* Two versions of lifting of callcc through StateT
-	* Added Applicative instances
-
-0.0.1.0 Ross Paterson <ross@soi.city.ac.uk> Jan 2009
-	* Added constructors state, etc for simple monads
-
-0.0.0.0 Ross Paterson <ross@soi.city.ac.uk> Jan 2009
-	* Split Haskell 98 transformers from the mtl
diff --git a/third_party/bazel/rules_haskell/examples/transformers/legacy/pre709/Data/Functor/Identity.hs b/third_party/bazel/rules_haskell/examples/transformers/legacy/pre709/Data/Functor/Identity.hs
deleted file mode 100644
index 940e4e470f47..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/legacy/pre709/Data/Functor/Identity.hs
+++ /dev/null
@@ -1,259 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 700
-{-# LANGUAGE DeriveDataTypeable #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE DeriveGeneric #-}
-{-# LANGUAGE Trustworthy #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 706
-{-# LANGUAGE PolyKinds #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 708
-{-# LANGUAGE AutoDeriveTypeable #-}
-{-# LANGUAGE DataKinds #-}
-#endif
-#if MIN_VERSION_base(4,7,0)
--- We need to implement bitSize for the Bits instance, but it's deprecated.
-{-# OPTIONS_GHC -fno-warn-deprecations #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Data.Functor.Identity
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  ross@soi.city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- The identity functor and monad.
---
--- This trivial type constructor serves two purposes:
---
--- * It can be used with functions parameterized by functor or monad classes.
---
--- * It can be used as a base monad to which a series of monad
---   transformers may be applied to construct a composite monad.
---   Most monad transformer modules include the special case of
---   applying the transformer to 'Identity'.  For example, @State s@
---   is an abbreviation for @StateT s 'Identity'@.
------------------------------------------------------------------------------
-
-module Data.Functor.Identity (
-    Identity(..),
-  ) where
-
-import Data.Bits
-import Control.Applicative
-import Control.Arrow (Arrow((***)))
-import Control.Monad.Fix
-#if MIN_VERSION_base(4,4,0)
-import Control.Monad.Zip (MonadZip(mzipWith, munzip))
-#endif
-import Data.Foldable (Foldable(foldMap))
-import Data.Monoid (Monoid(mempty, mappend))
-import Data.String (IsString(fromString))
-import Data.Traversable (Traversable(traverse))
-#if __GLASGOW_HASKELL__ >= 700
-import Data.Data
-#endif
-import Data.Ix (Ix(..))
-import Foreign (Storable(..), castPtr)
-#if __GLASGOW_HASKELL__ >= 702
-import GHC.Generics
-#endif
-
--- | Identity functor and monad. (a non-strict monad)
-newtype Identity a = Identity { runIdentity :: a }
-    deriving ( Eq, Ord
-#if __GLASGOW_HASKELL__ >= 700
-             , Data, Typeable
-#endif
-#if __GLASGOW_HASKELL__ >= 702
-             , Generic
-#endif
-#if __GLASGOW_HASKELL__ >= 706
-             , Generic1
-#endif
-             )
-
-instance (Bits a) => Bits (Identity a) where
-    Identity x .&. Identity y     = Identity (x .&. y)
-    Identity x .|. Identity y     = Identity (x .|. y)
-    xor (Identity x) (Identity y) = Identity (xor x y)
-    complement   (Identity x)     = Identity (complement x)
-    shift        (Identity x) i   = Identity (shift    x i)
-    rotate       (Identity x) i   = Identity (rotate   x i)
-    setBit       (Identity x) i   = Identity (setBit   x i)
-    clearBit     (Identity x) i   = Identity (clearBit x i)
-    shiftL       (Identity x) i   = Identity (shiftL   x i)
-    shiftR       (Identity x) i   = Identity (shiftR   x i)
-    rotateL      (Identity x) i   = Identity (rotateL  x i)
-    rotateR      (Identity x) i   = Identity (rotateR  x i)
-    testBit      (Identity x) i   = testBit x i
-    bitSize      (Identity x)     = bitSize x
-    isSigned     (Identity x)     = isSigned x
-    bit i                         = Identity (bit i)
-#if MIN_VERSION_base(4,5,0)
-    unsafeShiftL (Identity x) i   = Identity (unsafeShiftL x i)
-    unsafeShiftR (Identity x) i   = Identity (unsafeShiftR x i)
-    popCount     (Identity x)     = popCount x
-#endif
-#if MIN_VERSION_base(4,7,0)
-    zeroBits                      = Identity zeroBits
-    bitSizeMaybe (Identity x)     = bitSizeMaybe x
-#endif
-
-instance (Bounded a) => Bounded (Identity a) where
-    minBound = Identity minBound
-    maxBound = Identity maxBound
-
-instance (Enum a) => Enum (Identity a) where
-    succ (Identity x)     = Identity (succ x)
-    pred (Identity x)     = Identity (pred x)
-    toEnum i              = Identity (toEnum i)
-    fromEnum (Identity x) = fromEnum x
-    enumFrom (Identity x) = map Identity (enumFrom x)
-    enumFromThen (Identity x) (Identity y) = map Identity (enumFromThen x y)
-    enumFromTo   (Identity x) (Identity y) = map Identity (enumFromTo   x y)
-    enumFromThenTo (Identity x) (Identity y) (Identity z) =
-        map Identity (enumFromThenTo x y z)
-
-#if MIN_VERSION_base(4,7,0)
-instance (FiniteBits a) => FiniteBits (Identity a) where
-    finiteBitSize (Identity x) = finiteBitSize x
-#endif
-
-instance (Floating a) => Floating (Identity a) where
-    pi                                = Identity pi
-    exp   (Identity x)                = Identity (exp x)
-    log   (Identity x)                = Identity (log x)
-    sqrt  (Identity x)                = Identity (sqrt x)
-    sin   (Identity x)                = Identity (sin x)
-    cos   (Identity x)                = Identity (cos x)
-    tan   (Identity x)                = Identity (tan x)
-    asin  (Identity x)                = Identity (asin x)
-    acos  (Identity x)                = Identity (acos x)
-    atan  (Identity x)                = Identity (atan x)
-    sinh  (Identity x)                = Identity (sinh x)
-    cosh  (Identity x)                = Identity (cosh x)
-    tanh  (Identity x)                = Identity (tanh x)
-    asinh (Identity x)                = Identity (asinh x)
-    acosh (Identity x)                = Identity (acosh x)
-    atanh (Identity x)                = Identity (atanh x)
-    Identity x ** Identity y          = Identity (x ** y)
-    logBase (Identity x) (Identity y) = Identity (logBase x y)
-
-instance (Fractional a) => Fractional (Identity a) where
-    Identity x / Identity y = Identity (x / y)
-    recip (Identity x)      = Identity (recip x)
-    fromRational r          = Identity (fromRational r)
-
-instance (IsString a) => IsString (Identity a) where
-    fromString s = Identity (fromString s)
-
-instance (Ix a) => Ix (Identity a) where
-    range     (Identity x, Identity y) = map Identity (range (x, y))
-    index     (Identity x, Identity y) (Identity i) = index     (x, y) i
-    inRange   (Identity x, Identity y) (Identity e) = inRange   (x, y) e
-    rangeSize (Identity x, Identity y) = rangeSize (x, y)
-
-instance (Integral a) => Integral (Identity a) where
-    quot    (Identity x) (Identity y) = Identity (quot x y)
-    rem     (Identity x) (Identity y) = Identity (rem  x y)
-    div     (Identity x) (Identity y) = Identity (div  x y)
-    mod     (Identity x) (Identity y) = Identity (mod  x y)
-    quotRem (Identity x) (Identity y) = (Identity *** Identity) (quotRem x y)
-    divMod  (Identity x) (Identity y) = (Identity *** Identity) (divMod  x y)
-    toInteger (Identity x)            = toInteger x
-
-instance (Monoid a) => Monoid (Identity a) where
-    mempty = Identity mempty
-    mappend (Identity x) (Identity y) = Identity (mappend x y)
-
-instance (Num a) => Num (Identity a) where
-    Identity x + Identity y = Identity (x + y)
-    Identity x - Identity y = Identity (x - y)
-    Identity x * Identity y = Identity (x * y)
-    negate (Identity x)     = Identity (negate x)
-    abs    (Identity x)     = Identity (abs    x)
-    signum (Identity x)     = Identity (signum x)
-    fromInteger n           = Identity (fromInteger n)
-
-instance (Real a) => Real (Identity a) where
-    toRational (Identity x) = toRational x
-
-instance (RealFloat a) => RealFloat (Identity a) where
-    floatRadix     (Identity x)     = floatRadix     x
-    floatDigits    (Identity x)     = floatDigits    x
-    floatRange     (Identity x)     = floatRange     x
-    decodeFloat    (Identity x)     = decodeFloat    x
-    exponent       (Identity x)     = exponent       x
-    isNaN          (Identity x)     = isNaN          x
-    isInfinite     (Identity x)     = isInfinite     x
-    isDenormalized (Identity x)     = isDenormalized x
-    isNegativeZero (Identity x)     = isNegativeZero x
-    isIEEE         (Identity x)     = isIEEE         x
-    significand    (Identity x)     = significand (Identity x)
-    scaleFloat s   (Identity x)     = Identity (scaleFloat s x)
-    encodeFloat m n                 = Identity (encodeFloat m n)
-    atan2 (Identity x) (Identity y) = Identity (atan2 x y)
-
-instance (RealFrac a) => RealFrac (Identity a) where
-    properFraction (Identity x) = (id *** Identity) (properFraction x)
-    truncate       (Identity x) = truncate x
-    round          (Identity x) = round    x
-    ceiling        (Identity x) = ceiling  x
-    floor          (Identity x) = floor    x
-
-instance (Storable a) => Storable (Identity a) where
-    sizeOf    (Identity x)       = sizeOf x
-    alignment (Identity x)       = alignment x
-    peekElemOff p i              = fmap Identity (peekElemOff (castPtr p) i)
-    pokeElemOff p i (Identity x) = pokeElemOff (castPtr p) i x
-    peekByteOff p i              = fmap Identity (peekByteOff p i)
-    pokeByteOff p i (Identity x) = pokeByteOff p i x
-    peek p                       = fmap runIdentity (peek (castPtr p))
-    poke p (Identity x)          = poke (castPtr p) x
-
--- These instances would be equivalent to the derived instances of the
--- newtype if the field were removed.
-
-instance (Read a) => Read (Identity a) where
-    readsPrec d = readParen (d > 10) $ \ r ->
-        [(Identity x,t) | ("Identity",s) <- lex r, (x,t) <- readsPrec 11 s]
-
-instance (Show a) => Show (Identity a) where
-    showsPrec d (Identity x) = showParen (d > 10) $
-        showString "Identity " . showsPrec 11 x
-
--- ---------------------------------------------------------------------------
--- Identity instances for Functor and Monad
-
-instance Functor Identity where
-    fmap f m = Identity (f (runIdentity m))
-
-instance Foldable Identity where
-    foldMap f (Identity x) = f x
-
-instance Traversable Identity where
-    traverse f (Identity x) = Identity <$> f x
-
-instance Applicative Identity where
-    pure a = Identity a
-    Identity f <*> Identity x = Identity (f x)
-
-instance Monad Identity where
-    return a = Identity a
-    m >>= k  = k (runIdentity m)
-
-instance MonadFix Identity where
-    mfix f = Identity (fix (runIdentity . f))
-
-#if MIN_VERSION_base(4,4,0)
-instance MonadZip Identity where
-    mzipWith f (Identity x) (Identity y) = Identity (f x y)
-    munzip (Identity (a, b)) = (Identity a, Identity b)
-#endif
diff --git a/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Control/Monad/IO/Class.hs b/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Control/Monad/IO/Class.hs
deleted file mode 100644
index 7c74d4ef0d71..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Control/Monad/IO/Class.hs
+++ /dev/null
@@ -1,51 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 708
-{-# LANGUAGE DeriveDataTypeable #-}
-{-# LANGUAGE StandaloneDeriving #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.IO.Class
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Class of monads based on @IO@.
------------------------------------------------------------------------------
-
-module Control.Monad.IO.Class (
-    MonadIO(..)
-  ) where
-
-#if __GLASGOW_HASKELL__ >= 708
-import Data.Typeable
-#endif
-
--- | Monads in which 'IO' computations may be embedded.
--- Any monad built by applying a sequence of monad transformers to the
--- 'IO' monad will be an instance of this class.
---
--- Instances should satisfy the following laws, which state that 'liftIO'
--- is a transformer of monads:
---
--- * @'liftIO' . 'return' = 'return'@
---
--- * @'liftIO' (m >>= f) = 'liftIO' m >>= ('liftIO' . f)@
-
-class (Monad m) => MonadIO m where
-    -- | Lift a computation from the 'IO' monad.
-    liftIO :: IO a -> m a
-
-#if __GLASGOW_HASKELL__ >= 708
-deriving instance Typeable MonadIO
-#endif
-
-instance MonadIO IO where
-    liftIO = id
diff --git a/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Classes.hs b/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Classes.hs
deleted file mode 100644
index bda1749643d1..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Classes.hs
+++ /dev/null
@@ -1,529 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 708
-{-# LANGUAGE DeriveDataTypeable #-}
-{-# LANGUAGE StandaloneDeriving #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Data.Functor.Classes
--- Copyright   :  (c) Ross Paterson 2013
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Liftings of the Prelude classes 'Eq', 'Ord', 'Read' and 'Show' to
--- unary and binary type constructors.
---
--- These classes are needed to express the constraints on arguments of
--- transformers in portable Haskell.  Thus for a new transformer @T@,
--- one might write instances like
---
--- > instance (Eq1 f) => Eq1 (T f) where ...
--- > instance (Ord1 f) => Ord1 (T f) where ...
--- > instance (Read1 f) => Read1 (T f) where ...
--- > instance (Show1 f) => Show1 (T f) where ...
---
--- If these instances can be defined, defining instances of the base
--- classes is mechanical:
---
--- > instance (Eq1 f, Eq a) => Eq (T f a) where (==) = eq1
--- > instance (Ord1 f, Ord a) => Ord (T f a) where compare = compare1
--- > instance (Read1 f, Read a) => Read (T f a) where readsPrec = readsPrec1
--- > instance (Show1 f, Show a) => Show (T f a) where showsPrec = showsPrec1
---
------------------------------------------------------------------------------
-
-module Data.Functor.Classes (
-    -- * Liftings of Prelude classes
-    -- ** For unary constructors
-    Eq1(..), eq1,
-    Ord1(..), compare1,
-    Read1(..), readsPrec1,
-    Show1(..), showsPrec1,
-    -- ** For binary constructors
-    Eq2(..), eq2,
-    Ord2(..), compare2,
-    Read2(..), readsPrec2,
-    Show2(..), showsPrec2,
-    -- * Helper functions
-    -- $example
-    readsData,
-    readsUnaryWith,
-    readsBinaryWith,
-    showsUnaryWith,
-    showsBinaryWith,
-    -- ** Obsolete helpers
-    readsUnary,
-    readsUnary1,
-    readsBinary1,
-    showsUnary,
-    showsUnary1,
-    showsBinary1,
-  ) where
-
-import Control.Applicative (Const(Const))
-import Data.Functor.Identity (Identity(Identity))
-import Data.Monoid (mappend)
-#if MIN_VERSION_base(4,7,0)
-import Data.Proxy (Proxy(Proxy))
-#endif
-#if __GLASGOW_HASKELL__ >= 708
-import Data.Typeable
-#endif
-import Text.Show (showListWith)
-
--- | Lifting of the 'Eq' class to unary type constructors.
-class Eq1 f where
-    -- | Lift an equality test through the type constructor.
-    --
-    -- The function will usually be applied to an equality function,
-    -- but the more general type ensures that the implementation uses
-    -- it to compare elements of the first container with elements of
-    -- the second.
-    liftEq :: (a -> b -> Bool) -> f a -> f b -> Bool
-
-#if __GLASGOW_HASKELL__ >= 708
-deriving instance Typeable Eq1
-#endif
-
--- | Lift the standard @('==')@ function through the type constructor.
-eq1 :: (Eq1 f, Eq a) => f a -> f a -> Bool
-eq1 = liftEq (==)
-
--- | Lifting of the 'Ord' class to unary type constructors.
-class (Eq1 f) => Ord1 f where
-    -- | Lift a 'compare' function through the type constructor.
-    --
-    -- The function will usually be applied to a comparison function,
-    -- but the more general type ensures that the implementation uses
-    -- it to compare elements of the first container with elements of
-    -- the second.
-    liftCompare :: (a -> b -> Ordering) -> f a -> f b -> Ordering
-
-#if __GLASGOW_HASKELL__ >= 708
-deriving instance Typeable Ord1
-#endif
-
--- | Lift the standard 'compare' function through the type constructor.
-compare1 :: (Ord1 f, Ord a) => f a -> f a -> Ordering
-compare1 = liftCompare compare
-
--- | Lifting of the 'Read' class to unary type constructors.
-class Read1 f where
-    -- | 'readsPrec' function for an application of the type constructor
-    -- based on 'readsPrec' and 'readList' functions for the argument type.
-    liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
-
-    -- | 'readList' function for an application of the type constructor
-    -- based on 'readsPrec' and 'readList' functions for the argument type.
-    -- The default implementation using standard list syntax is correct
-    -- for most types.
-    liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [f a]
-    liftReadList rp rl = readListWith (liftReadsPrec rp rl 0)
-
-#if __GLASGOW_HASKELL__ >= 708
-deriving instance Typeable Read1
-#endif
-
--- | Read a list (using square brackets and commas), given a function
--- for reading elements.
-readListWith :: ReadS a -> ReadS [a]
-readListWith rp =
-    readParen False (\r -> [pr | ("[",s) <- lex r, pr <- readl s])
-  where
-    readl s = [([],t) | ("]",t) <- lex s] ++
-        [(x:xs,u) | (x,t) <- rp s, (xs,u) <- readl' t]
-    readl' s = [([],t) | ("]",t) <- lex s] ++
-        [(x:xs,v) | (",",t) <- lex s, (x,u) <- rp t, (xs,v) <- readl' u]
-
--- | Lift the standard 'readsPrec' and 'readList' functions through the
--- type constructor.
-readsPrec1 :: (Read1 f, Read a) => Int -> ReadS (f a)
-readsPrec1 = liftReadsPrec readsPrec readList
-
--- | Lifting of the 'Show' class to unary type constructors.
-class Show1 f where
-    -- | 'showsPrec' function for an application of the type constructor
-    -- based on 'showsPrec' and 'showList' functions for the argument type.
-    liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) ->
-        Int -> f a -> ShowS
-
-    -- | 'showList' function for an application of the type constructor
-    -- based on 'showsPrec' and 'showList' functions for the argument type.
-    -- The default implementation using standard list syntax is correct
-    -- for most types.
-    liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) ->
-        [f a] -> ShowS
-    liftShowList sp sl = showListWith (liftShowsPrec sp sl 0)
-
-#if __GLASGOW_HASKELL__ >= 708
-deriving instance Typeable Show1
-#endif
-
--- | Lift the standard 'showsPrec' and 'showList' functions through the
--- type constructor.
-showsPrec1 :: (Show1 f, Show a) => Int -> f a -> ShowS
-showsPrec1 = liftShowsPrec showsPrec showList
-
--- | Lifting of the 'Eq' class to binary type constructors.
-class Eq2 f where
-    -- | Lift equality tests through the type constructor.
-    --
-    -- The function will usually be applied to equality functions,
-    -- but the more general type ensures that the implementation uses
-    -- them to compare elements of the first container with elements of
-    -- the second.
-    liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> f a c -> f b d -> Bool
-
-#if __GLASGOW_HASKELL__ >= 708
-deriving instance Typeable Eq2
-#endif
-
--- | Lift the standard @('==')@ function through the type constructor.
-eq2 :: (Eq2 f, Eq a, Eq b) => f a b -> f a b -> Bool
-eq2 = liftEq2 (==) (==)
-
--- | Lifting of the 'Ord' class to binary type constructors.
-class (Eq2 f) => Ord2 f where
-    -- | Lift 'compare' functions through the type constructor.
-    --
-    -- The function will usually be applied to comparison functions,
-    -- but the more general type ensures that the implementation uses
-    -- them to compare elements of the first container with elements of
-    -- the second.
-    liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) ->
-        f a c -> f b d -> Ordering
-
-#if __GLASGOW_HASKELL__ >= 708
-deriving instance Typeable Ord2
-#endif
-
--- | Lift the standard 'compare' function through the type constructor.
-compare2 :: (Ord2 f, Ord a, Ord b) => f a b -> f a b -> Ordering
-compare2 = liftCompare2 compare compare
-
--- | Lifting of the 'Read' class to binary type constructors.
-class Read2 f where
-    -- | 'readsPrec' function for an application of the type constructor
-    -- based on 'readsPrec' and 'readList' functions for the argument types.
-    liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] ->
-        (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (f a b)
-
-    -- | 'readList' function for an application of the type constructor
-    -- based on 'readsPrec' and 'readList' functions for the argument types.
-    -- The default implementation using standard list syntax is correct
-    -- for most types.
-    liftReadList2 :: (Int -> ReadS a) -> ReadS [a] ->
-        (Int -> ReadS b) -> ReadS [b] -> ReadS [f a b]
-    liftReadList2 rp1 rl1 rp2 rl2 =
-        readListWith (liftReadsPrec2 rp1 rl1 rp2 rl2 0)
-
-#if __GLASGOW_HASKELL__ >= 708
-deriving instance Typeable Read2
-#endif
-
--- | Lift the standard 'readsPrec' function through the type constructor.
-readsPrec2 :: (Read2 f, Read a, Read b) => Int -> ReadS (f a b)
-readsPrec2 = liftReadsPrec2 readsPrec readList readsPrec readList
-
--- | Lifting of the 'Show' class to binary type constructors.
-class Show2 f where
-    -- | 'showsPrec' function for an application of the type constructor
-    -- based on 'showsPrec' and 'showList' functions for the argument types.
-    liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) ->
-        (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> f a b -> ShowS
-
-    -- | 'showList' function for an application of the type constructor
-    -- based on 'showsPrec' and 'showList' functions for the argument types.
-    -- The default implementation using standard list syntax is correct
-    -- for most types.
-    liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) ->
-        (Int -> b -> ShowS) -> ([b] -> ShowS) -> [f a b] -> ShowS
-    liftShowList2 sp1 sl1 sp2 sl2 =
-        showListWith (liftShowsPrec2 sp1 sl1 sp2 sl2 0)
-
-#if __GLASGOW_HASKELL__ >= 708
-deriving instance Typeable Show2
-#endif
-
--- | Lift the standard 'showsPrec' function through the type constructor.
-showsPrec2 :: (Show2 f, Show a, Show b) => Int -> f a b -> ShowS
-showsPrec2 = liftShowsPrec2 showsPrec showList showsPrec showList
-
--- Instances for Prelude type constructors
-
-instance Eq1 Maybe where
-    liftEq _ Nothing Nothing = True
-    liftEq _ Nothing (Just _) = False
-    liftEq _ (Just _) Nothing = False
-    liftEq eq (Just x) (Just y) = eq x y
-
-instance Ord1 Maybe where
-    liftCompare _ Nothing Nothing = EQ
-    liftCompare _ Nothing (Just _) = LT
-    liftCompare _ (Just _) Nothing = GT
-    liftCompare comp (Just x) (Just y) = comp x y
-
-instance Read1 Maybe where
-    liftReadsPrec rp _ d =
-         readParen False (\ r -> [(Nothing,s) | ("Nothing",s) <- lex r])
-         `mappend`
-         readsData (readsUnaryWith rp "Just" Just) d
-
-instance Show1 Maybe where
-    liftShowsPrec _ _ _ Nothing = showString "Nothing"
-    liftShowsPrec sp _ d (Just x) = showsUnaryWith sp "Just" d x
-
-instance Eq1 [] where
-    liftEq _ [] [] = True
-    liftEq _ [] (_:_) = False
-    liftEq _ (_:_) [] = False
-    liftEq eq (x:xs) (y:ys) = eq x y && liftEq eq xs ys
-
-instance Ord1 [] where
-    liftCompare _ [] [] = EQ
-    liftCompare _ [] (_:_) = LT
-    liftCompare _ (_:_) [] = GT
-    liftCompare comp (x:xs) (y:ys) = comp x y `mappend` liftCompare comp xs ys
-
-instance Read1 [] where
-    liftReadsPrec _ rl _ = rl
-
-instance Show1 [] where
-    liftShowsPrec _ sl _ = sl
-
-instance Eq2 (,) where
-    liftEq2 e1 e2 (x1, y1) (x2, y2) = e1 x1 x2 && e2 y1 y2
-
-instance Ord2 (,) where
-    liftCompare2 comp1 comp2 (x1, y1) (x2, y2) =
-        comp1 x1 x2 `mappend` comp2 y1 y2
-
-instance Read2 (,) where
-    liftReadsPrec2 rp1 _ rp2 _ _ = readParen False $ \ r ->
-        [((x,y), w) | ("(",s) <- lex r,
-                      (x,t)   <- rp1 0 s,
-                      (",",u) <- lex t,
-                      (y,v)   <- rp2 0 u,
-                      (")",w) <- lex v]
-
-instance Show2 (,) where
-    liftShowsPrec2 sp1 _ sp2 _ _ (x, y) =
-        showChar '(' . sp1 0 x . showChar ',' . sp2 0 y . showChar ')'
-
-instance (Eq a) => Eq1 ((,) a) where
-    liftEq = liftEq2 (==)
-
-instance (Ord a) => Ord1 ((,) a) where
-    liftCompare = liftCompare2 compare
-
-instance (Read a) => Read1 ((,) a) where
-    liftReadsPrec = liftReadsPrec2 readsPrec readList
-
-instance (Show a) => Show1 ((,) a) where
-    liftShowsPrec = liftShowsPrec2 showsPrec showList
-
-instance Eq2 Either where
-    liftEq2 e1 _ (Left x) (Left y) = e1 x y
-    liftEq2 _ _ (Left _) (Right _) = False
-    liftEq2 _ _ (Right _) (Left _) = False
-    liftEq2 _ e2 (Right x) (Right y) = e2 x y
-
-instance Ord2 Either where
-    liftCompare2 comp1 _ (Left x) (Left y) = comp1 x y
-    liftCompare2 _ _ (Left _) (Right _) = LT
-    liftCompare2 _ _ (Right _) (Left _) = GT
-    liftCompare2 _ comp2 (Right x) (Right y) = comp2 x y
-
-instance Read2 Either where
-    liftReadsPrec2 rp1 _ rp2 _ = readsData $
-         readsUnaryWith rp1 "Left" Left `mappend`
-         readsUnaryWith rp2 "Right" Right
-
-instance Show2 Either where
-    liftShowsPrec2 sp1 _ _ _ d (Left x) = showsUnaryWith sp1 "Left" d x
-    liftShowsPrec2 _ _ sp2 _ d (Right x) = showsUnaryWith sp2 "Right" d x
-
-instance (Eq a) => Eq1 (Either a) where
-    liftEq = liftEq2 (==)
-
-instance (Ord a) => Ord1 (Either a) where
-    liftCompare = liftCompare2 compare
-
-instance (Read a) => Read1 (Either a) where
-    liftReadsPrec = liftReadsPrec2 readsPrec readList
-
-instance (Show a) => Show1 (Either a) where
-    liftShowsPrec = liftShowsPrec2 showsPrec showList
-
-#if MIN_VERSION_base(4,7,0)
-instance Eq1 Proxy where
-    liftEq _ _ _ = True
-
-instance Ord1 Proxy where
-    liftCompare _ _ _ = EQ
-
-instance Show1 Proxy where
-    liftShowsPrec _ _ _ _ = showString "Proxy"
-
-instance Read1 Proxy where
-    liftReadsPrec _ _ d =
-        readParen (d > 10) (\r -> [(Proxy, s) | ("Proxy",s) <- lex r ])
-#endif
-
--- Instances for other functors defined in the base package
-
-instance Eq1 Identity where
-    liftEq eq (Identity x) (Identity y) = eq x y
-
-instance Ord1 Identity where
-    liftCompare comp (Identity x) (Identity y) = comp x y
-
-instance Read1 Identity where
-    liftReadsPrec rp _ = readsData $
-         readsUnaryWith rp "Identity" Identity
-
-instance Show1 Identity where
-    liftShowsPrec sp _ d (Identity x) = showsUnaryWith sp "Identity" d x
-
-instance Eq2 Const where
-    liftEq2 eq _ (Const x) (Const y) = eq x y
-
-instance Ord2 Const where
-    liftCompare2 comp _ (Const x) (Const y) = comp x y
-
-instance Read2 Const where
-    liftReadsPrec2 rp _ _ _ = readsData $
-         readsUnaryWith rp "Const" Const
-
-instance Show2 Const where
-    liftShowsPrec2 sp _ _ _ d (Const x) = showsUnaryWith sp "Const" d x
-
-instance (Eq a) => Eq1 (Const a) where
-    liftEq = liftEq2 (==)
-instance (Ord a) => Ord1 (Const a) where
-    liftCompare = liftCompare2 compare
-instance (Read a) => Read1 (Const a) where
-    liftReadsPrec = liftReadsPrec2 readsPrec readList
-instance (Show a) => Show1 (Const a) where
-    liftShowsPrec = liftShowsPrec2 showsPrec showList
-
--- Building blocks
-
--- | @'readsData' p d@ is a parser for datatypes where each alternative
--- begins with a data constructor.  It parses the constructor and
--- passes it to @p@.  Parsers for various constructors can be constructed
--- with 'readsUnary', 'readsUnary1' and 'readsBinary1', and combined with
--- @mappend@ from the @Monoid@ class.
-readsData :: (String -> ReadS a) -> Int -> ReadS a
-readsData reader d =
-    readParen (d > 10) $ \ r -> [res | (kw,s) <- lex r, res <- reader kw s]
-
--- | @'readsUnaryWith' rp n c n'@ matches the name of a unary data constructor
--- and then parses its argument using @rp@.
-readsUnaryWith :: (Int -> ReadS a) -> String -> (a -> t) -> String -> ReadS t
-readsUnaryWith rp name cons kw s =
-    [(cons x,t) | kw == name, (x,t) <- rp 11 s]
-
--- | @'readsBinaryWith' rp1 rp2 n c n'@ matches the name of a binary
--- data constructor and then parses its arguments using @rp1@ and @rp2@
--- respectively.
-readsBinaryWith :: (Int -> ReadS a) -> (Int -> ReadS b) ->
-    String -> (a -> b -> t) -> String -> ReadS t
-readsBinaryWith rp1 rp2 name cons kw s =
-    [(cons x y,u) | kw == name, (x,t) <- rp1 11 s, (y,u) <- rp2 11 t]
-
--- | @'showsUnaryWith' sp n d x@ produces the string representation of a
--- unary data constructor with name @n@ and argument @x@, in precedence
--- context @d@.
-showsUnaryWith :: (Int -> a -> ShowS) -> String -> Int -> a -> ShowS
-showsUnaryWith sp name d x = showParen (d > 10) $
-    showString name . showChar ' ' . sp 11 x
-
--- | @'showsBinaryWith' sp1 sp2 n d x y@ produces the string
--- representation of a binary data constructor with name @n@ and arguments
--- @x@ and @y@, in precedence context @d@.
-showsBinaryWith :: (Int -> a -> ShowS) -> (Int -> b -> ShowS) ->
-    String -> Int -> a -> b -> ShowS
-showsBinaryWith sp1 sp2 name d x y = showParen (d > 10) $
-    showString name . showChar ' ' . sp1 11 x . showChar ' ' . sp2 11 y
-
--- Obsolete building blocks
-
--- | @'readsUnary' n c n'@ matches the name of a unary data constructor
--- and then parses its argument using 'readsPrec'.
-{-# DEPRECATED readsUnary "Use readsUnaryWith to define liftReadsPrec" #-}
-readsUnary :: (Read a) => String -> (a -> t) -> String -> ReadS t
-readsUnary name cons kw s =
-    [(cons x,t) | kw == name, (x,t) <- readsPrec 11 s]
-
--- | @'readsUnary1' n c n'@ matches the name of a unary data constructor
--- and then parses its argument using 'readsPrec1'.
-{-# DEPRECATED readsUnary1 "Use readsUnaryWith to define liftReadsPrec" #-}
-readsUnary1 :: (Read1 f, Read a) => String -> (f a -> t) -> String -> ReadS t
-readsUnary1 name cons kw s =
-    [(cons x,t) | kw == name, (x,t) <- readsPrec1 11 s]
-
--- | @'readsBinary1' n c n'@ matches the name of a binary data constructor
--- and then parses its arguments using 'readsPrec1'.
-{-# DEPRECATED readsBinary1 "Use readsBinaryWith to define liftReadsPrec" #-}
-readsBinary1 :: (Read1 f, Read1 g, Read a) =>
-    String -> (f a -> g a -> t) -> String -> ReadS t
-readsBinary1 name cons kw s =
-    [(cons x y,u) | kw == name,
-        (x,t) <- readsPrec1 11 s, (y,u) <- readsPrec1 11 t]
-
--- | @'showsUnary' n d x@ produces the string representation of a unary data
--- constructor with name @n@ and argument @x@, in precedence context @d@.
-{-# DEPRECATED showsUnary "Use showsUnaryWith to define liftShowsPrec" #-}
-showsUnary :: (Show a) => String -> Int -> a -> ShowS
-showsUnary name d x = showParen (d > 10) $
-    showString name . showChar ' ' . showsPrec 11 x
-
--- | @'showsUnary1' n d x@ produces the string representation of a unary data
--- constructor with name @n@ and argument @x@, in precedence context @d@.
-{-# DEPRECATED showsUnary1 "Use showsUnaryWith to define liftShowsPrec" #-}
-showsUnary1 :: (Show1 f, Show a) => String -> Int -> f a -> ShowS
-showsUnary1 name d x = showParen (d > 10) $
-    showString name . showChar ' ' . showsPrec1 11 x
-
--- | @'showsBinary1' n d x y@ produces the string representation of a binary
--- data constructor with name @n@ and arguments @x@ and @y@, in precedence
--- context @d@.
-{-# DEPRECATED showsBinary1 "Use showsBinaryWith to define liftShowsPrec" #-}
-showsBinary1 :: (Show1 f, Show1 g, Show a) =>
-    String -> Int -> f a -> g a -> ShowS
-showsBinary1 name d x y = showParen (d > 10) $
-    showString name . showChar ' ' . showsPrec1 11 x .
-        showChar ' ' . showsPrec1 11 y
-
-{- $example
-These functions can be used to assemble 'Read' and 'Show' instances for
-new algebraic types.  For example, given the definition
-
-> data T f a = Zero a | One (f a) | Two a (f a)
-
-a standard 'Read1' instance may be defined as
-
-> instance (Read1 f) => Read1 (T f) where
->     liftReadsPrec rp rl = readsData $
->         readsUnaryWith rp "Zero" Zero `mappend`
->         readsUnaryWith (liftReadsPrec rp rl) "One" One `mappend`
->         readsBinaryWith rp (liftReadsPrec rp rl) "Two" Two
-
-and the corresponding 'Show1' instance as
-
-> instance (Show1 f) => Show1 (T f) where
->     liftShowsPrec sp _ d (Zero x) =
->         showsUnaryWith sp "Zero" d x
->     liftShowsPrec sp sl d (One x) =
->         showsUnaryWith (liftShowsPrec sp sl) "One" d x
->     liftShowsPrec sp sl d (Two x y) =
->         showsBinaryWith sp (liftShowsPrec sp sl) "Two" d x y
-
--}
diff --git a/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Compose.hs b/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Compose.hs
deleted file mode 100644
index ed781309aff8..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Compose.hs
+++ /dev/null
@@ -1,154 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE DeriveGeneric #-}
-{-# LANGUAGE EmptyDataDecls #-}
-{-# LANGUAGE StandaloneDeriving #-}
-{-# LANGUAGE Trustworthy #-}
-{-# LANGUAGE TypeFamilies #-}
-{-# LANGUAGE TypeOperators #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 706
-{-# LANGUAGE PolyKinds #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 708
-{-# LANGUAGE AutoDeriveTypeable #-}
-{-# LANGUAGE DataKinds #-}
-{-# LANGUAGE DeriveDataTypeable #-}
-{-# LANGUAGE FlexibleContexts #-}
-{-# LANGUAGE KindSignatures #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Data.Functor.Compose
--- Copyright   :  (c) Ross Paterson 2010
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Composition of functors.
------------------------------------------------------------------------------
-
-module Data.Functor.Compose (
-    Compose(..),
-  ) where
-
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-
-import Control.Applicative
-#if __GLASGOW_HASKELL__ >= 708
-import Data.Data
-#endif
-import Data.Foldable (Foldable(foldMap))
-import Data.Traversable (Traversable(traverse))
-#if __GLASGOW_HASKELL__ >= 702
-import GHC.Generics
-#endif
-
-infixr 9 `Compose`
-
--- | Right-to-left composition of functors.
--- The composition of applicative functors is always applicative,
--- but the composition of monads is not always a monad.
-newtype Compose f g a = Compose { getCompose :: f (g a) }
-
-#if __GLASGOW_HASKELL__ >= 702
-deriving instance Generic (Compose f g a)
-
-instance Functor f => Generic1 (Compose f g) where
-    type Rep1 (Compose f g) =
-      D1 MDCompose
-        (C1 MCCompose
-          (S1 MSCompose (f :.: Rec1 g)))
-    from1 (Compose x) = M1 (M1 (M1 (Comp1 (fmap Rec1 x))))
-    to1 (M1 (M1 (M1 x))) = Compose (fmap unRec1 (unComp1 x))
-
-data MDCompose
-data MCCompose
-data MSCompose
-
-instance Datatype MDCompose where
-    datatypeName _ = "Compose"
-    moduleName   _ = "Data.Functor.Compose"
-# if __GLASGOW_HASKELL__ >= 708
-    isNewtype    _ = True
-# endif
-
-instance Constructor MCCompose where
-    conName     _ = "Compose"
-    conIsRecord _ = True
-
-instance Selector MSCompose where
-    selName _ = "getCompose"
-#endif
-
-#if __GLASGOW_HASKELL__ >= 708
-deriving instance Typeable Compose
-deriving instance (Data (f (g a)), Typeable f, Typeable g, Typeable a)
-               => Data (Compose (f :: * -> *) (g :: * -> *) (a :: *))
-#endif
-
--- Instances of lifted Prelude classes
-
-instance (Eq1 f, Eq1 g) => Eq1 (Compose f g) where
-    liftEq eq (Compose x) (Compose y) = liftEq (liftEq eq) x y
-
-instance (Ord1 f, Ord1 g) => Ord1 (Compose f g) where
-    liftCompare comp (Compose x) (Compose y) =
-        liftCompare (liftCompare comp) x y
-
-instance (Read1 f, Read1 g) => Read1 (Compose f g) where
-    liftReadsPrec rp rl = readsData $
-        readsUnaryWith (liftReadsPrec rp' rl') "Compose" Compose
-      where
-        rp' = liftReadsPrec rp rl
-        rl' = liftReadList rp rl
-
-instance (Show1 f, Show1 g) => Show1 (Compose f g) where
-    liftShowsPrec sp sl d (Compose x) =
-        showsUnaryWith (liftShowsPrec sp' sl') "Compose" d x
-      where
-        sp' = liftShowsPrec sp sl
-        sl' = liftShowList sp sl
-
--- Instances of Prelude classes
-
-instance (Eq1 f, Eq1 g, Eq a) => Eq (Compose f g a) where
-    (==) = eq1
-
-instance (Ord1 f, Ord1 g, Ord a) => Ord (Compose f g a) where
-    compare = compare1
-
-instance (Read1 f, Read1 g, Read a) => Read (Compose f g a) where
-    readsPrec = readsPrec1
-
-instance (Show1 f, Show1 g, Show a) => Show (Compose f g a) where
-    showsPrec = showsPrec1
-
--- Functor instances
-
-instance (Functor f, Functor g) => Functor (Compose f g) where
-    fmap f (Compose x) = Compose (fmap (fmap f) x)
-
-instance (Foldable f, Foldable g) => Foldable (Compose f g) where
-    foldMap f (Compose t) = foldMap (foldMap f) t
-
-instance (Traversable f, Traversable g) => Traversable (Compose f g) where
-    traverse f (Compose t) = Compose <$> traverse (traverse f) t
-
-instance (Applicative f, Applicative g) => Applicative (Compose f g) where
-    pure x = Compose (pure (pure x))
-    Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
-
-instance (Alternative f, Applicative g) => Alternative (Compose f g) where
-    empty = Compose empty
-    Compose x <|> Compose y = Compose (x <|> y)
-
-#if MIN_VERSION_base(4,12,0)
-instance (Functor f, Contravariant g) => Contravariant (Compose f g) where
-    contramap f (Compose fga) = Compose (fmap (contramap f) fga)
-#endif
diff --git a/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Product.hs b/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Product.hs
deleted file mode 100644
index ba0dc0407e00..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Product.hs
+++ /dev/null
@@ -1,156 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE DeriveGeneric #-}
-{-# LANGUAGE EmptyDataDecls #-}
-{-# LANGUAGE StandaloneDeriving #-}
-{-# LANGUAGE Trustworthy #-}
-{-# LANGUAGE TypeFamilies #-}
-{-# LANGUAGE TypeOperators #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 706
-{-# LANGUAGE PolyKinds #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 708
-{-# LANGUAGE AutoDeriveTypeable #-}
-{-# LANGUAGE DataKinds #-}
-{-# LANGUAGE DeriveDataTypeable #-}
-{-# LANGUAGE FlexibleContexts #-}
-{-# LANGUAGE KindSignatures #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Data.Functor.Product
--- Copyright   :  (c) Ross Paterson 2010
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Products, lifted to functors.
------------------------------------------------------------------------------
-
-module Data.Functor.Product (
-    Product(..),
-  ) where
-
-import Control.Applicative
-import Control.Monad (MonadPlus(..))
-import Control.Monad.Fix (MonadFix(..))
-#if MIN_VERSION_base(4,4,0)
-import Control.Monad.Zip (MonadZip(mzipWith))
-#endif
-#if __GLASGOW_HASKELL__ >= 708
-import Data.Data
-#endif
-import Data.Foldable (Foldable(foldMap))
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-import Data.Monoid (mappend)
-import Data.Traversable (Traversable(traverse))
-#if __GLASGOW_HASKELL__ >= 702
-import GHC.Generics
-#endif
-
--- | Lifted product of functors.
-data Product f g a = Pair (f a) (g a)
-
-#if __GLASGOW_HASKELL__ >= 702
-deriving instance Generic (Product f g a)
-
-instance Generic1 (Product f g) where
-    type Rep1 (Product f g) =
-      D1 MDProduct
-        (C1 MCPair
-          (S1 NoSelector (Rec1 f) :*: S1 NoSelector (Rec1 g)))
-    from1 (Pair f g) = M1 (M1 (M1 (Rec1 f) :*: M1 (Rec1 g)))
-    to1 (M1 (M1 (M1 f :*: M1 g))) = Pair (unRec1 f) (unRec1 g)
-
-data MDProduct
-data MCPair
-
-instance Datatype MDProduct where
-    datatypeName _ = "Product"
-    moduleName   _ = "Data.Functor.Product"
-
-instance Constructor MCPair where
-    conName _ = "Pair"
-#endif
-
-#if __GLASGOW_HASKELL__ >= 708
-deriving instance Typeable Product
-deriving instance (Data (f a), Data (g a), Typeable f, Typeable g, Typeable a)
-               => Data (Product (f :: * -> *) (g :: * -> *) (a :: *))
-#endif
-
-instance (Eq1 f, Eq1 g) => Eq1 (Product f g) where
-    liftEq eq (Pair x1 y1) (Pair x2 y2) = liftEq eq x1 x2 && liftEq eq y1 y2
-
-instance (Ord1 f, Ord1 g) => Ord1 (Product f g) where
-    liftCompare comp (Pair x1 y1) (Pair x2 y2) =
-        liftCompare comp x1 x2 `mappend` liftCompare comp y1 y2
-
-instance (Read1 f, Read1 g) => Read1 (Product f g) where
-    liftReadsPrec rp rl = readsData $
-        readsBinaryWith (liftReadsPrec rp rl) (liftReadsPrec rp rl) "Pair" Pair
-
-instance (Show1 f, Show1 g) => Show1 (Product f g) where
-    liftShowsPrec sp sl d (Pair x y) =
-        showsBinaryWith (liftShowsPrec sp sl) (liftShowsPrec sp sl) "Pair" d x y
-
-instance (Eq1 f, Eq1 g, Eq a) => Eq (Product f g a)
-    where (==) = eq1
-instance (Ord1 f, Ord1 g, Ord a) => Ord (Product f g a) where
-    compare = compare1
-instance (Read1 f, Read1 g, Read a) => Read (Product f g a) where
-    readsPrec = readsPrec1
-instance (Show1 f, Show1 g, Show a) => Show (Product f g a) where
-    showsPrec = showsPrec1
-
-instance (Functor f, Functor g) => Functor (Product f g) where
-    fmap f (Pair x y) = Pair (fmap f x) (fmap f y)
-
-instance (Foldable f, Foldable g) => Foldable (Product f g) where
-    foldMap f (Pair x y) = foldMap f x `mappend` foldMap f y
-
-instance (Traversable f, Traversable g) => Traversable (Product f g) where
-    traverse f (Pair x y) = Pair <$> traverse f x <*> traverse f y
-
-instance (Applicative f, Applicative g) => Applicative (Product f g) where
-    pure x = Pair (pure x) (pure x)
-    Pair f g <*> Pair x y = Pair (f <*> x) (g <*> y)
-
-instance (Alternative f, Alternative g) => Alternative (Product f g) where
-    empty = Pair empty empty
-    Pair x1 y1 <|> Pair x2 y2 = Pair (x1 <|> x2) (y1 <|> y2)
-
-instance (Monad f, Monad g) => Monad (Product f g) where
-#if !(MIN_VERSION_base(4,8,0))
-    return x = Pair (return x) (return x)
-#endif
-    Pair m n >>= f = Pair (m >>= fstP . f) (n >>= sndP . f)
-      where
-        fstP (Pair a _) = a
-        sndP (Pair _ b) = b
-
-instance (MonadPlus f, MonadPlus g) => MonadPlus (Product f g) where
-    mzero = Pair mzero mzero
-    Pair x1 y1 `mplus` Pair x2 y2 = Pair (x1 `mplus` x2) (y1 `mplus` y2)
-
-instance (MonadFix f, MonadFix g) => MonadFix (Product f g) where
-    mfix f = Pair (mfix (fstP . f)) (mfix (sndP . f))
-      where
-        fstP (Pair a _) = a
-        sndP (Pair _ b) = b
-
-#if MIN_VERSION_base(4,4,0)
-instance (MonadZip f, MonadZip g) => MonadZip (Product f g) where
-    mzipWith f (Pair x1 y1) (Pair x2 y2) = Pair (mzipWith f x1 x2) (mzipWith f y1 y2)
-#endif
-
-#if MIN_VERSION_base(4,12,0)
-instance (Contravariant f, Contravariant g) => Contravariant (Product f g) where
-    contramap f (Pair a b) = Pair (contramap f a) (contramap f b)
-#endif
diff --git a/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Sum.hs b/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Sum.hs
deleted file mode 100644
index e6d1428b30e3..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/legacy/pre711/Data/Functor/Sum.hs
+++ /dev/null
@@ -1,136 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE DeriveGeneric #-}
-{-# LANGUAGE EmptyDataDecls #-}
-{-# LANGUAGE StandaloneDeriving #-}
-{-# LANGUAGE Trustworthy #-}
-{-# LANGUAGE TypeFamilies #-}
-{-# LANGUAGE TypeOperators #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 706
-{-# LANGUAGE PolyKinds #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 708
-{-# LANGUAGE AutoDeriveTypeable #-}
-{-# LANGUAGE DataKinds #-}
-{-# LANGUAGE DeriveDataTypeable #-}
-{-# LANGUAGE FlexibleContexts #-}
-{-# LANGUAGE KindSignatures #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Data.Functor.Sum
--- Copyright   :  (c) Ross Paterson 2014
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- Sums, lifted to functors.
------------------------------------------------------------------------------
-
-module Data.Functor.Sum (
-    Sum(..),
-  ) where
-
-import Control.Applicative
-#if __GLASGOW_HASKELL__ >= 708
-import Data.Data
-#endif
-import Data.Foldable (Foldable(foldMap))
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-import Data.Monoid (mappend)
-import Data.Traversable (Traversable(traverse))
-#if __GLASGOW_HASKELL__ >= 702
-import GHC.Generics
-#endif
-
--- | Lifted sum of functors.
-data Sum f g a = InL (f a) | InR (g a)
-
-#if __GLASGOW_HASKELL__ >= 702
-deriving instance Generic (Sum f g a)
-
-instance Generic1 (Sum f g) where
-    type Rep1 (Sum f g) =
-      D1 MDSum (C1 MCInL (S1 NoSelector (Rec1 f))
-            :+: C1 MCInR (S1 NoSelector (Rec1 g)))
-    from1 (InL f) = M1 (L1 (M1 (M1 (Rec1 f))))
-    from1 (InR g) = M1 (R1 (M1 (M1 (Rec1 g))))
-    to1 (M1 (L1 (M1 (M1 f)))) = InL (unRec1 f)
-    to1 (M1 (R1 (M1 (M1 g)))) = InR (unRec1 g)
-
-data MDSum
-data MCInL
-data MCInR
-
-instance Datatype MDSum where
-    datatypeName _ = "Sum"
-    moduleName   _ = "Data.Functor.Sum"
-
-instance Constructor MCInL where
-    conName _ = "InL"
-
-instance Constructor MCInR where
-    conName _ = "InR"
-#endif
-
-#if __GLASGOW_HASKELL__ >= 708
-deriving instance Typeable Sum
-deriving instance (Data (f a), Data (g a), Typeable f, Typeable g, Typeable a)
-               => Data (Sum (f :: * -> *) (g :: * -> *) (a :: *))
-#endif
-
-instance (Eq1 f, Eq1 g) => Eq1 (Sum f g) where
-    liftEq eq (InL x1) (InL x2) = liftEq eq x1 x2
-    liftEq _ (InL _) (InR _) = False
-    liftEq _ (InR _) (InL _) = False
-    liftEq eq (InR y1) (InR y2) = liftEq eq y1 y2
-
-instance (Ord1 f, Ord1 g) => Ord1 (Sum f g) where
-    liftCompare comp (InL x1) (InL x2) = liftCompare comp x1 x2
-    liftCompare _ (InL _) (InR _) = LT
-    liftCompare _ (InR _) (InL _) = GT
-    liftCompare comp (InR y1) (InR y2) = liftCompare comp y1 y2
-
-instance (Read1 f, Read1 g) => Read1 (Sum f g) where
-    liftReadsPrec rp rl = readsData $
-        readsUnaryWith (liftReadsPrec rp rl) "InL" InL `mappend`
-        readsUnaryWith (liftReadsPrec rp rl) "InR" InR
-
-instance (Show1 f, Show1 g) => Show1 (Sum f g) where
-    liftShowsPrec sp sl d (InL x) =
-        showsUnaryWith (liftShowsPrec sp sl) "InL" d x
-    liftShowsPrec sp sl d (InR y) =
-        showsUnaryWith (liftShowsPrec sp sl) "InR" d y
-
-instance (Eq1 f, Eq1 g, Eq a) => Eq (Sum f g a) where
-    (==) = eq1
-instance (Ord1 f, Ord1 g, Ord a) => Ord (Sum f g a) where
-    compare = compare1
-instance (Read1 f, Read1 g, Read a) => Read (Sum f g a) where
-    readsPrec = readsPrec1
-instance (Show1 f, Show1 g, Show a) => Show (Sum f g a) where
-    showsPrec = showsPrec1
-
-instance (Functor f, Functor g) => Functor (Sum f g) where
-    fmap f (InL x) = InL (fmap f x)
-    fmap f (InR y) = InR (fmap f y)
-
-instance (Foldable f, Foldable g) => Foldable (Sum f g) where
-    foldMap f (InL x) = foldMap f x
-    foldMap f (InR y) = foldMap f y
-
-instance (Traversable f, Traversable g) => Traversable (Sum f g) where
-    traverse f (InL x) = InL <$> traverse f x
-    traverse f (InR y) = InR <$> traverse f y
-
-#if MIN_VERSION_base(4,12,0)
-instance (Contravariant f, Contravariant g) => Contravariant (Sum f g) where
-    contramap f (InL xs) = InL (contramap f xs)
-    contramap f (InR ys) = InR (contramap f ys)
-#endif
diff --git a/third_party/bazel/rules_haskell/examples/transformers/transformers.cabal b/third_party/bazel/rules_haskell/examples/transformers/transformers.cabal
deleted file mode 100644
index 945adda910fd..000000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/transformers.cabal
+++ /dev/null
@@ -1,91 +0,0 @@
-name:         transformers
-version:      0.5.6.2
-license:      BSD3
-license-file: LICENSE
-author:       Andy Gill, Ross Paterson
-maintainer:   Ross Paterson <R.Paterson@city.ac.uk>
-bug-reports:  http://hub.darcs.net/ross/transformers/issues
-category:     Control
-synopsis:     Concrete functor and monad transformers
-description:
-    A portable library of functor and monad transformers, inspired by
-    the paper
-    .
-    * \"Functional Programming with Overloading and Higher-Order
-    Polymorphism\", by Mark P Jones,
-    in /Advanced School of Functional Programming/, 1995
-    (<http://web.cecs.pdx.edu/~mpj/pubs/springschool.html>).
-    .
-    This package contains:
-    .
-    * the monad transformer class (in "Control.Monad.Trans.Class")
-    .
-    * concrete functor and monad transformers, each with associated
-      operations and functions to lift operations associated with other
-      transformers.
-    .
-    The package can be used on its own in portable Haskell code, in
-    which case operations need to be manually lifted through transformer
-    stacks (see "Control.Monad.Trans.Class" for some examples).
-    Alternatively, it can be used with the non-portable monad classes in
-    the @mtl@ or @monads-tf@ packages, which automatically lift operations
-    introduced by monad transformers through other transformers.
-build-type: Simple
-extra-source-files:
-    changelog
-cabal-version: >= 1.6
-
-source-repository head
-  type: darcs
-  location: http://hub.darcs.net/ross/transformers
-
-library
-  build-depends: base >= 2 && < 6
-  hs-source-dirs: .
-  if !impl(ghc>=7.9)
-    -- Data.Functor.Identity was moved into base-4.8.0.0 (GHC 7.10)
-    -- see also https://ghc.haskell.org/trac/ghc/ticket/9664
-    -- NB: using impl(ghc>=7.9) instead of fragile Cabal flags
-    hs-source-dirs: legacy/pre709
-    exposed-modules: Data.Functor.Identity
-  if !impl(ghc>=7.11)
-    -- modules moved into base-4.9.0 (GHC 8.0)
-    -- see https://ghc.haskell.org/trac/ghc/ticket/10773
-    -- see https://ghc.haskell.org/trac/ghc/ticket/11135
-    hs-source-dirs: legacy/pre711
-    exposed-modules:
-      Control.Monad.IO.Class
-      Data.Functor.Classes
-      Data.Functor.Compose
-      Data.Functor.Product
-      Data.Functor.Sum
-  if impl(ghc>=7.2 && <7.5)
-    -- Prior to GHC 7.5, GHC.Generics lived in ghc-prim
-    build-depends: ghc-prim
-  exposed-modules:
-    Control.Applicative.Backwards
-    Control.Applicative.Lift
-    Control.Monad.Signatures
-    Control.Monad.Trans.Accum
-    Control.Monad.Trans.Class
-    Control.Monad.Trans.Cont
-    Control.Monad.Trans.Except
-    Control.Monad.Trans.Error
-    Control.Monad.Trans.Identity
-    Control.Monad.Trans.List
-    Control.Monad.Trans.Maybe
-    Control.Monad.Trans.Reader
-    Control.Monad.Trans.RWS
-    Control.Monad.Trans.RWS.CPS
-    Control.Monad.Trans.RWS.Lazy
-    Control.Monad.Trans.RWS.Strict
-    Control.Monad.Trans.Select
-    Control.Monad.Trans.State
-    Control.Monad.Trans.State.Lazy
-    Control.Monad.Trans.State.Strict
-    Control.Monad.Trans.Writer
-    Control.Monad.Trans.Writer.CPS
-    Control.Monad.Trans.Writer.Lazy
-    Control.Monad.Trans.Writer.Strict
-    Data.Functor.Constant
-    Data.Functor.Reverse
diff --git a/third_party/bazel/rules_haskell/examples/vector/BUILD.bazel b/third_party/bazel/rules_haskell/examples/vector/BUILD.bazel
deleted file mode 100644
index 7c00806efe5f..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/BUILD.bazel
+++ /dev/null
@@ -1,38 +0,0 @@
-load(
-    "@io_tweag_rules_haskell//haskell:haskell.bzl",
-    "haskell_cc_import",
-    "haskell_library",
-    "haskell_toolchain_library",
-)
-
-haskell_toolchain_library(name = "base")
-
-haskell_toolchain_library(name = "deepseq")
-
-haskell_toolchain_library(name = "ghc-prim")
-
-haskell_toolchain_library(name = "primitive")
-
-haskell_toolchain_library(name = "semigroups")
-
-haskell_library(
-    name = "vector",
-    testonly = 1,
-    srcs = glob(["Data/**/*.*hs"]),
-    compiler_flags = [
-        "-Iexternal/io_tweag_rules_haskell_examples/vector/include",
-        "-Iexternal/io_tweag_rules_haskell_examples/vector/internal",
-    ],
-    extra_srcs = [
-        "include/vector.h",
-        "internal/unbox-tuple-instances",
-    ],
-    version = "0",
-    visibility = ["//visibility:public"],
-    deps = [
-        ":base",
-        ":deepseq",
-        ":ghc-prim",
-        "//primitive",
-    ],
-)
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector.hs
deleted file mode 100644
index 21b61960ca40..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector.hs
+++ /dev/null
@@ -1,1719 +0,0 @@
-{-# LANGUAGE CPP
-           , DeriveDataTypeable
-           , FlexibleInstances
-           , MultiParamTypeClasses
-           , TypeFamilies
-           , Rank2Types
-           , BangPatterns
-  #-}
-
--- |
--- Module      : Data.Vector
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- A library for boxed vectors (that is, polymorphic arrays capable of
--- holding any Haskell value). The vectors come in two flavours:
---
---  * mutable
---
---  * immutable
---
--- and support a rich interface of both list-like operations, and bulk
--- array operations.
---
--- For unboxed arrays, use "Data.Vector.Unboxed"
---
-
-module Data.Vector (
-  -- * Boxed vectors
-  Vector, MVector,
-
-  -- * Accessors
-
-  -- ** Length information
-  length, null,
-
-  -- ** Indexing
-  (!), (!?), head, last,
-  unsafeIndex, unsafeHead, unsafeLast,
-
-  -- ** Monadic indexing
-  indexM, headM, lastM,
-  unsafeIndexM, unsafeHeadM, unsafeLastM,
-
-  -- ** Extracting subvectors (slicing)
-  slice, init, tail, take, drop, splitAt,
-  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-
-  -- * Construction
-
-  -- ** Initialisation
-  empty, singleton, replicate, generate, iterateN,
-
-  -- ** Monadic initialisation
-  replicateM, generateM, iterateNM, create, createT,
-
-  -- ** Unfolding
-  unfoldr, unfoldrN,
-  unfoldrM, unfoldrNM,
-  constructN, constructrN,
-
-  -- ** Enumeration
-  enumFromN, enumFromStepN, enumFromTo, enumFromThenTo,
-
-  -- ** Concatenation
-  cons, snoc, (++), concat,
-
-  -- ** Restricting memory usage
-  force,
-
-  -- * Modifying vectors
-
-  -- ** Bulk updates
-  (//), update, update_,
-  unsafeUpd, unsafeUpdate, unsafeUpdate_,
-
-  -- ** Accumulations
-  accum, accumulate, accumulate_,
-  unsafeAccum, unsafeAccumulate, unsafeAccumulate_,
-
-  -- ** Permutations
-  reverse, backpermute, unsafeBackpermute,
-
-  -- ** Safe destructive updates
-  modify,
-
-  -- * Elementwise operations
-
-  -- ** Indexing
-  indexed,
-
-  -- ** Mapping
-  map, imap, concatMap,
-
-  -- ** Monadic mapping
-  mapM, imapM, mapM_, imapM_, forM, forM_,
-
-  -- ** Zipping
-  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
-  izipWith, izipWith3, izipWith4, izipWith5, izipWith6,
-  zip, zip3, zip4, zip5, zip6,
-
-  -- ** Monadic zipping
-  zipWithM, izipWithM, zipWithM_, izipWithM_,
-
-  -- ** Unzipping
-  unzip, unzip3, unzip4, unzip5, unzip6,
-
-  -- * Working with predicates
-
-  -- ** Filtering
-  filter, ifilter, uniq,
-  mapMaybe, imapMaybe,
-  filterM,
-  takeWhile, dropWhile,
-
-  -- ** Partitioning
-  partition, unstablePartition, span, break,
-
-  -- ** Searching
-  elem, notElem, find, findIndex, findIndices, elemIndex, elemIndices,
-
-  -- * Folding
-  foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1',
-  ifoldl, ifoldl', ifoldr, ifoldr',
-
-  -- ** Specialised folds
-  all, any, and, or,
-  sum, product,
-  maximum, maximumBy, minimum, minimumBy,
-  minIndex, minIndexBy, maxIndex, maxIndexBy,
-
-  -- ** Monadic folds
-  foldM, ifoldM, foldM', ifoldM',
-  fold1M, fold1M',foldM_, ifoldM_,
-  foldM'_, ifoldM'_, fold1M_, fold1M'_,
-
-  -- ** Monadic sequencing
-  sequence, sequence_,
-
-  -- * Prefix sums (scans)
-  prescanl, prescanl',
-  postscanl, postscanl',
-  scanl, scanl', scanl1, scanl1',
-  iscanl, iscanl',
-  prescanr, prescanr',
-  postscanr, postscanr',
-  scanr, scanr', scanr1, scanr1',
-  iscanr, iscanr',
-
-  -- * Conversions
-
-  -- ** Lists
-  toList, Data.Vector.fromList, Data.Vector.fromListN,
-
-  -- ** Other vector types
-  G.convert,
-
-  -- ** Mutable vectors
-  freeze, thaw, copy, unsafeFreeze, unsafeThaw, unsafeCopy
-) where
-
-import qualified Data.Vector.Generic as G
-import           Data.Vector.Mutable  ( MVector(..) )
-import           Data.Primitive.Array
-import qualified Data.Vector.Fusion.Bundle as Bundle
-
-import Control.DeepSeq ( NFData, rnf )
-import Control.Monad ( MonadPlus(..), liftM, ap )
-import Control.Monad.ST ( ST )
-import Control.Monad.Primitive
-
-
-import Control.Monad.Zip
-
-import Prelude hiding ( length, null,
-                        replicate, (++), concat,
-                        head, last,
-                        init, tail, take, drop, splitAt, reverse,
-                        map, concatMap,
-                        zipWith, zipWith3, zip, zip3, unzip, unzip3,
-                        filter, takeWhile, dropWhile, span, break,
-                        elem, notElem,
-                        foldl, foldl1, foldr, foldr1,
-                        all, any, and, or, sum, product, minimum, maximum,
-                        scanl, scanl1, scanr, scanr1,
-                        enumFromTo, enumFromThenTo,
-                        mapM, mapM_, sequence, sequence_ )
-
-#if MIN_VERSION_base(4,9,0)
-import Data.Functor.Classes (Eq1 (..), Ord1 (..), Read1 (..), Show1 (..))
-#endif
-
-import Data.Typeable  ( Typeable )
-import Data.Data      ( Data(..) )
-import Text.Read      ( Read(..), readListPrecDefault )
-import Data.Semigroup ( Semigroup(..) )
-
-import qualified Control.Applicative as Applicative
-import qualified Data.Foldable as Foldable
-import qualified Data.Traversable as Traversable
-
-#if !MIN_VERSION_base(4,8,0)
-import Data.Monoid   ( Monoid(..) )
-#endif
-
-#if __GLASGOW_HASKELL__ >= 708
-import qualified GHC.Exts as Exts (IsList(..))
-#endif
-
-
--- | Boxed vectors, supporting efficient slicing.
-data Vector a = Vector {-# UNPACK #-} !Int
-                       {-# UNPACK #-} !Int
-                       {-# UNPACK #-} !(Array a)
-        deriving ( Typeable )
-
-instance NFData a => NFData (Vector a) where
-    rnf (Vector i n arr) = rnfAll i
-        where
-          rnfAll ix | ix < n    = rnf (indexArray arr ix) `seq` rnfAll (ix+1)
-                    | otherwise = ()
-
-instance Show a => Show (Vector a) where
-  showsPrec = G.showsPrec
-
-instance Read a => Read (Vector a) where
-  readPrec = G.readPrec
-  readListPrec = readListPrecDefault
-
-#if MIN_VERSION_base(4,9,0)
-instance Show1 Vector where
-    liftShowsPrec = G.liftShowsPrec
-
-instance Read1 Vector where
-    liftReadsPrec = G.liftReadsPrec
-#endif
-
-#if __GLASGOW_HASKELL__ >= 708
-
-instance Exts.IsList (Vector a) where
-  type Item (Vector a) = a
-  fromList = Data.Vector.fromList
-  fromListN = Data.Vector.fromListN
-  toList = toList
-#endif
-
-instance Data a => Data (Vector a) where
-  gfoldl       = G.gfoldl
-  toConstr _   = error "toConstr"
-  gunfold _ _  = error "gunfold"
-  dataTypeOf _ = G.mkType "Data.Vector.Vector"
-  dataCast1    = G.dataCast
-
-type instance G.Mutable Vector = MVector
-
-instance G.Vector Vector a where
-  {-# INLINE basicUnsafeFreeze #-}
-  basicUnsafeFreeze (MVector i n marr)
-    = Vector i n `liftM` unsafeFreezeArray marr
-
-  {-# INLINE basicUnsafeThaw #-}
-  basicUnsafeThaw (Vector i n arr)
-    = MVector i n `liftM` unsafeThawArray arr
-
-  {-# INLINE basicLength #-}
-  basicLength (Vector _ n _) = n
-
-  {-# INLINE basicUnsafeSlice #-}
-  basicUnsafeSlice j n (Vector i _ arr) = Vector (i+j) n arr
-
-  {-# INLINE basicUnsafeIndexM #-}
-  basicUnsafeIndexM (Vector i _ arr) j = indexArrayM arr (i+j)
-
-  {-# INLINE basicUnsafeCopy #-}
-  basicUnsafeCopy (MVector i n dst) (Vector j _ src)
-    = copyArray dst i src j n
-
--- See http://trac.haskell.org/vector/ticket/12
-instance Eq a => Eq (Vector a) where
-  {-# INLINE (==) #-}
-  xs == ys = Bundle.eq (G.stream xs) (G.stream ys)
-
-  {-# INLINE (/=) #-}
-  xs /= ys = not (Bundle.eq (G.stream xs) (G.stream ys))
-
--- See http://trac.haskell.org/vector/ticket/12
-instance Ord a => Ord (Vector a) where
-  {-# INLINE compare #-}
-  compare xs ys = Bundle.cmp (G.stream xs) (G.stream ys)
-
-  {-# INLINE (<) #-}
-  xs < ys = Bundle.cmp (G.stream xs) (G.stream ys) == LT
-
-  {-# INLINE (<=) #-}
-  xs <= ys = Bundle.cmp (G.stream xs) (G.stream ys) /= GT
-
-  {-# INLINE (>) #-}
-  xs > ys = Bundle.cmp (G.stream xs) (G.stream ys) == GT
-
-  {-# INLINE (>=) #-}
-  xs >= ys = Bundle.cmp (G.stream xs) (G.stream ys) /= LT
-
-#if MIN_VERSION_base(4,9,0)
-instance Eq1 Vector where
-  liftEq eq xs ys = Bundle.eqBy eq (G.stream xs) (G.stream ys)
-
-instance Ord1 Vector where
-  liftCompare cmp xs ys = Bundle.cmpBy cmp (G.stream xs) (G.stream ys)
-#endif
-
-instance Semigroup (Vector a) where
-  {-# INLINE (<>) #-}
-  (<>) = (++)
-
-  {-# INLINE sconcat #-}
-  sconcat = G.concatNE
-
-instance Monoid (Vector a) where
-  {-# INLINE mempty #-}
-  mempty = empty
-
-  {-# INLINE mappend #-}
-  mappend = (++)
-
-  {-# INLINE mconcat #-}
-  mconcat = concat
-
-instance Functor Vector where
-  {-# INLINE fmap #-}
-  fmap = map
-
-instance Monad Vector where
-  {-# INLINE return #-}
-  return = Applicative.pure
-
-  {-# INLINE (>>=) #-}
-  (>>=) = flip concatMap
-
-  {-# INLINE fail #-}
-  fail _ = empty
-
-instance MonadPlus Vector where
-  {-# INLINE mzero #-}
-  mzero = empty
-
-  {-# INLINE mplus #-}
-  mplus = (++)
-
-instance MonadZip Vector where
-  {-# INLINE mzip #-}
-  mzip = zip
-
-  {-# INLINE mzipWith #-}
-  mzipWith = zipWith
-
-  {-# INLINE munzip #-}
-  munzip = unzip
-
-
-instance Applicative.Applicative Vector where
-  {-# INLINE pure #-}
-  pure = singleton
-
-  {-# INLINE (<*>) #-}
-  (<*>) = ap
-
-instance Applicative.Alternative Vector where
-  {-# INLINE empty #-}
-  empty = empty
-
-  {-# INLINE (<|>) #-}
-  (<|>) = (++)
-
-instance Foldable.Foldable Vector where
-  {-# INLINE foldr #-}
-  foldr = foldr
-
-  {-# INLINE foldl #-}
-  foldl = foldl
-
-  {-# INLINE foldr1 #-}
-  foldr1 = foldr1
-
-  {-# INLINE foldl1 #-}
-  foldl1 = foldl1
-
-#if MIN_VERSION_base(4,6,0)
-  {-# INLINE foldr' #-}
-  foldr' = foldr'
-
-  {-# INLINE foldl' #-}
-  foldl' = foldl'
-#endif
-
-#if MIN_VERSION_base(4,8,0)
-  {-# INLINE toList #-}
-  toList = toList
-
-  {-# INLINE length #-}
-  length = length
-
-  {-# INLINE null #-}
-  null = null
-
-  {-# INLINE elem #-}
-  elem = elem
-
-  {-# INLINE maximum #-}
-  maximum = maximum
-
-  {-# INLINE minimum #-}
-  minimum = minimum
-
-  {-# INLINE sum #-}
-  sum = sum
-
-  {-# INLINE product #-}
-  product = product
-#endif
-
-instance Traversable.Traversable Vector where
-  {-# INLINE traverse #-}
-  traverse f xs = Data.Vector.fromList Applicative.<$> Traversable.traverse f (toList xs)
-
-  {-# INLINE mapM #-}
-  mapM = mapM
-
-  {-# INLINE sequence #-}
-  sequence = sequence
-
--- Length information
--- ------------------
-
--- | /O(1)/ Yield the length of the vector
-length :: Vector a -> Int
-{-# INLINE length #-}
-length = G.length
-
--- | /O(1)/ Test whether a vector is empty
-null :: Vector a -> Bool
-{-# INLINE null #-}
-null = G.null
-
--- Indexing
--- --------
-
--- | O(1) Indexing
-(!) :: Vector a -> Int -> a
-{-# INLINE (!) #-}
-(!) = (G.!)
-
--- | O(1) Safe indexing
-(!?) :: Vector a -> Int -> Maybe a
-{-# INLINE (!?) #-}
-(!?) = (G.!?)
-
--- | /O(1)/ First element
-head :: Vector a -> a
-{-# INLINE head #-}
-head = G.head
-
--- | /O(1)/ Last element
-last :: Vector a -> a
-{-# INLINE last #-}
-last = G.last
-
--- | /O(1)/ Unsafe indexing without bounds checking
-unsafeIndex :: Vector a -> Int -> a
-{-# INLINE unsafeIndex #-}
-unsafeIndex = G.unsafeIndex
-
--- | /O(1)/ First element without checking if the vector is empty
-unsafeHead :: Vector a -> a
-{-# INLINE unsafeHead #-}
-unsafeHead = G.unsafeHead
-
--- | /O(1)/ Last element without checking if the vector is empty
-unsafeLast :: Vector a -> a
-{-# INLINE unsafeLast #-}
-unsafeLast = G.unsafeLast
-
--- Monadic indexing
--- ----------------
-
--- | /O(1)/ Indexing in a monad.
---
--- The monad allows operations to be strict in the vector when necessary.
--- Suppose vector copying is implemented like this:
---
--- > copy mv v = ... write mv i (v ! i) ...
---
--- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@
--- would unnecessarily retain a reference to @v@ in each element written.
---
--- With 'indexM', copying can be implemented like this instead:
---
--- > copy mv v = ... do
--- >                   x <- indexM v i
--- >                   write mv i x
---
--- Here, no references to @v@ are retained because indexing (but /not/ the
--- elements) is evaluated eagerly.
---
-indexM :: Monad m => Vector a -> Int -> m a
-{-# INLINE indexM #-}
-indexM = G.indexM
-
--- | /O(1)/ First element of a vector in a monad. See 'indexM' for an
--- explanation of why this is useful.
-headM :: Monad m => Vector a -> m a
-{-# INLINE headM #-}
-headM = G.headM
-
--- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an
--- explanation of why this is useful.
-lastM :: Monad m => Vector a -> m a
-{-# INLINE lastM #-}
-lastM = G.lastM
-
--- | /O(1)/ Indexing in a monad without bounds checks. See 'indexM' for an
--- explanation of why this is useful.
-unsafeIndexM :: Monad m => Vector a -> Int -> m a
-{-# INLINE unsafeIndexM #-}
-unsafeIndexM = G.unsafeIndexM
-
--- | /O(1)/ First element in a monad without checking for empty vectors.
--- See 'indexM' for an explanation of why this is useful.
-unsafeHeadM :: Monad m => Vector a -> m a
-{-# INLINE unsafeHeadM #-}
-unsafeHeadM = G.unsafeHeadM
-
--- | /O(1)/ Last element in a monad without checking for empty vectors.
--- See 'indexM' for an explanation of why this is useful.
-unsafeLastM :: Monad m => Vector a -> m a
-{-# INLINE unsafeLastM #-}
-unsafeLastM = G.unsafeLastM
-
--- Extracting subvectors (slicing)
--- -------------------------------
-
--- | /O(1)/ Yield a slice of the vector without copying it. The vector must
--- contain at least @i+n@ elements.
-slice :: Int   -- ^ @i@ starting index
-                 -> Int   -- ^ @n@ length
-                 -> Vector a
-                 -> Vector a
-{-# INLINE slice #-}
-slice = G.slice
-
--- | /O(1)/ Yield all but the last element without copying. The vector may not
--- be empty.
-init :: Vector a -> Vector a
-{-# INLINE init #-}
-init = G.init
-
--- | /O(1)/ Yield all but the first element without copying. The vector may not
--- be empty.
-tail :: Vector a -> Vector a
-{-# INLINE tail #-}
-tail = G.tail
-
--- | /O(1)/ Yield at the first @n@ elements without copying. The vector may
--- contain less than @n@ elements in which case it is returned unchanged.
-take :: Int -> Vector a -> Vector a
-{-# INLINE take #-}
-take = G.take
-
--- | /O(1)/ Yield all but the first @n@ elements without copying. The vector may
--- contain less than @n@ elements in which case an empty vector is returned.
-drop :: Int -> Vector a -> Vector a
-{-# INLINE drop #-}
-drop = G.drop
-
--- | /O(1)/ Yield the first @n@ elements paired with the remainder without copying.
---
--- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@
--- but slightly more efficient.
-{-# INLINE splitAt #-}
-splitAt :: Int -> Vector a -> (Vector a, Vector a)
-splitAt = G.splitAt
-
--- | /O(1)/ Yield a slice of the vector without copying. The vector must
--- contain at least @i+n@ elements but this is not checked.
-unsafeSlice :: Int   -- ^ @i@ starting index
-                       -> Int   -- ^ @n@ length
-                       -> Vector a
-                       -> Vector a
-{-# INLINE unsafeSlice #-}
-unsafeSlice = G.unsafeSlice
-
--- | /O(1)/ Yield all but the last element without copying. The vector may not
--- be empty but this is not checked.
-unsafeInit :: Vector a -> Vector a
-{-# INLINE unsafeInit #-}
-unsafeInit = G.unsafeInit
-
--- | /O(1)/ Yield all but the first element without copying. The vector may not
--- be empty but this is not checked.
-unsafeTail :: Vector a -> Vector a
-{-# INLINE unsafeTail #-}
-unsafeTail = G.unsafeTail
-
--- | /O(1)/ Yield the first @n@ elements without copying. The vector must
--- contain at least @n@ elements but this is not checked.
-unsafeTake :: Int -> Vector a -> Vector a
-{-# INLINE unsafeTake #-}
-unsafeTake = G.unsafeTake
-
--- | /O(1)/ Yield all but the first @n@ elements without copying. The vector
--- must contain at least @n@ elements but this is not checked.
-unsafeDrop :: Int -> Vector a -> Vector a
-{-# INLINE unsafeDrop #-}
-unsafeDrop = G.unsafeDrop
-
--- Initialisation
--- --------------
-
--- | /O(1)/ Empty vector
-empty :: Vector a
-{-# INLINE empty #-}
-empty = G.empty
-
--- | /O(1)/ Vector with exactly one element
-singleton :: a -> Vector a
-{-# INLINE singleton #-}
-singleton = G.singleton
-
--- | /O(n)/ Vector of the given length with the same value in each position
-replicate :: Int -> a -> Vector a
-{-# INLINE replicate #-}
-replicate = G.replicate
-
--- | /O(n)/ Construct a vector of the given length by applying the function to
--- each index
-generate :: Int -> (Int -> a) -> Vector a
-{-# INLINE generate #-}
-generate = G.generate
-
--- | /O(n)/ Apply function n times to value. Zeroth element is original value.
-iterateN :: Int -> (a -> a) -> a -> Vector a
-{-# INLINE iterateN #-}
-iterateN = G.iterateN
-
--- Unfolding
--- ---------
-
--- | /O(n)/ Construct a vector by repeatedly applying the generator function
--- to a seed. The generator function yields 'Just' the next element and the
--- new seed or 'Nothing' if there are no more elements.
---
--- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10
--- >  = <10,9,8,7,6,5,4,3,2,1>
-unfoldr :: (b -> Maybe (a, b)) -> b -> Vector a
-{-# INLINE unfoldr #-}
-unfoldr = G.unfoldr
-
--- | /O(n)/ Construct a vector with at most @n@ elements by repeatedly applying
--- the generator function to a seed. The generator function yields 'Just' the
--- next element and the new seed or 'Nothing' if there are no more elements.
---
--- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8>
-unfoldrN :: Int -> (b -> Maybe (a, b)) -> b -> Vector a
-{-# INLINE unfoldrN #-}
-unfoldrN = G.unfoldrN
-
--- | /O(n)/ Construct a vector by repeatedly applying the monadic
--- generator function to a seed. The generator function yields 'Just'
--- the next element and the new seed or 'Nothing' if there are no more
--- elements.
-unfoldrM :: (Monad m) => (b -> m (Maybe (a, b))) -> b -> m (Vector a)
-{-# INLINE unfoldrM #-}
-unfoldrM = G.unfoldrM
-
--- | /O(n)/ Construct a vector by repeatedly applying the monadic
--- generator function to a seed. The generator function yields 'Just'
--- the next element and the new seed or 'Nothing' if there are no more
--- elements.
-unfoldrNM :: (Monad m) => Int -> (b -> m (Maybe (a, b))) -> b -> m (Vector a)
-{-# INLINE unfoldrNM #-}
-unfoldrNM = G.unfoldrNM
-
--- | /O(n)/ Construct a vector with @n@ elements by repeatedly applying the
--- generator function to the already constructed part of the vector.
---
--- > constructN 3 f = let a = f <> ; b = f <a> ; c = f <a,b> in f <a,b,c>
---
-constructN :: Int -> (Vector a -> a) -> Vector a
-{-# INLINE constructN #-}
-constructN = G.constructN
-
--- | /O(n)/ Construct a vector with @n@ elements from right to left by
--- repeatedly applying the generator function to the already constructed part
--- of the vector.
---
--- > constructrN 3 f = let a = f <> ; b = f<a> ; c = f <b,a> in f <c,b,a>
---
-constructrN :: Int -> (Vector a -> a) -> Vector a
-{-# INLINE constructrN #-}
-constructrN = G.constructrN
-
--- Enumeration
--- -----------
-
--- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+1@
--- etc. This operation is usually more efficient than 'enumFromTo'.
---
--- > enumFromN 5 3 = <5,6,7>
-enumFromN :: Num a => a -> Int -> Vector a
-{-# INLINE enumFromN #-}
-enumFromN = G.enumFromN
-
--- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@,
--- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'.
---
--- > enumFromStepN 1 0.1 5 = <1,1.1,1.2,1.3,1.4>
-enumFromStepN :: Num a => a -> a -> Int -> Vector a
-{-# INLINE enumFromStepN #-}
-enumFromStepN = G.enumFromStepN
-
--- | /O(n)/ Enumerate values from @x@ to @y@.
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromN' instead.
-enumFromTo :: Enum a => a -> a -> Vector a
-{-# INLINE enumFromTo #-}
-enumFromTo = G.enumFromTo
-
--- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@.
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromThenTo :: Enum a => a -> a -> a -> Vector a
-{-# INLINE enumFromThenTo #-}
-enumFromThenTo = G.enumFromThenTo
-
--- Concatenation
--- -------------
-
--- | /O(n)/ Prepend an element
-cons :: a -> Vector a -> Vector a
-{-# INLINE cons #-}
-cons = G.cons
-
--- | /O(n)/ Append an element
-snoc :: Vector a -> a -> Vector a
-{-# INLINE snoc #-}
-snoc = G.snoc
-
-infixr 5 ++
--- | /O(m+n)/ Concatenate two vectors
-(++) :: Vector a -> Vector a -> Vector a
-{-# INLINE (++) #-}
-(++) = (G.++)
-
--- | /O(n)/ Concatenate all vectors in the list
-concat :: [Vector a] -> Vector a
-{-# INLINE concat #-}
-concat = G.concat
-
--- Monadic initialisation
--- ----------------------
-
--- | /O(n)/ Execute the monadic action the given number of times and store the
--- results in a vector.
-replicateM :: Monad m => Int -> m a -> m (Vector a)
-{-# INLINE replicateM #-}
-replicateM = G.replicateM
-
--- | /O(n)/ Construct a vector of the given length by applying the monadic
--- action to each index
-generateM :: Monad m => Int -> (Int -> m a) -> m (Vector a)
-{-# INLINE generateM #-}
-generateM = G.generateM
-
--- | /O(n)/ Apply monadic function n times to value. Zeroth element is original value.
-iterateNM :: Monad m => Int -> (a -> m a) -> a -> m (Vector a)
-{-# INLINE iterateNM #-}
-iterateNM = G.iterateNM
-
--- | Execute the monadic action and freeze the resulting vector.
---
--- @
--- create (do { v \<- new 2; write v 0 \'a\'; write v 1 \'b\'; return v }) = \<'a','b'\>
--- @
-create :: (forall s. ST s (MVector s a)) -> Vector a
-{-# INLINE create #-}
--- NOTE: eta-expanded due to http://hackage.haskell.org/trac/ghc/ticket/4120
-create p = G.create p
-
--- | Execute the monadic action and freeze the resulting vectors.
-createT :: Traversable.Traversable f => (forall s. ST s (f (MVector s a))) -> f (Vector a)
-{-# INLINE createT #-}
-createT p = G.createT p
-
-
-
--- Restricting memory usage
--- ------------------------
-
--- | /O(n)/ Yield the argument but force it not to retain any extra memory,
--- possibly by copying it.
---
--- This is especially useful when dealing with slices. For example:
---
--- > force (slice 0 2 <huge vector>)
---
--- Here, the slice retains a reference to the huge vector. Forcing it creates
--- a copy of just the elements that belong to the slice and allows the huge
--- vector to be garbage collected.
-force :: Vector a -> Vector a
-{-# INLINE force #-}
-force = G.force
-
--- Bulk updates
--- ------------
-
--- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector
--- element at position @i@ by @a@.
---
--- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7>
---
-(//) :: Vector a   -- ^ initial vector (of length @m@)
-                -> [(Int, a)] -- ^ list of index/value pairs (of length @n@)
-                -> Vector a
-{-# INLINE (//) #-}
-(//) = (G.//)
-
--- | /O(m+n)/ For each pair @(i,a)@ from the vector of index/value pairs,
--- replace the vector element at position @i@ by @a@.
---
--- > update <5,9,2,7> <(2,1),(0,3),(2,8)> = <3,9,8,7>
---
-update :: Vector a        -- ^ initial vector (of length @m@)
-       -> Vector (Int, a) -- ^ vector of index/value pairs (of length @n@)
-       -> Vector a
-{-# INLINE update #-}
-update = G.update
-
--- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
--- corresponding value @a@ from the value vector, replace the element of the
--- initial vector at position @i@ by @a@.
---
--- > update_ <5,9,2,7>  <2,0,2> <1,3,8> = <3,9,8,7>
---
--- The function 'update' provides the same functionality and is usually more
--- convenient.
---
--- @
--- update_ xs is ys = 'update' xs ('zip' is ys)
--- @
-update_ :: Vector a   -- ^ initial vector (of length @m@)
-        -> Vector Int -- ^ index vector (of length @n1@)
-        -> Vector a   -- ^ value vector (of length @n2@)
-        -> Vector a
-{-# INLINE update_ #-}
-update_ = G.update_
-
--- | Same as ('//') but without bounds checking.
-unsafeUpd :: Vector a -> [(Int, a)] -> Vector a
-{-# INLINE unsafeUpd #-}
-unsafeUpd = G.unsafeUpd
-
--- | Same as 'update' but without bounds checking.
-unsafeUpdate :: Vector a -> Vector (Int, a) -> Vector a
-{-# INLINE unsafeUpdate #-}
-unsafeUpdate = G.unsafeUpdate
-
--- | Same as 'update_' but without bounds checking.
-unsafeUpdate_ :: Vector a -> Vector Int -> Vector a -> Vector a
-{-# INLINE unsafeUpdate_ #-}
-unsafeUpdate_ = G.unsafeUpdate_
-
--- Accumulations
--- -------------
-
--- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element
--- @a@ at position @i@ by @f a b@.
---
--- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4>
-accum :: (a -> b -> a) -- ^ accumulating function @f@
-      -> Vector a      -- ^ initial vector (of length @m@)
-      -> [(Int,b)]     -- ^ list of index/value pairs (of length @n@)
-      -> Vector a
-{-# INLINE accum #-}
-accum = G.accum
-
--- | /O(m+n)/ For each pair @(i,b)@ from the vector of pairs, replace the vector
--- element @a@ at position @i@ by @f a b@.
---
--- > accumulate (+) <5,9,2> <(2,4),(1,6),(0,3),(1,7)> = <5+3, 9+6+7, 2+4>
-accumulate :: (a -> b -> a)  -- ^ accumulating function @f@
-            -> Vector a       -- ^ initial vector (of length @m@)
-            -> Vector (Int,b) -- ^ vector of index/value pairs (of length @n@)
-            -> Vector a
-{-# INLINE accumulate #-}
-accumulate = G.accumulate
-
--- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
--- corresponding value @b@ from the the value vector,
--- replace the element of the initial vector at
--- position @i@ by @f a b@.
---
--- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4>
---
--- The function 'accumulate' provides the same functionality and is usually more
--- convenient.
---
--- @
--- accumulate_ f as is bs = 'accumulate' f as ('zip' is bs)
--- @
-accumulate_ :: (a -> b -> a) -- ^ accumulating function @f@
-            -> Vector a      -- ^ initial vector (of length @m@)
-            -> Vector Int    -- ^ index vector (of length @n1@)
-            -> Vector b      -- ^ value vector (of length @n2@)
-            -> Vector a
-{-# INLINE accumulate_ #-}
-accumulate_ = G.accumulate_
-
--- | Same as 'accum' but without bounds checking.
-unsafeAccum :: (a -> b -> a) -> Vector a -> [(Int,b)] -> Vector a
-{-# INLINE unsafeAccum #-}
-unsafeAccum = G.unsafeAccum
-
--- | Same as 'accumulate' but without bounds checking.
-unsafeAccumulate :: (a -> b -> a) -> Vector a -> Vector (Int,b) -> Vector a
-{-# INLINE unsafeAccumulate #-}
-unsafeAccumulate = G.unsafeAccumulate
-
--- | Same as 'accumulate_' but without bounds checking.
-unsafeAccumulate_
-  :: (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a
-{-# INLINE unsafeAccumulate_ #-}
-unsafeAccumulate_ = G.unsafeAccumulate_
-
--- Permutations
--- ------------
-
--- | /O(n)/ Reverse a vector
-reverse :: Vector a -> Vector a
-{-# INLINE reverse #-}
-reverse = G.reverse
-
--- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the
--- index vector by @xs'!'i@. This is equivalent to @'map' (xs'!') is@ but is
--- often much more efficient.
---
--- > backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a>
-backpermute :: Vector a -> Vector Int -> Vector a
-{-# INLINE backpermute #-}
-backpermute = G.backpermute
-
--- | Same as 'backpermute' but without bounds checking.
-unsafeBackpermute :: Vector a -> Vector Int -> Vector a
-{-# INLINE unsafeBackpermute #-}
-unsafeBackpermute = G.unsafeBackpermute
-
--- Safe destructive updates
--- ------------------------
-
--- | Apply a destructive operation to a vector. The operation will be
--- performed in place if it is safe to do so and will modify a copy of the
--- vector otherwise.
---
--- @
--- modify (\\v -> write v 0 \'x\') ('replicate' 3 \'a\') = \<\'x\',\'a\',\'a\'\>
--- @
-modify :: (forall s. MVector s a -> ST s ()) -> Vector a -> Vector a
-{-# INLINE modify #-}
-modify p = G.modify p
-
--- Indexing
--- --------
-
--- | /O(n)/ Pair each element in a vector with its index
-indexed :: Vector a -> Vector (Int,a)
-{-# INLINE indexed #-}
-indexed = G.indexed
-
--- Mapping
--- -------
-
--- | /O(n)/ Map a function over a vector
-map :: (a -> b) -> Vector a -> Vector b
-{-# INLINE map #-}
-map = G.map
-
--- | /O(n)/ Apply a function to every element of a vector and its index
-imap :: (Int -> a -> b) -> Vector a -> Vector b
-{-# INLINE imap #-}
-imap = G.imap
-
--- | Map a function over a vector and concatenate the results.
-concatMap :: (a -> Vector b) -> Vector a -> Vector b
-{-# INLINE concatMap #-}
-concatMap = G.concatMap
-
--- Monadic mapping
--- ---------------
-
--- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
--- vector of results
-mapM :: Monad m => (a -> m b) -> Vector a -> m (Vector b)
-{-# INLINE mapM #-}
-mapM = G.mapM
-
--- | /O(n)/ Apply the monadic action to every element of a vector and its
--- index, yielding a vector of results
-imapM :: Monad m => (Int -> a -> m b) -> Vector a -> m (Vector b)
-{-# INLINE imapM #-}
-imapM = G.imapM
-
--- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
--- results
-mapM_ :: Monad m => (a -> m b) -> Vector a -> m ()
-{-# INLINE mapM_ #-}
-mapM_ = G.mapM_
-
--- | /O(n)/ Apply the monadic action to every element of a vector and its
--- index, ignoring the results
-imapM_ :: Monad m => (Int -> a -> m b) -> Vector a -> m ()
-{-# INLINE imapM_ #-}
-imapM_ = G.imapM_
-
--- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
--- vector of results. Equivalent to @flip 'mapM'@.
-forM :: Monad m => Vector a -> (a -> m b) -> m (Vector b)
-{-# INLINE forM #-}
-forM = G.forM
-
--- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
--- results. Equivalent to @flip 'mapM_'@.
-forM_ :: Monad m => Vector a -> (a -> m b) -> m ()
-{-# INLINE forM_ #-}
-forM_ = G.forM_
-
--- Zipping
--- -------
-
--- | /O(min(m,n))/ Zip two vectors with the given function.
-zipWith :: (a -> b -> c) -> Vector a -> Vector b -> Vector c
-{-# INLINE zipWith #-}
-zipWith = G.zipWith
-
--- | Zip three vectors with the given function.
-zipWith3 :: (a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d
-{-# INLINE zipWith3 #-}
-zipWith3 = G.zipWith3
-
-zipWith4 :: (a -> b -> c -> d -> e)
-         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-{-# INLINE zipWith4 #-}
-zipWith4 = G.zipWith4
-
-zipWith5 :: (a -> b -> c -> d -> e -> f)
-         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-         -> Vector f
-{-# INLINE zipWith5 #-}
-zipWith5 = G.zipWith5
-
-zipWith6 :: (a -> b -> c -> d -> e -> f -> g)
-         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-         -> Vector f -> Vector g
-{-# INLINE zipWith6 #-}
-zipWith6 = G.zipWith6
-
--- | /O(min(m,n))/ Zip two vectors with a function that also takes the
--- elements' indices.
-izipWith :: (Int -> a -> b -> c) -> Vector a -> Vector b -> Vector c
-{-# INLINE izipWith #-}
-izipWith = G.izipWith
-
--- | Zip three vectors and their indices with the given function.
-izipWith3 :: (Int -> a -> b -> c -> d)
-          -> Vector a -> Vector b -> Vector c -> Vector d
-{-# INLINE izipWith3 #-}
-izipWith3 = G.izipWith3
-
-izipWith4 :: (Int -> a -> b -> c -> d -> e)
-          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-{-# INLINE izipWith4 #-}
-izipWith4 = G.izipWith4
-
-izipWith5 :: (Int -> a -> b -> c -> d -> e -> f)
-          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-          -> Vector f
-{-# INLINE izipWith5 #-}
-izipWith5 = G.izipWith5
-
-izipWith6 :: (Int -> a -> b -> c -> d -> e -> f -> g)
-          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-          -> Vector f -> Vector g
-{-# INLINE izipWith6 #-}
-izipWith6 = G.izipWith6
-
--- | Elementwise pairing of array elements.
-zip :: Vector a -> Vector b -> Vector (a, b)
-{-# INLINE zip #-}
-zip = G.zip
-
--- | zip together three vectors into a vector of triples
-zip3 :: Vector a -> Vector b -> Vector c -> Vector (a, b, c)
-{-# INLINE zip3 #-}
-zip3 = G.zip3
-
-zip4 :: Vector a -> Vector b -> Vector c -> Vector d
-     -> Vector (a, b, c, d)
-{-# INLINE zip4 #-}
-zip4 = G.zip4
-
-zip5 :: Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-     -> Vector (a, b, c, d, e)
-{-# INLINE zip5 #-}
-zip5 = G.zip5
-
-zip6 :: Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f
-     -> Vector (a, b, c, d, e, f)
-{-# INLINE zip6 #-}
-zip6 = G.zip6
-
--- Unzipping
--- ---------
-
--- | /O(min(m,n))/ Unzip a vector of pairs.
-unzip :: Vector (a, b) -> (Vector a, Vector b)
-{-# INLINE unzip #-}
-unzip = G.unzip
-
-unzip3 :: Vector (a, b, c) -> (Vector a, Vector b, Vector c)
-{-# INLINE unzip3 #-}
-unzip3 = G.unzip3
-
-unzip4 :: Vector (a, b, c, d) -> (Vector a, Vector b, Vector c, Vector d)
-{-# INLINE unzip4 #-}
-unzip4 = G.unzip4
-
-unzip5 :: Vector (a, b, c, d, e)
-       -> (Vector a, Vector b, Vector c, Vector d, Vector e)
-{-# INLINE unzip5 #-}
-unzip5 = G.unzip5
-
-unzip6 :: Vector (a, b, c, d, e, f)
-       -> (Vector a, Vector b, Vector c, Vector d, Vector e, Vector f)
-{-# INLINE unzip6 #-}
-unzip6 = G.unzip6
-
--- Monadic zipping
--- ---------------
-
--- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a
--- vector of results
-zipWithM :: Monad m => (a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
-{-# INLINE zipWithM #-}
-zipWithM = G.zipWithM
-
--- | /O(min(m,n))/ Zip the two vectors with a monadic action that also takes
--- the element index and yield a vector of results
-izipWithM :: Monad m => (Int -> a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
-{-# INLINE izipWithM #-}
-izipWithM = G.izipWithM
-
--- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the
--- results
-zipWithM_ :: Monad m => (a -> b -> m c) -> Vector a -> Vector b -> m ()
-{-# INLINE zipWithM_ #-}
-zipWithM_ = G.zipWithM_
-
--- | /O(min(m,n))/ Zip the two vectors with a monadic action that also takes
--- the element index and ignore the results
-izipWithM_ :: Monad m => (Int -> a -> b -> m c) -> Vector a -> Vector b -> m ()
-{-# INLINE izipWithM_ #-}
-izipWithM_ = G.izipWithM_
-
--- Filtering
--- ---------
-
--- | /O(n)/ Drop elements that do not satisfy the predicate
-filter :: (a -> Bool) -> Vector a -> Vector a
-{-# INLINE filter #-}
-filter = G.filter
-
--- | /O(n)/ Drop elements that do not satisfy the predicate which is applied to
--- values and their indices
-ifilter :: (Int -> a -> Bool) -> Vector a -> Vector a
-{-# INLINE ifilter #-}
-ifilter = G.ifilter
-
--- | /O(n)/ Drop repeated adjacent elements.
-uniq :: (Eq a) => Vector a -> Vector a
-{-# INLINE uniq #-}
-uniq = G.uniq
-
--- | /O(n)/ Drop elements when predicate returns Nothing
-mapMaybe :: (a -> Maybe b) -> Vector a -> Vector b
-{-# INLINE mapMaybe #-}
-mapMaybe = G.mapMaybe
-
--- | /O(n)/ Drop elements when predicate, applied to index and value, returns Nothing
-imapMaybe :: (Int -> a -> Maybe b) -> Vector a -> Vector b
-{-# INLINE imapMaybe #-}
-imapMaybe = G.imapMaybe
-
--- | /O(n)/ Drop elements that do not satisfy the monadic predicate
-filterM :: Monad m => (a -> m Bool) -> Vector a -> m (Vector a)
-{-# INLINE filterM #-}
-filterM = G.filterM
-
--- | /O(n)/ Yield the longest prefix of elements satisfying the predicate
--- without copying.
-takeWhile :: (a -> Bool) -> Vector a -> Vector a
-{-# INLINE takeWhile #-}
-takeWhile = G.takeWhile
-
--- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate
--- without copying.
-dropWhile :: (a -> Bool) -> Vector a -> Vector a
-{-# INLINE dropWhile #-}
-dropWhile = G.dropWhile
-
--- Parititioning
--- -------------
-
--- | /O(n)/ Split the vector in two parts, the first one containing those
--- elements that satisfy the predicate and the second one those that don't. The
--- relative order of the elements is preserved at the cost of a sometimes
--- reduced performance compared to 'unstablePartition'.
-partition :: (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE partition #-}
-partition = G.partition
-
--- | /O(n)/ Split the vector in two parts, the first one containing those
--- elements that satisfy the predicate and the second one those that don't.
--- The order of the elements is not preserved but the operation is often
--- faster than 'partition'.
-unstablePartition :: (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE unstablePartition #-}
-unstablePartition = G.unstablePartition
-
--- | /O(n)/ Split the vector into the longest prefix of elements that satisfy
--- the predicate and the rest without copying.
-span :: (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE span #-}
-span = G.span
-
--- | /O(n)/ Split the vector into the longest prefix of elements that do not
--- satisfy the predicate and the rest without copying.
-break :: (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE break #-}
-break = G.break
-
--- Searching
--- ---------
-
-infix 4 `elem`
--- | /O(n)/ Check if the vector contains an element
-elem :: Eq a => a -> Vector a -> Bool
-{-# INLINE elem #-}
-elem = G.elem
-
-infix 4 `notElem`
--- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem')
-notElem :: Eq a => a -> Vector a -> Bool
-{-# INLINE notElem #-}
-notElem = G.notElem
-
--- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing'
--- if no such element exists.
-find :: (a -> Bool) -> Vector a -> Maybe a
-{-# INLINE find #-}
-find = G.find
-
--- | /O(n)/ Yield 'Just' the index of the first element matching the predicate
--- or 'Nothing' if no such element exists.
-findIndex :: (a -> Bool) -> Vector a -> Maybe Int
-{-# INLINE findIndex #-}
-findIndex = G.findIndex
-
--- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending
--- order.
-findIndices :: (a -> Bool) -> Vector a -> Vector Int
-{-# INLINE findIndices #-}
-findIndices = G.findIndices
-
--- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or
--- 'Nothing' if the vector does not contain the element. This is a specialised
--- version of 'findIndex'.
-elemIndex :: Eq a => a -> Vector a -> Maybe Int
-{-# INLINE elemIndex #-}
-elemIndex = G.elemIndex
-
--- | /O(n)/ Yield the indices of all occurences of the given element in
--- ascending order. This is a specialised version of 'findIndices'.
-elemIndices :: Eq a => a -> Vector a -> Vector Int
-{-# INLINE elemIndices #-}
-elemIndices = G.elemIndices
-
--- Folding
--- -------
-
--- | /O(n)/ Left fold
-foldl :: (a -> b -> a) -> a -> Vector b -> a
-{-# INLINE foldl #-}
-foldl = G.foldl
-
--- | /O(n)/ Left fold on non-empty vectors
-foldl1 :: (a -> a -> a) -> Vector a -> a
-{-# INLINE foldl1 #-}
-foldl1 = G.foldl1
-
--- | /O(n)/ Left fold with strict accumulator
-foldl' :: (a -> b -> a) -> a -> Vector b -> a
-{-# INLINE foldl' #-}
-foldl' = G.foldl'
-
--- | /O(n)/ Left fold on non-empty vectors with strict accumulator
-foldl1' :: (a -> a -> a) -> Vector a -> a
-{-# INLINE foldl1' #-}
-foldl1' = G.foldl1'
-
--- | /O(n)/ Right fold
-foldr :: (a -> b -> b) -> b -> Vector a -> b
-{-# INLINE foldr #-}
-foldr = G.foldr
-
--- | /O(n)/ Right fold on non-empty vectors
-foldr1 :: (a -> a -> a) -> Vector a -> a
-{-# INLINE foldr1 #-}
-foldr1 = G.foldr1
-
--- | /O(n)/ Right fold with a strict accumulator
-foldr' :: (a -> b -> b) -> b -> Vector a -> b
-{-# INLINE foldr' #-}
-foldr' = G.foldr'
-
--- | /O(n)/ Right fold on non-empty vectors with strict accumulator
-foldr1' :: (a -> a -> a) -> Vector a -> a
-{-# INLINE foldr1' #-}
-foldr1' = G.foldr1'
-
--- | /O(n)/ Left fold (function applied to each element and its index)
-ifoldl :: (a -> Int -> b -> a) -> a -> Vector b -> a
-{-# INLINE ifoldl #-}
-ifoldl = G.ifoldl
-
--- | /O(n)/ Left fold with strict accumulator (function applied to each element
--- and its index)
-ifoldl' :: (a -> Int -> b -> a) -> a -> Vector b -> a
-{-# INLINE ifoldl' #-}
-ifoldl' = G.ifoldl'
-
--- | /O(n)/ Right fold (function applied to each element and its index)
-ifoldr :: (Int -> a -> b -> b) -> b -> Vector a -> b
-{-# INLINE ifoldr #-}
-ifoldr = G.ifoldr
-
--- | /O(n)/ Right fold with strict accumulator (function applied to each
--- element and its index)
-ifoldr' :: (Int -> a -> b -> b) -> b -> Vector a -> b
-{-# INLINE ifoldr' #-}
-ifoldr' = G.ifoldr'
-
--- Specialised folds
--- -----------------
-
--- | /O(n)/ Check if all elements satisfy the predicate.
-all :: (a -> Bool) -> Vector a -> Bool
-{-# INLINE all #-}
-all = G.all
-
--- | /O(n)/ Check if any element satisfies the predicate.
-any :: (a -> Bool) -> Vector a -> Bool
-{-# INLINE any #-}
-any = G.any
-
--- | /O(n)/ Check if all elements are 'True'
-and :: Vector Bool -> Bool
-{-# INLINE and #-}
-and = G.and
-
--- | /O(n)/ Check if any element is 'True'
-or :: Vector Bool -> Bool
-{-# INLINE or #-}
-or = G.or
-
--- | /O(n)/ Compute the sum of the elements
-sum :: Num a => Vector a -> a
-{-# INLINE sum #-}
-sum = G.sum
-
--- | /O(n)/ Compute the produce of the elements
-product :: Num a => Vector a -> a
-{-# INLINE product #-}
-product = G.product
-
--- | /O(n)/ Yield the maximum element of the vector. The vector may not be
--- empty.
-maximum :: Ord a => Vector a -> a
-{-# INLINE maximum #-}
-maximum = G.maximum
-
--- | /O(n)/ Yield the maximum element of the vector according to the given
--- comparison function. The vector may not be empty.
-maximumBy :: (a -> a -> Ordering) -> Vector a -> a
-{-# INLINE maximumBy #-}
-maximumBy = G.maximumBy
-
--- | /O(n)/ Yield the minimum element of the vector. The vector may not be
--- empty.
-minimum :: Ord a => Vector a -> a
-{-# INLINE minimum #-}
-minimum = G.minimum
-
--- | /O(n)/ Yield the minimum element of the vector according to the given
--- comparison function. The vector may not be empty.
-minimumBy :: (a -> a -> Ordering) -> Vector a -> a
-{-# INLINE minimumBy #-}
-minimumBy = G.minimumBy
-
--- | /O(n)/ Yield the index of the maximum element of the vector. The vector
--- may not be empty.
-maxIndex :: Ord a => Vector a -> Int
-{-# INLINE maxIndex #-}
-maxIndex = G.maxIndex
-
--- | /O(n)/ Yield the index of the maximum element of the vector according to
--- the given comparison function. The vector may not be empty.
-maxIndexBy :: (a -> a -> Ordering) -> Vector a -> Int
-{-# INLINE maxIndexBy #-}
-maxIndexBy = G.maxIndexBy
-
--- | /O(n)/ Yield the index of the minimum element of the vector. The vector
--- may not be empty.
-minIndex :: Ord a => Vector a -> Int
-{-# INLINE minIndex #-}
-minIndex = G.minIndex
-
--- | /O(n)/ Yield the index of the minimum element of the vector according to
--- the given comparison function. The vector may not be empty.
-minIndexBy :: (a -> a -> Ordering) -> Vector a -> Int
-{-# INLINE minIndexBy #-}
-minIndexBy = G.minIndexBy
-
--- Monadic folds
--- -------------
-
--- | /O(n)/ Monadic fold
-foldM :: Monad m => (a -> b -> m a) -> a -> Vector b -> m a
-{-# INLINE foldM #-}
-foldM = G.foldM
-
--- | /O(n)/ Monadic fold (action applied to each element and its index)
-ifoldM :: Monad m => (a -> Int -> b -> m a) -> a -> Vector b -> m a
-{-# INLINE ifoldM #-}
-ifoldM = G.ifoldM
-
--- | /O(n)/ Monadic fold over non-empty vectors
-fold1M :: Monad m => (a -> a -> m a) -> Vector a -> m a
-{-# INLINE fold1M #-}
-fold1M = G.fold1M
-
--- | /O(n)/ Monadic fold with strict accumulator
-foldM' :: Monad m => (a -> b -> m a) -> a -> Vector b -> m a
-{-# INLINE foldM' #-}
-foldM' = G.foldM'
-
--- | /O(n)/ Monadic fold with strict accumulator (action applied to each
--- element and its index)
-ifoldM' :: Monad m => (a -> Int -> b -> m a) -> a -> Vector b -> m a
-{-# INLINE ifoldM' #-}
-ifoldM' = G.ifoldM'
-
--- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator
-fold1M' :: Monad m => (a -> a -> m a) -> Vector a -> m a
-{-# INLINE fold1M' #-}
-fold1M' = G.fold1M'
-
--- | /O(n)/ Monadic fold that discards the result
-foldM_ :: Monad m => (a -> b -> m a) -> a -> Vector b -> m ()
-{-# INLINE foldM_ #-}
-foldM_ = G.foldM_
-
--- | /O(n)/ Monadic fold that discards the result (action applied to each
--- element and its index)
-ifoldM_ :: Monad m => (a -> Int -> b -> m a) -> a -> Vector b -> m ()
-{-# INLINE ifoldM_ #-}
-ifoldM_ = G.ifoldM_
-
--- | /O(n)/ Monadic fold over non-empty vectors that discards the result
-fold1M_ :: Monad m => (a -> a -> m a) -> Vector a -> m ()
-{-# INLINE fold1M_ #-}
-fold1M_ = G.fold1M_
-
--- | /O(n)/ Monadic fold with strict accumulator that discards the result
-foldM'_ :: Monad m => (a -> b -> m a) -> a -> Vector b -> m ()
-{-# INLINE foldM'_ #-}
-foldM'_ = G.foldM'_
-
--- | /O(n)/ Monadic fold with strict accumulator that discards the result
--- (action applied to each element and its index)
-ifoldM'_ :: Monad m => (a -> Int -> b -> m a) -> a -> Vector b -> m ()
-{-# INLINE ifoldM'_ #-}
-ifoldM'_ = G.ifoldM'_
-
--- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator
--- that discards the result
-fold1M'_ :: Monad m => (a -> a -> m a) -> Vector a -> m ()
-{-# INLINE fold1M'_ #-}
-fold1M'_ = G.fold1M'_
-
--- Monadic sequencing
--- ------------------
-
--- | Evaluate each action and collect the results
-sequence :: Monad m => Vector (m a) -> m (Vector a)
-{-# INLINE sequence #-}
-sequence = G.sequence
-
--- | Evaluate each action and discard the results
-sequence_ :: Monad m => Vector (m a) -> m ()
-{-# INLINE sequence_ #-}
-sequence_ = G.sequence_
-
--- Prefix sums (scans)
--- -------------------
-
--- | /O(n)/ Prescan
---
--- @
--- prescanl f z = 'init' . 'scanl' f z
--- @
---
--- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@
---
-prescanl :: (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE prescanl #-}
-prescanl = G.prescanl
-
--- | /O(n)/ Prescan with strict accumulator
-prescanl' :: (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE prescanl' #-}
-prescanl' = G.prescanl'
-
--- | /O(n)/ Scan
---
--- @
--- postscanl f z = 'tail' . 'scanl' f z
--- @
---
--- Example: @postscanl (+) 0 \<1,2,3,4\> = \<1,3,6,10\>@
---
-postscanl :: (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE postscanl #-}
-postscanl = G.postscanl
-
--- | /O(n)/ Scan with strict accumulator
-postscanl' :: (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE postscanl' #-}
-postscanl' = G.postscanl'
-
--- | /O(n)/ Haskell-style scan
---
--- > scanl f z <x1,...,xn> = <y1,...,y(n+1)>
--- >   where y1 = z
--- >         yi = f y(i-1) x(i-1)
---
--- Example: @scanl (+) 0 \<1,2,3,4\> = \<0,1,3,6,10\>@
---
-scanl :: (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE scanl #-}
-scanl = G.scanl
-
--- | /O(n)/ Haskell-style scan with strict accumulator
-scanl' :: (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE scanl' #-}
-scanl' = G.scanl'
-
--- | /O(n)/ Scan over a vector with its index
-iscanl :: (Int -> a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE iscanl #-}
-iscanl = G.iscanl
-
--- | /O(n)/ Scan over a vector (strictly) with its index
-iscanl' :: (Int -> a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE iscanl' #-}
-iscanl' = G.iscanl'
-
--- | /O(n)/ Scan over a non-empty vector
---
--- > scanl f <x1,...,xn> = <y1,...,yn>
--- >   where y1 = x1
--- >         yi = f y(i-1) xi
---
-scanl1 :: (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanl1 #-}
-scanl1 = G.scanl1
-
--- | /O(n)/ Scan over a non-empty vector with a strict accumulator
-scanl1' :: (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanl1' #-}
-scanl1' = G.scanl1'
-
--- | /O(n)/ Right-to-left prescan
---
--- @
--- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse'
--- @
---
-prescanr :: (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE prescanr #-}
-prescanr = G.prescanr
-
--- | /O(n)/ Right-to-left prescan with strict accumulator
-prescanr' :: (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE prescanr' #-}
-prescanr' = G.prescanr'
-
--- | /O(n)/ Right-to-left scan
-postscanr :: (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE postscanr #-}
-postscanr = G.postscanr
-
--- | /O(n)/ Right-to-left scan with strict accumulator
-postscanr' :: (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE postscanr' #-}
-postscanr' = G.postscanr'
-
--- | /O(n)/ Right-to-left Haskell-style scan
-scanr :: (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE scanr #-}
-scanr = G.scanr
-
--- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator
-scanr' :: (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE scanr' #-}
-scanr' = G.scanr'
-
--- | /O(n)/ Right-to-left scan over a vector with its index
-iscanr :: (Int -> a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE iscanr #-}
-iscanr = G.iscanr
-
--- | /O(n)/ Right-to-left scan over a vector (strictly) with its index
-iscanr' :: (Int -> a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE iscanr' #-}
-iscanr' = G.iscanr'
-
--- | /O(n)/ Right-to-left scan over a non-empty vector
-scanr1 :: (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanr1 #-}
-scanr1 = G.scanr1
-
--- | /O(n)/ Right-to-left scan over a non-empty vector with a strict
--- accumulator
-scanr1' :: (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanr1' #-}
-scanr1' = G.scanr1'
-
--- Conversions - Lists
--- ------------------------
-
--- | /O(n)/ Convert a vector to a list
-toList :: Vector a -> [a]
-{-# INLINE toList #-}
-toList = G.toList
-
--- | /O(n)/ Convert a list to a vector
-fromList :: [a] -> Vector a
-{-# INLINE fromList #-}
-fromList = G.fromList
-
--- | /O(n)/ Convert the first @n@ elements of a list to a vector
---
--- @
--- fromListN n xs = 'fromList' ('take' n xs)
--- @
-fromListN :: Int -> [a] -> Vector a
-{-# INLINE fromListN #-}
-fromListN = G.fromListN
-
--- Conversions - Mutable vectors
--- -----------------------------
-
--- | /O(1)/ Unsafe convert a mutable vector to an immutable one without
--- copying. The mutable vector may not be used after this operation.
-unsafeFreeze :: PrimMonad m => MVector (PrimState m) a -> m (Vector a)
-{-# INLINE unsafeFreeze #-}
-unsafeFreeze = G.unsafeFreeze
-
--- | /O(1)/ Unsafely convert an immutable vector to a mutable one without
--- copying. The immutable vector may not be used after this operation.
-unsafeThaw :: PrimMonad m => Vector a -> m (MVector (PrimState m) a)
-{-# INLINE unsafeThaw #-}
-unsafeThaw = G.unsafeThaw
-
--- | /O(n)/ Yield a mutable copy of the immutable vector.
-thaw :: PrimMonad m => Vector a -> m (MVector (PrimState m) a)
-{-# INLINE thaw #-}
-thaw = G.thaw
-
--- | /O(n)/ Yield an immutable copy of the mutable vector.
-freeze :: PrimMonad m => MVector (PrimState m) a -> m (Vector a)
-{-# INLINE freeze #-}
-freeze = G.freeze
-
--- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
--- have the same length. This is not checked.
-unsafeCopy :: PrimMonad m => MVector (PrimState m) a -> Vector a -> m ()
-{-# INLINE unsafeCopy #-}
-unsafeCopy = G.unsafeCopy
-
--- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
--- have the same length.
-copy :: PrimMonad m => MVector (PrimState m) a -> Vector a -> m ()
-{-# INLINE copy #-}
-copy = G.copy
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle.hs
deleted file mode 100644
index 6b6b6236d7cb..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle.hs
+++ /dev/null
@@ -1,655 +0,0 @@
-{-# LANGUAGE CPP, FlexibleInstances, Rank2Types, BangPatterns #-}
-
--- |
--- Module      : Data.Vector.Fusion.Bundle
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Bundles for stream fusion
---
-
-module Data.Vector.Fusion.Bundle (
-  -- * Types
-  Step(..), Chunk(..), Bundle, MBundle,
-
-  -- * In-place markers
-  inplace,
-
-  -- * Size hints
-  size, sized,
-
-  -- * Length information
-  length, null,
-
-  -- * Construction
-  empty, singleton, cons, snoc, replicate, generate, (++),
-
-  -- * Accessing individual elements
-  head, last, (!!), (!?),
-
-  -- * Substreams
-  slice, init, tail, take, drop,
-
-  -- * Mapping
-  map, concatMap, flatten, unbox,
-
-  -- * Zipping
-  indexed, indexedR,
-  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
-  zip, zip3, zip4, zip5, zip6,
-
-  -- * Filtering
-  filter, takeWhile, dropWhile,
-
-  -- * Searching
-  elem, notElem, find, findIndex,
-
-  -- * Folding
-  foldl, foldl1, foldl', foldl1', foldr, foldr1,
-
-  -- * Specialised folds
-  and, or,
-
-  -- * Unfolding
-  unfoldr, unfoldrN, iterateN,
-
-  -- * Scans
-  prescanl, prescanl',
-  postscanl, postscanl',
-  scanl, scanl',
-  scanl1, scanl1',
-
-  -- * Enumerations
-  enumFromStepN, enumFromTo, enumFromThenTo,
-
-  -- * Conversions
-  toList, fromList, fromListN, unsafeFromList, lift,
-  fromVector, reVector, fromVectors, concatVectors,
-
-  -- * Monadic combinators
-  mapM, mapM_, zipWithM, zipWithM_, filterM, foldM, fold1M, foldM', fold1M',
-
-  eq, cmp, eqBy, cmpBy
-) where
-
-import Data.Vector.Generic.Base ( Vector )
-import Data.Vector.Fusion.Bundle.Size
-import Data.Vector.Fusion.Util
-import Data.Vector.Fusion.Stream.Monadic ( Stream(..), Step(..) )
-import Data.Vector.Fusion.Bundle.Monadic ( Chunk(..) )
-import qualified Data.Vector.Fusion.Bundle.Monadic as M
-import qualified Data.Vector.Fusion.Stream.Monadic as S
-
-import Prelude hiding ( length, null,
-                        replicate, (++),
-                        head, last, (!!),
-                        init, tail, take, drop,
-                        map, concatMap,
-                        zipWith, zipWith3, zip, zip3,
-                        filter, takeWhile, dropWhile,
-                        elem, notElem,
-                        foldl, foldl1, foldr, foldr1,
-                        and, or,
-                        scanl, scanl1,
-                        enumFromTo, enumFromThenTo,
-                        mapM, mapM_ )
-
-#if MIN_VERSION_base(4,9,0)
-import Data.Functor.Classes (Eq1 (..), Ord1 (..))
-#endif
-
-import GHC.Base ( build )
-
--- Data.Vector.Internal.Check is unused
-#define NOT_VECTOR_MODULE
-#include "vector.h"
-
--- | The type of pure streams
-type Bundle = M.Bundle Id
-
--- | Alternative name for monadic streams
-type MBundle = M.Bundle
-
-inplace :: (forall m. Monad m => S.Stream m a -> S.Stream m b)
-        -> (Size -> Size) -> Bundle v a -> Bundle v b
-{-# INLINE_FUSED inplace #-}
-inplace f g b = b `seq` M.fromStream (f (M.elements b)) (g (M.size b))
-
-{-# RULES
-
-"inplace/inplace [Vector]"
-  forall (f1 :: forall m. Monad m => S.Stream m a -> S.Stream m a)
-         (f2 :: forall m. Monad m => S.Stream m a -> S.Stream m a)
-         g1 g2 s.
-  inplace f1 g1 (inplace f2 g2 s) = inplace (f1 . f2) (g1 . g2) s   #-}
-
-
-
--- | Convert a pure stream to a monadic stream
-lift :: Monad m => Bundle v a -> M.Bundle m v a
-{-# INLINE_FUSED lift #-}
-lift (M.Bundle (Stream step s) (Stream vstep t) v sz)
-    = M.Bundle (Stream (return . unId . step) s)
-               (Stream (return . unId . vstep) t) v sz
-
--- | 'Size' hint of a 'Bundle'
-size :: Bundle v a -> Size
-{-# INLINE size #-}
-size = M.size
-
--- | Attach a 'Size' hint to a 'Bundle'
-sized :: Bundle v a -> Size -> Bundle v a
-{-# INLINE sized #-}
-sized = M.sized
-
--- Length
--- ------
-
--- | Length of a 'Bundle'
-length :: Bundle v a -> Int
-{-# INLINE length #-}
-length = unId . M.length
-
--- | Check if a 'Bundle' is empty
-null :: Bundle v a -> Bool
-{-# INLINE null #-}
-null = unId . M.null
-
--- Construction
--- ------------
-
--- | Empty 'Bundle'
-empty :: Bundle v a
-{-# INLINE empty #-}
-empty = M.empty
-
--- | Singleton 'Bundle'
-singleton :: a -> Bundle v a
-{-# INLINE singleton #-}
-singleton = M.singleton
-
--- | Replicate a value to a given length
-replicate :: Int -> a -> Bundle v a
-{-# INLINE replicate #-}
-replicate = M.replicate
-
--- | Generate a stream from its indices
-generate :: Int -> (Int -> a) -> Bundle v a
-{-# INLINE generate #-}
-generate = M.generate
-
--- | Prepend an element
-cons :: a -> Bundle v a -> Bundle v a
-{-# INLINE cons #-}
-cons = M.cons
-
--- | Append an element
-snoc :: Bundle v a -> a -> Bundle v a
-{-# INLINE snoc #-}
-snoc = M.snoc
-
-infixr 5 ++
--- | Concatenate two 'Bundle's
-(++) :: Bundle v a -> Bundle v a -> Bundle v a
-{-# INLINE (++) #-}
-(++) = (M.++)
-
--- Accessing elements
--- ------------------
-
--- | First element of the 'Bundle' or error if empty
-head :: Bundle v a -> a
-{-# INLINE head #-}
-head = unId . M.head
-
--- | Last element of the 'Bundle' or error if empty
-last :: Bundle v a -> a
-{-# INLINE last #-}
-last = unId . M.last
-
-infixl 9 !!
--- | Element at the given position
-(!!) :: Bundle v a -> Int -> a
-{-# INLINE (!!) #-}
-s !! i = unId (s M.!! i)
-
-infixl 9 !?
--- | Element at the given position or 'Nothing' if out of bounds
-(!?) :: Bundle v a -> Int -> Maybe a
-{-# INLINE (!?) #-}
-s !? i = unId (s M.!? i)
-
--- Substreams
--- ----------
-
--- | Extract a substream of the given length starting at the given position.
-slice :: Int   -- ^ starting index
-      -> Int   -- ^ length
-      -> Bundle v a
-      -> Bundle v a
-{-# INLINE slice #-}
-slice = M.slice
-
--- | All but the last element
-init :: Bundle v a -> Bundle v a
-{-# INLINE init #-}
-init = M.init
-
--- | All but the first element
-tail :: Bundle v a -> Bundle v a
-{-# INLINE tail #-}
-tail = M.tail
-
--- | The first @n@ elements
-take :: Int -> Bundle v a -> Bundle v a
-{-# INLINE take #-}
-take = M.take
-
--- | All but the first @n@ elements
-drop :: Int -> Bundle v a -> Bundle v a
-{-# INLINE drop #-}
-drop = M.drop
-
--- Mapping
--- ---------------
-
--- | Map a function over a 'Bundle'
-map :: (a -> b) -> Bundle v a -> Bundle v b
-{-# INLINE map #-}
-map = M.map
-
-unbox :: Bundle v (Box a) -> Bundle v a
-{-# INLINE unbox #-}
-unbox = M.unbox
-
-concatMap :: (a -> Bundle v b) -> Bundle v a -> Bundle v b
-{-# INLINE concatMap #-}
-concatMap = M.concatMap
-
--- Zipping
--- -------
-
--- | Pair each element in a 'Bundle' with its index
-indexed :: Bundle v a -> Bundle v (Int,a)
-{-# INLINE indexed #-}
-indexed = M.indexed
-
--- | Pair each element in a 'Bundle' with its index, starting from the right
--- and counting down
-indexedR :: Int -> Bundle v a -> Bundle v (Int,a)
-{-# INLINE_FUSED indexedR #-}
-indexedR = M.indexedR
-
--- | Zip two 'Bundle's with the given function
-zipWith :: (a -> b -> c) -> Bundle v a -> Bundle v b -> Bundle v c
-{-# INLINE zipWith #-}
-zipWith = M.zipWith
-
--- | Zip three 'Bundle's with the given function
-zipWith3 :: (a -> b -> c -> d) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-{-# INLINE zipWith3 #-}
-zipWith3 = M.zipWith3
-
-zipWith4 :: (a -> b -> c -> d -> e)
-                    -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-                    -> Bundle v e
-{-# INLINE zipWith4 #-}
-zipWith4 = M.zipWith4
-
-zipWith5 :: (a -> b -> c -> d -> e -> f)
-                    -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-                    -> Bundle v e -> Bundle v f
-{-# INLINE zipWith5 #-}
-zipWith5 = M.zipWith5
-
-zipWith6 :: (a -> b -> c -> d -> e -> f -> g)
-                    -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-                    -> Bundle v e -> Bundle v f -> Bundle v g
-{-# INLINE zipWith6 #-}
-zipWith6 = M.zipWith6
-
-zip :: Bundle v a -> Bundle v b -> Bundle v (a,b)
-{-# INLINE zip #-}
-zip = M.zip
-
-zip3 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v (a,b,c)
-{-# INLINE zip3 #-}
-zip3 = M.zip3
-
-zip4 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-                -> Bundle v (a,b,c,d)
-{-# INLINE zip4 #-}
-zip4 = M.zip4
-
-zip5 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-                -> Bundle v e -> Bundle v (a,b,c,d,e)
-{-# INLINE zip5 #-}
-zip5 = M.zip5
-
-zip6 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-                -> Bundle v e -> Bundle v f -> Bundle v (a,b,c,d,e,f)
-{-# INLINE zip6 #-}
-zip6 = M.zip6
-
--- Filtering
--- ---------
-
--- | Drop elements which do not satisfy the predicate
-filter :: (a -> Bool) -> Bundle v a -> Bundle v a
-{-# INLINE filter #-}
-filter = M.filter
-
--- | Longest prefix of elements that satisfy the predicate
-takeWhile :: (a -> Bool) -> Bundle v a -> Bundle v a
-{-# INLINE takeWhile #-}
-takeWhile = M.takeWhile
-
--- | Drop the longest prefix of elements that satisfy the predicate
-dropWhile :: (a -> Bool) -> Bundle v a -> Bundle v a
-{-# INLINE dropWhile #-}
-dropWhile = M.dropWhile
-
--- Searching
--- ---------
-
-infix 4 `elem`
--- | Check whether the 'Bundle' contains an element
-elem :: Eq a => a -> Bundle v a -> Bool
-{-# INLINE elem #-}
-elem x = unId . M.elem x
-
-infix 4 `notElem`
--- | Inverse of `elem`
-notElem :: Eq a => a -> Bundle v a -> Bool
-{-# INLINE notElem #-}
-notElem x = unId . M.notElem x
-
--- | Yield 'Just' the first element matching the predicate or 'Nothing' if no
--- such element exists.
-find :: (a -> Bool) -> Bundle v a -> Maybe a
-{-# INLINE find #-}
-find f = unId . M.find f
-
--- | Yield 'Just' the index of the first element matching the predicate or
--- 'Nothing' if no such element exists.
-findIndex :: (a -> Bool) -> Bundle v a -> Maybe Int
-{-# INLINE findIndex #-}
-findIndex f = unId . M.findIndex f
-
--- Folding
--- -------
-
--- | Left fold
-foldl :: (a -> b -> a) -> a -> Bundle v b -> a
-{-# INLINE foldl #-}
-foldl f z = unId . M.foldl f z
-
--- | Left fold on non-empty 'Bundle's
-foldl1 :: (a -> a -> a) -> Bundle v a -> a
-{-# INLINE foldl1 #-}
-foldl1 f = unId . M.foldl1 f
-
--- | Left fold with strict accumulator
-foldl' :: (a -> b -> a) -> a -> Bundle v b -> a
-{-# INLINE foldl' #-}
-foldl' f z = unId . M.foldl' f z
-
--- | Left fold on non-empty 'Bundle's with strict accumulator
-foldl1' :: (a -> a -> a) -> Bundle v a -> a
-{-# INLINE foldl1' #-}
-foldl1' f = unId . M.foldl1' f
-
--- | Right fold
-foldr :: (a -> b -> b) -> b -> Bundle v a -> b
-{-# INLINE foldr #-}
-foldr f z = unId . M.foldr f z
-
--- | Right fold on non-empty 'Bundle's
-foldr1 :: (a -> a -> a) -> Bundle v a -> a
-{-# INLINE foldr1 #-}
-foldr1 f = unId . M.foldr1 f
-
--- Specialised folds
--- -----------------
-
-and :: Bundle v Bool -> Bool
-{-# INLINE and #-}
-and = unId . M.and
-
-or :: Bundle v Bool -> Bool
-{-# INLINE or #-}
-or = unId . M.or
-
--- Unfolding
--- ---------
-
--- | Unfold
-unfoldr :: (s -> Maybe (a, s)) -> s -> Bundle v a
-{-# INLINE unfoldr #-}
-unfoldr = M.unfoldr
-
--- | Unfold at most @n@ elements
-unfoldrN :: Int -> (s -> Maybe (a, s)) -> s -> Bundle v a
-{-# INLINE unfoldrN #-}
-unfoldrN = M.unfoldrN
-
--- | Apply function n-1 times to value. Zeroth element is original value.
-iterateN :: Int -> (a -> a) -> a -> Bundle v a
-{-# INLINE iterateN #-}
-iterateN = M.iterateN
-
--- Scans
--- -----
-
--- | Prefix scan
-prescanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
-{-# INLINE prescanl #-}
-prescanl = M.prescanl
-
--- | Prefix scan with strict accumulator
-prescanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
-{-# INLINE prescanl' #-}
-prescanl' = M.prescanl'
-
--- | Suffix scan
-postscanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
-{-# INLINE postscanl #-}
-postscanl = M.postscanl
-
--- | Suffix scan with strict accumulator
-postscanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
-{-# INLINE postscanl' #-}
-postscanl' = M.postscanl'
-
--- | Haskell-style scan
-scanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
-{-# INLINE scanl #-}
-scanl = M.scanl
-
--- | Haskell-style scan with strict accumulator
-scanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
-{-# INLINE scanl' #-}
-scanl' = M.scanl'
-
--- | Scan over a non-empty 'Bundle'
-scanl1 :: (a -> a -> a) -> Bundle v a -> Bundle v a
-{-# INLINE scanl1 #-}
-scanl1 = M.scanl1
-
--- | Scan over a non-empty 'Bundle' with a strict accumulator
-scanl1' :: (a -> a -> a) -> Bundle v a -> Bundle v a
-{-# INLINE scanl1' #-}
-scanl1' = M.scanl1'
-
-
--- Comparisons
--- -----------
-
--- | Check if two 'Bundle's are equal
-eq :: (Eq a) => Bundle v a -> Bundle v a -> Bool
-{-# INLINE eq #-}
-eq = eqBy (==)
-
-eqBy :: (a -> b -> Bool) -> Bundle v a -> Bundle v b -> Bool
-{-# INLINE eqBy #-}
-eqBy e x y = unId (M.eqBy e x y)
-
--- | Lexicographically compare two 'Bundle's
-cmp :: (Ord a) => Bundle v a -> Bundle v a -> Ordering
-{-# INLINE cmp #-}
-cmp = cmpBy compare
-
-cmpBy :: (a ->  b -> Ordering) -> Bundle v a -> Bundle v b -> Ordering
-{-# INLINE cmpBy #-}
-cmpBy c x y = unId (M.cmpBy c x y)
-
-instance Eq a => Eq (M.Bundle Id v a) where
-  {-# INLINE (==) #-}
-  (==) = eq
-
-instance Ord a => Ord (M.Bundle Id v a) where
-  {-# INLINE compare #-}
-  compare = cmp
-
-#if MIN_VERSION_base(4,9,0)
-instance Eq1 (M.Bundle Id v) where
-  {-# INLINE liftEq #-}
-  liftEq = eqBy
-
-instance Ord1 (M.Bundle Id v) where
-  {-# INLINE liftCompare #-}
-  liftCompare = cmpBy
-#endif
-
--- Monadic combinators
--- -------------------
-
--- | Apply a monadic action to each element of the stream, producing a monadic
--- stream of results
-mapM :: Monad m => (a -> m b) -> Bundle v a -> M.Bundle m v b
-{-# INLINE mapM #-}
-mapM f = M.mapM f . lift
-
--- | Apply a monadic action to each element of the stream
-mapM_ :: Monad m => (a -> m b) -> Bundle v a -> m ()
-{-# INLINE mapM_ #-}
-mapM_ f = M.mapM_ f . lift
-
-zipWithM :: Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> M.Bundle m v c
-{-# INLINE zipWithM #-}
-zipWithM f as bs = M.zipWithM f (lift as) (lift bs)
-
-zipWithM_ :: Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> m ()
-{-# INLINE zipWithM_ #-}
-zipWithM_ f as bs = M.zipWithM_ f (lift as) (lift bs)
-
--- | Yield a monadic stream of elements that satisfy the monadic predicate
-filterM :: Monad m => (a -> m Bool) -> Bundle v a -> M.Bundle m v a
-{-# INLINE filterM #-}
-filterM f = M.filterM f . lift
-
--- | Monadic fold
-foldM :: Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a
-{-# INLINE foldM #-}
-foldM m z = M.foldM m z . lift
-
--- | Monadic fold over non-empty stream
-fold1M :: Monad m => (a -> a -> m a) -> Bundle v a -> m a
-{-# INLINE fold1M #-}
-fold1M m = M.fold1M m . lift
-
--- | Monadic fold with strict accumulator
-foldM' :: Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a
-{-# INLINE foldM' #-}
-foldM' m z = M.foldM' m z . lift
-
--- | Monad fold over non-empty stream with strict accumulator
-fold1M' :: Monad m => (a -> a -> m a) -> Bundle v a -> m a
-{-# INLINE fold1M' #-}
-fold1M' m = M.fold1M' m . lift
-
--- Enumerations
--- ------------
-
--- | Yield a 'Bundle' of the given length containing the values @x@, @x+y@,
--- @x+y+y@ etc.
-enumFromStepN :: Num a => a -> a -> Int -> Bundle v a
-{-# INLINE enumFromStepN #-}
-enumFromStepN = M.enumFromStepN
-
--- | Enumerate values
---
--- /WARNING:/ This operations can be very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromTo :: Enum a => a -> a -> Bundle v a
-{-# INLINE enumFromTo #-}
-enumFromTo = M.enumFromTo
-
--- | Enumerate values with a given step.
---
--- /WARNING:/ This operations is very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromThenTo :: Enum a => a -> a -> a -> Bundle v a
-{-# INLINE enumFromThenTo #-}
-enumFromThenTo = M.enumFromThenTo
-
--- Conversions
--- -----------
-
--- | Convert a 'Bundle' to a list
-toList :: Bundle v a -> [a]
-{-# INLINE toList #-}
--- toList s = unId (M.toList s)
-toList s = build (\c n -> toListFB c n s)
-
--- This supports foldr/build list fusion that GHC implements
-toListFB :: (a -> b -> b) -> b -> Bundle v a -> b
-{-# INLINE [0] toListFB #-}
-toListFB c n M.Bundle{M.sElems = Stream step t} = go t
-  where
-    go s = case unId (step s) of
-             Yield x s' -> x `c` go s'
-             Skip    s' -> go s'
-             Done       -> n
-
--- | Create a 'Bundle' from a list
-fromList :: [a] -> Bundle v a
-{-# INLINE fromList #-}
-fromList = M.fromList
-
--- | Create a 'Bundle' from the first @n@ elements of a list
---
--- > fromListN n xs = fromList (take n xs)
-fromListN :: Int -> [a] -> Bundle v a
-{-# INLINE fromListN #-}
-fromListN = M.fromListN
-
-unsafeFromList :: Size -> [a] -> Bundle v a
-{-# INLINE unsafeFromList #-}
-unsafeFromList = M.unsafeFromList
-
-fromVector :: Vector v a => v a -> Bundle v a
-{-# INLINE fromVector #-}
-fromVector = M.fromVector
-
-reVector :: Bundle u a -> Bundle v a
-{-# INLINE reVector #-}
-reVector = M.reVector
-
-fromVectors :: Vector v a => [v a] -> Bundle v a
-{-# INLINE fromVectors #-}
-fromVectors = M.fromVectors
-
-concatVectors :: Vector v a => Bundle u (v a) -> Bundle v a
-{-# INLINE concatVectors #-}
-concatVectors = M.concatVectors
-
--- | Create a 'Bundle' of values from a 'Bundle' of streamable things
-flatten :: (a -> s) -> (s -> Step s b) -> Size -> Bundle v a -> Bundle v b
-{-# INLINE_FUSED flatten #-}
-flatten mk istep sz = M.flatten (return . mk) (return . istep) sz . lift
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs
deleted file mode 100644
index 46f4a165f88d..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs
+++ /dev/null
@@ -1,1106 +0,0 @@
-{-# LANGUAGE CPP, ExistentialQuantification, MultiParamTypeClasses, FlexibleInstances, Rank2Types, BangPatterns, KindSignatures, GADTs, ScopedTypeVariables #-}
-
--- |
--- Module      : Data.Vector.Fusion.Bundle.Monadic
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Monadic bundles.
---
-
-module Data.Vector.Fusion.Bundle.Monadic (
-  Bundle(..), Chunk(..),
-
-  -- * Size hints
-  size, sized,
-
-  -- * Length
-  length, null,
-
-  -- * Construction
-  empty, singleton, cons, snoc, replicate, replicateM, generate, generateM, (++),
-
-  -- * Accessing elements
-  head, last, (!!), (!?),
-
-  -- * Substreams
-  slice, init, tail, take, drop,
-
-  -- * Mapping
-  map, mapM, mapM_, trans, unbox, concatMap, flatten,
-
-  -- * Zipping
-  indexed, indexedR, zipWithM_,
-  zipWithM, zipWith3M, zipWith4M, zipWith5M, zipWith6M,
-  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
-  zip, zip3, zip4, zip5, zip6,
-
-  -- * Comparisons
-  eqBy, cmpBy,
-
-  -- * Filtering
-  filter, filterM, takeWhile, takeWhileM, dropWhile, dropWhileM,
-
-  -- * Searching
-  elem, notElem, find, findM, findIndex, findIndexM,
-
-  -- * Folding
-  foldl, foldlM, foldl1, foldl1M, foldM, fold1M,
-  foldl', foldlM', foldl1', foldl1M', foldM', fold1M',
-  foldr, foldrM, foldr1, foldr1M,
-
-  -- * Specialised folds
-  and, or, concatMapM,
-
-  -- * Unfolding
-  unfoldr, unfoldrM,
-  unfoldrN, unfoldrNM,
-  iterateN, iterateNM,
-
-  -- * Scans
-  prescanl, prescanlM, prescanl', prescanlM',
-  postscanl, postscanlM, postscanl', postscanlM',
-  scanl, scanlM, scanl', scanlM',
-  scanl1, scanl1M, scanl1', scanl1M',
-
-  -- * Enumerations
-  enumFromStepN, enumFromTo, enumFromThenTo,
-
-  -- * Conversions
-  toList, fromList, fromListN, unsafeFromList,
-  fromVector, reVector, fromVectors, concatVectors,
-  fromStream, chunks, elements
-) where
-
-import Data.Vector.Generic.Base
-import qualified Data.Vector.Generic.Mutable.Base as M
-import Data.Vector.Fusion.Bundle.Size
-import Data.Vector.Fusion.Util ( Box(..), delay_inline )
-import Data.Vector.Fusion.Stream.Monadic ( Stream(..), Step(..) )
-import qualified Data.Vector.Fusion.Stream.Monadic as S
-import Control.Monad.Primitive
-
-import qualified Data.List as List
-import Data.Char      ( ord )
-import GHC.Base       ( unsafeChr )
-import Control.Monad  ( liftM )
-import Prelude hiding ( length, null,
-                        replicate, (++),
-                        head, last, (!!),
-                        init, tail, take, drop,
-                        map, mapM, mapM_, concatMap,
-                        zipWith, zipWith3, zip, zip3,
-                        filter, takeWhile, dropWhile,
-                        elem, notElem,
-                        foldl, foldl1, foldr, foldr1,
-                        and, or,
-                        scanl, scanl1,
-                        enumFromTo, enumFromThenTo )
-
-import Data.Int  ( Int8, Int16, Int32 )
-import Data.Word ( Word8, Word16, Word32, Word64 )
-
-#if !MIN_VERSION_base(4,8,0)
-import Data.Word ( Word )
-#endif
-
-#include "vector.h"
-#include "MachDeps.h"
-
-#if WORD_SIZE_IN_BITS > 32
-import Data.Int  ( Int64 )
-#endif
-
-data Chunk v a = Chunk Int (forall m. (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> m ())
-
--- | Monadic streams
-data Bundle m v a = Bundle { sElems  :: Stream m a
-                           , sChunks :: Stream m (Chunk v a)
-                           , sVector :: Maybe (v a)
-                           , sSize   :: Size
-                           }
-
-fromStream :: Monad m => Stream m a -> Size -> Bundle m v a
-{-# INLINE fromStream #-}
-fromStream (Stream step t) sz = Bundle (Stream step t) (Stream step' t) Nothing sz
-  where
-    step' s = do r <- step s
-                 return $ fmap (\x -> Chunk 1 (\v -> M.basicUnsafeWrite v 0 x)) r
-
-chunks :: Bundle m v a -> Stream m (Chunk v a)
-{-# INLINE chunks #-}
-chunks = sChunks
-
-elements :: Bundle m v a -> Stream m a
-{-# INLINE elements #-}
-elements = sElems
-
--- | 'Size' hint of a 'Bundle'
-size :: Bundle m v a -> Size
-{-# INLINE size #-}
-size = sSize
-
--- | Attach a 'Size' hint to a 'Bundle'
-sized :: Bundle m v a -> Size -> Bundle m v a
-{-# INLINE_FUSED sized #-}
-sized s sz = s { sSize = sz }
-
--- Length
--- ------
-
--- | Length of a 'Bundle'
-length :: Monad m => Bundle m v a -> m Int
-{-# INLINE_FUSED length #-}
-length Bundle{sSize = Exact n}  = return n
-length Bundle{sChunks = s} = S.foldl' (\n (Chunk k _) -> n+k) 0 s
-
--- | Check if a 'Bundle' is empty
-null :: Monad m => Bundle m v a -> m Bool
-{-# INLINE_FUSED null #-}
-null Bundle{sSize = Exact n} = return (n == 0)
-null Bundle{sChunks = s} = S.foldr (\(Chunk n _) z -> n == 0 && z) True s
-
--- Construction
--- ------------
-
--- | Empty 'Bundle'
-empty :: Monad m => Bundle m v a
-{-# INLINE_FUSED empty #-}
-empty = fromStream S.empty (Exact 0)
-
--- | Singleton 'Bundle'
-singleton :: Monad m => a -> Bundle m v a
-{-# INLINE_FUSED singleton #-}
-singleton x = fromStream (S.singleton x) (Exact 1)
-
--- | Replicate a value to a given length
-replicate :: Monad m => Int -> a -> Bundle m v a
-{-# INLINE_FUSED replicate #-}
-replicate n x = Bundle (S.replicate n x)
-                       (S.singleton $ Chunk len (\v -> M.basicSet v x))
-                       Nothing
-                       (Exact len)
-  where
-    len = delay_inline max n 0
-
--- | Yield a 'Bundle' of values obtained by performing the monadic action the
--- given number of times
-replicateM :: Monad m => Int -> m a -> Bundle m v a
-{-# INLINE_FUSED replicateM #-}
--- NOTE: We delay inlining max here because GHC will create a join point for
--- the call to newArray# otherwise which is not really nice.
-replicateM n p = fromStream (S.replicateM n p) (Exact (delay_inline max n 0))
-
-generate :: Monad m => Int -> (Int -> a) -> Bundle m v a
-{-# INLINE generate #-}
-generate n f = generateM n (return . f)
-
--- | Generate a stream from its indices
-generateM :: Monad m => Int -> (Int -> m a) -> Bundle m v a
-{-# INLINE_FUSED generateM #-}
-generateM n f = fromStream (S.generateM n f) (Exact (delay_inline max n 0))
-
--- | Prepend an element
-cons :: Monad m => a -> Bundle m v a -> Bundle m v a
-{-# INLINE cons #-}
-cons x s = singleton x ++ s
-
--- | Append an element
-snoc :: Monad m => Bundle m v a -> a -> Bundle m v a
-{-# INLINE snoc #-}
-snoc s x = s ++ singleton x
-
-infixr 5 ++
--- | Concatenate two 'Bundle's
-(++) :: Monad m => Bundle m v a -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED (++) #-}
-Bundle sa ta _ na ++ Bundle sb tb _ nb = Bundle (sa S.++ sb) (ta S.++ tb) Nothing (na + nb)
-
--- Accessing elements
--- ------------------
-
--- | First element of the 'Bundle' or error if empty
-head :: Monad m => Bundle m v a -> m a
-{-# INLINE_FUSED head #-}
-head = S.head . sElems
-
--- | Last element of the 'Bundle' or error if empty
-last :: Monad m => Bundle m v a -> m a
-{-# INLINE_FUSED last #-}
-last = S.last . sElems
-
-infixl 9 !!
--- | Element at the given position
-(!!) :: Monad m => Bundle m v a -> Int -> m a
-{-# INLINE (!!) #-}
-b !! i = sElems b S.!! i
-
-infixl 9 !?
--- | Element at the given position or 'Nothing' if out of bounds
-(!?) :: Monad m => Bundle m v a -> Int -> m (Maybe a)
-{-# INLINE (!?) #-}
-b !? i = sElems b S.!? i
-
--- Substreams
--- ----------
-
--- | Extract a substream of the given length starting at the given position.
-slice :: Monad m => Int   -- ^ starting index
-                 -> Int   -- ^ length
-                 -> Bundle m v a
-                 -> Bundle m v a
-{-# INLINE slice #-}
-slice i n s = take n (drop i s)
-
--- | All but the last element
-init :: Monad m => Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED init #-}
-init Bundle{sElems = s, sSize = sz} = fromStream (S.init s) (sz-1)
-
--- | All but the first element
-tail :: Monad m => Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED tail #-}
-tail Bundle{sElems = s, sSize = sz} = fromStream (S.tail s) (sz-1)
-
--- | The first @n@ elements
-take :: Monad m => Int -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED take #-}
-take n Bundle{sElems = s, sSize = sz} = fromStream (S.take n s) (smaller (Exact n) sz)
-
--- | All but the first @n@ elements
-drop :: Monad m => Int -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED drop #-}
-drop n Bundle{sElems = s, sSize = sz} =
-  fromStream (S.drop n s) (clampedSubtract sz (Exact n))
-
--- Mapping
--- -------
-
-instance Monad m => Functor (Bundle m v) where
-  {-# INLINE fmap #-}
-  fmap = map
-
--- | Map a function over a 'Bundle'
-map :: Monad m => (a -> b) -> Bundle m v a -> Bundle m v b
-{-# INLINE map #-}
-map f = mapM (return . f)
-
--- | Map a monadic function over a 'Bundle'
-mapM :: Monad m => (a -> m b) -> Bundle m v a -> Bundle m v b
-{-# INLINE_FUSED mapM #-}
-mapM f Bundle{sElems = s, sSize = n} = fromStream (S.mapM f s) n
-
--- | Execute a monadic action for each element of the 'Bundle'
-mapM_ :: Monad m => (a -> m b) -> Bundle m v a -> m ()
-{-# INLINE_FUSED mapM_ #-}
-mapM_ m = S.mapM_ m . sElems
-
--- | Transform a 'Bundle' to use a different monad
-trans :: (Monad m, Monad m') => (forall z. m z -> m' z)
-                             -> Bundle m v a -> Bundle m' v a
-{-# INLINE_FUSED trans #-}
-trans f Bundle{sElems = s, sChunks = cs, sVector = v, sSize = n}
-  = Bundle { sElems = S.trans f s, sChunks = S.trans f cs, sVector = v, sSize = n }
-
-unbox :: Monad m => Bundle m v (Box a) -> Bundle m v a
-{-# INLINE_FUSED unbox #-}
-unbox Bundle{sElems = s, sSize = n} = fromStream (S.unbox s) n
-
--- Zipping
--- -------
-
--- | Pair each element in a 'Bundle' with its index
-indexed :: Monad m => Bundle m v a -> Bundle m v (Int,a)
-{-# INLINE_FUSED indexed #-}
-indexed Bundle{sElems = s, sSize = n} = fromStream (S.indexed s) n
-
--- | Pair each element in a 'Bundle' with its index, starting from the right
--- and counting down
-indexedR :: Monad m => Int -> Bundle m v a -> Bundle m v (Int,a)
-{-# INLINE_FUSED indexedR #-}
-indexedR m Bundle{sElems = s, sSize = n} = fromStream (S.indexedR m s) n
-
--- | Zip two 'Bundle's with the given monadic function
-zipWithM :: Monad m => (a -> b -> m c) -> Bundle m v a -> Bundle m v b -> Bundle m v c
-{-# INLINE_FUSED zipWithM #-}
-zipWithM f Bundle{sElems = sa, sSize = na}
-           Bundle{sElems = sb, sSize = nb} = fromStream (S.zipWithM f sa sb) (smaller na nb)
-
--- FIXME: This might expose an opportunity for inplace execution.
-{-# RULES
-
-"zipWithM xs xs [Vector.Bundle]" forall f xs.
-  zipWithM f xs xs = mapM (\x -> f x x) xs   #-}
-
-
-zipWithM_ :: Monad m => (a -> b -> m c) -> Bundle m v a -> Bundle m v b -> m ()
-{-# INLINE zipWithM_ #-}
-zipWithM_ f sa sb = S.zipWithM_ f (sElems sa) (sElems sb)
-
-zipWith3M :: Monad m => (a -> b -> c -> m d) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-{-# INLINE_FUSED zipWith3M #-}
-zipWith3M f Bundle{sElems = sa, sSize = na}
-            Bundle{sElems = sb, sSize = nb}
-            Bundle{sElems = sc, sSize = nc}
-  = fromStream (S.zipWith3M f sa sb sc) (smaller na (smaller nb nc))
-
-zipWith4M :: Monad m => (a -> b -> c -> d -> m e)
-                     -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                     -> Bundle m v e
-{-# INLINE zipWith4M #-}
-zipWith4M f sa sb sc sd
-  = zipWithM (\(a,b) (c,d) -> f a b c d) (zip sa sb) (zip sc sd)
-
-zipWith5M :: Monad m => (a -> b -> c -> d -> e -> m f)
-                     -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                     -> Bundle m v e -> Bundle m v f
-{-# INLINE zipWith5M #-}
-zipWith5M f sa sb sc sd se
-  = zipWithM (\(a,b,c) (d,e) -> f a b c d e) (zip3 sa sb sc) (zip sd se)
-
-zipWith6M :: Monad m => (a -> b -> c -> d -> e -> f -> m g)
-                     -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                     -> Bundle m v e -> Bundle m v f -> Bundle m v g
-{-# INLINE zipWith6M #-}
-zipWith6M fn sa sb sc sd se sf
-  = zipWithM (\(a,b,c) (d,e,f) -> fn a b c d e f) (zip3 sa sb sc)
-                                                  (zip3 sd se sf)
-
-zipWith :: Monad m => (a -> b -> c) -> Bundle m v a -> Bundle m v b -> Bundle m v c
-{-# INLINE zipWith #-}
-zipWith f = zipWithM (\a b -> return (f a b))
-
-zipWith3 :: Monad m => (a -> b -> c -> d)
-                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-{-# INLINE zipWith3 #-}
-zipWith3 f = zipWith3M (\a b c -> return (f a b c))
-
-zipWith4 :: Monad m => (a -> b -> c -> d -> e)
-                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                    -> Bundle m v e
-{-# INLINE zipWith4 #-}
-zipWith4 f = zipWith4M (\a b c d -> return (f a b c d))
-
-zipWith5 :: Monad m => (a -> b -> c -> d -> e -> f)
-                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                    -> Bundle m v e -> Bundle m v f
-{-# INLINE zipWith5 #-}
-zipWith5 f = zipWith5M (\a b c d e -> return (f a b c d e))
-
-zipWith6 :: Monad m => (a -> b -> c -> d -> e -> f -> g)
-                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                    -> Bundle m v e -> Bundle m v f -> Bundle m v g
-{-# INLINE zipWith6 #-}
-zipWith6 fn = zipWith6M (\a b c d e f -> return (fn a b c d e f))
-
-zip :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v (a,b)
-{-# INLINE zip #-}
-zip = zipWith (,)
-
-zip3 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v (a,b,c)
-{-# INLINE zip3 #-}
-zip3 = zipWith3 (,,)
-
-zip4 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                -> Bundle m v (a,b,c,d)
-{-# INLINE zip4 #-}
-zip4 = zipWith4 (,,,)
-
-zip5 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                -> Bundle m v e -> Bundle m v (a,b,c,d,e)
-{-# INLINE zip5 #-}
-zip5 = zipWith5 (,,,,)
-
-zip6 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                -> Bundle m v e -> Bundle m v f -> Bundle m v (a,b,c,d,e,f)
-{-# INLINE zip6 #-}
-zip6 = zipWith6 (,,,,,)
-
--- Comparisons
--- -----------
-
--- | Check if two 'Bundle's are equal
-eqBy :: (Monad m) => (a -> b -> Bool) -> Bundle m v a -> Bundle m v b -> m Bool
-{-# INLINE_FUSED eqBy #-}
-eqBy eq x y = S.eqBy eq (sElems x) (sElems y)
-
--- | Lexicographically compare two 'Bundle's
-cmpBy :: (Monad m) => (a -> b -> Ordering) -> Bundle m v a -> Bundle m v b -> m Ordering
-{-# INLINE_FUSED cmpBy #-}
-cmpBy cmp x y = S.cmpBy cmp (sElems x) (sElems y)
-
--- Filtering
--- ---------
-
--- | Drop elements which do not satisfy the predicate
-filter :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
-{-# INLINE filter #-}
-filter f = filterM (return . f)
-
--- | Drop elements which do not satisfy the monadic predicate
-filterM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED filterM #-}
-filterM f Bundle{sElems = s, sSize = n} = fromStream (S.filterM f s) (toMax n)
-
--- | Longest prefix of elements that satisfy the predicate
-takeWhile :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
-{-# INLINE takeWhile #-}
-takeWhile f = takeWhileM (return . f)
-
--- | Longest prefix of elements that satisfy the monadic predicate
-takeWhileM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED takeWhileM #-}
-takeWhileM f Bundle{sElems = s, sSize = n} = fromStream (S.takeWhileM f s) (toMax n)
-
--- | Drop the longest prefix of elements that satisfy the predicate
-dropWhile :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
-{-# INLINE dropWhile #-}
-dropWhile f = dropWhileM (return . f)
-
--- | Drop the longest prefix of elements that satisfy the monadic predicate
-dropWhileM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED dropWhileM #-}
-dropWhileM f Bundle{sElems = s, sSize = n} = fromStream (S.dropWhileM f s) (toMax n)
-
--- Searching
--- ---------
-
-infix 4 `elem`
--- | Check whether the 'Bundle' contains an element
-elem :: (Monad m, Eq a) => a -> Bundle m v a -> m Bool
-{-# INLINE_FUSED elem #-}
-elem x = S.elem x . sElems
-
-infix 4 `notElem`
--- | Inverse of `elem`
-notElem :: (Monad m, Eq a) => a -> Bundle m v a -> m Bool
-{-# INLINE notElem #-}
-notElem x = S.notElem x . sElems
-
--- | Yield 'Just' the first element that satisfies the predicate or 'Nothing'
--- if no such element exists.
-find :: Monad m => (a -> Bool) -> Bundle m v a -> m (Maybe a)
-{-# INLINE find #-}
-find f = findM (return . f)
-
--- | Yield 'Just' the first element that satisfies the monadic predicate or
--- 'Nothing' if no such element exists.
-findM :: Monad m => (a -> m Bool) -> Bundle m v a -> m (Maybe a)
-{-# INLINE_FUSED findM #-}
-findM f = S.findM f . sElems
-
--- | Yield 'Just' the index of the first element that satisfies the predicate
--- or 'Nothing' if no such element exists.
-findIndex :: Monad m => (a -> Bool) -> Bundle m v a -> m (Maybe Int)
-{-# INLINE_FUSED findIndex #-}
-findIndex f = findIndexM (return . f)
-
--- | Yield 'Just' the index of the first element that satisfies the monadic
--- predicate or 'Nothing' if no such element exists.
-findIndexM :: Monad m => (a -> m Bool) -> Bundle m v a -> m (Maybe Int)
-{-# INLINE_FUSED findIndexM #-}
-findIndexM f = S.findIndexM f . sElems
-
--- Folding
--- -------
-
--- | Left fold
-foldl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> m a
-{-# INLINE foldl #-}
-foldl f = foldlM (\a b -> return (f a b))
-
--- | Left fold with a monadic operator
-foldlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
-{-# INLINE_FUSED foldlM #-}
-foldlM m z = S.foldlM m z . sElems
-
--- | Same as 'foldlM'
-foldM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
-{-# INLINE foldM #-}
-foldM = foldlM
-
--- | Left fold over a non-empty 'Bundle'
-foldl1 :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
-{-# INLINE foldl1 #-}
-foldl1 f = foldl1M (\a b -> return (f a b))
-
--- | Left fold over a non-empty 'Bundle' with a monadic operator
-foldl1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
-{-# INLINE_FUSED foldl1M #-}
-foldl1M f = S.foldl1M f . sElems
-
--- | Same as 'foldl1M'
-fold1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
-{-# INLINE fold1M #-}
-fold1M = foldl1M
-
--- | Left fold with a strict accumulator
-foldl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> m a
-{-# INLINE foldl' #-}
-foldl' f = foldlM' (\a b -> return (f a b))
-
--- | Left fold with a strict accumulator and a monadic operator
-foldlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
-{-# INLINE_FUSED foldlM' #-}
-foldlM' m z = S.foldlM' m z . sElems
-
--- | Same as 'foldlM''
-foldM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
-{-# INLINE foldM' #-}
-foldM' = foldlM'
-
--- | Left fold over a non-empty 'Bundle' with a strict accumulator
-foldl1' :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
-{-# INLINE foldl1' #-}
-foldl1' f = foldl1M' (\a b -> return (f a b))
-
--- | Left fold over a non-empty 'Bundle' with a strict accumulator and a
--- monadic operator
-foldl1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
-{-# INLINE_FUSED foldl1M' #-}
-foldl1M' f = S.foldl1M' f . sElems
-
--- | Same as 'foldl1M''
-fold1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
-{-# INLINE fold1M' #-}
-fold1M' = foldl1M'
-
--- | Right fold
-foldr :: Monad m => (a -> b -> b) -> b -> Bundle m v a -> m b
-{-# INLINE foldr #-}
-foldr f = foldrM (\a b -> return (f a b))
-
--- | Right fold with a monadic operator
-foldrM :: Monad m => (a -> b -> m b) -> b -> Bundle m v a -> m b
-{-# INLINE_FUSED foldrM #-}
-foldrM f z = S.foldrM f z . sElems
-
--- | Right fold over a non-empty stream
-foldr1 :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
-{-# INLINE foldr1 #-}
-foldr1 f = foldr1M (\a b -> return (f a b))
-
--- | Right fold over a non-empty stream with a monadic operator
-foldr1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
-{-# INLINE_FUSED foldr1M #-}
-foldr1M f = S.foldr1M f . sElems
-
--- Specialised folds
--- -----------------
-
-and :: Monad m => Bundle m v Bool -> m Bool
-{-# INLINE_FUSED and #-}
-and = S.and . sElems
-
-or :: Monad m => Bundle m v Bool -> m Bool
-{-# INLINE_FUSED or #-}
-or = S.or . sElems
-
-concatMap :: Monad m => (a -> Bundle m v b) -> Bundle m v a -> Bundle m v b
-{-# INLINE concatMap #-}
-concatMap f = concatMapM (return . f)
-
-concatMapM :: Monad m => (a -> m (Bundle m v b)) -> Bundle m v a -> Bundle m v b
-{-# INLINE_FUSED concatMapM #-}
-concatMapM f Bundle{sElems = s} = fromStream (S.concatMapM (liftM sElems . f) s) Unknown
-
--- | Create a 'Bundle' of values from a 'Bundle' of streamable things
-flatten :: Monad m => (a -> m s) -> (s -> m (Step s b)) -> Size
-                   -> Bundle m v a -> Bundle m v b
-{-# INLINE_FUSED flatten #-}
-flatten mk istep sz Bundle{sElems = s} = fromStream (S.flatten mk istep s) sz
-
--- Unfolding
--- ---------
-
--- | Unfold
-unfoldr :: Monad m => (s -> Maybe (a, s)) -> s -> Bundle m u a
-{-# INLINE_FUSED unfoldr #-}
-unfoldr f = unfoldrM (return . f)
-
--- | Unfold with a monadic function
-unfoldrM :: Monad m => (s -> m (Maybe (a, s))) -> s -> Bundle m u a
-{-# INLINE_FUSED unfoldrM #-}
-unfoldrM f s = fromStream (S.unfoldrM f s) Unknown
-
--- | Unfold at most @n@ elements
-unfoldrN :: Monad m => Int -> (s -> Maybe (a, s)) -> s -> Bundle m u a
-{-# INLINE_FUSED unfoldrN #-}
-unfoldrN n f = unfoldrNM n (return . f)
-
--- | Unfold at most @n@ elements with a monadic functions
-unfoldrNM :: Monad m => Int -> (s -> m (Maybe (a, s))) -> s -> Bundle m u a
-{-# INLINE_FUSED unfoldrNM #-}
-unfoldrNM n f s = fromStream (S.unfoldrNM n f s) (Max (delay_inline max n 0))
-
--- | Apply monadic function n times to value. Zeroth element is original value.
-iterateNM :: Monad m => Int -> (a -> m a) -> a -> Bundle m u a
-{-# INLINE_FUSED iterateNM #-}
-iterateNM n f x0 = fromStream (S.iterateNM n f x0) (Exact (delay_inline max n 0))
-
--- | Apply function n times to value. Zeroth element is original value.
-iterateN :: Monad m => Int -> (a -> a) -> a -> Bundle m u a
-{-# INLINE_FUSED iterateN #-}
-iterateN n f x0 = iterateNM n (return . f) x0
-
--- Scans
--- -----
-
--- | Prefix scan
-prescanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE prescanl #-}
-prescanl f = prescanlM (\a b -> return (f a b))
-
--- | Prefix scan with a monadic operator
-prescanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE_FUSED prescanlM #-}
-prescanlM f z Bundle{sElems = s, sSize = sz} = fromStream (S.prescanlM f z s) sz
-
--- | Prefix scan with strict accumulator
-prescanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE prescanl' #-}
-prescanl' f = prescanlM' (\a b -> return (f a b))
-
--- | Prefix scan with strict accumulator and a monadic operator
-prescanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE_FUSED prescanlM' #-}
-prescanlM' f z Bundle{sElems = s, sSize = sz} = fromStream (S.prescanlM' f z s) sz
-
--- | Suffix scan
-postscanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE postscanl #-}
-postscanl f = postscanlM (\a b -> return (f a b))
-
--- | Suffix scan with a monadic operator
-postscanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE_FUSED postscanlM #-}
-postscanlM f z Bundle{sElems = s, sSize = sz} = fromStream (S.postscanlM f z s) sz
-
--- | Suffix scan with strict accumulator
-postscanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE postscanl' #-}
-postscanl' f = postscanlM' (\a b -> return (f a b))
-
--- | Suffix scan with strict acccumulator and a monadic operator
-postscanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE_FUSED postscanlM' #-}
-postscanlM' f z Bundle{sElems = s, sSize = sz} = fromStream (S.postscanlM' f z s) sz
-
--- | Haskell-style scan
-scanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE scanl #-}
-scanl f = scanlM (\a b -> return (f a b))
-
--- | Haskell-style scan with a monadic operator
-scanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE scanlM #-}
-scanlM f z s = z `cons` postscanlM f z s
-
--- | Haskell-style scan with strict accumulator
-scanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE scanl' #-}
-scanl' f = scanlM' (\a b -> return (f a b))
-
--- | Haskell-style scan with strict accumulator and a monadic operator
-scanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE scanlM' #-}
-scanlM' f z s = z `seq` (z `cons` postscanlM f z s)
-
--- | Scan over a non-empty 'Bundle'
-scanl1 :: Monad m => (a -> a -> a) -> Bundle m v a -> Bundle m v a
-{-# INLINE scanl1 #-}
-scanl1 f = scanl1M (\x y -> return (f x y))
-
--- | Scan over a non-empty 'Bundle' with a monadic operator
-scanl1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED scanl1M #-}
-scanl1M f Bundle{sElems = s, sSize = sz} = fromStream (S.scanl1M f s) sz
-
--- | Scan over a non-empty 'Bundle' with a strict accumulator
-scanl1' :: Monad m => (a -> a -> a) -> Bundle m v a -> Bundle m v a
-{-# INLINE scanl1' #-}
-scanl1' f = scanl1M' (\x y -> return (f x y))
-
--- | Scan over a non-empty 'Bundle' with a strict accumulator and a monadic
--- operator
-scanl1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED scanl1M' #-}
-scanl1M' f Bundle{sElems = s, sSize = sz} = fromStream (S.scanl1M' f s) sz
-
--- Enumerations
--- ------------
-
--- The Enum class is broken for this, there just doesn't seem to be a
--- way to implement this generically. We have to specialise for as many types
--- as we can but this doesn't help in polymorphic loops.
-
--- | Yield a 'Bundle' of the given length containing the values @x@, @x+y@,
--- @x+y+y@ etc.
-enumFromStepN :: (Num a, Monad m) => a -> a -> Int -> Bundle m v a
-{-# INLINE_FUSED enumFromStepN #-}
-enumFromStepN x y n = fromStream (S.enumFromStepN x y n) (Exact (delay_inline max n 0))
-
--- | Enumerate values
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromTo :: (Enum a, Monad m) => a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromTo #-}
-enumFromTo x y = fromList [x .. y]
-
--- NOTE: We use (x+1) instead of (succ x) below because the latter checks for
--- overflow which can't happen here.
-
--- FIXME: add "too large" test for Int
-enumFromTo_small :: (Integral a, Monad m) => a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromTo_small #-}
-enumFromTo_small x y = x `seq` y `seq` fromStream (Stream step x) (Exact n)
-  where
-    n = delay_inline max (fromIntegral y - fromIntegral x + 1) 0
-
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Int8> [Bundle]"
-  enumFromTo = enumFromTo_small :: Monad m => Int8 -> Int8 -> Bundle m v Int8
-
-"enumFromTo<Int16> [Bundle]"
-  enumFromTo = enumFromTo_small :: Monad m => Int16 -> Int16 -> Bundle m v Int16
-
-"enumFromTo<Word8> [Bundle]"
-  enumFromTo = enumFromTo_small :: Monad m => Word8 -> Word8 -> Bundle m v Word8
-
-"enumFromTo<Word16> [Bundle]"
-  enumFromTo = enumFromTo_small :: Monad m => Word16 -> Word16 -> Bundle m v Word16   #-}
-
-
-
-#if WORD_SIZE_IN_BITS > 32
-
-{-# RULES
-
-"enumFromTo<Int32> [Bundle]"
-  enumFromTo = enumFromTo_small :: Monad m => Int32 -> Int32 -> Bundle m v Int32
-
-"enumFromTo<Word32> [Bundle]"
-  enumFromTo = enumFromTo_small :: Monad m => Word32 -> Word32 -> Bundle m v Word32   #-}
-
-#endif
-
--- NOTE: We could implement a generic "too large" test:
---
--- len x y | x > y = 0
---         | n > 0 && n <= fromIntegral (maxBound :: Int) = fromIntegral n
---         | otherwise = error
---   where
---     n = y-x+1
---
--- Alas, GHC won't eliminate unnecessary comparisons (such as n >= 0 for
--- unsigned types). See http://hackage.haskell.org/trac/ghc/ticket/3744
---
-
-enumFromTo_int :: forall m v. Monad m => Int -> Int -> Bundle m v Int
-{-# INLINE_FUSED enumFromTo_int #-}
-enumFromTo_int x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
-  where
-    {-# INLINE [0] len #-}
-    len :: Int -> Int -> Int
-    len u v | u > v     = 0
-            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
-                          (n > 0)
-                        $ n
-      where
-        n = v-u+1
-
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-enumFromTo_intlike :: (Integral a, Monad m) => a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromTo_intlike #-}
-enumFromTo_intlike x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
-  where
-    {-# INLINE [0] len #-}
-    len u v | u > v     = 0
-            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
-                          (n > 0)
-                        $ fromIntegral n
-      where
-        n = v-u+1
-
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Int> [Bundle]"
-  enumFromTo = enumFromTo_int :: Monad m => Int -> Int -> Bundle m v Int
-
-#if WORD_SIZE_IN_BITS > 32
-
-"enumFromTo<Int64> [Bundle]"
-  enumFromTo = enumFromTo_intlike :: Monad m => Int64 -> Int64 -> Bundle m v Int64    #-}
-
-#else
-
-"enumFromTo<Int32> [Bundle]"
-  enumFromTo = enumFromTo_intlike :: Monad m => Int32 -> Int32 -> Bundle m v Int32    #-}
-
-#endif
-
-
-
-enumFromTo_big_word :: (Integral a, Monad m) => a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromTo_big_word #-}
-enumFromTo_big_word x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
-  where
-    {-# INLINE [0] len #-}
-    len u v | u > v     = 0
-            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
-                          (n < fromIntegral (maxBound :: Int))
-                        $ fromIntegral (n+1)
-      where
-        n = v-u
-
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Word> [Bundle]"
-  enumFromTo = enumFromTo_big_word :: Monad m => Word -> Word -> Bundle m v Word
-
-"enumFromTo<Word64> [Bundle]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Word64 -> Word64 -> Bundle m v Word64
-
-#if WORD_SIZE_IN_BITS == 32
-
-"enumFromTo<Word32> [Bundle]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Word32 -> Word32 -> Bundle m v Word32
-
-#endif
-
-"enumFromTo<Integer> [Bundle]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Integer -> Integer -> Bundle m v Integer   #-}
-
-
-#if WORD_SIZE_IN_BITS > 32
-
--- FIXME: the "too large" test is totally wrong
-enumFromTo_big_int :: (Integral a, Monad m) => a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromTo_big_int #-}
-enumFromTo_big_int x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
-  where
-    {-# INLINE [0] len #-}
-    len u v | u > v     = 0
-            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
-                          (n > 0 && n <= fromIntegral (maxBound :: Int))
-                        $ fromIntegral n
-      where
-        n = v-u+1
-
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-
-{-# RULES
-
-"enumFromTo<Int64> [Bundle]"
-  enumFromTo = enumFromTo_big_int :: Monad m => Int64 -> Int64 -> Bundle m v Int64   #-}
-
-
-
-#endif
-
-enumFromTo_char :: Monad m => Char -> Char -> Bundle m v Char
-{-# INLINE_FUSED enumFromTo_char #-}
-enumFromTo_char x y = x `seq` y `seq` fromStream (Stream step xn) (Exact n)
-  where
-    xn = ord x
-    yn = ord y
-
-    n = delay_inline max 0 (yn - xn + 1)
-
-    {-# INLINE_INNER step #-}
-    step zn | zn <= yn  = return $ Yield (unsafeChr zn) (zn+1)
-            | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Char> [Bundle]"
-  enumFromTo = enumFromTo_char   #-}
-
-
-
-------------------------------------------------------------------------
-
--- Specialise enumFromTo for Float and Double.
--- Also, try to do something about pairs?
-
-enumFromTo_double :: (Monad m, Ord a, RealFrac a) => a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromTo_double #-}
-enumFromTo_double n m = n `seq` m `seq` fromStream (Stream step n) (Max (len n lim))
-  where
-    lim = m + 1/2 -- important to float out
-
-    {-# INLINE [0] len #-}
-    len x y | x > y     = 0
-            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
-                          (l > 0)
-                        $ fromIntegral l
-      where
-        l :: Integer
-        l = truncate (y-x)+2
-
-    {-# INLINE_INNER step #-}
-    step x | x <= lim  = return $ Yield x (x+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Double> [Bundle]"
-  enumFromTo = enumFromTo_double :: Monad m => Double -> Double -> Bundle m v Double
-
-"enumFromTo<Float> [Bundle]"
-  enumFromTo = enumFromTo_double :: Monad m => Float -> Float -> Bundle m v Float   #-}
-
-
-
-------------------------------------------------------------------------
-
--- | Enumerate values with a given step.
---
--- /WARNING:/ This operation is very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromThenTo :: (Enum a, Monad m) => a -> a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromThenTo #-}
-enumFromThenTo x y z = fromList [x, y .. z]
-
--- FIXME: Specialise enumFromThenTo.
-
--- Conversions
--- -----------
-
--- | Convert a 'Bundle' to a list
-toList :: Monad m => Bundle m v a -> m [a]
-{-# INLINE toList #-}
-toList = foldr (:) []
-
--- | Convert a list to a 'Bundle'
-fromList :: Monad m => [a] -> Bundle m v a
-{-# INLINE fromList #-}
-fromList xs = unsafeFromList Unknown xs
-
--- | Convert the first @n@ elements of a list to a 'Bundle'
-fromListN :: Monad m => Int -> [a] -> Bundle m v a
-{-# INLINE_FUSED fromListN #-}
-fromListN n xs = fromStream (S.fromListN n xs) (Max (delay_inline max n 0))
-
--- | Convert a list to a 'Bundle' with the given 'Size' hint.
-unsafeFromList :: Monad m => Size -> [a] -> Bundle m v a
-{-# INLINE_FUSED unsafeFromList #-}
-unsafeFromList sz xs = fromStream (S.fromList xs) sz
-
-fromVector :: (Monad m, Vector v a) => v a -> Bundle m v a
-{-# INLINE_FUSED fromVector #-}
-fromVector v = v `seq` n `seq` Bundle (Stream step 0)
-                                      (Stream vstep True)
-                                      (Just v)
-                                      (Exact n)
-  where
-    n = basicLength v
-
-    {-# INLINE step #-}
-    step i | i >= n = return Done
-           | otherwise = case basicUnsafeIndexM v i of
-                           Box x -> return $ Yield x (i+1)
-
-
-    {-# INLINE vstep #-}
-    vstep True  = return (Yield (Chunk (basicLength v) (\mv -> basicUnsafeCopy mv v)) False)
-    vstep False = return Done
-
-fromVectors :: forall m v a. (Monad m, Vector v a) => [v a] -> Bundle m v a
-{-# INLINE_FUSED fromVectors #-}
-fromVectors us = Bundle (Stream pstep (Left us))
-                        (Stream vstep us)
-                        Nothing
-                        (Exact n)
-  where
-    n = List.foldl' (\k v -> k + basicLength v) 0 us
-
-    pstep (Left []) = return Done
-    pstep (Left (v:vs)) = basicLength v `seq` return (Skip (Right (v,0,vs)))
-
-    pstep (Right (v,i,vs))
-      | i >= basicLength v = return $ Skip (Left vs)
-      | otherwise          = case basicUnsafeIndexM v i of
-                               Box x -> return $ Yield x (Right (v,i+1,vs))
-
-    -- FIXME: work around bug in GHC 7.6.1
-    vstep :: [v a] -> m (Step [v a] (Chunk v a))
-    vstep [] = return Done
-    vstep (v:vs) = return $ Yield (Chunk (basicLength v)
-                                         (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
-                                                                       (M.basicLength mv == basicLength v)
-                                                 $ basicUnsafeCopy mv v)) vs
-
-
-concatVectors :: (Monad m, Vector v a) => Bundle m u (v a) -> Bundle m v a
-{-# INLINE_FUSED concatVectors #-}
-concatVectors Bundle{sElems = Stream step t}
-  = Bundle (Stream pstep (Left t))
-           (Stream vstep t)
-           Nothing
-           Unknown
-  where
-    pstep (Left s) = do
-      r <- step s
-      case r of
-        Yield v s' -> basicLength v `seq` return (Skip (Right (v,0,s')))
-        Skip    s' -> return (Skip (Left s'))
-        Done       -> return Done
-
-    pstep (Right (v,i,s))
-      | i >= basicLength v = return (Skip (Left s))
-      | otherwise          = case basicUnsafeIndexM v i of
-                               Box x -> return (Yield x (Right (v,i+1,s)))
-
-
-    vstep s = do
-      r <- step s
-      case r of
-        Yield v s' -> return (Yield (Chunk (basicLength v)
-                                           (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
-                                                                          (M.basicLength mv == basicLength v)
-                                                   $ basicUnsafeCopy mv v)) s')
-        Skip    s' -> return (Skip s')
-        Done       -> return Done
-
-reVector :: Monad m => Bundle m u a -> Bundle m v a
-{-# INLINE_FUSED reVector #-}
-reVector Bundle{sElems = s, sSize = n} = fromStream s n
-
-{-# RULES
-
-"reVector [Vector]"
-  reVector = id
-
-"reVector/reVector [Vector]" forall s.
-  reVector (reVector s) = s   #-}
-
-
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Size.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Size.hs
deleted file mode 100644
index e90cf373202d..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Size.hs
+++ /dev/null
@@ -1,121 +0,0 @@
--- |
--- Module      : Data.Vector.Fusion.Bundle.Size
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : portable
---
--- Size hints for streams.
---
-
-module Data.Vector.Fusion.Bundle.Size (
-  Size(..), clampedSubtract, smaller, larger, toMax, upperBound, lowerBound
-) where
-
-import Data.Vector.Fusion.Util ( delay_inline )
-
--- | Size hint
-data Size = Exact Int          -- ^ Exact size
-          | Max   Int          -- ^ Upper bound on the size
-          | Unknown            -- ^ Unknown size
-        deriving( Eq, Show )
-
-instance Num Size where
-  Exact m + Exact n = checkedAdd Exact m n
-  Exact m + Max   n = checkedAdd Max m n
-
-  Max   m + Exact n = checkedAdd Max m n
-  Max   m + Max   n = checkedAdd Max m n
-
-  _       + _       = Unknown
-
-
-  Exact m - Exact n = checkedSubtract Exact m n
-  Exact m - Max   _ = Max   m
-
-  Max   m - Exact n = checkedSubtract Max m n
-  Max   m - Max   _ = Max   m
-  Max   m - Unknown = Max   m
-
-  _       - _       = Unknown
-
-
-  fromInteger n     = Exact (fromInteger n)
-
-  (*)    = error "vector: internal error * for Bundle.size isn't defined"
-  abs    = error "vector: internal error abs for Bundle.size isn't defined"
-  signum = error "vector: internal error signum for Bundle.size isn't defined"
-
-{-# INLINE checkedAdd #-}
-checkedAdd :: (Int -> Size) -> Int -> Int -> Size
-checkedAdd con m n
-    -- Note: we assume m and n are >= 0.
-  | r < m || r < n =
-      error $ "Data.Vector.Fusion.Bundle.Size.checkedAdd: overflow: " ++ show r
-  | otherwise = con r
-  where
-    r = m + n
-
-{-# INLINE checkedSubtract #-}
-checkedSubtract :: (Int -> Size) -> Int -> Int -> Size
-checkedSubtract con m n
-  | r < 0 =
-      error $ "Data.Vector.Fusion.Bundle.Size.checkedSubtract: underflow: " ++ show r
-  | otherwise = con r
-  where
-    r = m - n
-
--- | Subtract two sizes with clamping to 0, for drop-like things
-{-# INLINE clampedSubtract #-}
-clampedSubtract :: Size -> Size -> Size
-clampedSubtract (Exact m) (Exact n) = Exact (max 0 (m - n))
-clampedSubtract (Max   m) (Exact n)
-  | m <= n = Exact 0
-  | otherwise = Max (m - n)
-clampedSubtract (Exact m) (Max   _) = Max m
-clampedSubtract (Max   m) (Max   _) = Max m
-clampedSubtract _         _ = Unknown
-
--- | Minimum of two size hints
-smaller :: Size -> Size -> Size
-{-# INLINE smaller #-}
-smaller (Exact m) (Exact n) = Exact (delay_inline min m n)
-smaller (Exact m) (Max   n) = Max   (delay_inline min m n)
-smaller (Exact m) Unknown   = Max   m
-smaller (Max   m) (Exact n) = Max   (delay_inline min m n)
-smaller (Max   m) (Max   n) = Max   (delay_inline min m n)
-smaller (Max   m) Unknown   = Max   m
-smaller Unknown   (Exact n) = Max   n
-smaller Unknown   (Max   n) = Max   n
-smaller Unknown   Unknown   = Unknown
-
--- | Maximum of two size hints
-larger :: Size -> Size -> Size
-{-# INLINE larger #-}
-larger (Exact m) (Exact n)             = Exact (delay_inline max m n)
-larger (Exact m) (Max   n) | m >= n    = Exact m
-                           | otherwise = Max   n
-larger (Max   m) (Exact n) | n >= m    = Exact n
-                           | otherwise = Max   m
-larger (Max   m) (Max   n)             = Max   (delay_inline max m n)
-larger _         _                     = Unknown
-
--- | Convert a size hint to an upper bound
-toMax :: Size -> Size
-toMax (Exact n) = Max n
-toMax (Max   n) = Max n
-toMax Unknown   = Unknown
-
--- | Compute the minimum size from a size hint
-lowerBound :: Size -> Int
-lowerBound (Exact n) = n
-lowerBound _         = 0
-
--- | Compute the maximum size from a size hint if possible
-upperBound :: Size -> Maybe Int
-upperBound (Exact n) = Just n
-upperBound (Max   n) = Just n
-upperBound Unknown   = Nothing
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs
deleted file mode 100644
index cca002ca6f74..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs
+++ /dev/null
@@ -1,1639 +0,0 @@
-{-# LANGUAGE CPP, ExistentialQuantification, MultiParamTypeClasses, FlexibleInstances, Rank2Types, BangPatterns, KindSignatures, GADTs, ScopedTypeVariables #-}
-
--- |
--- Module      : Data.Vector.Fusion.Stream.Monadic
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Monadic stream combinators.
---
-
-module Data.Vector.Fusion.Stream.Monadic (
-  Stream(..), Step(..), SPEC(..),
-
-  -- * Length
-  length, null,
-
-  -- * Construction
-  empty, singleton, cons, snoc, replicate, replicateM, generate, generateM, (++),
-
-  -- * Accessing elements
-  head, last, (!!), (!?),
-
-  -- * Substreams
-  slice, init, tail, take, drop,
-
-  -- * Mapping
-  map, mapM, mapM_, trans, unbox, concatMap, flatten,
-
-  -- * Zipping
-  indexed, indexedR, zipWithM_,
-  zipWithM, zipWith3M, zipWith4M, zipWith5M, zipWith6M,
-  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
-  zip, zip3, zip4, zip5, zip6,
-
-  -- * Comparisons
-  eqBy, cmpBy,
-
-  -- * Filtering
-  filter, filterM, uniq, mapMaybe, takeWhile, takeWhileM, dropWhile, dropWhileM,
-
-  -- * Searching
-  elem, notElem, find, findM, findIndex, findIndexM,
-
-  -- * Folding
-  foldl, foldlM, foldl1, foldl1M, foldM, fold1M,
-  foldl', foldlM', foldl1', foldl1M', foldM', fold1M',
-  foldr, foldrM, foldr1, foldr1M,
-
-  -- * Specialised folds
-  and, or, concatMapM,
-
-  -- * Unfolding
-  unfoldr, unfoldrM,
-  unfoldrN, unfoldrNM,
-  iterateN, iterateNM,
-
-  -- * Scans
-  prescanl, prescanlM, prescanl', prescanlM',
-  postscanl, postscanlM, postscanl', postscanlM',
-  scanl, scanlM, scanl', scanlM',
-  scanl1, scanl1M, scanl1', scanl1M',
-
-  -- * Enumerations
-  enumFromStepN, enumFromTo, enumFromThenTo,
-
-  -- * Conversions
-  toList, fromList, fromListN
-) where
-
-import Data.Vector.Fusion.Util ( Box(..) )
-
-import Data.Char      ( ord )
-import GHC.Base       ( unsafeChr )
-import Control.Monad  ( liftM )
-import Prelude hiding ( length, null,
-                        replicate, (++),
-                        head, last, (!!),
-                        init, tail, take, drop,
-                        map, mapM, mapM_, concatMap,
-                        zipWith, zipWith3, zip, zip3,
-                        filter, takeWhile, dropWhile,
-                        elem, notElem,
-                        foldl, foldl1, foldr, foldr1,
-                        and, or,
-                        scanl, scanl1,
-                        enumFromTo, enumFromThenTo )
-
-import Data.Int  ( Int8, Int16, Int32 )
-import Data.Word ( Word8, Word16, Word32, Word64 )
-
-#if !MIN_VERSION_base(4,8,0)
-import Data.Word ( Word8, Word16, Word32, Word, Word64 )
-#endif
-
-#if __GLASGOW_HASKELL__ >= 708
-import GHC.Types ( SPEC(..) )
-#elif __GLASGOW_HASKELL__ >= 700
-import GHC.Exts ( SpecConstrAnnotation(..) )
-#endif
-
-#include "vector.h"
-#include "MachDeps.h"
-
-#if WORD_SIZE_IN_BITS > 32
-import Data.Int  ( Int64 )
-#endif
-
-#if __GLASGOW_HASKELL__ < 708
-data SPEC = SPEC | SPEC2
-#if __GLASGOW_HASKELL__ >= 700
-{-# ANN type SPEC ForceSpecConstr #-}
-#endif
-#endif
-
-emptyStream :: String
-{-# NOINLINE emptyStream #-}
-emptyStream = "empty stream"
-
-#define EMPTY_STREAM (\state -> ERROR state emptyStream)
-
--- | Result of taking a single step in a stream
-data Step s a where
-  Yield :: a -> s -> Step s a
-  Skip  :: s -> Step s a
-  Done  :: Step s a
-
-instance Functor (Step s) where
-  {-# INLINE fmap #-}
-  fmap f (Yield x s) = Yield (f x) s
-  fmap _ (Skip s) = Skip s
-  fmap _ Done = Done
-
--- | Monadic streams
-data Stream m a = forall s. Stream (s -> m (Step s a)) s
-
--- Length
--- ------
-
--- | Length of a 'Stream'
-length :: Monad m => Stream m a -> m Int
-{-# INLINE_FUSED length #-}
-length = foldl' (\n _ -> n+1) 0
-
--- | Check if a 'Stream' is empty
-null :: Monad m => Stream m a -> m Bool
-{-# INLINE_FUSED null #-}
-null (Stream step t) = null_loop t
-  where
-    null_loop s = do
-      r <- step s
-      case r of
-        Yield _ _ -> return False
-        Skip s'   -> null_loop s'
-        Done      -> return True
-
--- Construction
--- ------------
-
--- | Empty 'Stream'
-empty :: Monad m => Stream m a
-{-# INLINE_FUSED empty #-}
-empty = Stream (const (return Done)) ()
-
--- | Singleton 'Stream'
-singleton :: Monad m => a -> Stream m a
-{-# INLINE_FUSED singleton #-}
-singleton x = Stream (return . step) True
-  where
-    {-# INLINE_INNER step #-}
-    step True  = Yield x False
-    step False = Done
-
--- | Replicate a value to a given length
-replicate :: Monad m => Int -> a -> Stream m a
-{-# INLINE_FUSED replicate #-}
-replicate n x = replicateM n (return x)
-
--- | Yield a 'Stream' of values obtained by performing the monadic action the
--- given number of times
-replicateM :: Monad m => Int -> m a -> Stream m a
-{-# INLINE_FUSED replicateM #-}
-replicateM n p = Stream step n
-  where
-    {-# INLINE_INNER step #-}
-    step i | i <= 0    = return Done
-           | otherwise = do { x <- p; return $ Yield x (i-1) }
-
-generate :: Monad m => Int -> (Int -> a) -> Stream m a
-{-# INLINE generate #-}
-generate n f = generateM n (return . f)
-
--- | Generate a stream from its indices
-generateM :: Monad m => Int -> (Int -> m a) -> Stream m a
-{-# INLINE_FUSED generateM #-}
-generateM n f = n `seq` Stream step 0
-  where
-    {-# INLINE_INNER step #-}
-    step i | i < n     = do
-                           x <- f i
-                           return $ Yield x (i+1)
-           | otherwise = return Done
-
--- | Prepend an element
-cons :: Monad m => a -> Stream m a -> Stream m a
-{-# INLINE cons #-}
-cons x s = singleton x ++ s
-
--- | Append an element
-snoc :: Monad m => Stream m a -> a -> Stream m a
-{-# INLINE snoc #-}
-snoc s x = s ++ singleton x
-
-infixr 5 ++
--- | Concatenate two 'Stream's
-(++) :: Monad m => Stream m a -> Stream m a -> Stream m a
-{-# INLINE_FUSED (++) #-}
-Stream stepa ta ++ Stream stepb tb = Stream step (Left ta)
-  where
-    {-# INLINE_INNER step #-}
-    step (Left  sa) = do
-                        r <- stepa sa
-                        case r of
-                          Yield x sa' -> return $ Yield x (Left  sa')
-                          Skip    sa' -> return $ Skip    (Left  sa')
-                          Done        -> return $ Skip    (Right tb)
-    step (Right sb) = do
-                        r <- stepb sb
-                        case r of
-                          Yield x sb' -> return $ Yield x (Right sb')
-                          Skip    sb' -> return $ Skip    (Right sb')
-                          Done        -> return $ Done
-
--- Accessing elements
--- ------------------
-
--- | First element of the 'Stream' or error if empty
-head :: Monad m => Stream m a -> m a
-{-# INLINE_FUSED head #-}
-head (Stream step t) = head_loop SPEC t
-  where
-    head_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x _  -> return x
-            Skip    s' -> head_loop SPEC s'
-            Done       -> EMPTY_STREAM "head"
-
-
-
--- | Last element of the 'Stream' or error if empty
-last :: Monad m => Stream m a -> m a
-{-# INLINE_FUSED last #-}
-last (Stream step t) = last_loop0 SPEC t
-  where
-    last_loop0 !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> last_loop1 SPEC x s'
-            Skip    s' -> last_loop0 SPEC   s'
-            Done       -> EMPTY_STREAM "last"
-
-    last_loop1 !_ x s
-      = do
-          r <- step s
-          case r of
-            Yield y s' -> last_loop1 SPEC y s'
-            Skip    s' -> last_loop1 SPEC x s'
-            Done       -> return x
-
-infixl 9 !!
--- | Element at the given position
-(!!) :: Monad m => Stream m a -> Int -> m a
-{-# INLINE (!!) #-}
-Stream step t !! j | j < 0     = ERROR "!!" "negative index"
-                   | otherwise = index_loop SPEC t j
-  where
-    index_loop !_ s i
-      = i `seq`
-        do
-          r <- step s
-          case r of
-            Yield x s' | i == 0    -> return x
-                       | otherwise -> index_loop SPEC s' (i-1)
-            Skip    s'             -> index_loop SPEC s' i
-            Done                   -> EMPTY_STREAM "!!"
-
-infixl 9 !?
--- | Element at the given position or 'Nothing' if out of bounds
-(!?) :: Monad m => Stream m a -> Int -> m (Maybe a)
-{-# INLINE (!?) #-}
-Stream step t !? j = index_loop SPEC t j
-  where
-    index_loop !_ s i
-      = i `seq`
-        do
-          r <- step s
-          case r of
-            Yield x s' | i == 0    -> return (Just x)
-                       | otherwise -> index_loop SPEC s' (i-1)
-            Skip    s'             -> index_loop SPEC s' i
-            Done                   -> return Nothing
-
--- Substreams
--- ----------
-
--- | Extract a substream of the given length starting at the given position.
-slice :: Monad m => Int   -- ^ starting index
-                 -> Int   -- ^ length
-                 -> Stream m a
-                 -> Stream m a
-{-# INLINE slice #-}
-slice i n s = take n (drop i s)
-
--- | All but the last element
-init :: Monad m => Stream m a -> Stream m a
-{-# INLINE_FUSED init #-}
-init (Stream step t) = Stream step' (Nothing, t)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (Nothing, s) = liftM (\r ->
-                           case r of
-                             Yield x s' -> Skip (Just x,  s')
-                             Skip    s' -> Skip (Nothing, s')
-                             Done       -> EMPTY_STREAM "init"
-                         ) (step s)
-
-    step' (Just x,  s) = liftM (\r ->
-                           case r of
-                             Yield y s' -> Yield x (Just y, s')
-                             Skip    s' -> Skip    (Just x, s')
-                             Done       -> Done
-                         ) (step s)
-
--- | All but the first element
-tail :: Monad m => Stream m a -> Stream m a
-{-# INLINE_FUSED tail #-}
-tail (Stream step t) = Stream step' (Left t)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (Left  s) = liftM (\r ->
-                        case r of
-                          Yield _ s' -> Skip (Right s')
-                          Skip    s' -> Skip (Left  s')
-                          Done       -> EMPTY_STREAM "tail"
-                      ) (step s)
-
-    step' (Right s) = liftM (\r ->
-                        case r of
-                          Yield x s' -> Yield x (Right s')
-                          Skip    s' -> Skip    (Right s')
-                          Done       -> Done
-                      ) (step s)
-
--- | The first @n@ elements
-take :: Monad m => Int -> Stream m a -> Stream m a
-{-# INLINE_FUSED take #-}
-take n (Stream step t) = n `seq` Stream step' (t, 0)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s, i) | i < n = liftM (\r ->
-                             case r of
-                               Yield x s' -> Yield x (s', i+1)
-                               Skip    s' -> Skip    (s', i)
-                               Done       -> Done
-                           ) (step s)
-    step' (_, _) = return Done
-
--- | All but the first @n@ elements
-drop :: Monad m => Int -> Stream m a -> Stream m a
-{-# INLINE_FUSED drop #-}
-drop n (Stream step t) = Stream step' (t, Just n)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s, Just i) | i > 0 = liftM (\r ->
-                                case r of
-                                   Yield _ s' -> Skip (s', Just (i-1))
-                                   Skip    s' -> Skip (s', Just i)
-                                   Done       -> Done
-                                ) (step s)
-                      | otherwise = return $ Skip (s, Nothing)
-
-    step' (s, Nothing) = liftM (\r ->
-                           case r of
-                             Yield x s' -> Yield x (s', Nothing)
-                             Skip    s' -> Skip    (s', Nothing)
-                             Done       -> Done
-                           ) (step s)
-
--- Mapping
--- -------
-
-instance Monad m => Functor (Stream m) where
-  {-# INLINE fmap #-}
-  fmap = map
-
--- | Map a function over a 'Stream'
-map :: Monad m => (a -> b) -> Stream m a -> Stream m b
-{-# INLINE map #-}
-map f = mapM (return . f)
-
-
--- | Map a monadic function over a 'Stream'
-mapM :: Monad m => (a -> m b) -> Stream m a -> Stream m b
-{-# INLINE_FUSED mapM #-}
-mapM f (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield x s' -> liftM  (`Yield` s') (f x)
-                  Skip    s' -> return (Skip    s')
-                  Done       -> return Done
-
-consume :: Monad m => Stream m a -> m ()
-{-# INLINE_FUSED consume #-}
-consume (Stream step t) = consume_loop SPEC t
-  where
-    consume_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield _ s' -> consume_loop SPEC s'
-            Skip    s' -> consume_loop SPEC s'
-            Done       -> return ()
-
--- | Execute a monadic action for each element of the 'Stream'
-mapM_ :: Monad m => (a -> m b) -> Stream m a -> m ()
-{-# INLINE_FUSED mapM_ #-}
-mapM_ m = consume . mapM m
-
--- | Transform a 'Stream' to use a different monad
-trans :: (Monad m, Monad m')
-      => (forall z. m z -> m' z) -> Stream m a -> Stream m' a
-{-# INLINE_FUSED trans #-}
-trans f (Stream step s) = Stream (f . step) s
-
-unbox :: Monad m => Stream m (Box a) -> Stream m a
-{-# INLINE_FUSED unbox #-}
-unbox (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield (Box x) s' -> return $ Yield x s'
-                  Skip          s' -> return $ Skip    s'
-                  Done             -> return $ Done
-
--- Zipping
--- -------
-
--- | Pair each element in a 'Stream' with its index
-indexed :: Monad m => Stream m a -> Stream m (Int,a)
-{-# INLINE_FUSED indexed #-}
-indexed (Stream step t) = Stream step' (t,0)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,i) = i `seq`
-                  do
-                    r <- step s
-                    case r of
-                      Yield x s' -> return $ Yield (i,x) (s', i+1)
-                      Skip    s' -> return $ Skip        (s', i)
-                      Done       -> return Done
-
--- | Pair each element in a 'Stream' with its index, starting from the right
--- and counting down
-indexedR :: Monad m => Int -> Stream m a -> Stream m (Int,a)
-{-# INLINE_FUSED indexedR #-}
-indexedR m (Stream step t) = Stream step' (t,m)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,i) = i `seq`
-                  do
-                    r <- step s
-                    case r of
-                      Yield x s' -> let i' = i-1
-                                    in
-                                    return $ Yield (i',x) (s', i')
-                      Skip    s' -> return $ Skip         (s', i)
-                      Done       -> return Done
-
--- | Zip two 'Stream's with the given monadic function
-zipWithM :: Monad m => (a -> b -> m c) -> Stream m a -> Stream m b -> Stream m c
-{-# INLINE_FUSED zipWithM #-}
-zipWithM f (Stream stepa ta) (Stream stepb tb) = Stream step (ta, tb, Nothing)
-  where
-    {-# INLINE_INNER step #-}
-    step (sa, sb, Nothing) = liftM (\r ->
-                               case r of
-                                 Yield x sa' -> Skip (sa', sb, Just x)
-                                 Skip    sa' -> Skip (sa', sb, Nothing)
-                                 Done        -> Done
-                             ) (stepa sa)
-
-    step (sa, sb, Just x)  = do
-                               r <- stepb sb
-                               case r of
-                                 Yield y sb' ->
-                                   do
-                                     z <- f x y
-                                     return $ Yield z (sa, sb', Nothing)
-                                 Skip    sb' -> return $ Skip (sa, sb', Just x)
-                                 Done        -> return $ Done
-
--- FIXME: This might expose an opportunity for inplace execution.
-{-# RULES
-
-"zipWithM xs xs [Vector.Stream]" forall f xs.
-  zipWithM f xs xs = mapM (\x -> f x x) xs   #-}
-
-
-zipWithM_ :: Monad m => (a -> b -> m c) -> Stream m a -> Stream m b -> m ()
-{-# INLINE zipWithM_ #-}
-zipWithM_ f sa sb = consume (zipWithM f sa sb)
-
-zipWith3M :: Monad m => (a -> b -> c -> m d) -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-{-# INLINE_FUSED zipWith3M #-}
-zipWith3M f (Stream stepa ta)
-            (Stream stepb tb)
-            (Stream stepc tc) = Stream step (ta, tb, tc, Nothing)
-  where
-    {-# INLINE_INNER step #-}
-    step (sa, sb, sc, Nothing) = do
-        r <- stepa sa
-        return $ case r of
-            Yield x sa' -> Skip (sa', sb, sc, Just (x, Nothing))
-            Skip    sa' -> Skip (sa', sb, sc, Nothing)
-            Done        -> Done
-
-    step (sa, sb, sc, Just (x, Nothing)) = do
-        r <- stepb sb
-        return $ case r of
-            Yield y sb' -> Skip (sa, sb', sc, Just (x, Just y))
-            Skip    sb' -> Skip (sa, sb', sc, Just (x, Nothing))
-            Done        -> Done
-
-    step (sa, sb, sc, Just (x, Just y)) = do
-        r <- stepc sc
-        case r of
-            Yield z sc' -> f x y z >>= (\res -> return $ Yield res (sa, sb, sc', Nothing))
-            Skip    sc' -> return $ Skip (sa, sb, sc', Just (x, Just y))
-            Done        -> return $ Done
-
-zipWith4M :: Monad m => (a -> b -> c -> d -> m e)
-                     -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                     -> Stream m e
-{-# INLINE zipWith4M #-}
-zipWith4M f sa sb sc sd
-  = zipWithM (\(a,b) (c,d) -> f a b c d) (zip sa sb) (zip sc sd)
-
-zipWith5M :: Monad m => (a -> b -> c -> d -> e -> m f)
-                     -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                     -> Stream m e -> Stream m f
-{-# INLINE zipWith5M #-}
-zipWith5M f sa sb sc sd se
-  = zipWithM (\(a,b,c) (d,e) -> f a b c d e) (zip3 sa sb sc) (zip sd se)
-
-zipWith6M :: Monad m => (a -> b -> c -> d -> e -> f -> m g)
-                     -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                     -> Stream m e -> Stream m f -> Stream m g
-{-# INLINE zipWith6M #-}
-zipWith6M fn sa sb sc sd se sf
-  = zipWithM (\(a,b,c) (d,e,f) -> fn a b c d e f) (zip3 sa sb sc)
-                                                  (zip3 sd se sf)
-
-zipWith :: Monad m => (a -> b -> c) -> Stream m a -> Stream m b -> Stream m c
-{-# INLINE zipWith #-}
-zipWith f = zipWithM (\a b -> return (f a b))
-
-zipWith3 :: Monad m => (a -> b -> c -> d)
-                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-{-# INLINE zipWith3 #-}
-zipWith3 f = zipWith3M (\a b c -> return (f a b c))
-
-zipWith4 :: Monad m => (a -> b -> c -> d -> e)
-                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                    -> Stream m e
-{-# INLINE zipWith4 #-}
-zipWith4 f = zipWith4M (\a b c d -> return (f a b c d))
-
-zipWith5 :: Monad m => (a -> b -> c -> d -> e -> f)
-                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                    -> Stream m e -> Stream m f
-{-# INLINE zipWith5 #-}
-zipWith5 f = zipWith5M (\a b c d e -> return (f a b c d e))
-
-zipWith6 :: Monad m => (a -> b -> c -> d -> e -> f -> g)
-                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                    -> Stream m e -> Stream m f -> Stream m g
-{-# INLINE zipWith6 #-}
-zipWith6 fn = zipWith6M (\a b c d e f -> return (fn a b c d e f))
-
-zip :: Monad m => Stream m a -> Stream m b -> Stream m (a,b)
-{-# INLINE zip #-}
-zip = zipWith (,)
-
-zip3 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m (a,b,c)
-{-# INLINE zip3 #-}
-zip3 = zipWith3 (,,)
-
-zip4 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m d
-                -> Stream m (a,b,c,d)
-{-# INLINE zip4 #-}
-zip4 = zipWith4 (,,,)
-
-zip5 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m d
-                -> Stream m e -> Stream m (a,b,c,d,e)
-{-# INLINE zip5 #-}
-zip5 = zipWith5 (,,,,)
-
-zip6 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m d
-                -> Stream m e -> Stream m f -> Stream m (a,b,c,d,e,f)
-{-# INLINE zip6 #-}
-zip6 = zipWith6 (,,,,,)
-
--- Comparisons
--- -----------
-
--- | Check if two 'Stream's are equal
-eqBy :: (Monad m) => (a -> b -> Bool) -> Stream m a -> Stream m b -> m Bool
-{-# INLINE_FUSED eqBy #-}
-eqBy eq (Stream step1 t1) (Stream step2 t2) = eq_loop0 SPEC t1 t2
-  where
-    eq_loop0 !_ s1 s2 = do
-      r <- step1 s1
-      case r of
-        Yield x s1' -> eq_loop1 SPEC x s1' s2
-        Skip    s1' -> eq_loop0 SPEC   s1' s2
-        Done        -> eq_null s2
-
-    eq_loop1 !_ x s1 s2 = do
-      r <- step2 s2
-      case r of
-        Yield y s2'
-          | eq x y    -> eq_loop0 SPEC   s1 s2'
-          | otherwise -> return False
-        Skip    s2'   -> eq_loop1 SPEC x s1 s2'
-        Done          -> return False
-
-    eq_null s2 = do
-      r <- step2 s2
-      case r of
-        Yield _ _ -> return False
-        Skip s2'  -> eq_null s2'
-        Done      -> return True
-
--- | Lexicographically compare two 'Stream's
-cmpBy :: (Monad m) => (a -> b -> Ordering) -> Stream m a -> Stream m b -> m Ordering
-{-# INLINE_FUSED cmpBy #-}
-cmpBy cmp (Stream step1 t1) (Stream step2 t2) = cmp_loop0 SPEC t1 t2
-  where
-    cmp_loop0 !_ s1 s2 = do
-      r <- step1 s1
-      case r of
-        Yield x s1' -> cmp_loop1 SPEC x s1' s2
-        Skip    s1' -> cmp_loop0 SPEC   s1' s2
-        Done        -> cmp_null s2
-
-    cmp_loop1 !_ x s1 s2 = do
-      r <- step2 s2
-      case r of
-        Yield y s2' -> case x `cmp` y of
-                         EQ -> cmp_loop0 SPEC s1 s2'
-                         c  -> return c
-        Skip    s2' -> cmp_loop1 SPEC x s1 s2'
-        Done        -> return GT
-
-    cmp_null s2 = do
-      r <- step2 s2
-      case r of
-        Yield _ _ -> return LT
-        Skip s2'  -> cmp_null s2'
-        Done      -> return EQ
-
--- Filtering
--- ---------
-
--- | Drop elements which do not satisfy the predicate
-filter :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
-{-# INLINE filter #-}
-filter f = filterM (return . f)
-
-mapMaybe :: Monad m => (a -> Maybe b) -> Stream m a -> Stream m b
-{-# INLINE_FUSED mapMaybe #-}
-mapMaybe f (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield x s' -> do
-                                  return $ case f x of
-                                    Nothing -> Skip s'
-                                    Just b' -> Yield b' s'
-                  Skip    s' -> return $ Skip s'
-                  Done       -> return $ Done
-
--- | Drop elements which do not satisfy the monadic predicate
-filterM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
-{-# INLINE_FUSED filterM #-}
-filterM f (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield x s' -> do
-                                  b <- f x
-                                  return $ if b then Yield x s'
-                                                else Skip    s'
-                  Skip    s' -> return $ Skip s'
-                  Done       -> return $ Done
-
--- | Drop repeated adjacent elements.
-uniq :: (Eq a, Monad m) => Stream m a -> Stream m a
-{-# INLINE_FUSED uniq #-}
-uniq (Stream step st) = Stream step' (Nothing,st)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (Nothing, s) = do r <- step s
-                            case r of
-                              Yield x s' -> return $ Yield x (Just x , s')
-                              Skip  s'   -> return $ Skip  (Nothing, s')
-                              Done       -> return   Done
-    step' (Just x0, s) = do r <- step s
-                            case r of
-                              Yield x s' | x == x0   -> return $ Skip    (Just x0, s')
-                                         | otherwise -> return $ Yield x (Just x , s')
-                              Skip  s'   -> return $ Skip (Just x0, s')
-                              Done       -> return   Done
-
--- | Longest prefix of elements that satisfy the predicate
-takeWhile :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
-{-# INLINE takeWhile #-}
-takeWhile f = takeWhileM (return . f)
-
--- | Longest prefix of elements that satisfy the monadic predicate
-takeWhileM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
-{-# INLINE_FUSED takeWhileM #-}
-takeWhileM f (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield x s' -> do
-                                  b <- f x
-                                  return $ if b then Yield x s' else Done
-                  Skip    s' -> return $ Skip s'
-                  Done       -> return $ Done
-
--- | Drop the longest prefix of elements that satisfy the predicate
-dropWhile :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
-{-# INLINE dropWhile #-}
-dropWhile f = dropWhileM (return . f)
-
-data DropWhile s a = DropWhile_Drop s | DropWhile_Yield a s | DropWhile_Next s
-
--- | Drop the longest prefix of elements that satisfy the monadic predicate
-dropWhileM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
-{-# INLINE_FUSED dropWhileM #-}
-dropWhileM f (Stream step t) = Stream step' (DropWhile_Drop t)
-  where
-    -- NOTE: we jump through hoops here to have only one Yield; local data
-    -- declarations would be nice!
-
-    {-# INLINE_INNER step' #-}
-    step' (DropWhile_Drop s)
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> do
-                            b <- f x
-                            return $ if b then Skip (DropWhile_Drop    s')
-                                          else Skip (DropWhile_Yield x s')
-            Skip    s' -> return $ Skip (DropWhile_Drop    s')
-            Done       -> return $ Done
-
-    step' (DropWhile_Yield x s) = return $ Yield x (DropWhile_Next s)
-
-    step' (DropWhile_Next s)
-      = liftM (\r ->
-          case r of
-            Yield x s' -> Skip    (DropWhile_Yield x s')
-            Skip    s' -> Skip    (DropWhile_Next    s')
-            Done       -> Done
-        ) (step s)
-
--- Searching
--- ---------
-
-infix 4 `elem`
--- | Check whether the 'Stream' contains an element
-elem :: (Monad m, Eq a) => a -> Stream m a -> m Bool
-{-# INLINE_FUSED elem #-}
-elem x (Stream step t) = elem_loop SPEC t
-  where
-    elem_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield y s' | x == y    -> return True
-                       | otherwise -> elem_loop SPEC s'
-            Skip    s'             -> elem_loop SPEC s'
-            Done                   -> return False
-
-infix 4 `notElem`
--- | Inverse of `elem`
-notElem :: (Monad m, Eq a) => a -> Stream m a -> m Bool
-{-# INLINE notElem #-}
-notElem x s = liftM not (elem x s)
-
--- | Yield 'Just' the first element that satisfies the predicate or 'Nothing'
--- if no such element exists.
-find :: Monad m => (a -> Bool) -> Stream m a -> m (Maybe a)
-{-# INLINE find #-}
-find f = findM (return . f)
-
--- | Yield 'Just' the first element that satisfies the monadic predicate or
--- 'Nothing' if no such element exists.
-findM :: Monad m => (a -> m Bool) -> Stream m a -> m (Maybe a)
-{-# INLINE_FUSED findM #-}
-findM f (Stream step t) = find_loop SPEC t
-  where
-    find_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> do
-                            b <- f x
-                            if b then return $ Just x
-                                 else find_loop SPEC s'
-            Skip    s' -> find_loop SPEC s'
-            Done       -> return Nothing
-
--- | Yield 'Just' the index of the first element that satisfies the predicate
--- or 'Nothing' if no such element exists.
-findIndex :: Monad m => (a -> Bool) -> Stream m a -> m (Maybe Int)
-{-# INLINE_FUSED findIndex #-}
-findIndex f = findIndexM (return . f)
-
--- | Yield 'Just' the index of the first element that satisfies the monadic
--- predicate or 'Nothing' if no such element exists.
-findIndexM :: Monad m => (a -> m Bool) -> Stream m a -> m (Maybe Int)
-{-# INLINE_FUSED findIndexM #-}
-findIndexM f (Stream step t) = findIndex_loop SPEC t 0
-  where
-    findIndex_loop !_ s i
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> do
-                            b <- f x
-                            if b then return $ Just i
-                                 else findIndex_loop SPEC s' (i+1)
-            Skip    s' -> findIndex_loop SPEC s' i
-            Done       -> return Nothing
-
--- Folding
--- -------
-
--- | Left fold
-foldl :: Monad m => (a -> b -> a) -> a -> Stream m b -> m a
-{-# INLINE foldl #-}
-foldl f = foldlM (\a b -> return (f a b))
-
--- | Left fold with a monadic operator
-foldlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
-{-# INLINE_FUSED foldlM #-}
-foldlM m w (Stream step t) = foldlM_loop SPEC w t
-  where
-    foldlM_loop !_ z s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> do { z' <- m z x; foldlM_loop SPEC z' s' }
-            Skip    s' -> foldlM_loop SPEC z s'
-            Done       -> return z
-
--- | Same as 'foldlM'
-foldM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
-{-# INLINE foldM #-}
-foldM = foldlM
-
--- | Left fold over a non-empty 'Stream'
-foldl1 :: Monad m => (a -> a -> a) -> Stream m a -> m a
-{-# INLINE foldl1 #-}
-foldl1 f = foldl1M (\a b -> return (f a b))
-
--- | Left fold over a non-empty 'Stream' with a monadic operator
-foldl1M :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE_FUSED foldl1M #-}
-foldl1M f (Stream step t) = foldl1M_loop SPEC t
-  where
-    foldl1M_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> foldlM f x (Stream step s')
-            Skip    s' -> foldl1M_loop SPEC s'
-            Done       -> EMPTY_STREAM "foldl1M"
-
--- | Same as 'foldl1M'
-fold1M :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE fold1M #-}
-fold1M = foldl1M
-
--- | Left fold with a strict accumulator
-foldl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> m a
-{-# INLINE foldl' #-}
-foldl' f = foldlM' (\a b -> return (f a b))
-
--- | Left fold with a strict accumulator and a monadic operator
-foldlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
-{-# INLINE_FUSED foldlM' #-}
-foldlM' m w (Stream step t) = foldlM'_loop SPEC w t
-  where
-    foldlM'_loop !_ z s
-      = z `seq`
-        do
-          r <- step s
-          case r of
-            Yield x s' -> do { z' <- m z x; foldlM'_loop SPEC z' s' }
-            Skip    s' -> foldlM'_loop SPEC z s'
-            Done       -> return z
-
--- | Same as 'foldlM''
-foldM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
-{-# INLINE foldM' #-}
-foldM' = foldlM'
-
--- | Left fold over a non-empty 'Stream' with a strict accumulator
-foldl1' :: Monad m => (a -> a -> a) -> Stream m a -> m a
-{-# INLINE foldl1' #-}
-foldl1' f = foldl1M' (\a b -> return (f a b))
-
--- | Left fold over a non-empty 'Stream' with a strict accumulator and a
--- monadic operator
-foldl1M' :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE_FUSED foldl1M' #-}
-foldl1M' f (Stream step t) = foldl1M'_loop SPEC t
-  where
-    foldl1M'_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> foldlM' f x (Stream step s')
-            Skip    s' -> foldl1M'_loop SPEC s'
-            Done       -> EMPTY_STREAM "foldl1M'"
-
--- | Same as 'foldl1M''
-fold1M' :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE fold1M' #-}
-fold1M' = foldl1M'
-
--- | Right fold
-foldr :: Monad m => (a -> b -> b) -> b -> Stream m a -> m b
-{-# INLINE foldr #-}
-foldr f = foldrM (\a b -> return (f a b))
-
--- | Right fold with a monadic operator
-foldrM :: Monad m => (a -> b -> m b) -> b -> Stream m a -> m b
-{-# INLINE_FUSED foldrM #-}
-foldrM f z (Stream step t) = foldrM_loop SPEC t
-  where
-    foldrM_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> f x =<< foldrM_loop SPEC s'
-            Skip    s' -> foldrM_loop SPEC s'
-            Done       -> return z
-
--- | Right fold over a non-empty stream
-foldr1 :: Monad m => (a -> a -> a) -> Stream m a -> m a
-{-# INLINE foldr1 #-}
-foldr1 f = foldr1M (\a b -> return (f a b))
-
--- | Right fold over a non-empty stream with a monadic operator
-foldr1M :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE_FUSED foldr1M #-}
-foldr1M f (Stream step t) = foldr1M_loop0 SPEC t
-  where
-    foldr1M_loop0 !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> foldr1M_loop1 SPEC x s'
-            Skip    s' -> foldr1M_loop0 SPEC   s'
-            Done       -> EMPTY_STREAM "foldr1M"
-
-    foldr1M_loop1 !_ x s
-      = do
-          r <- step s
-          case r of
-            Yield y s' -> f x =<< foldr1M_loop1 SPEC y s'
-            Skip    s' -> foldr1M_loop1 SPEC x s'
-            Done       -> return x
-
--- Specialised folds
--- -----------------
-
-and :: Monad m => Stream m Bool -> m Bool
-{-# INLINE_FUSED and #-}
-and (Stream step t) = and_loop SPEC t
-  where
-    and_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield False _  -> return False
-            Yield True  s' -> and_loop SPEC s'
-            Skip        s' -> and_loop SPEC s'
-            Done           -> return True
-
-or :: Monad m => Stream m Bool -> m Bool
-{-# INLINE_FUSED or #-}
-or (Stream step t) = or_loop SPEC t
-  where
-    or_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield False s' -> or_loop SPEC s'
-            Yield True  _  -> return True
-            Skip        s' -> or_loop SPEC s'
-            Done           -> return False
-
-concatMap :: Monad m => (a -> Stream m b) -> Stream m a -> Stream m b
-{-# INLINE concatMap #-}
-concatMap f = concatMapM (return . f)
-
-concatMapM :: Monad m => (a -> m (Stream m b)) -> Stream m a -> Stream m b
-{-# INLINE_FUSED concatMapM #-}
-concatMapM f (Stream step t) = Stream concatMap_go (Left t)
-  where
-    concatMap_go (Left s) = do
-        r <- step s
-        case r of
-            Yield a s' -> do
-                b_stream <- f a
-                return $ Skip (Right (b_stream, s'))
-            Skip    s' -> return $ Skip (Left s')
-            Done       -> return Done
-    concatMap_go (Right (Stream inner_step inner_s, s)) = do
-        r <- inner_step inner_s
-        case r of
-            Yield b inner_s' -> return $ Yield b (Right (Stream inner_step inner_s', s))
-            Skip    inner_s' -> return $ Skip (Right (Stream inner_step inner_s', s))
-            Done             -> return $ Skip (Left s)
-
--- | Create a 'Stream' of values from a 'Stream' of streamable things
-flatten :: Monad m => (a -> m s) -> (s -> m (Step s b)) -> Stream m a -> Stream m b
-{-# INLINE_FUSED flatten #-}
-flatten mk istep (Stream ostep u) = Stream step (Left u)
-  where
-    {-# INLINE_INNER step #-}
-    step (Left t) = do
-                      r <- ostep t
-                      case r of
-                        Yield a t' -> do
-                                        s <- mk a
-                                        s `seq` return (Skip (Right (s,t')))
-                        Skip    t' -> return $ Skip (Left t')
-                        Done       -> return $ Done
-
-
-    step (Right (s,t)) = do
-                           r <- istep s
-                           case r of
-                             Yield x s' -> return $ Yield x (Right (s',t))
-                             Skip    s' -> return $ Skip    (Right (s',t))
-                             Done       -> return $ Skip    (Left t)
-
--- Unfolding
--- ---------
-
--- | Unfold
-unfoldr :: Monad m => (s -> Maybe (a, s)) -> s -> Stream m a
-{-# INLINE_FUSED unfoldr #-}
-unfoldr f = unfoldrM (return . f)
-
--- | Unfold with a monadic function
-unfoldrM :: Monad m => (s -> m (Maybe (a, s))) -> s -> Stream m a
-{-# INLINE_FUSED unfoldrM #-}
-unfoldrM f t = Stream step t
-  where
-    {-# INLINE_INNER step #-}
-    step s = liftM (\r ->
-               case r of
-                 Just (x, s') -> Yield x s'
-                 Nothing      -> Done
-             ) (f s)
-
-unfoldrN :: Monad m => Int -> (s -> Maybe (a, s)) -> s -> Stream m a
-{-# INLINE_FUSED unfoldrN #-}
-unfoldrN n f = unfoldrNM n (return . f)
-
--- | Unfold at most @n@ elements with a monadic functions
-unfoldrNM :: Monad m => Int -> (s -> m (Maybe (a, s))) -> s -> Stream m a
-{-# INLINE_FUSED unfoldrNM #-}
-unfoldrNM m f t = Stream step (t,m)
-  where
-    {-# INLINE_INNER step #-}
-    step (s,n) | n <= 0    = return Done
-               | otherwise = liftM (\r ->
-                               case r of
-                                 Just (x,s') -> Yield x (s',n-1)
-                                 Nothing     -> Done
-                             ) (f s)
-
--- | Apply monadic function n times to value. Zeroth element is original value.
-iterateNM :: Monad m => Int -> (a -> m a) -> a -> Stream m a
-{-# INLINE_FUSED iterateNM #-}
-iterateNM n f x0 = Stream step (x0,n)
-  where
-    {-# INLINE_INNER step #-}
-    step (x,i) | i <= 0    = return Done
-               | i == n    = return $ Yield x (x,i-1)
-               | otherwise = do a <- f x
-                                return $ Yield a (a,i-1)
-
--- | Apply function n times to value. Zeroth element is original value.
-iterateN :: Monad m => Int -> (a -> a) -> a -> Stream m a
-{-# INLINE_FUSED iterateN #-}
-iterateN n f x0 = iterateNM n (return . f) x0
-
--- Scans
--- -----
-
--- | Prefix scan
-prescanl :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE prescanl #-}
-prescanl f = prescanlM (\a b -> return (f a b))
-
--- | Prefix scan with a monadic operator
-prescanlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE_FUSED prescanlM #-}
-prescanlM f w (Stream step t) = Stream step' (t,w)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,x) = do
-                    r <- step s
-                    case r of
-                      Yield y s' -> do
-                                      z <- f x y
-                                      return $ Yield x (s', z)
-                      Skip    s' -> return $ Skip (s', x)
-                      Done       -> return Done
-
--- | Prefix scan with strict accumulator
-prescanl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE prescanl' #-}
-prescanl' f = prescanlM' (\a b -> return (f a b))
-
--- | Prefix scan with strict accumulator and a monadic operator
-prescanlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE_FUSED prescanlM' #-}
-prescanlM' f w (Stream step t) = Stream step' (t,w)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,x) = x `seq`
-                  do
-                    r <- step s
-                    case r of
-                      Yield y s' -> do
-                                      z <- f x y
-                                      return $ Yield x (s', z)
-                      Skip    s' -> return $ Skip (s', x)
-                      Done       -> return Done
-
--- | Suffix scan
-postscanl :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE postscanl #-}
-postscanl f = postscanlM (\a b -> return (f a b))
-
--- | Suffix scan with a monadic operator
-postscanlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE_FUSED postscanlM #-}
-postscanlM f w (Stream step t) = Stream step' (t,w)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,x) = do
-                    r <- step s
-                    case r of
-                      Yield y s' -> do
-                                      z <- f x y
-                                      return $ Yield z (s',z)
-                      Skip    s' -> return $ Skip (s',x)
-                      Done       -> return Done
-
--- | Suffix scan with strict accumulator
-postscanl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE postscanl' #-}
-postscanl' f = postscanlM' (\a b -> return (f a b))
-
--- | Suffix scan with strict acccumulator and a monadic operator
-postscanlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE_FUSED postscanlM' #-}
-postscanlM' f w (Stream step t) = w `seq` Stream step' (t,w)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,x) = x `seq`
-                  do
-                    r <- step s
-                    case r of
-                      Yield y s' -> do
-                                      z <- f x y
-                                      z `seq` return (Yield z (s',z))
-                      Skip    s' -> return $ Skip (s',x)
-                      Done       -> return Done
-
--- | Haskell-style scan
-scanl :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE scanl #-}
-scanl f = scanlM (\a b -> return (f a b))
-
--- | Haskell-style scan with a monadic operator
-scanlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE scanlM #-}
-scanlM f z s = z `cons` postscanlM f z s
-
--- | Haskell-style scan with strict accumulator
-scanl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE scanl' #-}
-scanl' f = scanlM' (\a b -> return (f a b))
-
--- | Haskell-style scan with strict accumulator and a monadic operator
-scanlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE scanlM' #-}
-scanlM' f z s = z `seq` (z `cons` postscanlM f z s)
-
--- | Scan over a non-empty 'Stream'
-scanl1 :: Monad m => (a -> a -> a) -> Stream m a -> Stream m a
-{-# INLINE scanl1 #-}
-scanl1 f = scanl1M (\x y -> return (f x y))
-
--- | Scan over a non-empty 'Stream' with a monadic operator
-scanl1M :: Monad m => (a -> a -> m a) -> Stream m a -> Stream m a
-{-# INLINE_FUSED scanl1M #-}
-scanl1M f (Stream step t) = Stream step' (t, Nothing)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s, Nothing) = do
-                           r <- step s
-                           case r of
-                             Yield x s' -> return $ Yield x (s', Just x)
-                             Skip    s' -> return $ Skip (s', Nothing)
-                             Done       -> EMPTY_STREAM "scanl1M"
-
-    step' (s, Just x) = do
-                          r <- step s
-                          case r of
-                            Yield y s' -> do
-                                            z <- f x y
-                                            return $ Yield z (s', Just z)
-                            Skip    s' -> return $ Skip (s', Just x)
-                            Done       -> return Done
-
--- | Scan over a non-empty 'Stream' with a strict accumulator
-scanl1' :: Monad m => (a -> a -> a) -> Stream m a -> Stream m a
-{-# INLINE scanl1' #-}
-scanl1' f = scanl1M' (\x y -> return (f x y))
-
--- | Scan over a non-empty 'Stream' with a strict accumulator and a monadic
--- operator
-scanl1M' :: Monad m => (a -> a -> m a) -> Stream m a -> Stream m a
-{-# INLINE_FUSED scanl1M' #-}
-scanl1M' f (Stream step t) = Stream step' (t, Nothing)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s, Nothing) = do
-                           r <- step s
-                           case r of
-                             Yield x s' -> x `seq` return (Yield x (s', Just x))
-                             Skip    s' -> return $ Skip (s', Nothing)
-                             Done       -> EMPTY_STREAM "scanl1M"
-
-    step' (s, Just x) = x `seq`
-                        do
-                          r <- step s
-                          case r of
-                            Yield y s' -> do
-                                            z <- f x y
-                                            z `seq` return (Yield z (s', Just z))
-                            Skip    s' -> return $ Skip (s', Just x)
-                            Done       -> return Done
-
--- Enumerations
--- ------------
-
--- The Enum class is broken for this, there just doesn't seem to be a
--- way to implement this generically. We have to specialise for as many types
--- as we can but this doesn't help in polymorphic loops.
-
--- | Yield a 'Stream' of the given length containing the values @x@, @x+y@,
--- @x+y+y@ etc.
-enumFromStepN :: (Num a, Monad m) => a -> a -> Int -> Stream m a
-{-# INLINE_FUSED enumFromStepN #-}
-enumFromStepN x y n = x `seq` y `seq` n `seq` Stream step (x,n)
-  where
-    {-# INLINE_INNER step #-}
-    step (w,m) | m > 0     = return $ Yield w (w+y,m-1)
-               | otherwise = return $ Done
-
--- | Enumerate values
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromTo :: (Enum a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo #-}
-enumFromTo x y = fromList [x .. y]
-
--- NOTE: We use (x+1) instead of (succ x) below because the latter checks for
--- overflow which can't happen here.
-
--- FIXME: add "too large" test for Int
-enumFromTo_small :: (Integral a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_small #-}
-enumFromTo_small x y = x `seq` y `seq` Stream step x
-  where
-    {-# INLINE_INNER step #-}
-    step w | w <= y    = return $ Yield w (w+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Int8> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Int8 -> Int8 -> Stream m Int8
-
-"enumFromTo<Int16> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Int16 -> Int16 -> Stream m Int16
-
-"enumFromTo<Word8> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Word8 -> Word8 -> Stream m Word8
-
-"enumFromTo<Word16> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Word16 -> Word16 -> Stream m Word16   #-}
-
-
-#if WORD_SIZE_IN_BITS > 32
-
-{-# RULES
-
-"enumFromTo<Int32> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Int32 -> Int32 -> Stream m Int32
-
-"enumFromTo<Word32> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Word32 -> Word32 -> Stream m Word32   #-}
-
-
-#endif
-
--- NOTE: We could implement a generic "too large" test:
---
--- len x y | x > y = 0
---         | n > 0 && n <= fromIntegral (maxBound :: Int) = fromIntegral n
---         | otherwise = error
---   where
---     n = y-x+1
---
--- Alas, GHC won't eliminate unnecessary comparisons (such as n >= 0 for
--- unsigned types). See http://hackage.haskell.org/trac/ghc/ticket/3744
---
-
-enumFromTo_int :: forall m. Monad m => Int -> Int -> Stream m Int
-{-# INLINE_FUSED enumFromTo_int #-}
-enumFromTo_int x y = x `seq` y `seq` Stream step x
-  where
-    -- {-# INLINE [0] len #-}
-    -- len :: Int -> Int -> Int
-    -- len u v | u > v     = 0
-    --         | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
-    --                       (n > 0)
-    --                     $ n
-    --   where
-    --     n = v-u+1
-
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-enumFromTo_intlike :: (Integral a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_intlike #-}
-enumFromTo_intlike x y = x `seq` y `seq` Stream step x
-  where
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Int> [Stream]"
-  enumFromTo = enumFromTo_int :: Monad m => Int -> Int -> Stream m Int
-
-#if WORD_SIZE_IN_BITS > 32
-
-"enumFromTo<Int64> [Stream]"
-  enumFromTo = enumFromTo_intlike :: Monad m => Int64 -> Int64 -> Stream m Int64 #-}
-
-#else
-
-"enumFromTo<Int32> [Stream]"
-  enumFromTo = enumFromTo_intlike :: Monad m => Int32 -> Int32 -> Stream m Int32 #-}
-
-#endif
-
-enumFromTo_big_word :: (Integral a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_big_word #-}
-enumFromTo_big_word x y = x `seq` y `seq` Stream step x
-  where
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Word> [Stream]"
-  enumFromTo = enumFromTo_big_word :: Monad m => Word -> Word -> Stream m Word
-
-"enumFromTo<Word64> [Stream]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Word64 -> Word64 -> Stream m Word64
-
-#if WORD_SIZE_IN_BITS == 32
-
-"enumFromTo<Word32> [Stream]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Word32 -> Word32 -> Stream m Word32
-
-#endif
-
-"enumFromTo<Integer> [Stream]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Integer -> Integer -> Stream m Integer   #-}
-
-
-
-#if WORD_SIZE_IN_BITS > 32
-
--- FIXME: the "too large" test is totally wrong
-enumFromTo_big_int :: (Integral a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_big_int #-}
-enumFromTo_big_int x y = x `seq` y `seq` Stream step x
-  where
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Int64> [Stream]"
-  enumFromTo = enumFromTo_big_int :: Monad m => Int64 -> Int64 -> Stream m Int64   #-}
-
-
-
-#endif
-
-enumFromTo_char :: Monad m => Char -> Char -> Stream m Char
-{-# INLINE_FUSED enumFromTo_char #-}
-enumFromTo_char x y = x `seq` y `seq` Stream step xn
-  where
-    xn = ord x
-    yn = ord y
-
-    {-# INLINE_INNER step #-}
-    step zn | zn <= yn  = return $ Yield (unsafeChr zn) (zn+1)
-            | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Char> [Stream]"
-  enumFromTo = enumFromTo_char   #-}
-
-
-
-------------------------------------------------------------------------
-
--- Specialise enumFromTo for Float and Double.
--- Also, try to do something about pairs?
-
-enumFromTo_double :: (Monad m, Ord a, RealFrac a) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_double #-}
-enumFromTo_double n m = n `seq` m `seq` Stream step n
-  where
-    lim = m + 1/2 -- important to float out
-
-    {-# INLINE_INNER step #-}
-    step x | x <= lim  = return $ Yield x (x+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Double> [Stream]"
-  enumFromTo = enumFromTo_double :: Monad m => Double -> Double -> Stream m Double
-
-"enumFromTo<Float> [Stream]"
-  enumFromTo = enumFromTo_double :: Monad m => Float -> Float -> Stream m Float   #-}
-
-
-
-------------------------------------------------------------------------
-
--- | Enumerate values with a given step.
---
--- /WARNING:/ This operation is very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromThenTo :: (Enum a, Monad m) => a -> a -> a -> Stream m a
-{-# INLINE_FUSED enumFromThenTo #-}
-enumFromThenTo x y z = fromList [x, y .. z]
-
--- FIXME: Specialise enumFromThenTo.
-
--- Conversions
--- -----------
-
--- | Convert a 'Stream' to a list
-toList :: Monad m => Stream m a -> m [a]
-{-# INLINE toList #-}
-toList = foldr (:) []
-
--- | Convert a list to a 'Stream'
-fromList :: Monad m => [a] -> Stream m a
-{-# INLINE fromList #-}
-fromList zs = Stream step zs
-  where
-    step (x:xs) = return (Yield x xs)
-    step []     = return Done
-
--- | Convert the first @n@ elements of a list to a 'Bundle'
-fromListN :: Monad m => Int -> [a] -> Stream m a
-{-# INLINE_FUSED fromListN #-}
-fromListN m zs = Stream step (zs,m)
-  where
-    {-# INLINE_INNER step #-}
-    step (_, n) | n <= 0 = return Done
-    step (x:xs,n)        = return (Yield x (xs,n-1))
-    step ([],_)          = return Done
-
-{-
-fromVector :: (Monad m, Vector v a) => v a -> Stream m a
-{-# INLINE_FUSED fromVector #-}
-fromVector v = v `seq` n `seq` Stream (Unf step 0)
-                                      (Unf vstep True)
-                                      (Just v)
-                                      (Exact n)
-  where
-    n = basicLength v
-
-    {-# INLINE step #-}
-    step i | i >= n = return Done
-           | otherwise = case basicUnsafeIndexM v i of
-                           Box x -> return $ Yield x (i+1)
-
-
-    {-# INLINE vstep #-}
-    vstep True  = return (Yield (Chunk (basicLength v) (\mv -> basicUnsafeCopy mv v)) False)
-    vstep False = return Done
-
-fromVectors :: forall m a. (Monad m, Vector v a) => [v a] -> Stream m a
-{-# INLINE_FUSED fromVectors #-}
-fromVectors vs = Stream (Unf pstep (Left vs))
-                        (Unf vstep vs)
-                        Nothing
-                        (Exact n)
-  where
-    n = List.foldl' (\k v -> k + basicLength v) 0 vs
-
-    pstep (Left []) = return Done
-    pstep (Left (v:vs)) = basicLength v `seq` return (Skip (Right (v,0,vs)))
-
-    pstep (Right (v,i,vs))
-      | i >= basicLength v = return $ Skip (Left vs)
-      | otherwise          = case basicUnsafeIndexM v i of
-                               Box x -> return $ Yield x (Right (v,i+1,vs))
-
-    -- FIXME: work around bug in GHC 7.6.1
-    vstep :: [v a] -> m (Step [v a] (Chunk v a))
-    vstep [] = return Done
-    vstep (v:vs) = return $ Yield (Chunk (basicLength v)
-                                         (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
-                                                                       (M.basicLength mv == basicLength v)
-                                                 $ basicUnsafeCopy mv v)) vs
-
-
-concatVectors :: (Monad m, Vector v a) => Stream m (v a) -> Stream m a
-{-# INLINE_FUSED concatVectors #-}
-concatVectors (Stream step s}
-  = Stream (Unf pstep (Left s))
-           (Unf vstep s)
-           Nothing
-           Unknown
-  where
-    pstep (Left s) = do
-      r <- step s
-      case r of
-        Yield v s' -> basicLength v `seq` return (Skip (Right (v,0,s')))
-        Skip    s' -> return (Skip (Left s'))
-        Done       -> return Done
-
-    pstep (Right (v,i,s))
-      | i >= basicLength v = return (Skip (Left s))
-      | otherwise          = case basicUnsafeIndexM v i of
-                               Box x -> return (Yield x (Right (v,i+1,s)))
-
-
-    vstep s = do
-      r <- step s
-      case r of
-        Yield v s' -> return (Yield (Chunk (basicLength v)
-                                           (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
-                                                                          (M.basicLength mv == basicLength v)
-                                                   $ basicUnsafeCopy mv v)) s')
-        Skip    s' -> return (Skip s')
-        Done       -> return Done
-
-reVector :: Monad m => Stream m a -> Stream m a
-{-# INLINE_FUSED reVector #-}
-reVector (Stream step s, sSize = n} = Stream step s n
-
-{-# RULES
-
-"reVector [Vector]"
-  reVector = id
-
-"reVector/reVector [Vector]" forall s.
-  reVector (reVector s) = s   #-}
-
-
--}
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Util.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Util.hs
deleted file mode 100644
index 855bf5ddd40d..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Util.hs
+++ /dev/null
@@ -1,60 +0,0 @@
-{-# LANGUAGE CPP #-}
--- |
--- Module      : Data.Vector.Fusion.Util
--- Copyright   : (c) Roman Leshchinskiy 2009
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : portable
---
--- Fusion-related utility types
---
-
-module Data.Vector.Fusion.Util (
-  Id(..), Box(..),
-
-  delay_inline, delayed_min
-) where
-
-#if !MIN_VERSION_base(4,8,0)
-import Control.Applicative (Applicative(..))
-#endif
-
--- | Identity monad
-newtype Id a = Id { unId :: a }
-
-instance Functor Id where
-  fmap f (Id x) = Id (f x)
-
-instance Applicative Id where
-  pure = Id
-  Id f <*> Id x = Id (f x)
-
-instance Monad Id where
-  return = pure
-  Id x >>= f = f x
-
--- | Box monad
-data Box a = Box { unBox :: a }
-
-instance Functor Box where
-  fmap f (Box x) = Box (f x)
-
-instance Applicative Box where
-  pure = Box
-  Box f <*> Box x = Box (f x)
-
-instance Monad Box where
-  return = pure
-  Box x >>= f = f x
-
--- | Delay inlining a function until late in the game (simplifier phase 0).
-delay_inline :: (a -> b) -> a -> b
-{-# INLINE [0] delay_inline #-}
-delay_inline f = f
-
--- | `min` inlined in phase 0
-delayed_min :: Int -> Int -> Int
-{-# INLINE [0] delayed_min #-}
-delayed_min m n = min m n
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic.hs
deleted file mode 100644
index 066c07fd3d1d..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic.hs
+++ /dev/null
@@ -1,2206 +0,0 @@
-{-# LANGUAGE CPP, Rank2Types, MultiParamTypeClasses, FlexibleContexts,
-             TypeFamilies, ScopedTypeVariables, BangPatterns #-}
--- |
--- Module      : Data.Vector.Generic
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Generic interface to pure vectors.
---
-
-module Data.Vector.Generic (
-  -- * Immutable vectors
-  Vector(..), Mutable,
-
-  -- * Accessors
-
-  -- ** Length information
-  length, null,
-
-  -- ** Indexing
-  (!), (!?), head, last,
-  unsafeIndex, unsafeHead, unsafeLast,
-
-  -- ** Monadic indexing
-  indexM, headM, lastM,
-  unsafeIndexM, unsafeHeadM, unsafeLastM,
-
-  -- ** Extracting subvectors (slicing)
-  slice, init, tail, take, drop, splitAt,
-  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-
-  -- * Construction
-
-  -- ** Initialisation
-  empty, singleton, replicate, generate, iterateN,
-
-  -- ** Monadic initialisation
-  replicateM, generateM, iterateNM, create, createT,
-
-  -- ** Unfolding
-  unfoldr, unfoldrN,
-  unfoldrM, unfoldrNM,
-  constructN, constructrN,
-
-  -- ** Enumeration
-  enumFromN, enumFromStepN, enumFromTo, enumFromThenTo,
-
-  -- ** Concatenation
-  cons, snoc, (++), concat, concatNE,
-
-  -- ** Restricting memory usage
-  force,
-
-  -- * Modifying vectors
-
-  -- ** Bulk updates
-  (//), update, update_,
-  unsafeUpd, unsafeUpdate, unsafeUpdate_,
-
-  -- ** Accumulations
-  accum, accumulate, accumulate_,
-  unsafeAccum, unsafeAccumulate, unsafeAccumulate_,
-
-  -- ** Permutations
-  reverse, backpermute, unsafeBackpermute,
-
-  -- ** Safe destructive updates
-  modify,
-
-  -- * Elementwise operations
-
-  -- ** Indexing
-  indexed,
-
-  -- ** Mapping
-  map, imap, concatMap,
-
-  -- ** Monadic mapping
-  mapM, imapM, mapM_, imapM_, forM, forM_,
-
-  -- ** Zipping
-  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
-  izipWith, izipWith3, izipWith4, izipWith5, izipWith6,
-  zip, zip3, zip4, zip5, zip6,
-
-  -- ** Monadic zipping
-  zipWithM, izipWithM, zipWithM_, izipWithM_,
-
-  -- ** Unzipping
-  unzip, unzip3, unzip4, unzip5, unzip6,
-
-  -- * Working with predicates
-
-  -- ** Filtering
-  filter, ifilter, uniq,
-  mapMaybe, imapMaybe,
-  filterM,
-  takeWhile, dropWhile,
-
-  -- ** Partitioning
-  partition, unstablePartition, span, break,
-
-  -- ** Searching
-  elem, notElem, find, findIndex, findIndices, elemIndex, elemIndices,
-
-  -- * Folding
-  foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1',
-  ifoldl, ifoldl', ifoldr, ifoldr',
-
-  -- ** Specialised folds
-  all, any, and, or,
-  sum, product,
-  maximum, maximumBy, minimum, minimumBy,
-  minIndex, minIndexBy, maxIndex, maxIndexBy,
-
-  -- ** Monadic folds
-  foldM, ifoldM, foldM', ifoldM',
-  fold1M, fold1M', foldM_, ifoldM_,
-  foldM'_, ifoldM'_, fold1M_, fold1M'_,
-
-  -- ** Monadic sequencing
-  sequence, sequence_,
-
-  -- * Prefix sums (scans)
-  prescanl, prescanl',
-  postscanl, postscanl',
-  scanl, scanl', scanl1, scanl1',
-  iscanl, iscanl',
-  prescanr, prescanr',
-  postscanr, postscanr',
-  scanr, scanr', scanr1, scanr1',
-  iscanr, iscanr',
-
-  -- * Conversions
-
-  -- ** Lists
-  toList, fromList, fromListN,
-
-  -- ** Different vector types
-  convert,
-
-  -- ** Mutable vectors
-  freeze, thaw, copy, unsafeFreeze, unsafeThaw, unsafeCopy,
-
-  -- * Fusion support
-
-  -- ** Conversion to/from Bundles
-  stream, unstream, streamR, unstreamR,
-
-  -- ** Recycling support
-  new, clone,
-
-  -- * Utilities
-
-  -- ** Comparisons
-  eq, cmp,
-  eqBy, cmpBy,
-
-  -- ** Show and Read
-  showsPrec, readPrec,
-  liftShowsPrec, liftReadsPrec,
-
-  -- ** @Data@ and @Typeable@
-  gfoldl, dataCast, mkType
-) where
-
-import           Data.Vector.Generic.Base
-
-import qualified Data.Vector.Generic.Mutable as M
-
-import qualified Data.Vector.Generic.New as New
-import           Data.Vector.Generic.New ( New )
-
-import qualified Data.Vector.Fusion.Bundle as Bundle
-import           Data.Vector.Fusion.Bundle ( Bundle, MBundle, lift, inplace )
-import qualified Data.Vector.Fusion.Bundle.Monadic as MBundle
-import           Data.Vector.Fusion.Stream.Monadic ( Stream )
-import qualified Data.Vector.Fusion.Stream.Monadic as S
-import           Data.Vector.Fusion.Bundle.Size
-import           Data.Vector.Fusion.Util
-
-import Control.Monad.ST ( ST, runST )
-import Control.Monad.Primitive
-import Prelude hiding ( length, null,
-                        replicate, (++), concat,
-                        head, last,
-                        init, tail, take, drop, splitAt, reverse,
-                        map, concat, concatMap,
-                        zipWith, zipWith3, zip, zip3, unzip, unzip3,
-                        filter, takeWhile, dropWhile, span, break,
-                        elem, notElem,
-                        foldl, foldl1, foldr, foldr1,
-                        all, any, and, or, sum, product, maximum, minimum,
-                        scanl, scanl1, scanr, scanr1,
-                        enumFromTo, enumFromThenTo,
-                        mapM, mapM_, sequence, sequence_,
-                        showsPrec )
-
-import qualified Text.Read as Read
-import qualified Data.List.NonEmpty as NonEmpty
-
-#if __GLASGOW_HASKELL__ >= 707
-import Data.Typeable ( Typeable, gcast1 )
-#else
-import Data.Typeable ( Typeable1, gcast1 )
-#endif
-
-#include "vector.h"
-
-import Data.Data ( Data, DataType )
-#if MIN_VERSION_base(4,2,0)
-import Data.Data ( mkNoRepType )
-#else
-import Data.Data ( mkNorepType )
-mkNoRepType :: String -> DataType
-mkNoRepType = mkNorepType
-#endif
-
-import qualified Data.Traversable as T (Traversable(mapM))
-
--- Length information
--- ------------------
-
--- | /O(1)/ Yield the length of the vector
-length :: Vector v a => v a -> Int
-{-# INLINE length #-}
-length = Bundle.length . stream'
-
--- | /O(1)/ Test whether a vector is empty
-null :: Vector v a => v a -> Bool
-{-# INLINE null #-}
-null = Bundle.null . stream
-
--- Indexing
--- --------
-
-infixl 9 !
--- | O(1) Indexing
-(!) :: Vector v a => v a -> Int -> a
-{-# INLINE_FUSED (!) #-}
-(!) v i = BOUNDS_CHECK(checkIndex) "(!)" i (length v)
-        $ unId (basicUnsafeIndexM v i)
-
-infixl 9 !?
--- | O(1) Safe indexing
-(!?) :: Vector v a => v a -> Int -> Maybe a
-{-# INLINE_FUSED (!?) #-}
-v !? i | i < 0 || i >= length v = Nothing
-       | otherwise              = Just $ unsafeIndex v i
-
--- | /O(1)/ First element
-head :: Vector v a => v a -> a
-{-# INLINE_FUSED head #-}
-head v = v ! 0
-
--- | /O(1)/ Last element
-last :: Vector v a => v a -> a
-{-# INLINE_FUSED last #-}
-last v = v ! (length v - 1)
-
--- | /O(1)/ Unsafe indexing without bounds checking
-unsafeIndex :: Vector v a => v a -> Int -> a
-{-# INLINE_FUSED unsafeIndex #-}
-unsafeIndex v i = UNSAFE_CHECK(checkIndex) "unsafeIndex" i (length v)
-                $ unId (basicUnsafeIndexM v i)
-
--- | /O(1)/ First element without checking if the vector is empty
-unsafeHead :: Vector v a => v a -> a
-{-# INLINE_FUSED unsafeHead #-}
-unsafeHead v = unsafeIndex v 0
-
--- | /O(1)/ Last element without checking if the vector is empty
-unsafeLast :: Vector v a => v a -> a
-{-# INLINE_FUSED unsafeLast #-}
-unsafeLast v = unsafeIndex v (length v - 1)
-
-{-# RULES
-
-"(!)/unstream [Vector]" forall i s.
-  new (New.unstream s) ! i = s Bundle.!! i
-
-"(!?)/unstream [Vector]" forall i s.
-  new (New.unstream s) !? i = s Bundle.!? i
-
-"head/unstream [Vector]" forall s.
-  head (new (New.unstream s)) = Bundle.head s
-
-"last/unstream [Vector]" forall s.
-  last (new (New.unstream s)) = Bundle.last s
-
-"unsafeIndex/unstream [Vector]" forall i s.
-  unsafeIndex (new (New.unstream s)) i = s Bundle.!! i
-
-"unsafeHead/unstream [Vector]" forall s.
-  unsafeHead (new (New.unstream s)) = Bundle.head s
-
-"unsafeLast/unstream [Vector]" forall s.
-  unsafeLast (new (New.unstream s)) = Bundle.last s  #-}
-
-
-
--- Monadic indexing
--- ----------------
-
--- | /O(1)/ Indexing in a monad.
---
--- The monad allows operations to be strict in the vector when necessary.
--- Suppose vector copying is implemented like this:
---
--- > copy mv v = ... write mv i (v ! i) ...
---
--- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@
--- would unnecessarily retain a reference to @v@ in each element written.
---
--- With 'indexM', copying can be implemented like this instead:
---
--- > copy mv v = ... do
--- >                   x <- indexM v i
--- >                   write mv i x
---
--- Here, no references to @v@ are retained because indexing (but /not/ the
--- elements) is evaluated eagerly.
---
-indexM :: (Vector v a, Monad m) => v a -> Int -> m a
-{-# INLINE_FUSED indexM #-}
-indexM v i = BOUNDS_CHECK(checkIndex) "indexM" i (length v)
-           $ basicUnsafeIndexM v i
-
--- | /O(1)/ First element of a vector in a monad. See 'indexM' for an
--- explanation of why this is useful.
-headM :: (Vector v a, Monad m) => v a -> m a
-{-# INLINE_FUSED headM #-}
-headM v = indexM v 0
-
--- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an
--- explanation of why this is useful.
-lastM :: (Vector v a, Monad m) => v a -> m a
-{-# INLINE_FUSED lastM #-}
-lastM v = indexM v (length v - 1)
-
--- | /O(1)/ Indexing in a monad without bounds checks. See 'indexM' for an
--- explanation of why this is useful.
-unsafeIndexM :: (Vector v a, Monad m) => v a -> Int -> m a
-{-# INLINE_FUSED unsafeIndexM #-}
-unsafeIndexM v i = UNSAFE_CHECK(checkIndex) "unsafeIndexM" i (length v)
-                 $ basicUnsafeIndexM v i
-
--- | /O(1)/ First element in a monad without checking for empty vectors.
--- See 'indexM' for an explanation of why this is useful.
-unsafeHeadM :: (Vector v a, Monad m) => v a -> m a
-{-# INLINE_FUSED unsafeHeadM #-}
-unsafeHeadM v = unsafeIndexM v 0
-
--- | /O(1)/ Last element in a monad without checking for empty vectors.
--- See 'indexM' for an explanation of why this is useful.
-unsafeLastM :: (Vector v a, Monad m) => v a -> m a
-{-# INLINE_FUSED unsafeLastM #-}
-unsafeLastM v = unsafeIndexM v (length v - 1)
-
-{-# RULES
-
-"indexM/unstream [Vector]" forall s i.
-  indexM (new (New.unstream s)) i = lift s MBundle.!! i
-
-"headM/unstream [Vector]" forall s.
-  headM (new (New.unstream s)) = MBundle.head (lift s)
-
-"lastM/unstream [Vector]" forall s.
-  lastM (new (New.unstream s)) = MBundle.last (lift s)
-
-"unsafeIndexM/unstream [Vector]" forall s i.
-  unsafeIndexM (new (New.unstream s)) i = lift s MBundle.!! i
-
-"unsafeHeadM/unstream [Vector]" forall s.
-  unsafeHeadM (new (New.unstream s)) = MBundle.head (lift s)
-
-"unsafeLastM/unstream [Vector]" forall s.
-  unsafeLastM (new (New.unstream s)) = MBundle.last (lift s)   #-}
-
-
-
--- Extracting subvectors (slicing)
--- -------------------------------
-
--- | /O(1)/ Yield a slice of the vector without copying it. The vector must
--- contain at least @i+n@ elements.
-slice :: Vector v a => Int   -- ^ @i@ starting index
-                    -> Int   -- ^ @n@ length
-                    -> v a
-                    -> v a
-{-# INLINE_FUSED slice #-}
-slice i n v = BOUNDS_CHECK(checkSlice) "slice" i n (length v)
-            $ basicUnsafeSlice i n v
-
--- | /O(1)/ Yield all but the last element without copying. The vector may not
--- be empty.
-init :: Vector v a => v a -> v a
-{-# INLINE_FUSED init #-}
-init v = slice 0 (length v - 1) v
-
--- | /O(1)/ Yield all but the first element without copying. The vector may not
--- be empty.
-tail :: Vector v a => v a -> v a
-{-# INLINE_FUSED tail #-}
-tail v = slice 1 (length v - 1) v
-
--- | /O(1)/ Yield the first @n@ elements without copying. The vector may
--- contain less than @n@ elements in which case it is returned unchanged.
-take :: Vector v a => Int -> v a -> v a
-{-# INLINE_FUSED take #-}
-take n v = unsafeSlice 0 (delay_inline min n' (length v)) v
-  where n' = max n 0
-
--- | /O(1)/ Yield all but the first @n@ elements without copying. The vector may
--- contain less than @n@ elements in which case an empty vector is returned.
-drop :: Vector v a => Int -> v a -> v a
-{-# INLINE_FUSED drop #-}
-drop n v = unsafeSlice (delay_inline min n' len)
-                       (delay_inline max 0 (len - n')) v
-  where n' = max n 0
-        len = length v
-
--- | /O(1)/ Yield the first @n@ elements paired with the remainder without copying.
---
--- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@
--- but slightly more efficient.
-{-# INLINE_FUSED splitAt #-}
-splitAt :: Vector v a => Int -> v a -> (v a, v a)
-splitAt n v = ( unsafeSlice 0 m v
-              , unsafeSlice m (delay_inline max 0 (len - n')) v
-              )
-    where
-      m   = delay_inline min n' len
-      n'  = max n 0
-      len = length v
-
--- | /O(1)/ Yield a slice of the vector without copying. The vector must
--- contain at least @i+n@ elements but this is not checked.
-unsafeSlice :: Vector v a => Int   -- ^ @i@ starting index
-                          -> Int   -- ^ @n@ length
-                          -> v a
-                          -> v a
-{-# INLINE_FUSED unsafeSlice #-}
-unsafeSlice i n v = UNSAFE_CHECK(checkSlice) "unsafeSlice" i n (length v)
-                  $ basicUnsafeSlice i n v
-
--- | /O(1)/ Yield all but the last element without copying. The vector may not
--- be empty but this is not checked.
-unsafeInit :: Vector v a => v a -> v a
-{-# INLINE_FUSED unsafeInit #-}
-unsafeInit v = unsafeSlice 0 (length v - 1) v
-
--- | /O(1)/ Yield all but the first element without copying. The vector may not
--- be empty but this is not checked.
-unsafeTail :: Vector v a => v a -> v a
-{-# INLINE_FUSED unsafeTail #-}
-unsafeTail v = unsafeSlice 1 (length v - 1) v
-
--- | /O(1)/ Yield the first @n@ elements without copying. The vector must
--- contain at least @n@ elements but this is not checked.
-unsafeTake :: Vector v a => Int -> v a -> v a
-{-# INLINE unsafeTake #-}
-unsafeTake n v = unsafeSlice 0 n v
-
--- | /O(1)/ Yield all but the first @n@ elements without copying. The vector
--- must contain at least @n@ elements but this is not checked.
-unsafeDrop :: Vector v a => Int -> v a -> v a
-{-# INLINE unsafeDrop #-}
-unsafeDrop n v = unsafeSlice n (length v - n) v
-
-{-# RULES
-
-"slice/new [Vector]" forall i n p.
-  slice i n (new p) = new (New.slice i n p)
-
-"init/new [Vector]" forall p.
-  init (new p) = new (New.init p)
-
-"tail/new [Vector]" forall p.
-  tail (new p) = new (New.tail p)
-
-"take/new [Vector]" forall n p.
-  take n (new p) = new (New.take n p)
-
-"drop/new [Vector]" forall n p.
-  drop n (new p) = new (New.drop n p)
-
-"unsafeSlice/new [Vector]" forall i n p.
-  unsafeSlice i n (new p) = new (New.unsafeSlice i n p)
-
-"unsafeInit/new [Vector]" forall p.
-  unsafeInit (new p) = new (New.unsafeInit p)
-
-"unsafeTail/new [Vector]" forall p.
-  unsafeTail (new p) = new (New.unsafeTail p)   #-}
-
-
-
--- Initialisation
--- --------------
-
--- | /O(1)/ Empty vector
-empty :: Vector v a => v a
-{-# INLINE empty #-}
-empty = unstream Bundle.empty
-
--- | /O(1)/ Vector with exactly one element
-singleton :: forall v a. Vector v a => a -> v a
-{-# INLINE singleton #-}
-singleton x = elemseq (undefined :: v a) x
-            $ unstream (Bundle.singleton x)
-
--- | /O(n)/ Vector of the given length with the same value in each position
-replicate :: forall v a. Vector v a => Int -> a -> v a
-{-# INLINE replicate #-}
-replicate n x = elemseq (undefined :: v a) x
-              $ unstream
-              $ Bundle.replicate n x
-
--- | /O(n)/ Construct a vector of the given length by applying the function to
--- each index
-generate :: Vector v a => Int -> (Int -> a) -> v a
-{-# INLINE generate #-}
-generate n f = unstream (Bundle.generate n f)
-
--- | /O(n)/ Apply function n times to value. Zeroth element is original value.
-iterateN :: Vector v a => Int -> (a -> a) -> a -> v a
-{-# INLINE iterateN #-}
-iterateN n f x = unstream (Bundle.iterateN n f x)
-
--- Unfolding
--- ---------
-
--- | /O(n)/ Construct a vector by repeatedly applying the generator function
--- to a seed. The generator function yields 'Just' the next element and the
--- new seed or 'Nothing' if there are no more elements.
---
--- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10
--- >  = <10,9,8,7,6,5,4,3,2,1>
-unfoldr :: Vector v a => (b -> Maybe (a, b)) -> b -> v a
-{-# INLINE unfoldr #-}
-unfoldr f = unstream . Bundle.unfoldr f
-
--- | /O(n)/ Construct a vector with at most @n@ elements by repeatedly applying
--- the generator function to a seed. The generator function yields 'Just' the
--- next element and the new seed or 'Nothing' if there are no more elements.
---
--- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8>
-unfoldrN  :: Vector v a => Int -> (b -> Maybe (a, b)) -> b -> v a
-{-# INLINE unfoldrN #-}
-unfoldrN n f = unstream . Bundle.unfoldrN n f
-
--- | /O(n)/ Construct a vector by repeatedly applying the monadic
--- generator function to a seed. The generator function yields 'Just'
--- the next element and the new seed or 'Nothing' if there are no more
--- elements.
-unfoldrM :: (Monad m, Vector v a) => (b -> m (Maybe (a, b))) -> b -> m (v a)
-{-# INLINE unfoldrM #-}
-unfoldrM f = unstreamM . MBundle.unfoldrM f
-
--- | /O(n)/ Construct a vector by repeatedly applying the monadic
--- generator function to a seed. The generator function yields 'Just'
--- the next element and the new seed or 'Nothing' if there are no more
--- elements.
-unfoldrNM :: (Monad m, Vector v a) => Int -> (b -> m (Maybe (a, b))) -> b -> m (v a)
-{-# INLINE unfoldrNM #-}
-unfoldrNM n f = unstreamM . MBundle.unfoldrNM n f
-
--- | /O(n)/ Construct a vector with @n@ elements by repeatedly applying the
--- generator function to the already constructed part of the vector.
---
--- > constructN 3 f = let a = f <> ; b = f <a> ; c = f <a,b> in f <a,b,c>
---
-constructN :: forall v a. Vector v a => Int -> (v a -> a) -> v a
-{-# INLINE constructN #-}
--- NOTE: We *CANNOT* wrap this in New and then fuse because the elements
--- might contain references to the immutable vector!
-constructN !n f = runST (
-  do
-    v  <- M.new n
-    v' <- unsafeFreeze v
-    fill v' 0
-  )
-  where
-    fill :: forall s. v a -> Int -> ST s (v a)
-    fill !v i | i < n = let x = f (unsafeTake i v)
-                        in
-                        elemseq v x $
-                        do
-                          v'  <- unsafeThaw v
-                          M.unsafeWrite v' i x
-                          v'' <- unsafeFreeze v'
-                          fill v'' (i+1)
-
-    fill v _ = return v
-
--- | /O(n)/ Construct a vector with @n@ elements from right to left by
--- repeatedly applying the generator function to the already constructed part
--- of the vector.
---
--- > constructrN 3 f = let a = f <> ; b = f<a> ; c = f <b,a> in f <c,b,a>
---
-constructrN :: forall v a. Vector v a => Int -> (v a -> a) -> v a
-{-# INLINE constructrN #-}
--- NOTE: We *CANNOT* wrap this in New and then fuse because the elements
--- might contain references to the immutable vector!
-constructrN !n f = runST (
-  do
-    v  <- n `seq` M.new n
-    v' <- unsafeFreeze v
-    fill v' 0
-  )
-  where
-    fill :: forall s. v a -> Int -> ST s (v a)
-    fill !v i | i < n = let x = f (unsafeSlice (n-i) i v)
-                        in
-                        elemseq v x $
-                        do
-                          v'  <- unsafeThaw v
-                          M.unsafeWrite v' (n-i-1) x
-                          v'' <- unsafeFreeze v'
-                          fill v'' (i+1)
-
-    fill v _ = return v
-
-
--- Enumeration
--- -----------
-
--- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+1@
--- etc. This operation is usually more efficient than 'enumFromTo'.
---
--- > enumFromN 5 3 = <5,6,7>
-enumFromN :: (Vector v a, Num a) => a -> Int -> v a
-{-# INLINE enumFromN #-}
-enumFromN x n = enumFromStepN x 1 n
-
--- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@,
--- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'.
---
--- > enumFromStepN 1 0.1 5 = <1,1.1,1.2,1.3,1.4>
-enumFromStepN :: forall v a. (Vector v a, Num a) => a -> a -> Int -> v a
-{-# INLINE enumFromStepN #-}
-enumFromStepN x y n = elemseq (undefined :: v a) x
-                    $ elemseq (undefined :: v a) y
-                    $ unstream
-                    $ Bundle.enumFromStepN  x y n
-
--- | /O(n)/ Enumerate values from @x@ to @y@.
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromN' instead.
-enumFromTo :: (Vector v a, Enum a) => a -> a -> v a
-{-# INLINE enumFromTo #-}
-enumFromTo x y = unstream (Bundle.enumFromTo x y)
-
--- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@.
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromThenTo :: (Vector v a, Enum a) => a -> a -> a -> v a
-{-# INLINE enumFromThenTo #-}
-enumFromThenTo x y z = unstream (Bundle.enumFromThenTo x y z)
-
--- Concatenation
--- -------------
-
--- | /O(n)/ Prepend an element
-cons :: forall v a. Vector v a => a -> v a -> v a
-{-# INLINE cons #-}
-cons x v = elemseq (undefined :: v a) x
-         $ unstream
-         $ Bundle.cons x
-         $ stream v
-
--- | /O(n)/ Append an element
-snoc :: forall v a. Vector v a => v a -> a -> v a
-{-# INLINE snoc #-}
-snoc v x = elemseq (undefined :: v a) x
-         $ unstream
-         $ Bundle.snoc (stream v) x
-
-infixr 5 ++
--- | /O(m+n)/ Concatenate two vectors
-(++) :: Vector v a => v a -> v a -> v a
-{-# INLINE (++) #-}
-v ++ w = unstream (stream v Bundle.++ stream w)
-
--- | /O(n)/ Concatenate all vectors in the list
-concat :: Vector v a => [v a] -> v a
-{-# INLINE concat #-}
-concat = unstream . Bundle.fromVectors
-{-
-concat vs = unstream (Bundle.flatten mk step (Exact n) (Bundle.fromList vs))
-  where
-    n = List.foldl' (\k v -> k + length v) 0 vs
-
-    {-# INLINE_INNER step #-}
-    step (v,i,k)
-      | i < k = case unsafeIndexM v i of
-                  Box x -> Bundle.Yield x (v,i+1,k)
-      | otherwise = Bundle.Done
-
-    {-# INLINE mk #-}
-    mk v = let k = length v
-           in
-           k `seq` (v,0,k)
--}
-
--- | /O(n)/ Concatenate all vectors in the non-empty list
-concatNE :: Vector v a => NonEmpty.NonEmpty (v a) -> v a
-concatNE = concat . NonEmpty.toList
-
--- Monadic initialisation
--- ----------------------
-
--- | /O(n)/ Execute the monadic action the given number of times and store the
--- results in a vector.
-replicateM :: (Monad m, Vector v a) => Int -> m a -> m (v a)
-{-# INLINE replicateM #-}
-replicateM n m = unstreamM (MBundle.replicateM n m)
-
--- | /O(n)/ Construct a vector of the given length by applying the monadic
--- action to each index
-generateM :: (Monad m, Vector v a) => Int -> (Int -> m a) -> m (v a)
-{-# INLINE generateM #-}
-generateM n f = unstreamM (MBundle.generateM n f)
-
--- | /O(n)/ Apply monadic function n times to value. Zeroth element is original value.
-iterateNM :: (Monad m, Vector v a) => Int -> (a -> m a) -> a -> m (v a)
-{-# INLINE iterateNM #-}
-iterateNM n f x = unstreamM (MBundle.iterateNM n f x)
-
--- | Execute the monadic action and freeze the resulting vector.
---
--- @
--- create (do { v \<- 'M.new' 2; 'M.write' v 0 \'a\'; 'M.write' v 1 \'b\'; return v }) = \<'a','b'\>
--- @
-create :: Vector v a => (forall s. ST s (Mutable v s a)) -> v a
-{-# INLINE create #-}
-create p = new (New.create p)
-
--- | Execute the monadic action and freeze the resulting vectors.
-createT
-  :: (T.Traversable f, Vector v a)
-  => (forall s. ST s (f (Mutable v s a))) -> f (v a)
-{-# INLINE createT #-}
-createT p = runST (p >>= T.mapM unsafeFreeze)
-
--- Restricting memory usage
--- ------------------------
-
--- | /O(n)/ Yield the argument but force it not to retain any extra memory,
--- possibly by copying it.
---
--- This is especially useful when dealing with slices. For example:
---
--- > force (slice 0 2 <huge vector>)
---
--- Here, the slice retains a reference to the huge vector. Forcing it creates
--- a copy of just the elements that belong to the slice and allows the huge
--- vector to be garbage collected.
-force :: Vector v a => v a -> v a
--- FIXME: we probably ought to inline this later as the rules still might fire
--- otherwise
-{-# INLINE_FUSED force #-}
-force v = new (clone v)
-
--- Bulk updates
--- ------------
-
--- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector
--- element at position @i@ by @a@.
---
--- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7>
---
-(//) :: Vector v a => v a        -- ^ initial vector (of length @m@)
-                   -> [(Int, a)] -- ^ list of index/value pairs (of length @n@)
-                   -> v a
-{-# INLINE (//) #-}
-v // us = update_stream v (Bundle.fromList us)
-
--- | /O(m+n)/ For each pair @(i,a)@ from the vector of index/value pairs,
--- replace the vector element at position @i@ by @a@.
---
--- > update <5,9,2,7> <(2,1),(0,3),(2,8)> = <3,9,8,7>
---
-update :: (Vector v a, Vector v (Int, a))
-        => v a        -- ^ initial vector (of length @m@)
-        -> v (Int, a) -- ^ vector of index/value pairs (of length @n@)
-        -> v a
-{-# INLINE update #-}
-update v w = update_stream v (stream w)
-
--- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
--- corresponding value @a@ from the value vector, replace the element of the
--- initial vector at position @i@ by @a@.
---
--- > update_ <5,9,2,7>  <2,0,2> <1,3,8> = <3,9,8,7>
---
--- This function is useful for instances of 'Vector' that cannot store pairs.
--- Otherwise, 'update' is probably more convenient.
---
--- @
--- update_ xs is ys = 'update' xs ('zip' is ys)
--- @
-update_ :: (Vector v a, Vector v Int)
-        => v a   -- ^ initial vector (of length @m@)
-        -> v Int -- ^ index vector (of length @n1@)
-        -> v a   -- ^ value vector (of length @n2@)
-        -> v a
-{-# INLINE update_ #-}
-update_ v is w = update_stream v (Bundle.zipWith (,) (stream is) (stream w))
-
-update_stream :: Vector v a => v a -> Bundle u (Int,a) -> v a
-{-# INLINE update_stream #-}
-update_stream = modifyWithBundle M.update
-
--- | Same as ('//') but without bounds checking.
-unsafeUpd :: Vector v a => v a -> [(Int, a)] -> v a
-{-# INLINE unsafeUpd #-}
-unsafeUpd v us = unsafeUpdate_stream v (Bundle.fromList us)
-
--- | Same as 'update' but without bounds checking.
-unsafeUpdate :: (Vector v a, Vector v (Int, a)) => v a -> v (Int, a) -> v a
-{-# INLINE unsafeUpdate #-}
-unsafeUpdate v w = unsafeUpdate_stream v (stream w)
-
--- | Same as 'update_' but without bounds checking.
-unsafeUpdate_ :: (Vector v a, Vector v Int) => v a -> v Int -> v a -> v a
-{-# INLINE unsafeUpdate_ #-}
-unsafeUpdate_ v is w
-  = unsafeUpdate_stream v (Bundle.zipWith (,) (stream is) (stream w))
-
-unsafeUpdate_stream :: Vector v a => v a -> Bundle u (Int,a) -> v a
-{-# INLINE unsafeUpdate_stream #-}
-unsafeUpdate_stream = modifyWithBundle M.unsafeUpdate
-
--- Accumulations
--- -------------
-
--- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element
--- @a@ at position @i@ by @f a b@.
---
--- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4>
-accum :: Vector v a
-      => (a -> b -> a) -- ^ accumulating function @f@
-      -> v a           -- ^ initial vector (of length @m@)
-      -> [(Int,b)]     -- ^ list of index/value pairs (of length @n@)
-      -> v a
-{-# INLINE accum #-}
-accum f v us = accum_stream f v (Bundle.fromList us)
-
--- | /O(m+n)/ For each pair @(i,b)@ from the vector of pairs, replace the vector
--- element @a@ at position @i@ by @f a b@.
---
--- > accumulate (+) <5,9,2> <(2,4),(1,6),(0,3),(1,7)> = <5+3, 9+6+7, 2+4>
-accumulate :: (Vector v a, Vector v (Int, b))
-           => (a -> b -> a) -- ^ accumulating function @f@
-           -> v a           -- ^ initial vector (of length @m@)
-           -> v (Int,b)     -- ^ vector of index/value pairs (of length @n@)
-           -> v a
-{-# INLINE accumulate #-}
-accumulate f v us = accum_stream f v (stream us)
-
--- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
--- corresponding value @b@ from the the value vector,
--- replace the element of the initial vector at
--- position @i@ by @f a b@.
---
--- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4>
---
--- This function is useful for instances of 'Vector' that cannot store pairs.
--- Otherwise, 'accumulate' is probably more convenient:
---
--- @
--- accumulate_ f as is bs = 'accumulate' f as ('zip' is bs)
--- @
-accumulate_ :: (Vector v a, Vector v Int, Vector v b)
-                => (a -> b -> a) -- ^ accumulating function @f@
-                -> v a           -- ^ initial vector (of length @m@)
-                -> v Int         -- ^ index vector (of length @n1@)
-                -> v b           -- ^ value vector (of length @n2@)
-                -> v a
-{-# INLINE accumulate_ #-}
-accumulate_ f v is xs = accum_stream f v (Bundle.zipWith (,) (stream is)
-                                                             (stream xs))
-
-
-accum_stream :: Vector v a => (a -> b -> a) -> v a -> Bundle u (Int,b) -> v a
-{-# INLINE accum_stream #-}
-accum_stream f = modifyWithBundle (M.accum f)
-
--- | Same as 'accum' but without bounds checking.
-unsafeAccum :: Vector v a => (a -> b -> a) -> v a -> [(Int,b)] -> v a
-{-# INLINE unsafeAccum #-}
-unsafeAccum f v us = unsafeAccum_stream f v (Bundle.fromList us)
-
--- | Same as 'accumulate' but without bounds checking.
-unsafeAccumulate :: (Vector v a, Vector v (Int, b))
-                => (a -> b -> a) -> v a -> v (Int,b) -> v a
-{-# INLINE unsafeAccumulate #-}
-unsafeAccumulate f v us = unsafeAccum_stream f v (stream us)
-
--- | Same as 'accumulate_' but without bounds checking.
-unsafeAccumulate_ :: (Vector v a, Vector v Int, Vector v b)
-                => (a -> b -> a) -> v a -> v Int -> v b -> v a
-{-# INLINE unsafeAccumulate_ #-}
-unsafeAccumulate_ f v is xs
-  = unsafeAccum_stream f v (Bundle.zipWith (,) (stream is) (stream xs))
-
-unsafeAccum_stream
-  :: Vector v a => (a -> b -> a) -> v a -> Bundle u (Int,b) -> v a
-{-# INLINE unsafeAccum_stream #-}
-unsafeAccum_stream f = modifyWithBundle (M.unsafeAccum f)
-
--- Permutations
--- ------------
-
--- | /O(n)/ Reverse a vector
-reverse :: (Vector v a) => v a -> v a
-{-# INLINE reverse #-}
--- FIXME: make this fuse better, add support for recycling
-reverse = unstream . streamR
-
--- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the
--- index vector by @xs'!'i@. This is equivalent to @'map' (xs'!') is@ but is
--- often much more efficient.
---
--- > backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a>
-backpermute :: (Vector v a, Vector v Int)
-            => v a   -- ^ @xs@ value vector
-            -> v Int -- ^ @is@ index vector (of length @n@)
-            -> v a
-{-# INLINE backpermute #-}
--- This somewhat non-intuitive definition ensures that the resulting vector
--- does not retain references to the original one even if it is lazy in its
--- elements. This would not be the case if we simply used map (v!)
-backpermute v is = seq v
-                 $ seq n
-                 $ unstream
-                 $ Bundle.unbox
-                 $ Bundle.map index
-                 $ stream is
-  where
-    n = length v
-
-    {-# INLINE index #-}
-    -- NOTE: we do it this way to avoid triggering LiberateCase on n in
-    -- polymorphic code
-    index i = BOUNDS_CHECK(checkIndex) "backpermute" i n
-            $ basicUnsafeIndexM v i
-
--- | Same as 'backpermute' but without bounds checking.
-unsafeBackpermute :: (Vector v a, Vector v Int) => v a -> v Int -> v a
-{-# INLINE unsafeBackpermute #-}
-unsafeBackpermute v is = seq v
-                       $ seq n
-                       $ unstream
-                       $ Bundle.unbox
-                       $ Bundle.map index
-                       $ stream is
-  where
-    n = length v
-
-    {-# INLINE index #-}
-    -- NOTE: we do it this way to avoid triggering LiberateCase on n in
-    -- polymorphic code
-    index i = UNSAFE_CHECK(checkIndex) "unsafeBackpermute" i n
-            $ basicUnsafeIndexM v i
-
--- Safe destructive updates
--- ------------------------
-
--- | Apply a destructive operation to a vector. The operation will be
--- performed in place if it is safe to do so and will modify a copy of the
--- vector otherwise.
---
--- @
--- modify (\\v -> 'M.write' v 0 \'x\') ('replicate' 3 \'a\') = \<\'x\',\'a\',\'a\'\>
--- @
-modify :: Vector v a => (forall s. Mutable v s a -> ST s ()) -> v a -> v a
-{-# INLINE modify #-}
-modify p = new . New.modify p . clone
-
--- We have to make sure that this is strict in the stream but we can't seq on
--- it while fusion is happening. Hence this ugliness.
-modifyWithBundle :: Vector v a
-                 => (forall s. Mutable v s a -> Bundle u b -> ST s ())
-                 -> v a -> Bundle u b -> v a
-{-# INLINE modifyWithBundle #-}
-modifyWithBundle p v s = new (New.modifyWithBundle p (clone v) s)
-
--- Indexing
--- --------
-
--- | /O(n)/ Pair each element in a vector with its index
-indexed :: (Vector v a, Vector v (Int,a)) => v a -> v (Int,a)
-{-# INLINE indexed #-}
-indexed = unstream . Bundle.indexed . stream
-
--- Mapping
--- -------
-
--- | /O(n)/ Map a function over a vector
-map :: (Vector v a, Vector v b) => (a -> b) -> v a -> v b
-{-# INLINE map #-}
-map f = unstream . inplace (S.map f) id . stream
-
--- | /O(n)/ Apply a function to every element of a vector and its index
-imap :: (Vector v a, Vector v b) => (Int -> a -> b) -> v a -> v b
-{-# INLINE imap #-}
-imap f = unstream . inplace (S.map (uncurry f) . S.indexed) id
-                  . stream
-
--- | Map a function over a vector and concatenate the results.
-concatMap :: (Vector v a, Vector v b) => (a -> v b) -> v a -> v b
-{-# INLINE concatMap #-}
--- NOTE: We can't fuse concatMap anyway so don't pretend we do.
--- This seems to be slightly slower
--- concatMap f = concat . Bundle.toList . Bundle.map f . stream
-
--- Slowest
--- concatMap f = unstream . Bundle.concatMap (stream . f) . stream
-
--- Used to be fastest
-{-
-concatMap f = unstream
-            . Bundle.flatten mk step Unknown
-            . stream
-  where
-    {-# INLINE_INNER step #-}
-    step (v,i,k)
-      | i < k = case unsafeIndexM v i of
-                  Box x -> Bundle.Yield x (v,i+1,k)
-      | otherwise = Bundle.Done
-
-    {-# INLINE mk #-}
-    mk x = let v = f x
-               k = length v
-           in
-           k `seq` (v,0,k)
--}
-
--- This seems to be fastest now
-concatMap f = unstream
-            . Bundle.concatVectors
-            . Bundle.map f
-            . stream
-
--- Monadic mapping
--- ---------------
-
--- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
--- vector of results
-mapM :: (Monad m, Vector v a, Vector v b) => (a -> m b) -> v a -> m (v b)
-{-# INLINE mapM #-}
-mapM f = unstreamM . Bundle.mapM f . stream
-
--- | /O(n)/ Apply the monadic action to every element of a vector and its
--- index, yielding a vector of results
-imapM :: (Monad m, Vector v a, Vector v b)
-      => (Int -> a -> m b) -> v a -> m (v b)
-imapM f = unstreamM . Bundle.mapM (uncurry f) . Bundle.indexed . stream
-
--- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
--- results
-mapM_ :: (Monad m, Vector v a) => (a -> m b) -> v a -> m ()
-{-# INLINE mapM_ #-}
-mapM_ f = Bundle.mapM_ f . stream
-
--- | /O(n)/ Apply the monadic action to every element of a vector and its
--- index, ignoring the results
-imapM_ :: (Monad m, Vector v a) => (Int -> a -> m b) -> v a -> m ()
-{-# INLINE imapM_ #-}
-imapM_ f = Bundle.mapM_ (uncurry f) . Bundle.indexed . stream
-
--- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
--- vector of results. Equivalent to @flip 'mapM'@.
-forM :: (Monad m, Vector v a, Vector v b) => v a -> (a -> m b) -> m (v b)
-{-# INLINE forM #-}
-forM as f = mapM f as
-
--- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
--- results. Equivalent to @flip 'mapM_'@.
-forM_ :: (Monad m, Vector v a) => v a -> (a -> m b) -> m ()
-{-# INLINE forM_ #-}
-forM_ as f = mapM_ f as
-
--- Zipping
--- -------
-
--- | /O(min(m,n))/ Zip two vectors with the given function.
-zipWith :: (Vector v a, Vector v b, Vector v c)
-        => (a -> b -> c) -> v a -> v b -> v c
-{-# INLINE zipWith #-}
-zipWith f = \xs ys -> unstream (Bundle.zipWith f (stream xs) (stream ys))
-
--- | Zip three vectors with the given function.
-zipWith3 :: (Vector v a, Vector v b, Vector v c, Vector v d)
-         => (a -> b -> c -> d) -> v a -> v b -> v c -> v d
-{-# INLINE zipWith3 #-}
-zipWith3 f = \as bs cs -> unstream (Bundle.zipWith3 f (stream as)
-                                                  (stream bs)
-                                                  (stream cs))
-
-zipWith4 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e)
-         => (a -> b -> c -> d -> e) -> v a -> v b -> v c -> v d -> v e
-{-# INLINE zipWith4 #-}
-zipWith4 f = \as bs cs ds ->
-    unstream (Bundle.zipWith4 f (stream as)
-                                (stream bs)
-                                (stream cs)
-                                (stream ds))
-
-zipWith5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-             Vector v f)
-         => (a -> b -> c -> d -> e -> f) -> v a -> v b -> v c -> v d -> v e
-                                         -> v f
-{-# INLINE zipWith5 #-}
-zipWith5 f = \as bs cs ds es ->
-    unstream (Bundle.zipWith5 f (stream as)
-                                (stream bs)
-                                (stream cs)
-                                (stream ds)
-                                (stream es))
-
-zipWith6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-             Vector v f, Vector v g)
-         => (a -> b -> c -> d -> e -> f -> g)
-         -> v a -> v b -> v c -> v d -> v e -> v f -> v g
-{-# INLINE zipWith6 #-}
-zipWith6 f = \as bs cs ds es fs ->
-    unstream (Bundle.zipWith6 f (stream as)
-                                (stream bs)
-                                (stream cs)
-                                (stream ds)
-                                (stream es)
-                                (stream fs))
-
--- | /O(min(m,n))/ Zip two vectors with a function that also takes the
--- elements' indices.
-izipWith :: (Vector v a, Vector v b, Vector v c)
-        => (Int -> a -> b -> c) -> v a -> v b -> v c
-{-# INLINE izipWith #-}
-izipWith f = \xs ys ->
-    unstream (Bundle.zipWith (uncurry f) (Bundle.indexed (stream xs))
-                                                         (stream ys))
-
-izipWith3 :: (Vector v a, Vector v b, Vector v c, Vector v d)
-         => (Int -> a -> b -> c -> d) -> v a -> v b -> v c -> v d
-{-# INLINE izipWith3 #-}
-izipWith3 f = \as bs cs ->
-    unstream (Bundle.zipWith3 (uncurry f) (Bundle.indexed (stream as))
-                                                          (stream bs)
-                                                          (stream cs))
-
-izipWith4 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e)
-         => (Int -> a -> b -> c -> d -> e) -> v a -> v b -> v c -> v d -> v e
-{-# INLINE izipWith4 #-}
-izipWith4 f = \as bs cs ds ->
-    unstream (Bundle.zipWith4 (uncurry f) (Bundle.indexed (stream as))
-                                                          (stream bs)
-                                                          (stream cs)
-                                                          (stream ds))
-
-izipWith5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-             Vector v f)
-         => (Int -> a -> b -> c -> d -> e -> f) -> v a -> v b -> v c -> v d
-                                                -> v e -> v f
-{-# INLINE izipWith5 #-}
-izipWith5 f = \as bs cs ds es ->
-    unstream (Bundle.zipWith5 (uncurry f) (Bundle.indexed (stream as))
-                                                          (stream bs)
-                                                          (stream cs)
-                                                          (stream ds)
-                                                          (stream es))
-
-izipWith6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-             Vector v f, Vector v g)
-         => (Int -> a -> b -> c -> d -> e -> f -> g)
-         -> v a -> v b -> v c -> v d -> v e -> v f -> v g
-{-# INLINE izipWith6 #-}
-izipWith6 f = \as bs cs ds es fs ->
-    unstream (Bundle.zipWith6 (uncurry f) (Bundle.indexed (stream as))
-                                                          (stream bs)
-                                                          (stream cs)
-                                                          (stream ds)
-                                                          (stream es)
-                                                          (stream fs))
-
--- | /O(min(m,n))/ Zip two vectors
-zip :: (Vector v a, Vector v b, Vector v (a,b)) => v a -> v b -> v (a, b)
-{-# INLINE zip #-}
-zip = zipWith (,)
-
-zip3 :: (Vector v a, Vector v b, Vector v c, Vector v (a, b, c))
-     => v a -> v b -> v c -> v (a, b, c)
-{-# INLINE zip3 #-}
-zip3 = zipWith3 (,,)
-
-zip4 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v (a, b, c, d))
-     => v a -> v b -> v c -> v d -> v (a, b, c, d)
-{-# INLINE zip4 #-}
-zip4 = zipWith4 (,,,)
-
-zip5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-         Vector v (a, b, c, d, e))
-     => v a -> v b -> v c -> v d -> v e -> v (a, b, c, d, e)
-{-# INLINE zip5 #-}
-zip5 = zipWith5 (,,,,)
-
-zip6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-         Vector v f, Vector v (a, b, c, d, e, f))
-     => v a -> v b -> v c -> v d -> v e -> v f -> v (a, b, c, d, e, f)
-{-# INLINE zip6 #-}
-zip6 = zipWith6 (,,,,,)
-
--- Monadic zipping
--- ---------------
-
--- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a
--- vector of results
-zipWithM :: (Monad m, Vector v a, Vector v b, Vector v c)
-         => (a -> b -> m c) -> v a -> v b -> m (v c)
--- FIXME: specialise for ST and IO?
-{-# INLINE zipWithM #-}
-zipWithM f = \as bs -> unstreamM $ Bundle.zipWithM f (stream as) (stream bs)
-
--- | /O(min(m,n))/ Zip the two vectors with a monadic action that also takes
--- the element index and yield a vector of results
-izipWithM :: (Monad m, Vector v a, Vector v b, Vector v c)
-         => (Int -> a -> b -> m c) -> v a -> v b -> m (v c)
-{-# INLINE izipWithM #-}
-izipWithM m as bs = unstreamM . Bundle.zipWithM (uncurry m)
-                                (Bundle.indexed (stream as))
-                                $ stream bs
-
--- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the
--- results
-zipWithM_ :: (Monad m, Vector v a, Vector v b)
-          => (a -> b -> m c) -> v a -> v b -> m ()
-{-# INLINE zipWithM_ #-}
-zipWithM_ f = \as bs -> Bundle.zipWithM_ f (stream as) (stream bs)
-
--- | /O(min(m,n))/ Zip the two vectors with a monadic action that also takes
--- the element index and ignore the results
-izipWithM_ :: (Monad m, Vector v a, Vector v b)
-          => (Int -> a -> b -> m c) -> v a -> v b -> m ()
-{-# INLINE izipWithM_ #-}
-izipWithM_ m as bs = Bundle.zipWithM_ (uncurry m)
-                      (Bundle.indexed (stream as))
-                      $ stream bs
-
--- Unzipping
--- ---------
-
--- | /O(min(m,n))/ Unzip a vector of pairs.
-unzip :: (Vector v a, Vector v b, Vector v (a,b)) => v (a, b) -> (v a, v b)
-{-# INLINE unzip #-}
-unzip xs = (map fst xs, map snd xs)
-
-unzip3 :: (Vector v a, Vector v b, Vector v c, Vector v (a, b, c))
-       => v (a, b, c) -> (v a, v b, v c)
-{-# INLINE unzip3 #-}
-unzip3 xs = (map (\(a, _, _) -> a) xs,
-             map (\(_, b, _) -> b) xs,
-             map (\(_, _, c) -> c) xs)
-
-unzip4 :: (Vector v a, Vector v b, Vector v c, Vector v d,
-           Vector v (a, b, c, d))
-       => v (a, b, c, d) -> (v a, v b, v c, v d)
-{-# INLINE unzip4 #-}
-unzip4 xs = (map (\(a, _, _, _) -> a) xs,
-             map (\(_, b, _, _) -> b) xs,
-             map (\(_, _, c, _) -> c) xs,
-             map (\(_, _, _, d) -> d) xs)
-
-unzip5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-           Vector v (a, b, c, d, e))
-       => v (a, b, c, d, e) -> (v a, v b, v c, v d, v e)
-{-# INLINE unzip5 #-}
-unzip5 xs = (map (\(a, _, _, _, _) -> a) xs,
-             map (\(_, b, _, _, _) -> b) xs,
-             map (\(_, _, c, _, _) -> c) xs,
-             map (\(_, _, _, d, _) -> d) xs,
-             map (\(_, _, _, _, e) -> e) xs)
-
-unzip6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-           Vector v f, Vector v (a, b, c, d, e, f))
-       => v (a, b, c, d, e, f) -> (v a, v b, v c, v d, v e, v f)
-{-# INLINE unzip6 #-}
-unzip6 xs = (map (\(a, _, _, _, _, _) -> a) xs,
-             map (\(_, b, _, _, _, _) -> b) xs,
-             map (\(_, _, c, _, _, _) -> c) xs,
-             map (\(_, _, _, d, _, _) -> d) xs,
-             map (\(_, _, _, _, e, _) -> e) xs,
-             map (\(_, _, _, _, _, f) -> f) xs)
-
--- Filtering
--- ---------
-
--- | /O(n)/ Drop elements that do not satisfy the predicate
-filter :: Vector v a => (a -> Bool) -> v a -> v a
-{-# INLINE filter #-}
-filter f = unstream . inplace (S.filter f) toMax . stream
-
--- | /O(n)/ Drop elements that do not satisfy the predicate which is applied to
--- values and their indices
-ifilter :: Vector v a => (Int -> a -> Bool) -> v a -> v a
-{-# INLINE ifilter #-}
-ifilter f = unstream
-          . inplace (S.map snd . S.filter (uncurry f) . S.indexed) toMax
-          . stream
-
--- | /O(n)/ Drop repeated adjacent elements.
-uniq :: (Vector v a, Eq a) => v a -> v a
-{-# INLINE uniq #-}
-uniq = unstream . inplace S.uniq toMax . stream
-
--- | /O(n)/ Drop elements when predicate returns Nothing
-mapMaybe :: (Vector v a, Vector v b) => (a -> Maybe b) -> v a -> v b
-{-# INLINE mapMaybe #-}
-mapMaybe f = unstream . inplace (S.mapMaybe f) toMax . stream
-
--- | /O(n)/ Drop elements when predicate, applied to index and value, returns Nothing
-imapMaybe :: (Vector v a, Vector v b) => (Int -> a -> Maybe b) -> v a -> v b
-{-# INLINE imapMaybe #-}
-imapMaybe f = unstream
-          . inplace (S.mapMaybe (uncurry f) . S.indexed) toMax
-          . stream
-
-
--- | /O(n)/ Drop elements that do not satisfy the monadic predicate
-filterM :: (Monad m, Vector v a) => (a -> m Bool) -> v a -> m (v a)
-{-# INLINE filterM #-}
-filterM f = unstreamM . Bundle.filterM f . stream
-
--- | /O(n)/ Yield the longest prefix of elements satisfying the predicate
--- without copying.
-takeWhile :: Vector v a => (a -> Bool) -> v a -> v a
-{-# INLINE takeWhile #-}
-takeWhile f = unstream . Bundle.takeWhile f . stream
-
--- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate
--- without copying.
-dropWhile :: Vector v a => (a -> Bool) -> v a -> v a
-{-# INLINE dropWhile #-}
-dropWhile f = unstream . Bundle.dropWhile f . stream
-
--- Parititioning
--- -------------
-
--- | /O(n)/ Split the vector in two parts, the first one containing those
--- elements that satisfy the predicate and the second one those that don't. The
--- relative order of the elements is preserved at the cost of a sometimes
--- reduced performance compared to 'unstablePartition'.
-partition :: Vector v a => (a -> Bool) -> v a -> (v a, v a)
-{-# INLINE partition #-}
-partition f = partition_stream f . stream
-
--- FIXME: Make this inplace-fusible (look at how stable_partition is
--- implemented in C++)
-
-partition_stream :: Vector v a => (a -> Bool) -> Bundle u a -> (v a, v a)
-{-# INLINE_FUSED partition_stream #-}
-partition_stream f s = s `seq` runST (
-  do
-    (mv1,mv2) <- M.partitionBundle f s
-    v1 <- unsafeFreeze mv1
-    v2 <- unsafeFreeze mv2
-    return (v1,v2))
-
--- | /O(n)/ Split the vector in two parts, the first one containing those
--- elements that satisfy the predicate and the second one those that don't.
--- The order of the elements is not preserved but the operation is often
--- faster than 'partition'.
-unstablePartition :: Vector v a => (a -> Bool) -> v a -> (v a, v a)
-{-# INLINE unstablePartition #-}
-unstablePartition f = unstablePartition_stream f . stream
-
-unstablePartition_stream
-  :: Vector v a => (a -> Bool) -> Bundle u a -> (v a, v a)
-{-# INLINE_FUSED unstablePartition_stream #-}
-unstablePartition_stream f s = s `seq` runST (
-  do
-    (mv1,mv2) <- M.unstablePartitionBundle f s
-    v1 <- unsafeFreeze mv1
-    v2 <- unsafeFreeze mv2
-    return (v1,v2))
-
-unstablePartition_new :: Vector v a => (a -> Bool) -> New v a -> (v a, v a)
-{-# INLINE_FUSED unstablePartition_new #-}
-unstablePartition_new f (New.New p) = runST (
-  do
-    mv <- p
-    i <- M.unstablePartition f mv
-    v <- unsafeFreeze mv
-    return (unsafeTake i v, unsafeDrop i v))
-
-{-# RULES
-
-"unstablePartition" forall f p.
-  unstablePartition_stream f (stream (new p))
-    = unstablePartition_new f p   #-}
-
-
-
-
--- FIXME: make span and break fusible
-
--- | /O(n)/ Split the vector into the longest prefix of elements that satisfy
--- the predicate and the rest without copying.
-span :: Vector v a => (a -> Bool) -> v a -> (v a, v a)
-{-# INLINE span #-}
-span f = break (not . f)
-
--- | /O(n)/ Split the vector into the longest prefix of elements that do not
--- satisfy the predicate and the rest without copying.
-break :: Vector v a => (a -> Bool) -> v a -> (v a, v a)
-{-# INLINE break #-}
-break f xs = case findIndex f xs of
-               Just i  -> (unsafeSlice 0 i xs, unsafeSlice i (length xs - i) xs)
-               Nothing -> (xs, empty)
-
-
--- Searching
--- ---------
-
-infix 4 `elem`
--- | /O(n)/ Check if the vector contains an element
-elem :: (Vector v a, Eq a) => a -> v a -> Bool
-{-# INLINE elem #-}
-elem x = Bundle.elem x . stream
-
-infix 4 `notElem`
--- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem')
-notElem :: (Vector v a, Eq a) => a -> v a -> Bool
-{-# INLINE notElem #-}
-notElem x = Bundle.notElem x . stream
-
--- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing'
--- if no such element exists.
-find :: Vector v a => (a -> Bool) -> v a -> Maybe a
-{-# INLINE find #-}
-find f = Bundle.find f . stream
-
--- | /O(n)/ Yield 'Just' the index of the first element matching the predicate
--- or 'Nothing' if no such element exists.
-findIndex :: Vector v a => (a -> Bool) -> v a -> Maybe Int
-{-# INLINE findIndex #-}
-findIndex f = Bundle.findIndex f . stream
-
--- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending
--- order.
-findIndices :: (Vector v a, Vector v Int) => (a -> Bool) -> v a -> v Int
-{-# INLINE findIndices #-}
-findIndices f = unstream
-              . inplace (S.map fst . S.filter (f . snd) . S.indexed) toMax
-              . stream
-
--- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or
--- 'Nothing' if the vector does not contain the element. This is a specialised
--- version of 'findIndex'.
-elemIndex :: (Vector v a, Eq a) => a -> v a -> Maybe Int
-{-# INLINE elemIndex #-}
-elemIndex x = findIndex (x==)
-
--- | /O(n)/ Yield the indices of all occurences of the given element in
--- ascending order. This is a specialised version of 'findIndices'.
-elemIndices :: (Vector v a, Vector v Int, Eq a) => a -> v a -> v Int
-{-# INLINE elemIndices #-}
-elemIndices x = findIndices (x==)
-
--- Folding
--- -------
-
--- | /O(n)/ Left fold
-foldl :: Vector v b => (a -> b -> a) -> a -> v b -> a
-{-# INLINE foldl #-}
-foldl f z = Bundle.foldl f z . stream
-
--- | /O(n)/ Left fold on non-empty vectors
-foldl1 :: Vector v a => (a -> a -> a) -> v a -> a
-{-# INLINE foldl1 #-}
-foldl1 f = Bundle.foldl1 f . stream
-
--- | /O(n)/ Left fold with strict accumulator
-foldl' :: Vector v b => (a -> b -> a) -> a -> v b -> a
-{-# INLINE foldl' #-}
-foldl' f z = Bundle.foldl' f z . stream
-
--- | /O(n)/ Left fold on non-empty vectors with strict accumulator
-foldl1' :: Vector v a => (a -> a -> a) -> v a -> a
-{-# INLINE foldl1' #-}
-foldl1' f = Bundle.foldl1' f . stream
-
--- | /O(n)/ Right fold
-foldr :: Vector v a => (a -> b -> b) -> b -> v a -> b
-{-# INLINE foldr #-}
-foldr f z = Bundle.foldr f z . stream
-
--- | /O(n)/ Right fold on non-empty vectors
-foldr1 :: Vector v a => (a -> a -> a) -> v a -> a
-{-# INLINE foldr1 #-}
-foldr1 f = Bundle.foldr1 f . stream
-
--- | /O(n)/ Right fold with a strict accumulator
-foldr' :: Vector v a => (a -> b -> b) -> b -> v a -> b
-{-# INLINE foldr' #-}
-foldr' f z = Bundle.foldl' (flip f) z . streamR
-
--- | /O(n)/ Right fold on non-empty vectors with strict accumulator
-foldr1' :: Vector v a => (a -> a -> a) -> v a -> a
-{-# INLINE foldr1' #-}
-foldr1' f = Bundle.foldl1' (flip f) . streamR
-
--- | /O(n)/ Left fold (function applied to each element and its index)
-ifoldl :: Vector v b => (a -> Int -> b -> a) -> a -> v b -> a
-{-# INLINE ifoldl #-}
-ifoldl f z = Bundle.foldl (uncurry . f) z . Bundle.indexed . stream
-
--- | /O(n)/ Left fold with strict accumulator (function applied to each element
--- and its index)
-ifoldl' :: Vector v b => (a -> Int -> b -> a) -> a -> v b -> a
-{-# INLINE ifoldl' #-}
-ifoldl' f z = Bundle.foldl' (uncurry . f) z . Bundle.indexed . stream
-
--- | /O(n)/ Right fold (function applied to each element and its index)
-ifoldr :: Vector v a => (Int -> a -> b -> b) -> b -> v a -> b
-{-# INLINE ifoldr #-}
-ifoldr f z = Bundle.foldr (uncurry f) z . Bundle.indexed . stream
-
--- | /O(n)/ Right fold with strict accumulator (function applied to each
--- element and its index)
-ifoldr' :: Vector v a => (Int -> a -> b -> b) -> b -> v a -> b
-{-# INLINE ifoldr' #-}
-ifoldr' f z xs = Bundle.foldl' (flip (uncurry f)) z
-               $ Bundle.indexedR (length xs) $ streamR xs
-
--- Specialised folds
--- -----------------
-
--- | /O(n)/ Check if all elements satisfy the predicate.
-all :: Vector v a => (a -> Bool) -> v a -> Bool
-{-# INLINE all #-}
-all f = Bundle.and . Bundle.map f . stream
-
--- | /O(n)/ Check if any element satisfies the predicate.
-any :: Vector v a => (a -> Bool) -> v a -> Bool
-{-# INLINE any #-}
-any f = Bundle.or . Bundle.map f . stream
-
--- | /O(n)/ Check if all elements are 'True'
-and :: Vector v Bool => v Bool -> Bool
-{-# INLINE and #-}
-and = Bundle.and . stream
-
--- | /O(n)/ Check if any element is 'True'
-or :: Vector v Bool => v Bool -> Bool
-{-# INLINE or #-}
-or = Bundle.or . stream
-
--- | /O(n)/ Compute the sum of the elements
-sum :: (Vector v a, Num a) => v a -> a
-{-# INLINE sum #-}
-sum = Bundle.foldl' (+) 0 . stream
-
--- | /O(n)/ Compute the produce of the elements
-product :: (Vector v a, Num a) => v a -> a
-{-# INLINE product #-}
-product = Bundle.foldl' (*) 1 . stream
-
--- | /O(n)/ Yield the maximum element of the vector. The vector may not be
--- empty.
-maximum :: (Vector v a, Ord a) => v a -> a
-{-# INLINE maximum #-}
-maximum = Bundle.foldl1' max . stream
-
--- | /O(n)/ Yield the maximum element of the vector according to the given
--- comparison function. The vector may not be empty.
-maximumBy :: Vector v a => (a -> a -> Ordering) -> v a -> a
-{-# INLINE maximumBy #-}
-maximumBy cmpr = Bundle.foldl1' maxBy . stream
-  where
-    {-# INLINE maxBy #-}
-    maxBy x y = case cmpr x y of
-                  LT -> y
-                  _  -> x
-
--- | /O(n)/ Yield the minimum element of the vector. The vector may not be
--- empty.
-minimum :: (Vector v a, Ord a) => v a -> a
-{-# INLINE minimum #-}
-minimum = Bundle.foldl1' min . stream
-
--- | /O(n)/ Yield the minimum element of the vector according to the given
--- comparison function. The vector may not be empty.
-minimumBy :: Vector v a => (a -> a -> Ordering) -> v a -> a
-{-# INLINE minimumBy #-}
-minimumBy cmpr = Bundle.foldl1' minBy . stream
-  where
-    {-# INLINE minBy #-}
-    minBy x y = case cmpr x y of
-                  GT -> y
-                  _  -> x
-
--- | /O(n)/ Yield the index of the maximum element of the vector. The vector
--- may not be empty.
-maxIndex :: (Vector v a, Ord a) => v a -> Int
-{-# INLINE maxIndex #-}
-maxIndex = maxIndexBy compare
-
--- | /O(n)/ Yield the index of the maximum element of the vector according to
--- the given comparison function. The vector may not be empty.
-maxIndexBy :: Vector v a => (a -> a -> Ordering) -> v a -> Int
-{-# INLINE maxIndexBy #-}
-maxIndexBy cmpr = fst . Bundle.foldl1' imax . Bundle.indexed . stream
-  where
-    imax (i,x) (j,y) = i `seq` j `seq`
-                       case cmpr x y of
-                         LT -> (j,y)
-                         _  -> (i,x)
-
--- | /O(n)/ Yield the index of the minimum element of the vector. The vector
--- may not be empty.
-minIndex :: (Vector v a, Ord a) => v a -> Int
-{-# INLINE minIndex #-}
-minIndex = minIndexBy compare
-
--- | /O(n)/ Yield the index of the minimum element of the vector according to
--- the given comparison function. The vector may not be empty.
-minIndexBy :: Vector v a => (a -> a -> Ordering) -> v a -> Int
-{-# INLINE minIndexBy #-}
-minIndexBy cmpr = fst . Bundle.foldl1' imin . Bundle.indexed . stream
-  where
-    imin (i,x) (j,y) = i `seq` j `seq`
-                       case cmpr x y of
-                         GT -> (j,y)
-                         _  -> (i,x)
-
--- Monadic folds
--- -------------
-
--- | /O(n)/ Monadic fold
-foldM :: (Monad m, Vector v b) => (a -> b -> m a) -> a -> v b -> m a
-{-# INLINE foldM #-}
-foldM m z = Bundle.foldM m z . stream
-
--- | /O(n)/ Monadic fold (action applied to each element and its index)
-ifoldM :: (Monad m, Vector v b) => (a -> Int -> b -> m a) -> a -> v b -> m a
-{-# INLINE ifoldM #-}
-ifoldM m z = Bundle.foldM (uncurry . m) z . Bundle.indexed . stream
-
--- | /O(n)/ Monadic fold over non-empty vectors
-fold1M :: (Monad m, Vector v a) => (a -> a -> m a) -> v a -> m a
-{-# INLINE fold1M #-}
-fold1M m = Bundle.fold1M m . stream
-
--- | /O(n)/ Monadic fold with strict accumulator
-foldM' :: (Monad m, Vector v b) => (a -> b -> m a) -> a -> v b -> m a
-{-# INLINE foldM' #-}
-foldM' m z = Bundle.foldM' m z . stream
-
--- | /O(n)/ Monadic fold with strict accumulator (action applied to each
--- element and its index)
-ifoldM' :: (Monad m, Vector v b) => (a -> Int -> b -> m a) -> a -> v b -> m a
-{-# INLINE ifoldM' #-}
-ifoldM' m z = Bundle.foldM' (uncurry . m) z . Bundle.indexed . stream
-
--- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator
-fold1M' :: (Monad m, Vector v a) => (a -> a -> m a) -> v a -> m a
-{-# INLINE fold1M' #-}
-fold1M' m = Bundle.fold1M' m . stream
-
-discard :: Monad m => m a -> m ()
-{-# INLINE discard #-}
-discard m = m >> return ()
-
--- | /O(n)/ Monadic fold that discards the result
-foldM_ :: (Monad m, Vector v b) => (a -> b -> m a) -> a -> v b -> m ()
-{-# INLINE foldM_ #-}
-foldM_ m z = discard . Bundle.foldM m z . stream
-
--- | /O(n)/ Monadic fold that discards the result (action applied to
--- each element and its index)
-ifoldM_ :: (Monad m, Vector v b) => (a -> Int -> b -> m a) -> a -> v b -> m ()
-{-# INLINE ifoldM_ #-}
-ifoldM_ m z = discard . Bundle.foldM (uncurry . m) z . Bundle.indexed . stream
-
--- | /O(n)/ Monadic fold over non-empty vectors that discards the result
-fold1M_ :: (Monad m, Vector v a) => (a -> a -> m a) -> v a -> m ()
-{-# INLINE fold1M_ #-}
-fold1M_ m = discard . Bundle.fold1M m . stream
-
--- | /O(n)/ Monadic fold with strict accumulator that discards the result
-foldM'_ :: (Monad m, Vector v b) => (a -> b -> m a) -> a -> v b -> m ()
-{-# INLINE foldM'_ #-}
-foldM'_ m z = discard . Bundle.foldM' m z . stream
-
--- | /O(n)/ Monadic fold with strict accumulator that discards the result
--- (action applied to each element and its index)
-ifoldM'_ :: (Monad m, Vector v b) => (a -> Int -> b -> m a) -> a -> v b -> m ()
-{-# INLINE ifoldM'_ #-}
-ifoldM'_ m z = discard . Bundle.foldM' (uncurry . m) z . Bundle.indexed . stream
-
--- | /O(n)/ Monad fold over non-empty vectors with strict accumulator
--- that discards the result
-fold1M'_ :: (Monad m, Vector v a) => (a -> a -> m a) -> v a -> m ()
-{-# INLINE fold1M'_ #-}
-fold1M'_ m = discard . Bundle.fold1M' m . stream
-
--- Monadic sequencing
--- ------------------
-
--- | Evaluate each action and collect the results
-sequence :: (Monad m, Vector v a, Vector v (m a)) => v (m a) -> m (v a)
-{-# INLINE sequence #-}
-sequence = mapM id
-
--- | Evaluate each action and discard the results
-sequence_ :: (Monad m, Vector v (m a)) => v (m a) -> m ()
-{-# INLINE sequence_ #-}
-sequence_ = mapM_ id
-
--- Prefix sums (scans)
--- -------------------
-
--- | /O(n)/ Prescan
---
--- @
--- prescanl f z = 'init' . 'scanl' f z
--- @
---
--- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@
---
-prescanl :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
-{-# INLINE prescanl #-}
-prescanl f z = unstream . inplace (S.prescanl f z) id . stream
-
--- | /O(n)/ Prescan with strict accumulator
-prescanl' :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
-{-# INLINE prescanl' #-}
-prescanl' f z = unstream . inplace (S.prescanl' f z) id . stream
-
--- | /O(n)/ Scan
---
--- @
--- postscanl f z = 'tail' . 'scanl' f z
--- @
---
--- Example: @postscanl (+) 0 \<1,2,3,4\> = \<1,3,6,10\>@
---
-postscanl :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
-{-# INLINE postscanl #-}
-postscanl f z = unstream . inplace (S.postscanl f z) id . stream
-
--- | /O(n)/ Scan with strict accumulator
-postscanl' :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
-{-# INLINE postscanl' #-}
-postscanl' f z = unstream . inplace (S.postscanl' f z) id . stream
-
--- | /O(n)/ Haskell-style scan
---
--- > scanl f z <x1,...,xn> = <y1,...,y(n+1)>
--- >   where y1 = z
--- >         yi = f y(i-1) x(i-1)
---
--- Example: @scanl (+) 0 \<1,2,3,4\> = \<0,1,3,6,10\>@
---
-scanl :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
-{-# INLINE scanl #-}
-scanl f z = unstream . Bundle.scanl f z . stream
-
--- | /O(n)/ Haskell-style scan with strict accumulator
-scanl' :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
-{-# INLINE scanl' #-}
-scanl' f z = unstream . Bundle.scanl' f z . stream
-
--- | /O(n)/ Scan over a vector with its index
-iscanl :: (Vector v a, Vector v b) => (Int -> a -> b -> a) -> a -> v b -> v a
-{-# INLINE iscanl #-}
-iscanl f z =
-    unstream
-  . inplace (S.scanl (\a (i, b) -> f i a b) z . S.indexed) (+1)
-  . stream
-
--- | /O(n)/ Scan over a vector (strictly) with its index
-iscanl' :: (Vector v a, Vector v b) => (Int -> a -> b -> a) -> a -> v b -> v a
-{-# INLINE iscanl' #-}
-iscanl' f z =
-    unstream
-  . inplace (S.scanl' (\a (i, b) -> f i a b) z . S.indexed) (+1)
-  . stream
-
-
--- | /O(n)/ Scan over a non-empty vector
---
--- > scanl f <x1,...,xn> = <y1,...,yn>
--- >   where y1 = x1
--- >         yi = f y(i-1) xi
---
-scanl1 :: Vector v a => (a -> a -> a) -> v a -> v a
-{-# INLINE scanl1 #-}
-scanl1 f = unstream . inplace (S.scanl1 f) id . stream
-
--- | /O(n)/ Scan over a non-empty vector with a strict accumulator
-scanl1' :: Vector v a => (a -> a -> a) -> v a -> v a
-{-# INLINE scanl1' #-}
-scanl1' f = unstream . inplace (S.scanl1' f) id . stream
-
--- | /O(n)/ Right-to-left prescan
---
--- @
--- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse'
--- @
---
-prescanr :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
-{-# INLINE prescanr #-}
-prescanr f z = unstreamR . inplace (S.prescanl (flip f) z) id . streamR
-
--- | /O(n)/ Right-to-left prescan with strict accumulator
-prescanr' :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
-{-# INLINE prescanr' #-}
-prescanr' f z = unstreamR . inplace (S.prescanl' (flip f) z) id . streamR
-
--- | /O(n)/ Right-to-left scan
-postscanr :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
-{-# INLINE postscanr #-}
-postscanr f z = unstreamR . inplace (S.postscanl (flip f) z) id . streamR
-
--- | /O(n)/ Right-to-left scan with strict accumulator
-postscanr' :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
-{-# INLINE postscanr' #-}
-postscanr' f z = unstreamR . inplace (S.postscanl' (flip f) z) id . streamR
-
--- | /O(n)/ Right-to-left Haskell-style scan
-scanr :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
-{-# INLINE scanr #-}
-scanr f z = unstreamR . Bundle.scanl (flip f) z . streamR
-
--- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator
-scanr' :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
-{-# INLINE scanr' #-}
-scanr' f z = unstreamR . Bundle.scanl' (flip f) z . streamR
-
--- | /O(n)/ Right-to-left scan over a vector with its index
-iscanr :: (Vector v a, Vector v b) => (Int -> a -> b -> b) -> b -> v a -> v b
-{-# INLINE iscanr #-}
-iscanr f z v =
-    unstreamR
-  . inplace (S.scanl (flip $ uncurry f) z . S.indexedR n) (+1)
-  . streamR
-  $ v
- where n = length v
-
--- | /O(n)/ Right-to-left scan over a vector (strictly) with its index
-iscanr' :: (Vector v a, Vector v b) => (Int -> a -> b -> b) -> b -> v a -> v b
-{-# INLINE iscanr' #-}
-iscanr' f z v =
-    unstreamR
-  . inplace (S.scanl' (flip $ uncurry f) z . S.indexedR n) (+1)
-  . streamR
-  $ v
- where n = length v
-
--- | /O(n)/ Right-to-left scan over a non-empty vector
-scanr1 :: Vector v a => (a -> a -> a) -> v a -> v a
-{-# INLINE scanr1 #-}
-scanr1 f = unstreamR . inplace (S.scanl1 (flip f)) id . streamR
-
--- | /O(n)/ Right-to-left scan over a non-empty vector with a strict
--- accumulator
-scanr1' :: Vector v a => (a -> a -> a) -> v a -> v a
-{-# INLINE scanr1' #-}
-scanr1' f = unstreamR . inplace (S.scanl1' (flip f)) id . streamR
-
--- Conversions - Lists
--- ------------------------
-
--- | /O(n)/ Convert a vector to a list
-toList :: Vector v a => v a -> [a]
-{-# INLINE toList #-}
-toList = Bundle.toList . stream
-
--- | /O(n)/ Convert a list to a vector
-fromList :: Vector v a => [a] -> v a
-{-# INLINE fromList #-}
-fromList = unstream . Bundle.fromList
-
--- | /O(n)/ Convert the first @n@ elements of a list to a vector
---
--- @
--- fromListN n xs = 'fromList' ('take' n xs)
--- @
-fromListN :: Vector v a => Int -> [a] -> v a
-{-# INLINE fromListN #-}
-fromListN n = unstream . Bundle.fromListN n
-
--- Conversions - Immutable vectors
--- -------------------------------
-
--- | /O(n)/ Convert different vector types
-convert :: (Vector v a, Vector w a) => v a -> w a
-{-# INLINE convert #-}
-convert = unstream . Bundle.reVector . stream
-
--- Conversions - Mutable vectors
--- -----------------------------
-
--- | /O(1)/ Unsafe convert a mutable vector to an immutable one without
--- copying. The mutable vector may not be used after this operation.
-unsafeFreeze
-  :: (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> m (v a)
-{-# INLINE unsafeFreeze #-}
-unsafeFreeze = basicUnsafeFreeze
-
--- | /O(n)/ Yield an immutable copy of the mutable vector.
-freeze :: (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> m (v a)
-{-# INLINE freeze #-}
-freeze mv = unsafeFreeze =<< M.clone mv
-
--- | /O(1)/ Unsafely convert an immutable vector to a mutable one without
--- copying. The immutable vector may not be used after this operation.
-unsafeThaw :: (PrimMonad m, Vector v a) => v a -> m (Mutable v (PrimState m) a)
-{-# INLINE_FUSED unsafeThaw #-}
-unsafeThaw = basicUnsafeThaw
-
--- | /O(n)/ Yield a mutable copy of the immutable vector.
-thaw :: (PrimMonad m, Vector v a) => v a -> m (Mutable v (PrimState m) a)
-{-# INLINE_FUSED thaw #-}
-thaw v = do
-           mv <- M.unsafeNew (length v)
-           unsafeCopy mv v
-           return mv
-
-{-# RULES
-
-"unsafeThaw/new [Vector]" forall p.
-  unsafeThaw (new p) = New.runPrim p
-
-"thaw/new [Vector]" forall p.
-  thaw (new p) = New.runPrim p   #-}
-
-
-
-{-
--- | /O(n)/ Yield a mutable vector containing copies of each vector in the
--- list.
-thawMany :: (PrimMonad m, Vector v a) => [v a] -> m (Mutable v (PrimState m) a)
-{-# INLINE_FUSED thawMany #-}
--- FIXME: add rule for (stream (new (New.create (thawMany vs))))
--- NOTE: We don't try to consume the list lazily as this wouldn't significantly
--- change the space requirements anyway.
-thawMany vs = do
-                mv <- M.new n
-                thaw_loop mv vs
-                return mv
-  where
-    n = List.foldl' (\k v -> k + length v) 0 vs
-
-    thaw_loop mv [] = mv `seq` return ()
-    thaw_loop mv (v:vs)
-      = do
-          let n = length v
-          unsafeCopy (M.unsafeTake n mv) v
-          thaw_loop (M.unsafeDrop n mv) vs
--}
-
--- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
--- have the same length.
-copy
-  :: (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> v a -> m ()
-{-# INLINE copy #-}
-copy dst src = BOUNDS_CHECK(check) "copy" "length mismatch"
-                                          (M.length dst == length src)
-             $ unsafeCopy dst src
-
--- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
--- have the same length. This is not checked.
-unsafeCopy
-  :: (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> v a -> m ()
-{-# INLINE unsafeCopy #-}
-unsafeCopy dst src = UNSAFE_CHECK(check) "unsafeCopy" "length mismatch"
-                                         (M.length dst == length src)
-                   $ (dst `seq` src `seq` basicUnsafeCopy dst src)
-
--- Conversions to/from Bundles
--- ---------------------------
-
--- | /O(1)/ Convert a vector to a 'Bundle'
-stream :: Vector v a => v a -> Bundle v a
-{-# INLINE_FUSED stream #-}
-stream v = stream' v
-
--- Same as 'stream', but can be used to avoid having a cycle in the dependency
--- graph of functions, which forces GHC to create a loop breaker.
-stream' :: Vector v a => v a -> Bundle v a
-{-# INLINE stream' #-}
-stream' v = Bundle.fromVector v
-
-{-
-stream v = v `seq` n `seq` (Bundle.unfoldr get 0 `Bundle.sized` Exact n)
-  where
-    n = length v
-
-    -- NOTE: the False case comes first in Core so making it the recursive one
-    -- makes the code easier to read
-    {-# INLINE get #-}
-    get i | i >= n    = Nothing
-          | otherwise = case basicUnsafeIndexM v i of Box x -> Just (x, i+1)
--}
-
--- | /O(n)/ Construct a vector from a 'Bundle'
-unstream :: Vector v a => Bundle v a -> v a
-{-# INLINE unstream #-}
-unstream s = new (New.unstream s)
-
-{-# RULES
-
-"stream/unstream [Vector]" forall s.
-  stream (new (New.unstream s)) = s
-
-"New.unstream/stream [Vector]" forall v.
-  New.unstream (stream v) = clone v
-
-"clone/new [Vector]" forall p.
-  clone (new p) = p
-
-"inplace [Vector]"
-  forall (f :: forall m. Monad m => Stream m a -> Stream m a) g m.
-  New.unstream (inplace f g (stream (new m))) = New.transform f g m
-
-"uninplace [Vector]"
-  forall (f :: forall m. Monad m => Stream m a -> Stream m a) g m.
-  stream (new (New.transform f g m)) = inplace f g (stream (new m))  #-}
-
-
-
--- | /O(1)/ Convert a vector to a 'Bundle', proceeding from right to left
-streamR :: Vector v a => v a -> Bundle u a
-{-# INLINE_FUSED streamR #-}
-streamR v = v `seq` n `seq` (Bundle.unfoldr get n `Bundle.sized` Exact n)
-  where
-    n = length v
-
-    {-# INLINE get #-}
-    get 0 = Nothing
-    get i = let i' = i-1
-            in
-            case basicUnsafeIndexM v i' of Box x -> Just (x, i')
-
--- | /O(n)/ Construct a vector from a 'Bundle', proceeding from right to left
-unstreamR :: Vector v a => Bundle v a -> v a
-{-# INLINE unstreamR #-}
-unstreamR s = new (New.unstreamR s)
-
-{-# RULES
-
-"streamR/unstreamR [Vector]" forall s.
-  streamR (new (New.unstreamR s)) = s
-
-"New.unstreamR/streamR/new [Vector]" forall p.
-  New.unstreamR (streamR (new p)) = p
-
-"New.unstream/streamR/new [Vector]" forall p.
-  New.unstream (streamR (new p)) = New.modify M.reverse p
-
-"New.unstreamR/stream/new [Vector]" forall p.
-  New.unstreamR (stream (new p)) = New.modify M.reverse p
-
-"inplace right [Vector]"
-  forall (f :: forall m. Monad m => Stream m a -> Stream m a) g m.
-  New.unstreamR (inplace f g (streamR (new m))) = New.transformR f g m
-
-"uninplace right [Vector]"
-  forall (f :: forall m. Monad m => Stream m a -> Stream m a) g m.
-  streamR (new (New.transformR f g m)) = inplace f g (streamR (new m))  #-}
-
-
-
-unstreamM :: (Monad m, Vector v a) => MBundle m u a -> m (v a)
-{-# INLINE_FUSED unstreamM #-}
-unstreamM s = do
-                xs <- MBundle.toList s
-                return $ unstream $ Bundle.unsafeFromList (MBundle.size s) xs
-
-unstreamPrimM :: (PrimMonad m, Vector v a) => MBundle m u a -> m (v a)
-{-# INLINE_FUSED unstreamPrimM #-}
-unstreamPrimM s = M.munstream s >>= unsafeFreeze
-
--- FIXME: the next two functions are only necessary for the specialisations
-unstreamPrimM_IO :: Vector v a => MBundle IO u a -> IO (v a)
-{-# INLINE unstreamPrimM_IO #-}
-unstreamPrimM_IO = unstreamPrimM
-
-unstreamPrimM_ST :: Vector v a => MBundle (ST s) u a -> ST s (v a)
-{-# INLINE unstreamPrimM_ST #-}
-unstreamPrimM_ST = unstreamPrimM
-
-{-# RULES
-
-"unstreamM[IO]" unstreamM = unstreamPrimM_IO
-"unstreamM[ST]" unstreamM = unstreamPrimM_ST  #-}
-
-
-
-
--- Recycling support
--- -----------------
-
--- | Construct a vector from a monadic initialiser.
-new :: Vector v a => New v a -> v a
-{-# INLINE_FUSED new #-}
-new m = m `seq` runST (unsafeFreeze =<< New.run m)
-
--- | Convert a vector to an initialiser which, when run, produces a copy of
--- the vector.
-clone :: Vector v a => v a -> New v a
-{-# INLINE_FUSED clone #-}
-clone v = v `seq` New.create (
-  do
-    mv <- M.new (length v)
-    unsafeCopy mv v
-    return mv)
-
--- Comparisons
--- -----------
-
--- | /O(n)/ Check if two vectors are equal. All 'Vector' instances are also
--- instances of 'Eq' and it is usually more appropriate to use those. This
--- function is primarily intended for implementing 'Eq' instances for new
--- vector types.
-eq :: (Vector v a, Eq a) => v a -> v a -> Bool
-{-# INLINE eq #-}
-xs `eq` ys = stream xs == stream ys
-
--- | /O(n)/
-eqBy :: (Vector v a, Vector v b) => (a -> b -> Bool) -> v a -> v b -> Bool
-{-# INLINE eqBy #-}
-eqBy e xs ys = Bundle.eqBy e (stream xs) (stream ys)
-
--- | /O(n)/ Compare two vectors lexicographically. All 'Vector' instances are
--- also instances of 'Ord' and it is usually more appropriate to use those. This
--- function is primarily intended for implementing 'Ord' instances for new
--- vector types.
-cmp :: (Vector v a, Ord a) => v a -> v a -> Ordering
-{-# INLINE cmp #-}
-cmp xs ys = compare (stream xs) (stream ys)
-
--- | /O(n)/
-cmpBy :: (Vector v a, Vector v b) => (a -> b -> Ordering) -> v a -> v b -> Ordering
-cmpBy c xs ys = Bundle.cmpBy c (stream xs) (stream ys)
-
--- Show
--- ----
-
--- | Generic definition of 'Prelude.showsPrec'
-showsPrec :: (Vector v a, Show a) => Int -> v a -> ShowS
-{-# INLINE showsPrec #-}
-showsPrec _ = shows . toList
-
-liftShowsPrec :: (Vector v a) => (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> v a -> ShowS
-{-# INLINE liftShowsPrec #-}
-liftShowsPrec _ s _ = s . toList
-
--- | Generic definition of 'Text.Read.readPrec'
-readPrec :: (Vector v a, Read a) => Read.ReadPrec (v a)
-{-# INLINE readPrec #-}
-readPrec = do
-  xs <- Read.readPrec
-  return (fromList xs)
-
--- | /Note:/ uses 'ReadS'
-liftReadsPrec :: (Vector v a) => (Int -> Read.ReadS a) -> ReadS [a] -> Int -> Read.ReadS (v a)
-liftReadsPrec _ r _ s = [ (fromList v, s') | (v, s') <- r s ]
-
--- Data and Typeable
--- -----------------
-
--- | Generic definion of 'Data.Data.gfoldl' that views a 'Vector' as a
--- list.
-gfoldl :: (Vector v a, Data a)
-       => (forall d b. Data d => c (d -> b) -> d -> c b)
-       -> (forall g. g -> c g)
-       -> v a
-       -> c (v a)
-{-# INLINE gfoldl #-}
-gfoldl f z v = z fromList `f` toList v
-
-mkType :: String -> DataType
-{-# INLINE mkType #-}
-mkType = mkNoRepType
-
-#if __GLASGOW_HASKELL__ >= 707
-dataCast :: (Vector v a, Data a, Typeable v, Typeable t)
-#else
-dataCast :: (Vector v a, Data a, Typeable1 v, Typeable1 t)
-#endif
-         => (forall d. Data  d => c (t d)) -> Maybe  (c (v a))
-{-# INLINE dataCast #-}
-dataCast f = gcast1 f
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/Base.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/Base.hs
deleted file mode 100644
index a760329c599f..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/Base.hs
+++ /dev/null
@@ -1,140 +0,0 @@
-{-# LANGUAGE Rank2Types, MultiParamTypeClasses, FlexibleContexts,
-             TypeFamilies, ScopedTypeVariables, BangPatterns #-}
-{-# OPTIONS_HADDOCK hide #-}
-
--- |
--- Module      : Data.Vector.Generic.Base
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Class of pure vectors
---
-
-module Data.Vector.Generic.Base (
-  Vector(..), Mutable
-) where
-
-import           Data.Vector.Generic.Mutable.Base ( MVector )
-import qualified Data.Vector.Generic.Mutable.Base as M
-
-import Control.Monad.Primitive
-
--- | @Mutable v s a@ is the mutable version of the pure vector type @v a@ with
--- the state token @s@
---
-type family Mutable (v :: * -> *) :: * -> * -> *
-
--- | Class of immutable vectors. Every immutable vector is associated with its
--- mutable version through the 'Mutable' type family. Methods of this class
--- should not be used directly. Instead, "Data.Vector.Generic" and other
--- Data.Vector modules provide safe and fusible wrappers.
---
--- Minimum complete implementation:
---
---   * 'basicUnsafeFreeze'
---
---   * 'basicUnsafeThaw'
---
---   * 'basicLength'
---
---   * 'basicUnsafeSlice'
---
---   * 'basicUnsafeIndexM'
---
-class MVector (Mutable v) a => Vector v a where
-  -- | /Assumed complexity: O(1)/
-  --
-  -- Unsafely convert a mutable vector to its immutable version
-  -- without copying. The mutable vector may not be used after
-  -- this operation.
-  basicUnsafeFreeze :: PrimMonad m => Mutable v (PrimState m) a -> m (v a)
-
-  -- | /Assumed complexity: O(1)/
-  --
-  -- Unsafely convert an immutable vector to its mutable version without
-  -- copying. The immutable vector may not be used after this operation.
-  basicUnsafeThaw :: PrimMonad m => v a -> m (Mutable v (PrimState m) a)
-
-  -- | /Assumed complexity: O(1)/
-  --
-  -- Yield the length of the vector.
-  basicLength      :: v a -> Int
-
-  -- | /Assumed complexity: O(1)/
-  --
-  -- Yield a slice of the vector without copying it. No range checks are
-  -- performed.
-  basicUnsafeSlice  :: Int -- ^ starting index
-                    -> Int -- ^ length
-                    -> v a -> v a
-
-  -- | /Assumed complexity: O(1)/
-  --
-  -- Yield the element at the given position in a monad. No range checks are
-  -- performed.
-  --
-  -- The monad allows us to be strict in the vector if we want. Suppose we had
-  --
-  -- > unsafeIndex :: v a -> Int -> a
-  --
-  -- instead. Now, if we wanted to copy a vector, we'd do something like
-  --
-  -- > copy mv v ... = ... unsafeWrite mv i (unsafeIndex v i) ...
-  --
-  -- For lazy vectors, the indexing would not be evaluated which means that we
-  -- would retain a reference to the original vector in each element we write.
-  -- This is not what we want!
-  --
-  -- With 'basicUnsafeIndexM', we can do
-  --
-  -- > copy mv v ... = ... case basicUnsafeIndexM v i of
-  -- >                       Box x -> unsafeWrite mv i x ...
-  --
-  -- which does not have this problem because indexing (but not the returned
-  -- element!) is evaluated immediately.
-  --
-  basicUnsafeIndexM  :: Monad m => v a -> Int -> m a
-
-  -- |  /Assumed complexity: O(n)/
-  --
-  -- Copy an immutable vector into a mutable one. The two vectors must have
-  -- the same length but this is not checked.
-  --
-  -- Instances of 'Vector' should redefine this method if they wish to support
-  -- an efficient block copy operation.
-  --
-  -- Default definition: copying basic on 'basicUnsafeIndexM' and
-  -- 'basicUnsafeWrite'.
-  basicUnsafeCopy :: PrimMonad m => Mutable v (PrimState m) a -> v a -> m ()
-
-  {-# INLINE basicUnsafeCopy #-}
-  basicUnsafeCopy !dst !src = do_copy 0
-    where
-      !n = basicLength src
-
-      do_copy i | i < n = do
-                            x <- basicUnsafeIndexM src i
-                            M.basicUnsafeWrite dst i x
-                            do_copy (i+1)
-                | otherwise = return ()
-
-  -- | Evaluate @a@ as far as storing it in a vector would and yield @b@.
-  -- The @v a@ argument only fixes the type and is not touched. The method is
-  -- only used for optimisation purposes. Thus, it is safe for instances of
-  -- 'Vector' to evaluate @a@ less than it would be when stored in a vector
-  -- although this might result in suboptimal code.
-  --
-  -- > elemseq v x y = (singleton x `asTypeOf` v) `seq` y
-  --
-  -- Default defintion: @a@ is not evaluated at all
-  --
-  elemseq :: v a -> a -> b -> b
-
-  {-# INLINE elemseq #-}
-  elemseq _ = \_ x -> x
-
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/Mutable.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/Mutable.hs
deleted file mode 100644
index 89bebf360765..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/Mutable.hs
+++ /dev/null
@@ -1,1034 +0,0 @@
-{-# LANGUAGE CPP, MultiParamTypeClasses, FlexibleContexts, BangPatterns, TypeFamilies, ScopedTypeVariables #-}
--- |
--- Module      : Data.Vector.Generic.Mutable
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Generic interface to mutable vectors
---
-
-module Data.Vector.Generic.Mutable (
-  -- * Class of mutable vector types
-  MVector(..),
-
-  -- * Accessors
-
-  -- ** Length information
-  length, null,
-
-  -- ** Extracting subvectors
-  slice, init, tail, take, drop, splitAt,
-  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-
-  -- ** Overlapping
-  overlaps,
-
-  -- * Construction
-
-  -- ** Initialisation
-  new, unsafeNew, replicate, replicateM, clone,
-
-  -- ** Growing
-  grow, unsafeGrow,
-  growFront, unsafeGrowFront,
-
-  -- ** Restricting memory usage
-  clear,
-
-  -- * Accessing individual elements
-  read, write, modify, swap, exchange,
-  unsafeRead, unsafeWrite, unsafeModify, unsafeSwap, unsafeExchange,
-
-  -- * Modifying vectors
-  nextPermutation,
-
-  -- ** Filling and copying
-  set, copy, move, unsafeCopy, unsafeMove,
-
-  -- * Internal operations
-  mstream, mstreamR,
-  unstream, unstreamR, vunstream,
-  munstream, munstreamR,
-  transform, transformR,
-  fill, fillR,
-  unsafeAccum, accum, unsafeUpdate, update, reverse,
-  unstablePartition, unstablePartitionBundle, partitionBundle
-) where
-
-import           Data.Vector.Generic.Mutable.Base
-import qualified Data.Vector.Generic.Base as V
-
-import qualified Data.Vector.Fusion.Bundle      as Bundle
-import           Data.Vector.Fusion.Bundle      ( Bundle, MBundle, Chunk(..) )
-import qualified Data.Vector.Fusion.Bundle.Monadic as MBundle
-import           Data.Vector.Fusion.Stream.Monadic ( Stream )
-import qualified Data.Vector.Fusion.Stream.Monadic as Stream
-import           Data.Vector.Fusion.Bundle.Size
-import           Data.Vector.Fusion.Util        ( delay_inline )
-
-import Control.Monad.Primitive ( PrimMonad, PrimState )
-
-import Prelude hiding ( length, null, replicate, reverse, map, read,
-                        take, drop, splitAt, init, tail )
-
-#include "vector.h"
-
-{-
-type family Immutable (v :: * -> * -> *) :: * -> *
-
--- | Class of mutable vectors parametrised with a primitive state token.
---
-class MBundle.Pointer u a => MVector v a where
-  -- | Length of the mutable vector. This method should not be
-  -- called directly, use 'length' instead.
-  basicLength       :: v s a -> Int
-
-  -- | Yield a part of the mutable vector without copying it. This method
-  -- should not be called directly, use 'unsafeSlice' instead.
-  basicUnsafeSlice :: Int  -- ^ starting index
-                   -> Int  -- ^ length of the slice
-                   -> v s a
-                   -> v s a
-
-  -- Check whether two vectors overlap. This method should not be
-  -- called directly, use 'overlaps' instead.
-  basicOverlaps    :: v s a -> v s a -> Bool
-
-  -- | Create a mutable vector of the given length. This method should not be
-  -- called directly, use 'unsafeNew' instead.
-  basicUnsafeNew   :: PrimMonad m => Int -> m (v (PrimState m) a)
-
-  -- | Create a mutable vector of the given length and fill it with an
-  -- initial value. This method should not be called directly, use
-  -- 'replicate' instead.
-  basicUnsafeReplicate :: PrimMonad m => Int -> a -> m (v (PrimState m) a)
-
-  -- | Yield the element at the given position. This method should not be
-  -- called directly, use 'unsafeRead' instead.
-  basicUnsafeRead  :: PrimMonad m => v (PrimState m) a -> Int -> m a
-
-  -- | Replace the element at the given position. This method should not be
-  -- called directly, use 'unsafeWrite' instead.
-  basicUnsafeWrite :: PrimMonad m => v (PrimState m) a -> Int -> a -> m ()
-
-  -- | Reset all elements of the vector to some undefined value, clearing all
-  -- references to external objects. This is usually a noop for unboxed
-  -- vectors. This method should not be called directly, use 'clear' instead.
-  basicClear       :: PrimMonad m => v (PrimState m) a -> m ()
-
-  -- | Set all elements of the vector to the given value. This method should
-  -- not be called directly, use 'set' instead.
-  basicSet         :: PrimMonad m => v (PrimState m) a -> a -> m ()
-
-  basicUnsafeCopyPointer :: PrimMonad m => v (PrimState m) a
-                                        -> Immutable v a
-                                        -> m ()
-
-  -- | Copy a vector. The two vectors may not overlap. This method should not
-  -- be called directly, use 'unsafeCopy' instead.
-  basicUnsafeCopy  :: PrimMonad m => v (PrimState m) a   -- ^ target
-                                  -> v (PrimState m) a   -- ^ source
-                                  -> m ()
-
-  -- | Move the contents of a vector. The two vectors may overlap. This method
-  -- should not be called directly, use 'unsafeMove' instead.
-  basicUnsafeMove  :: PrimMonad m => v (PrimState m) a   -- ^ target
-                                  -> v (PrimState m) a   -- ^ source
-                                  -> m ()
-
-  -- | Grow a vector by the given number of elements. This method should not be
-  -- called directly, use 'unsafeGrow' instead.
-  basicUnsafeGrow  :: PrimMonad m => v (PrimState m) a -> Int
-                                                       -> m (v (PrimState m) a)
-
-  {-# INLINE basicUnsafeReplicate #-}
-  basicUnsafeReplicate n x
-    = do
-        v <- basicUnsafeNew n
-        basicSet v x
-        return v
-
-  {-# INLINE basicClear #-}
-  basicClear _ = return ()
-
-  {-# INLINE basicSet #-}
-  basicSet !v x
-    | n == 0    = return ()
-    | otherwise = do
-                    basicUnsafeWrite v 0 x
-                    do_set 1
-    where
-      !n = basicLength v
-
-      do_set i | 2*i < n = do basicUnsafeCopy (basicUnsafeSlice i i v)
-                                              (basicUnsafeSlice 0 i v)
-                              do_set (2*i)
-               | otherwise = basicUnsafeCopy (basicUnsafeSlice i (n-i) v)
-                                             (basicUnsafeSlice 0 (n-i) v)
-
-  {-# INLINE basicUnsafeCopyPointer #-}
-  basicUnsafeCopyPointer !dst !src = do_copy 0 src
-    where
-      do_copy !i p | Just (x,q) <- MBundle.pget p = do
-                                                      basicUnsafeWrite dst i x
-                                                      do_copy (i+1) q
-                   | otherwise = return ()
-
-  {-# INLINE basicUnsafeCopy #-}
-  basicUnsafeCopy !dst !src = do_copy 0
-    where
-      !n = basicLength src
-
-      do_copy i | i < n = do
-                            x <- basicUnsafeRead src i
-                            basicUnsafeWrite dst i x
-                            do_copy (i+1)
-                | otherwise = return ()
-
-  {-# INLINE basicUnsafeMove #-}
-  basicUnsafeMove !dst !src
-    | basicOverlaps dst src = do
-        srcCopy <- clone src
-        basicUnsafeCopy dst srcCopy
-    | otherwise = basicUnsafeCopy dst src
-
-  {-# INLINE basicUnsafeGrow #-}
-  basicUnsafeGrow v by
-    = do
-        v' <- basicUnsafeNew (n+by)
-        basicUnsafeCopy (basicUnsafeSlice 0 n v') v
-        return v'
-    where
-      n = basicLength v
--}
-
--- ------------------
--- Internal functions
--- ------------------
-
-unsafeAppend1 :: (PrimMonad m, MVector v a)
-        => v (PrimState m) a -> Int -> a -> m (v (PrimState m) a)
-{-# INLINE_INNER unsafeAppend1 #-}
-    -- NOTE: The case distinction has to be on the outside because
-    -- GHC creates a join point for the unsafeWrite even when everything
-    -- is inlined. This is bad because with the join point, v isn't getting
-    -- unboxed.
-unsafeAppend1 v i x
-  | i < length v = do
-                     unsafeWrite v i x
-                     return v
-  | otherwise    = do
-                     v' <- enlarge v
-                     INTERNAL_CHECK(checkIndex) "unsafeAppend1" i (length v')
-                       $ unsafeWrite v' i x
-                     return v'
-
-unsafePrepend1 :: (PrimMonad m, MVector v a)
-        => v (PrimState m) a -> Int -> a -> m (v (PrimState m) a, Int)
-{-# INLINE_INNER unsafePrepend1 #-}
-unsafePrepend1 v i x
-  | i /= 0    = do
-                  let i' = i-1
-                  unsafeWrite v i' x
-                  return (v, i')
-  | otherwise = do
-                  (v', j) <- enlargeFront v
-                  let i' = j-1
-                  INTERNAL_CHECK(checkIndex) "unsafePrepend1" i' (length v')
-                    $ unsafeWrite v' i' x
-                  return (v', i')
-
-mstream :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Stream m a
-{-# INLINE mstream #-}
-mstream v = v `seq` n `seq` (Stream.unfoldrM get 0)
-  where
-    n = length v
-
-    {-# INLINE_INNER get #-}
-    get i | i < n     = do x <- unsafeRead v i
-                           return $ Just (x, i+1)
-          | otherwise = return $ Nothing
-
-fill :: (PrimMonad m, MVector v a)
-     => v (PrimState m) a -> Stream m a -> m (v (PrimState m) a)
-{-# INLINE fill #-}
-fill v s = v `seq` do
-                     n' <- Stream.foldM put 0 s
-                     return $ unsafeSlice 0 n' v
-  where
-    {-# INLINE_INNER put #-}
-    put i x = do
-                INTERNAL_CHECK(checkIndex) "fill" i (length v)
-                  $ unsafeWrite v i x
-                return (i+1)
-
-transform
-  :: (PrimMonad m, MVector v a)
-  => (Stream m a -> Stream m a) -> v (PrimState m) a -> m (v (PrimState m) a)
-{-# INLINE_FUSED transform #-}
-transform f v = fill v (f (mstream v))
-
-mstreamR :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Stream m a
-{-# INLINE mstreamR #-}
-mstreamR v = v `seq` n `seq` (Stream.unfoldrM get n)
-  where
-    n = length v
-
-    {-# INLINE_INNER get #-}
-    get i | j >= 0    = do x <- unsafeRead v j
-                           return $ Just (x,j)
-          | otherwise = return Nothing
-      where
-        j = i-1
-
-fillR :: (PrimMonad m, MVector v a)
-      => v (PrimState m) a -> Stream m a -> m (v (PrimState m) a)
-{-# INLINE fillR #-}
-fillR v s = v `seq` do
-                      i <- Stream.foldM put n s
-                      return $ unsafeSlice i (n-i) v
-  where
-    n = length v
-
-    {-# INLINE_INNER put #-}
-    put i x = do
-                unsafeWrite v j x
-                return j
-      where
-        j = i-1
-
-transformR
-  :: (PrimMonad m, MVector v a)
-  => (Stream m a -> Stream m a) -> v (PrimState m) a -> m (v (PrimState m) a)
-{-# INLINE_FUSED transformR #-}
-transformR f v = fillR v (f (mstreamR v))
-
--- | Create a new mutable vector and fill it with elements from the 'Bundle'.
--- The vector will grow exponentially if the maximum size of the 'Bundle' is
--- unknown.
-unstream :: (PrimMonad m, MVector v a)
-         => Bundle u a -> m (v (PrimState m) a)
--- NOTE: replace INLINE_FUSED by INLINE? (also in unstreamR)
-{-# INLINE_FUSED unstream #-}
-unstream s = munstream (Bundle.lift s)
-
--- | Create a new mutable vector and fill it with elements from the monadic
--- stream. The vector will grow exponentially if the maximum size of the stream
--- is unknown.
-munstream :: (PrimMonad m, MVector v a)
-          => MBundle m u a -> m (v (PrimState m) a)
-{-# INLINE_FUSED munstream #-}
-munstream s = case upperBound (MBundle.size s) of
-               Just n  -> munstreamMax     s n
-               Nothing -> munstreamUnknown s
-
--- FIXME: I can't think of how to prevent GHC from floating out
--- unstreamUnknown. That is bad because SpecConstr then generates two
--- specialisations: one for when it is called from unstream (it doesn't know
--- the shape of the vector) and one for when the vector has grown. To see the
--- problem simply compile this:
---
--- fromList = Data.Vector.Unboxed.unstream . Bundle.fromList
---
--- I'm not sure this still applies (19/04/2010)
-
-munstreamMax :: (PrimMonad m, MVector v a)
-             => MBundle m u a -> Int -> m (v (PrimState m) a)
-{-# INLINE munstreamMax #-}
-munstreamMax s n
-  = do
-      v <- INTERNAL_CHECK(checkLength) "munstreamMax" n
-           $ unsafeNew n
-      let put i x = do
-                       INTERNAL_CHECK(checkIndex) "munstreamMax" i n
-                         $ unsafeWrite v i x
-                       return (i+1)
-      n' <- MBundle.foldM' put 0 s
-      return $ INTERNAL_CHECK(checkSlice) "munstreamMax" 0 n' n
-             $ unsafeSlice 0 n' v
-
-munstreamUnknown :: (PrimMonad m, MVector v a)
-                 => MBundle m u a -> m (v (PrimState m) a)
-{-# INLINE munstreamUnknown #-}
-munstreamUnknown s
-  = do
-      v <- unsafeNew 0
-      (v', n) <- MBundle.foldM put (v, 0) s
-      return $ INTERNAL_CHECK(checkSlice) "munstreamUnknown" 0 n (length v')
-             $ unsafeSlice 0 n v'
-  where
-    {-# INLINE_INNER put #-}
-    put (v,i) x = do
-                    v' <- unsafeAppend1 v i x
-                    return (v',i+1)
-
-
-
-
-
-
-
--- | Create a new mutable vector and fill it with elements from the 'Bundle'.
--- The vector will grow exponentially if the maximum size of the 'Bundle' is
--- unknown.
-vunstream :: (PrimMonad m, V.Vector v a)
-         => Bundle v a -> m (V.Mutable v (PrimState m) a)
--- NOTE: replace INLINE_FUSED by INLINE? (also in unstreamR)
-{-# INLINE_FUSED vunstream #-}
-vunstream s = vmunstream (Bundle.lift s)
-
--- | Create a new mutable vector and fill it with elements from the monadic
--- stream. The vector will grow exponentially if the maximum size of the stream
--- is unknown.
-vmunstream :: (PrimMonad m, V.Vector v a)
-           => MBundle m v a -> m (V.Mutable v (PrimState m) a)
-{-# INLINE_FUSED vmunstream #-}
-vmunstream s = case upperBound (MBundle.size s) of
-               Just n  -> vmunstreamMax     s n
-               Nothing -> vmunstreamUnknown s
-
--- FIXME: I can't think of how to prevent GHC from floating out
--- unstreamUnknown. That is bad because SpecConstr then generates two
--- specialisations: one for when it is called from unstream (it doesn't know
--- the shape of the vector) and one for when the vector has grown. To see the
--- problem simply compile this:
---
--- fromList = Data.Vector.Unboxed.unstream . Bundle.fromList
---
--- I'm not sure this still applies (19/04/2010)
-
-vmunstreamMax :: (PrimMonad m, V.Vector v a)
-              => MBundle m v a -> Int -> m (V.Mutable v (PrimState m) a)
-{-# INLINE vmunstreamMax #-}
-vmunstreamMax s n
-  = do
-      v <- INTERNAL_CHECK(checkLength) "munstreamMax" n
-           $ unsafeNew n
-      let {-# INLINE_INNER copyChunk #-}
-          copyChunk i (Chunk m f) =
-            INTERNAL_CHECK(checkSlice) "munstreamMax.copyChunk" i m (length v) $ do
-              f (basicUnsafeSlice i m v)
-              return (i+m)
-
-      n' <- Stream.foldlM' copyChunk 0 (MBundle.chunks s)
-      return $ INTERNAL_CHECK(checkSlice) "munstreamMax" 0 n' n
-             $ unsafeSlice 0 n' v
-
-vmunstreamUnknown :: (PrimMonad m, V.Vector v a)
-                 => MBundle m v a -> m (V.Mutable v (PrimState m) a)
-{-# INLINE vmunstreamUnknown #-}
-vmunstreamUnknown s
-  = do
-      v <- unsafeNew 0
-      (v', n) <- Stream.foldlM copyChunk (v,0) (MBundle.chunks s)
-      return $ INTERNAL_CHECK(checkSlice) "munstreamUnknown" 0 n (length v')
-             $ unsafeSlice 0 n v'
-  where
-    {-# INLINE_INNER copyChunk #-}
-    copyChunk (v,i) (Chunk n f)
-      = do
-          let j = i+n
-          v' <- if basicLength v < j
-                  then unsafeGrow v (delay_inline max (enlarge_delta v) (j - basicLength v))
-                  else return v
-          INTERNAL_CHECK(checkSlice) "munstreamUnknown.copyChunk" i n (length v')
-            $ f (basicUnsafeSlice i n v')
-          return (v',j)
-
-
-
-
--- | Create a new mutable vector and fill it with elements from the 'Bundle'
--- from right to left. The vector will grow exponentially if the maximum size
--- of the 'Bundle' is unknown.
-unstreamR :: (PrimMonad m, MVector v a)
-          => Bundle u a -> m (v (PrimState m) a)
--- NOTE: replace INLINE_FUSED by INLINE? (also in unstream)
-{-# INLINE_FUSED unstreamR #-}
-unstreamR s = munstreamR (Bundle.lift s)
-
--- | Create a new mutable vector and fill it with elements from the monadic
--- stream from right to left. The vector will grow exponentially if the maximum
--- size of the stream is unknown.
-munstreamR :: (PrimMonad m, MVector v a)
-           => MBundle m u a -> m (v (PrimState m) a)
-{-# INLINE_FUSED munstreamR #-}
-munstreamR s = case upperBound (MBundle.size s) of
-               Just n  -> munstreamRMax     s n
-               Nothing -> munstreamRUnknown s
-
-munstreamRMax :: (PrimMonad m, MVector v a)
-              => MBundle m u a -> Int -> m (v (PrimState m) a)
-{-# INLINE munstreamRMax #-}
-munstreamRMax s n
-  = do
-      v <- INTERNAL_CHECK(checkLength) "munstreamRMax" n
-           $ unsafeNew n
-      let put i x = do
-                      let i' = i-1
-                      INTERNAL_CHECK(checkIndex) "munstreamRMax" i' n
-                        $ unsafeWrite v i' x
-                      return i'
-      i <- MBundle.foldM' put n s
-      return $ INTERNAL_CHECK(checkSlice) "munstreamRMax" i (n-i) n
-             $ unsafeSlice i (n-i) v
-
-munstreamRUnknown :: (PrimMonad m, MVector v a)
-                  => MBundle m u a -> m (v (PrimState m) a)
-{-# INLINE munstreamRUnknown #-}
-munstreamRUnknown s
-  = do
-      v <- unsafeNew 0
-      (v', i) <- MBundle.foldM put (v, 0) s
-      let n = length v'
-      return $ INTERNAL_CHECK(checkSlice) "unstreamRUnknown" i (n-i) n
-             $ unsafeSlice i (n-i) v'
-  where
-    {-# INLINE_INNER put #-}
-    put (v,i) x = unsafePrepend1 v i x
-
--- Length
--- ------
-
--- | Length of the mutable vector.
-length :: MVector v a => v s a -> Int
-{-# INLINE length #-}
-length = basicLength
-
--- | Check whether the vector is empty
-null :: MVector v a => v s a -> Bool
-{-# INLINE null #-}
-null v = length v == 0
-
--- Extracting subvectors
--- ---------------------
-
--- | Yield a part of the mutable vector without copying it.
-slice :: MVector v a => Int -> Int -> v s a -> v s a
-{-# INLINE slice #-}
-slice i n v = BOUNDS_CHECK(checkSlice) "slice" i n (length v)
-            $ unsafeSlice i n v
-
-take :: MVector v a => Int -> v s a -> v s a
-{-# INLINE take #-}
-take n v = unsafeSlice 0 (min (max n 0) (length v)) v
-
-drop :: MVector v a => Int -> v s a -> v s a
-{-# INLINE drop #-}
-drop n v = unsafeSlice (min m n') (max 0 (m - n')) v
-  where
-    n' = max n 0
-    m  = length v
-
-{-# INLINE splitAt #-}
-splitAt :: MVector v a => Int -> v s a -> (v s a, v s a)
-splitAt n v = ( unsafeSlice 0 m v
-              , unsafeSlice m (max 0 (len - n')) v
-              )
-    where
-      m   = min n' len
-      n'  = max n 0
-      len = length v
-
-init :: MVector v a => v s a -> v s a
-{-# INLINE init #-}
-init v = slice 0 (length v - 1) v
-
-tail :: MVector v a => v s a -> v s a
-{-# INLINE tail #-}
-tail v = slice 1 (length v - 1) v
-
--- | Yield a part of the mutable vector without copying it. No bounds checks
--- are performed.
-unsafeSlice :: MVector v a => Int  -- ^ starting index
-                           -> Int  -- ^ length of the slice
-                           -> v s a
-                           -> v s a
-{-# INLINE unsafeSlice #-}
-unsafeSlice i n v = UNSAFE_CHECK(checkSlice) "unsafeSlice" i n (length v)
-                  $ basicUnsafeSlice i n v
-
-unsafeInit :: MVector v a => v s a -> v s a
-{-# INLINE unsafeInit #-}
-unsafeInit v = unsafeSlice 0 (length v - 1) v
-
-unsafeTail :: MVector v a => v s a -> v s a
-{-# INLINE unsafeTail #-}
-unsafeTail v = unsafeSlice 1 (length v - 1) v
-
-unsafeTake :: MVector v a => Int -> v s a -> v s a
-{-# INLINE unsafeTake #-}
-unsafeTake n v = unsafeSlice 0 n v
-
-unsafeDrop :: MVector v a => Int -> v s a -> v s a
-{-# INLINE unsafeDrop #-}
-unsafeDrop n v = unsafeSlice n (length v - n) v
-
--- Overlapping
--- -----------
-
--- | Check whether two vectors overlap.
-overlaps :: MVector v a => v s a -> v s a -> Bool
-{-# INLINE overlaps #-}
-overlaps = basicOverlaps
-
--- Initialisation
--- --------------
-
--- | Create a mutable vector of the given length.
-new :: (PrimMonad m, MVector v a) => Int -> m (v (PrimState m) a)
-{-# INLINE new #-}
-new n = BOUNDS_CHECK(checkLength) "new" n
-      $ unsafeNew n >>= \v -> basicInitialize v >> return v
-
--- | Create a mutable vector of the given length. The memory is not initialized.
-unsafeNew :: (PrimMonad m, MVector v a) => Int -> m (v (PrimState m) a)
-{-# INLINE unsafeNew #-}
-unsafeNew n = UNSAFE_CHECK(checkLength) "unsafeNew" n
-            $ basicUnsafeNew n
-
--- | Create a mutable vector of the given length (0 if the length is negative)
--- and fill it with an initial value.
-replicate :: (PrimMonad m, MVector v a) => Int -> a -> m (v (PrimState m) a)
-{-# INLINE replicate #-}
-replicate n x = basicUnsafeReplicate (delay_inline max 0 n) x
-
--- | Create a mutable vector of the given length (0 if the length is negative)
--- and fill it with values produced by repeatedly executing the monadic action.
-replicateM :: (PrimMonad m, MVector v a) => Int -> m a -> m (v (PrimState m) a)
-{-# INLINE replicateM #-}
-replicateM n m = munstream (MBundle.replicateM n m)
-
--- | Create a copy of a mutable vector.
-clone :: (PrimMonad m, MVector v a) => v (PrimState m) a -> m (v (PrimState m) a)
-{-# INLINE clone #-}
-clone v = do
-            v' <- unsafeNew (length v)
-            unsafeCopy v' v
-            return v'
-
--- Growing
--- -------
-
--- | Grow a vector by the given number of elements. The number must be
--- positive.
-grow :: (PrimMonad m, MVector v a)
-                => v (PrimState m) a -> Int -> m (v (PrimState m) a)
-{-# INLINE grow #-}
-grow v by = BOUNDS_CHECK(checkLength) "grow" by
-          $ do vnew <- unsafeGrow v by
-               basicInitialize $ basicUnsafeSlice (length v) by vnew
-               return vnew
-
-growFront :: (PrimMonad m, MVector v a)
-                => v (PrimState m) a -> Int -> m (v (PrimState m) a)
-{-# INLINE growFront #-}
-growFront v by = BOUNDS_CHECK(checkLength) "growFront" by
-               $ do vnew <- unsafeGrowFront v by
-                    basicInitialize $ basicUnsafeSlice 0 by vnew
-                    return vnew
-
-enlarge_delta :: MVector v a => v s a -> Int
-enlarge_delta v = max (length v) 1
-
--- | Grow a vector logarithmically
-enlarge :: (PrimMonad m, MVector v a)
-                => v (PrimState m) a -> m (v (PrimState m) a)
-{-# INLINE enlarge #-}
-enlarge v = do vnew <- unsafeGrow v by
-               basicInitialize $ basicUnsafeSlice (length v) by vnew
-               return vnew
-  where
-    by = enlarge_delta v
-
-enlargeFront :: (PrimMonad m, MVector v a)
-                => v (PrimState m) a -> m (v (PrimState m) a, Int)
-{-# INLINE enlargeFront #-}
-enlargeFront v = do
-                   v' <- unsafeGrowFront v by
-                   basicInitialize $ basicUnsafeSlice 0 by v'
-                   return (v', by)
-  where
-    by = enlarge_delta v
-
--- | Grow a vector by the given number of elements. The number must be
--- positive but this is not checked.
-unsafeGrow :: (PrimMonad m, MVector v a)
-                        => v (PrimState m) a -> Int -> m (v (PrimState m) a)
-{-# INLINE unsafeGrow #-}
-unsafeGrow v n = UNSAFE_CHECK(checkLength) "unsafeGrow" n
-               $ basicUnsafeGrow v n
-
-unsafeGrowFront :: (PrimMonad m, MVector v a)
-                        => v (PrimState m) a -> Int -> m (v (PrimState m) a)
-{-# INLINE unsafeGrowFront #-}
-unsafeGrowFront v by = UNSAFE_CHECK(checkLength) "unsafeGrowFront" by
-                     $ do
-                         let n = length v
-                         v' <- basicUnsafeNew (by+n)
-                         basicUnsafeCopy (basicUnsafeSlice by n v') v
-                         return v'
-
--- Restricting memory usage
--- ------------------------
-
--- | Reset all elements of the vector to some undefined value, clearing all
--- references to external objects. This is usually a noop for unboxed vectors.
-clear :: (PrimMonad m, MVector v a) => v (PrimState m) a -> m ()
-{-# INLINE clear #-}
-clear = basicClear
-
--- Accessing individual elements
--- -----------------------------
-
--- | Yield the element at the given position.
-read :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Int -> m a
-{-# INLINE read #-}
-read v i = BOUNDS_CHECK(checkIndex) "read" i (length v)
-         $ unsafeRead v i
-
--- | Replace the element at the given position.
-write :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Int -> a -> m ()
-{-# INLINE write #-}
-write v i x = BOUNDS_CHECK(checkIndex) "write" i (length v)
-            $ unsafeWrite v i x
-
--- | Modify the element at the given position.
-modify :: (PrimMonad m, MVector v a) => v (PrimState m) a -> (a -> a) -> Int -> m ()
-{-# INLINE modify #-}
-modify v f i = BOUNDS_CHECK(checkIndex) "modify" i (length v)
-             $ unsafeModify v f i
-
--- | Swap the elements at the given positions.
-swap :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Int -> Int -> m ()
-{-# INLINE swap #-}
-swap v i j = BOUNDS_CHECK(checkIndex) "swap" i (length v)
-           $ BOUNDS_CHECK(checkIndex) "swap" j (length v)
-           $ unsafeSwap v i j
-
--- | Replace the element at the give position and return the old element.
-exchange :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Int -> a -> m a
-{-# INLINE exchange #-}
-exchange v i x = BOUNDS_CHECK(checkIndex) "exchange" i (length v)
-               $ unsafeExchange v i x
-
--- | Yield the element at the given position. No bounds checks are performed.
-unsafeRead :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Int -> m a
-{-# INLINE unsafeRead #-}
-unsafeRead v i = UNSAFE_CHECK(checkIndex) "unsafeRead" i (length v)
-               $ basicUnsafeRead v i
-
--- | Replace the element at the given position. No bounds checks are performed.
-unsafeWrite :: (PrimMonad m, MVector v a)
-                                => v (PrimState m) a -> Int -> a -> m ()
-{-# INLINE unsafeWrite #-}
-unsafeWrite v i x = UNSAFE_CHECK(checkIndex) "unsafeWrite" i (length v)
-                  $ basicUnsafeWrite v i x
-
--- | Modify the element at the given position. No bounds checks are performed.
-unsafeModify :: (PrimMonad m, MVector v a) => v (PrimState m) a -> (a -> a) -> Int -> m ()
-{-# INLINE unsafeModify #-}
-unsafeModify v f i = UNSAFE_CHECK(checkIndex) "unsafeModify" i (length v)
-                   $ basicUnsafeRead v i >>= \x ->
-                     basicUnsafeWrite v i (f x)
-
--- | Swap the elements at the given positions. No bounds checks are performed.
-unsafeSwap :: (PrimMonad m, MVector v a)
-                => v (PrimState m) a -> Int -> Int -> m ()
-{-# INLINE unsafeSwap #-}
-unsafeSwap v i j = UNSAFE_CHECK(checkIndex) "unsafeSwap" i (length v)
-                 $ UNSAFE_CHECK(checkIndex) "unsafeSwap" j (length v)
-                 $ do
-                     x <- unsafeRead v i
-                     y <- unsafeRead v j
-                     unsafeWrite v i y
-                     unsafeWrite v j x
-
--- | Replace the element at the give position and return the old element. No
--- bounds checks are performed.
-unsafeExchange :: (PrimMonad m, MVector v a)
-                                => v (PrimState m) a -> Int -> a -> m a
-{-# INLINE unsafeExchange #-}
-unsafeExchange v i x = UNSAFE_CHECK(checkIndex) "unsafeExchange" i (length v)
-                     $ do
-                         y <- unsafeRead v i
-                         unsafeWrite v i x
-                         return y
-
--- Filling and copying
--- -------------------
-
--- | Set all elements of the vector to the given value.
-set :: (PrimMonad m, MVector v a) => v (PrimState m) a -> a -> m ()
-{-# INLINE set #-}
-set = basicSet
-
--- | Copy a vector. The two vectors must have the same length and may not
--- overlap.
-copy :: (PrimMonad m, MVector v a) => v (PrimState m) a   -- ^ target
-                                   -> v (PrimState m) a   -- ^ source
-                                   -> m ()
-{-# INLINE copy #-}
-copy dst src = BOUNDS_CHECK(check) "copy" "overlapping vectors"
-                                          (not (dst `overlaps` src))
-             $ BOUNDS_CHECK(check) "copy" "length mismatch"
-                                          (length dst == length src)
-             $ unsafeCopy dst src
-
--- | Move the contents of a vector. The two vectors must have the same
--- length.
---
--- If the vectors do not overlap, then this is equivalent to 'copy'.
--- Otherwise, the copying is performed as if the source vector were
--- copied to a temporary vector and then the temporary vector was copied
--- to the target vector.
-move :: (PrimMonad m, MVector v a)
-                => v (PrimState m) a -> v (PrimState m) a -> m ()
-{-# INLINE move #-}
-move dst src = BOUNDS_CHECK(check) "move" "length mismatch"
-                                          (length dst == length src)
-             $ unsafeMove dst src
-
--- | Copy a vector. The two vectors must have the same length and may not
--- overlap. This is not checked.
-unsafeCopy :: (PrimMonad m, MVector v a) => v (PrimState m) a   -- ^ target
-                                         -> v (PrimState m) a   -- ^ source
-                                         -> m ()
-{-# INLINE unsafeCopy #-}
-unsafeCopy dst src = UNSAFE_CHECK(check) "unsafeCopy" "length mismatch"
-                                         (length dst == length src)
-                   $ UNSAFE_CHECK(check) "unsafeCopy" "overlapping vectors"
-                                         (not (dst `overlaps` src))
-                   $ (dst `seq` src `seq` basicUnsafeCopy dst src)
-
--- | Move the contents of a vector. The two vectors must have the same
--- length, but this is not checked.
---
--- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
--- Otherwise, the copying is performed as if the source vector were
--- copied to a temporary vector and then the temporary vector was copied
--- to the target vector.
-unsafeMove :: (PrimMonad m, MVector v a) => v (PrimState m) a   -- ^ target
-                                         -> v (PrimState m) a   -- ^ source
-                                         -> m ()
-{-# INLINE unsafeMove #-}
-unsafeMove dst src = UNSAFE_CHECK(check) "unsafeMove" "length mismatch"
-                                         (length dst == length src)
-                   $ (dst `seq` src `seq` basicUnsafeMove dst src)
-
--- Permutations
--- ------------
-
-accum :: (PrimMonad m, MVector v a)
-      => (a -> b -> a) -> v (PrimState m) a -> Bundle u (Int, b) -> m ()
-{-# INLINE accum #-}
-accum f !v s = Bundle.mapM_ upd s
-  where
-    {-# INLINE_INNER upd #-}
-    upd (i,b) = do
-                  a <- BOUNDS_CHECK(checkIndex) "accum" i n
-                     $ unsafeRead v i
-                  unsafeWrite v i (f a b)
-
-    !n = length v
-
-update :: (PrimMonad m, MVector v a)
-                        => v (PrimState m) a -> Bundle u (Int, a) -> m ()
-{-# INLINE update #-}
-update !v s = Bundle.mapM_ upd s
-  where
-    {-# INLINE_INNER upd #-}
-    upd (i,b) = BOUNDS_CHECK(checkIndex) "update" i n
-              $ unsafeWrite v i b
-
-    !n = length v
-
-unsafeAccum :: (PrimMonad m, MVector v a)
-            => (a -> b -> a) -> v (PrimState m) a -> Bundle u (Int, b) -> m ()
-{-# INLINE unsafeAccum #-}
-unsafeAccum f !v s = Bundle.mapM_ upd s
-  where
-    {-# INLINE_INNER upd #-}
-    upd (i,b) = do
-                  a <- UNSAFE_CHECK(checkIndex) "accum" i n
-                     $ unsafeRead v i
-                  unsafeWrite v i (f a b)
-
-    !n = length v
-
-unsafeUpdate :: (PrimMonad m, MVector v a)
-                        => v (PrimState m) a -> Bundle u (Int, a) -> m ()
-{-# INLINE unsafeUpdate #-}
-unsafeUpdate !v s = Bundle.mapM_ upd s
-  where
-    {-# INLINE_INNER upd #-}
-    upd (i,b) = UNSAFE_CHECK(checkIndex) "accum" i n
-                  $ unsafeWrite v i b
-
-    !n = length v
-
-reverse :: (PrimMonad m, MVector v a) => v (PrimState m) a -> m ()
-{-# INLINE reverse #-}
-reverse !v = reverse_loop 0 (length v - 1)
-  where
-    reverse_loop i j | i < j = do
-                                 unsafeSwap v i j
-                                 reverse_loop (i + 1) (j - 1)
-    reverse_loop _ _ = return ()
-
-unstablePartition :: forall m v a. (PrimMonad m, MVector v a)
-                  => (a -> Bool) -> v (PrimState m) a -> m Int
-{-# INLINE unstablePartition #-}
-unstablePartition f !v = from_left 0 (length v)
-  where
-    -- NOTE: GHC 6.10.4 panics without the signatures on from_left and
-    -- from_right
-    from_left :: Int -> Int -> m Int
-    from_left i j
-      | i == j    = return i
-      | otherwise = do
-                      x <- unsafeRead v i
-                      if f x
-                        then from_left (i+1) j
-                        else from_right i (j-1)
-
-    from_right :: Int -> Int -> m Int
-    from_right i j
-      | i == j    = return i
-      | otherwise = do
-                      x <- unsafeRead v j
-                      if f x
-                        then do
-                               y <- unsafeRead v i
-                               unsafeWrite v i x
-                               unsafeWrite v j y
-                               from_left (i+1) j
-                        else from_right i (j-1)
-
-unstablePartitionBundle :: (PrimMonad m, MVector v a)
-        => (a -> Bool) -> Bundle u a -> m (v (PrimState m) a, v (PrimState m) a)
-{-# INLINE unstablePartitionBundle #-}
-unstablePartitionBundle f s
-  = case upperBound (Bundle.size s) of
-      Just n  -> unstablePartitionMax f s n
-      Nothing -> partitionUnknown f s
-
-unstablePartitionMax :: (PrimMonad m, MVector v a)
-        => (a -> Bool) -> Bundle u a -> Int
-        -> m (v (PrimState m) a, v (PrimState m) a)
-{-# INLINE unstablePartitionMax #-}
-unstablePartitionMax f s n
-  = do
-      v <- INTERNAL_CHECK(checkLength) "unstablePartitionMax" n
-           $ unsafeNew n
-      let {-# INLINE_INNER put #-}
-          put (i, j) x
-            | f x       = do
-                            unsafeWrite v i x
-                            return (i+1, j)
-            | otherwise = do
-                            unsafeWrite v (j-1) x
-                            return (i, j-1)
-
-      (i,j) <- Bundle.foldM' put (0, n) s
-      return (unsafeSlice 0 i v, unsafeSlice j (n-j) v)
-
-partitionBundle :: (PrimMonad m, MVector v a)
-        => (a -> Bool) -> Bundle u a -> m (v (PrimState m) a, v (PrimState m) a)
-{-# INLINE partitionBundle #-}
-partitionBundle f s
-  = case upperBound (Bundle.size s) of
-      Just n  -> partitionMax f s n
-      Nothing -> partitionUnknown f s
-
-partitionMax :: (PrimMonad m, MVector v a)
-  => (a -> Bool) -> Bundle u a -> Int -> m (v (PrimState m) a, v (PrimState m) a)
-{-# INLINE partitionMax #-}
-partitionMax f s n
-  = do
-      v <- INTERNAL_CHECK(checkLength) "unstablePartitionMax" n
-         $ unsafeNew n
-
-      let {-# INLINE_INNER put #-}
-          put (i,j) x
-            | f x       = do
-                            unsafeWrite v i x
-                            return (i+1,j)
-
-            | otherwise = let j' = j-1 in
-                          do
-                            unsafeWrite v j' x
-                            return (i,j')
-
-      (i,j) <- Bundle.foldM' put (0,n) s
-      INTERNAL_CHECK(check) "partitionMax" "invalid indices" (i <= j)
-        $ return ()
-      let l = unsafeSlice 0 i v
-          r = unsafeSlice j (n-j) v
-      reverse r
-      return (l,r)
-
-partitionUnknown :: (PrimMonad m, MVector v a)
-        => (a -> Bool) -> Bundle u a -> m (v (PrimState m) a, v (PrimState m) a)
-{-# INLINE partitionUnknown #-}
-partitionUnknown f s
-  = do
-      v1 <- unsafeNew 0
-      v2 <- unsafeNew 0
-      (v1', n1, v2', n2) <- Bundle.foldM' put (v1, 0, v2, 0) s
-      INTERNAL_CHECK(checkSlice) "partitionUnknown" 0 n1 (length v1')
-        $ INTERNAL_CHECK(checkSlice) "partitionUnknown" 0 n2 (length v2')
-        $ return (unsafeSlice 0 n1 v1', unsafeSlice 0 n2 v2')
-  where
-    -- NOTE: The case distinction has to be on the outside because
-    -- GHC creates a join point for the unsafeWrite even when everything
-    -- is inlined. This is bad because with the join point, v isn't getting
-    -- unboxed.
-    {-# INLINE_INNER put #-}
-    put (v1, i1, v2, i2) x
-      | f x       = do
-                      v1' <- unsafeAppend1 v1 i1 x
-                      return (v1', i1+1, v2, i2)
-      | otherwise = do
-                      v2' <- unsafeAppend1 v2 i2 x
-                      return (v1, i1, v2', i2+1)
-
-{-
-http://en.wikipedia.org/wiki/Permutation#Algorithms_to_generate_permutations
-
-The following algorithm generates the next permutation lexicographically after
-a given permutation. It changes the given permutation in-place.
-
-1. Find the largest index k such that a[k] < a[k + 1]. If no such index exists,
-   the permutation is the last permutation.
-2. Find the largest index l greater than k such that a[k] < a[l].
-3. Swap the value of a[k] with that of a[l].
-4. Reverse the sequence from a[k + 1] up to and including the final element a[n]
--}
-
--- | Compute the next (lexicographically) permutation of given vector in-place.
---   Returns False when input is the last permtuation
-nextPermutation :: (PrimMonad m,Ord e,MVector v e) => v (PrimState m) e -> m Bool
-nextPermutation v
-    | dim < 2 = return False
-    | otherwise = do
-        val <- unsafeRead v 0
-        (k,l) <- loop val (-1) 0 val 1
-        if k < 0
-         then return False
-         else unsafeSwap v k l >>
-              reverse (unsafeSlice (k+1) (dim-k-1) v) >>
-              return True
-    where loop !kval !k !l !prev !i
-              | i == dim = return (k,l)
-              | otherwise  = do
-                  cur <- unsafeRead v i
-                  -- TODO: make tuple unboxed
-                  let (kval',k') = if prev < cur then (prev,i-1) else (kval,k)
-                      l' = if kval' < cur then i else l
-                  loop kval' k' l' cur (i+1)
-          dim = length v
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/Mutable/Base.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/Mutable/Base.hs
deleted file mode 100644
index ce931eec9b41..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/Mutable/Base.hs
+++ /dev/null
@@ -1,145 +0,0 @@
-{-# LANGUAGE CPP, MultiParamTypeClasses, BangPatterns, TypeFamilies #-}
--- |
--- Module      : Data.Vector.Generic.Mutable.Base
--- Copyright   : (c) Roman Leshchinskiy 2008-2011
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Class of mutable vectors
---
-
-module Data.Vector.Generic.Mutable.Base (
-  MVector(..)
-) where
-
-import Control.Monad.Primitive ( PrimMonad, PrimState )
-
--- Data.Vector.Internal.Check is unused
-#define NOT_VECTOR_MODULE
-#include "vector.h"
-
--- | Class of mutable vectors parametrised with a primitive state token.
---
-class MVector v a where
-  -- | Length of the mutable vector. This method should not be
-  -- called directly, use 'length' instead.
-  basicLength       :: v s a -> Int
-
-  -- | Yield a part of the mutable vector without copying it. This method
-  -- should not be called directly, use 'unsafeSlice' instead.
-  basicUnsafeSlice :: Int  -- ^ starting index
-                   -> Int  -- ^ length of the slice
-                   -> v s a
-                   -> v s a
-
-  -- | Check whether two vectors overlap. This method should not be
-  -- called directly, use 'overlaps' instead.
-  basicOverlaps    :: v s a -> v s a -> Bool
-
-  -- | Create a mutable vector of the given length. This method should not be
-  -- called directly, use 'unsafeNew' instead.
-  basicUnsafeNew   :: PrimMonad m => Int -> m (v (PrimState m) a)
-
-  -- | Initialize a vector to a standard value. This is intended to be called as
-  -- part of the safe new operation (and similar operations), to properly blank
-  -- the newly allocated memory if necessary.
-  --
-  -- Vectors that are necessarily initialized as part of creation may implement
-  -- this as a no-op.
-  basicInitialize :: PrimMonad m => v (PrimState m) a -> m ()
-
-  -- | Create a mutable vector of the given length and fill it with an
-  -- initial value. This method should not be called directly, use
-  -- 'replicate' instead.
-  basicUnsafeReplicate :: PrimMonad m => Int -> a -> m (v (PrimState m) a)
-
-  -- | Yield the element at the given position. This method should not be
-  -- called directly, use 'unsafeRead' instead.
-  basicUnsafeRead  :: PrimMonad m => v (PrimState m) a -> Int -> m a
-
-  -- | Replace the element at the given position. This method should not be
-  -- called directly, use 'unsafeWrite' instead.
-  basicUnsafeWrite :: PrimMonad m => v (PrimState m) a -> Int -> a -> m ()
-
-  -- | Reset all elements of the vector to some undefined value, clearing all
-  -- references to external objects. This is usually a noop for unboxed
-  -- vectors. This method should not be called directly, use 'clear' instead.
-  basicClear       :: PrimMonad m => v (PrimState m) a -> m ()
-
-  -- | Set all elements of the vector to the given value. This method should
-  -- not be called directly, use 'set' instead.
-  basicSet         :: PrimMonad m => v (PrimState m) a -> a -> m ()
-
-  -- | Copy a vector. The two vectors may not overlap. This method should not
-  -- be called directly, use 'unsafeCopy' instead.
-  basicUnsafeCopy  :: PrimMonad m => v (PrimState m) a   -- ^ target
-                                  -> v (PrimState m) a   -- ^ source
-                                  -> m ()
-
-  -- | Move the contents of a vector. The two vectors may overlap. This method
-  -- should not be called directly, use 'unsafeMove' instead.
-  basicUnsafeMove  :: PrimMonad m => v (PrimState m) a   -- ^ target
-                                  -> v (PrimState m) a   -- ^ source
-                                  -> m ()
-
-  -- | Grow a vector by the given number of elements. This method should not be
-  -- called directly, use 'unsafeGrow' instead.
-  basicUnsafeGrow  :: PrimMonad m => v (PrimState m) a -> Int
-                                                       -> m (v (PrimState m) a)
-
-  {-# INLINE basicUnsafeReplicate #-}
-  basicUnsafeReplicate n x
-    = do
-        v <- basicUnsafeNew n
-        basicSet v x
-        return v
-
-  {-# INLINE basicClear #-}
-  basicClear _ = return ()
-
-  {-# INLINE basicSet #-}
-  basicSet !v x
-    | n == 0    = return ()
-    | otherwise = do
-                    basicUnsafeWrite v 0 x
-                    do_set 1
-    where
-      !n = basicLength v
-
-      do_set i | 2*i < n = do basicUnsafeCopy (basicUnsafeSlice i i v)
-                                              (basicUnsafeSlice 0 i v)
-                              do_set (2*i)
-               | otherwise = basicUnsafeCopy (basicUnsafeSlice i (n-i) v)
-                                             (basicUnsafeSlice 0 (n-i) v)
-
-  {-# INLINE basicUnsafeCopy #-}
-  basicUnsafeCopy !dst !src = do_copy 0
-    where
-      !n = basicLength src
-
-      do_copy i | i < n = do
-                            x <- basicUnsafeRead src i
-                            basicUnsafeWrite dst i x
-                            do_copy (i+1)
-                | otherwise = return ()
-
-  {-# INLINE basicUnsafeMove #-}
-  basicUnsafeMove !dst !src
-    | basicOverlaps dst src = do
-        srcCopy <- basicUnsafeNew (basicLength src)
-        basicUnsafeCopy srcCopy src
-        basicUnsafeCopy dst srcCopy
-    | otherwise = basicUnsafeCopy dst src
-
-  {-# INLINE basicUnsafeGrow #-}
-  basicUnsafeGrow v by
-    = do
-        v' <- basicUnsafeNew (n+by)
-        basicUnsafeCopy (basicUnsafeSlice 0 n v') v
-        return v'
-    where
-      n = basicLength v
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/New.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/New.hs
deleted file mode 100644
index e94ce19e1669..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/New.hs
+++ /dev/null
@@ -1,178 +0,0 @@
-{-# LANGUAGE CPP, Rank2Types, FlexibleContexts, MultiParamTypeClasses #-}
-
--- |
--- Module      : Data.Vector.Generic.New
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Purely functional interface to initialisation of mutable vectors
---
-
-module Data.Vector.Generic.New (
-  New(..), create, run, runPrim, apply, modify, modifyWithBundle,
-  unstream, transform, unstreamR, transformR,
-  slice, init, tail, take, drop,
-  unsafeSlice, unsafeInit, unsafeTail
-) where
-
-import qualified Data.Vector.Generic.Mutable as MVector
-
-import           Data.Vector.Generic.Base ( Vector, Mutable )
-
-import           Data.Vector.Fusion.Bundle ( Bundle )
-import qualified Data.Vector.Fusion.Bundle as Bundle
-import           Data.Vector.Fusion.Stream.Monadic ( Stream )
-import           Data.Vector.Fusion.Bundle.Size
-
-import Control.Monad.Primitive
-import Control.Monad.ST ( ST )
-import Control.Monad  ( liftM )
-import Prelude hiding ( init, tail, take, drop, reverse, map, filter )
-
--- Data.Vector.Internal.Check is unused
-#define NOT_VECTOR_MODULE
-#include "vector.h"
-
-data New v a = New (forall s. ST s (Mutable v s a))
-
-create :: (forall s. ST s (Mutable v s a)) -> New v a
-{-# INLINE create #-}
-create p = New p
-
-run :: New v a -> ST s (Mutable v s a)
-{-# INLINE run #-}
-run (New p) = p
-
-runPrim :: PrimMonad m => New v a -> m (Mutable v (PrimState m) a)
-{-# INLINE runPrim #-}
-runPrim (New p) = primToPrim p
-
-apply :: (forall s. Mutable v s a -> Mutable v s a) -> New v a -> New v a
-{-# INLINE apply #-}
-apply f (New p) = New (liftM f p)
-
-modify :: (forall s. Mutable v s a -> ST s ()) -> New v a -> New v a
-{-# INLINE modify #-}
-modify f (New p) = New (do { v <- p; f v; return v })
-
-modifyWithBundle :: (forall s. Mutable v s a -> Bundle u b -> ST s ())
-                 -> New v a -> Bundle u b -> New v a
-{-# INLINE_FUSED modifyWithBundle #-}
-modifyWithBundle f (New p) s = s `seq` New (do { v <- p; f v s; return v })
-
-unstream :: Vector v a => Bundle v a -> New v a
-{-# INLINE_FUSED unstream #-}
-unstream s = s `seq` New (MVector.vunstream s)
-
-transform
-  :: Vector v a => (forall m. Monad m => Stream m a -> Stream m a)
-                -> (Size -> Size) -> New v a -> New v a
-{-# INLINE_FUSED transform #-}
-transform f _ (New p) = New (MVector.transform f =<< p)
-
-{-# RULES
-
-"transform/transform [New]"
-  forall (f1 :: forall m. Monad m => Stream m a -> Stream m a)
-         (f2 :: forall m. Monad m => Stream m a -> Stream m a)
-         g1 g2 p .
-  transform f1 g1 (transform f2 g2 p) = transform (f1 . f2) (g1 . g2) p
-
-"transform/unstream [New]"
-  forall (f :: forall m. Monad m => Stream m a -> Stream m a)
-         g s.
-  transform f g (unstream s) = unstream (Bundle.inplace f g s)  #-}
-
-
-
-
-unstreamR :: Vector v a => Bundle v a -> New v a
-{-# INLINE_FUSED unstreamR #-}
-unstreamR s = s `seq` New (MVector.unstreamR s)
-
-transformR
-  :: Vector v a => (forall m. Monad m => Stream m a -> Stream m a)
-                -> (Size -> Size) -> New v a -> New v a
-{-# INLINE_FUSED transformR #-}
-transformR f _ (New p) = New (MVector.transformR f =<< p)
-
-{-# RULES
-
-"transformR/transformR [New]"
-  forall (f1 :: forall m. Monad m => Stream m a -> Stream m a)
-         (f2 :: forall m. Monad m => Stream m a -> Stream m a)
-         g1 g2
-         p .
-  transformR f1 g1 (transformR f2 g2 p) = transformR (f1 . f2) (g1 . g2) p
-
-"transformR/unstreamR [New]"
-  forall (f :: forall m. Monad m => Stream m a -> Stream m a)
-         g s.
-  transformR f g (unstreamR s) = unstreamR (Bundle.inplace f g s)  #-}
-
-
-
-slice :: Vector v a => Int -> Int -> New v a -> New v a
-{-# INLINE_FUSED slice #-}
-slice i n m = apply (MVector.slice i n) m
-
-init :: Vector v a => New v a -> New v a
-{-# INLINE_FUSED init #-}
-init m = apply MVector.init m
-
-tail :: Vector v a => New v a -> New v a
-{-# INLINE_FUSED tail #-}
-tail m = apply MVector.tail m
-
-take :: Vector v a => Int -> New v a -> New v a
-{-# INLINE_FUSED take #-}
-take n m = apply (MVector.take n) m
-
-drop :: Vector v a => Int -> New v a -> New v a
-{-# INLINE_FUSED drop #-}
-drop n m = apply (MVector.drop n) m
-
-unsafeSlice :: Vector v a => Int -> Int -> New v a -> New v a
-{-# INLINE_FUSED unsafeSlice #-}
-unsafeSlice i n m = apply (MVector.unsafeSlice i n) m
-
-unsafeInit :: Vector v a => New v a -> New v a
-{-# INLINE_FUSED unsafeInit #-}
-unsafeInit m = apply MVector.unsafeInit m
-
-unsafeTail :: Vector v a => New v a -> New v a
-{-# INLINE_FUSED unsafeTail #-}
-unsafeTail m = apply MVector.unsafeTail m
-
-{-# RULES
-
-"slice/unstream [New]" forall i n s.
-  slice i n (unstream s) = unstream (Bundle.slice i n s)
-
-"init/unstream [New]" forall s.
-  init (unstream s) = unstream (Bundle.init s)
-
-"tail/unstream [New]" forall s.
-  tail (unstream s) = unstream (Bundle.tail s)
-
-"take/unstream [New]" forall n s.
-  take n (unstream s) = unstream (Bundle.take n s)
-
-"drop/unstream [New]" forall n s.
-  drop n (unstream s) = unstream (Bundle.drop n s)
-
-"unsafeSlice/unstream [New]" forall i n s.
-  unsafeSlice i n (unstream s) = unstream (Bundle.slice i n s)
-
-"unsafeInit/unstream [New]" forall s.
-  unsafeInit (unstream s) = unstream (Bundle.init s)
-
-"unsafeTail/unstream [New]" forall s.
-  unsafeTail (unstream s) = unstream (Bundle.tail s)   #-}
-
-
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Internal/Check.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Internal/Check.hs
deleted file mode 100644
index 4a4ef80fe172..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Internal/Check.hs
+++ /dev/null
@@ -1,152 +0,0 @@
-{-# LANGUAGE CPP #-}
-
--- |
--- Module      : Data.Vector.Internal.Check
--- Copyright   : (c) Roman Leshchinskiy 2009
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Bounds checking infrastructure
---
-
-{-# LANGUAGE MagicHash #-}
-
-module Data.Vector.Internal.Check (
-  Checks(..), doChecks,
-
-  error, internalError,
-  check, checkIndex, checkLength, checkSlice
-) where
-
-import GHC.Base( Int(..) )
-import GHC.Prim( Int# )
-import Prelude hiding( error, (&&), (||), not )
-import qualified Prelude as P
-
--- NOTE: This is a workaround for GHC's weird behaviour where it doesn't inline
--- these functions into unfoldings which makes the intermediate code size
--- explode. See http://hackage.haskell.org/trac/ghc/ticket/5539.
-infixr 2 ||
-infixr 3 &&
-
-not :: Bool -> Bool
-{-# INLINE not #-}
-not True = False
-not False = True
-
-(&&) :: Bool -> Bool -> Bool
-{-# INLINE (&&) #-}
-False && _ = False
-True && x = x
-
-(||) :: Bool -> Bool -> Bool
-{-# INLINE (||) #-}
-True || _ = True
-False || x = x
-
-
-data Checks = Bounds | Unsafe | Internal deriving( Eq )
-
-doBoundsChecks :: Bool
-#ifdef VECTOR_BOUNDS_CHECKS
-doBoundsChecks = True
-#else
-doBoundsChecks = False
-#endif
-
-doUnsafeChecks :: Bool
-#ifdef VECTOR_UNSAFE_CHECKS
-doUnsafeChecks = True
-#else
-doUnsafeChecks = False
-#endif
-
-doInternalChecks :: Bool
-#ifdef VECTOR_INTERNAL_CHECKS
-doInternalChecks = True
-#else
-doInternalChecks = False
-#endif
-
-
-doChecks :: Checks -> Bool
-{-# INLINE doChecks #-}
-doChecks Bounds   = doBoundsChecks
-doChecks Unsafe   = doUnsafeChecks
-doChecks Internal = doInternalChecks
-
-error_msg :: String -> Int -> String -> String -> String
-error_msg file line loc msg = file ++ ":" ++ show line ++ " (" ++ loc ++ "): " ++ msg
-
-error :: String -> Int -> String -> String -> a
-{-# NOINLINE error #-}
-error file line loc msg
-  = P.error $ error_msg file line loc msg
-
-internalError :: String -> Int -> String -> String -> a
-{-# NOINLINE internalError #-}
-internalError file line loc msg
-  = P.error $ unlines
-        ["*** Internal error in package vector ***"
-        ,"*** Please submit a bug report at http://trac.haskell.org/vector"
-        ,error_msg file line loc msg]
-
-
-checkError :: String -> Int -> Checks -> String -> String -> a
-{-# NOINLINE checkError #-}
-checkError file line kind loc msg
-  = case kind of
-      Internal -> internalError file line loc msg
-      _ -> error file line loc msg
-
-check :: String -> Int -> Checks -> String -> String -> Bool -> a -> a
-{-# INLINE check #-}
-check file line kind loc msg cond x
-  | not (doChecks kind) || cond = x
-  | otherwise = checkError file line kind loc msg
-
-checkIndex_msg :: Int -> Int -> String
-{-# INLINE checkIndex_msg #-}
-checkIndex_msg (I# i#) (I# n#) = checkIndex_msg# i# n#
-
-checkIndex_msg# :: Int# -> Int# -> String
-{-# NOINLINE checkIndex_msg# #-}
-checkIndex_msg# i# n# = "index out of bounds " ++ show (I# i#, I# n#)
-
-checkIndex :: String -> Int -> Checks -> String -> Int -> Int -> a -> a
-{-# INLINE checkIndex #-}
-checkIndex file line kind loc i n x
-  = check file line kind loc (checkIndex_msg i n) (i >= 0 && i<n) x
-
-
-checkLength_msg :: Int -> String
-{-# INLINE checkLength_msg #-}
-checkLength_msg (I# n#) = checkLength_msg# n#
-
-checkLength_msg# :: Int# -> String
-{-# NOINLINE checkLength_msg# #-}
-checkLength_msg# n# = "negative length " ++ show (I# n#)
-
-checkLength :: String -> Int -> Checks -> String -> Int -> a -> a
-{-# INLINE checkLength #-}
-checkLength file line kind loc n x
-  = check file line kind loc (checkLength_msg n) (n >= 0) x
-
-
-checkSlice_msg :: Int -> Int -> Int -> String
-{-# INLINE checkSlice_msg #-}
-checkSlice_msg (I# i#) (I# m#) (I# n#) = checkSlice_msg# i# m# n#
-
-checkSlice_msg# :: Int# -> Int# -> Int# -> String
-{-# NOINLINE checkSlice_msg# #-}
-checkSlice_msg# i# m# n# = "invalid slice " ++ show (I# i#, I# m#, I# n#)
-
-checkSlice :: String -> Int -> Checks -> String -> Int -> Int -> Int -> a -> a
-{-# INLINE checkSlice #-}
-checkSlice file line kind loc i m n x
-  = check file line kind loc (checkSlice_msg i m n)
-                             (i >= 0 && m >= 0 && i+m <= n) x
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Mutable.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Mutable.hs
deleted file mode 100644
index ba701afb6a19..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Mutable.hs
+++ /dev/null
@@ -1,416 +0,0 @@
-{-# LANGUAGE CPP, DeriveDataTypeable, MultiParamTypeClasses, FlexibleInstances, BangPatterns, TypeFamilies #-}
-
--- |
--- Module      : Data.Vector.Mutable
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Mutable boxed vectors.
---
-
-module Data.Vector.Mutable (
-  -- * Mutable boxed vectors
-  MVector(..), IOVector, STVector,
-
-  -- * Accessors
-
-  -- ** Length information
-  length, null,
-
-  -- ** Extracting subvectors
-  slice, init, tail, take, drop, splitAt,
-  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-
-  -- ** Overlapping
-  overlaps,
-
-  -- * Construction
-
-  -- ** Initialisation
-  new, unsafeNew, replicate, replicateM, clone,
-
-  -- ** Growing
-  grow, unsafeGrow,
-
-  -- ** Restricting memory usage
-  clear,
-
-  -- * Accessing individual elements
-  read, write, modify, swap,
-  unsafeRead, unsafeWrite, unsafeModify, unsafeSwap,
-
-  -- * Modifying vectors
-  nextPermutation,
-
-  -- ** Filling and copying
-  set, copy, move, unsafeCopy, unsafeMove
-) where
-
-import           Control.Monad (when)
-import qualified Data.Vector.Generic.Mutable as G
-import           Data.Primitive.Array
-import           Control.Monad.Primitive
-
-import Prelude hiding ( length, null, replicate, reverse, read,
-                        take, drop, splitAt, init, tail )
-
-import Data.Typeable ( Typeable )
-
-#include "vector.h"
-
--- | Mutable boxed vectors keyed on the monad they live in ('IO' or @'ST' s@).
-data MVector s a = MVector {-# UNPACK #-} !Int
-                           {-# UNPACK #-} !Int
-                           {-# UNPACK #-} !(MutableArray s a)
-        deriving ( Typeable )
-
-type IOVector = MVector RealWorld
-type STVector s = MVector s
-
--- NOTE: This seems unsafe, see http://trac.haskell.org/vector/ticket/54
-{-
-instance NFData a => NFData (MVector s a) where
-    rnf (MVector i n arr) = unsafeInlineST $ force i
-        where
-          force !ix | ix < n    = do x <- readArray arr ix
-                                     rnf x `seq` force (ix+1)
-                    | otherwise = return ()
--}
-
-instance G.MVector MVector a where
-  {-# INLINE basicLength #-}
-  basicLength (MVector _ n _) = n
-
-  {-# INLINE basicUnsafeSlice #-}
-  basicUnsafeSlice j m (MVector i _ arr) = MVector (i+j) m arr
-
-  {-# INLINE basicOverlaps #-}
-  basicOverlaps (MVector i m arr1) (MVector j n arr2)
-    = sameMutableArray arr1 arr2
-      && (between i j (j+n) || between j i (i+m))
-    where
-      between x y z = x >= y && x < z
-
-  {-# INLINE basicUnsafeNew #-}
-  basicUnsafeNew n
-    = do
-        arr <- newArray n uninitialised
-        return (MVector 0 n arr)
-
-  {-# INLINE basicInitialize #-}
-  -- initialization is unnecessary for boxed vectors
-  basicInitialize _ = return ()
-
-  {-# INLINE basicUnsafeReplicate #-}
-  basicUnsafeReplicate n x
-    = do
-        arr <- newArray n x
-        return (MVector 0 n arr)
-
-  {-# INLINE basicUnsafeRead #-}
-  basicUnsafeRead (MVector i _ arr) j = readArray arr (i+j)
-
-  {-# INLINE basicUnsafeWrite #-}
-  basicUnsafeWrite (MVector i _ arr) j x = writeArray arr (i+j) x
-
-  {-# INLINE basicUnsafeCopy #-}
-  basicUnsafeCopy (MVector i n dst) (MVector j _ src)
-    = copyMutableArray dst i src j n
-
-  basicUnsafeMove dst@(MVector iDst n arrDst) src@(MVector iSrc _ arrSrc)
-    = case n of
-        0 -> return ()
-        1 -> readArray arrSrc iSrc >>= writeArray arrDst iDst
-        2 -> do
-               x <- readArray arrSrc iSrc
-               y <- readArray arrSrc (iSrc + 1)
-               writeArray arrDst iDst x
-               writeArray arrDst (iDst + 1) y
-        _
-          | overlaps dst src
-             -> case compare iDst iSrc of
-                  LT -> moveBackwards arrDst iDst iSrc n
-                  EQ -> return ()
-                  GT | (iDst - iSrc) * 2 < n
-                        -> moveForwardsLargeOverlap arrDst iDst iSrc n
-                     | otherwise
-                        -> moveForwardsSmallOverlap arrDst iDst iSrc n
-          | otherwise -> G.basicUnsafeCopy dst src
-
-  {-# INLINE basicClear #-}
-  basicClear v = G.set v uninitialised
-
-{-# INLINE moveBackwards #-}
-moveBackwards :: PrimMonad m => MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
-moveBackwards !arr !dstOff !srcOff !len =
-  INTERNAL_CHECK(check) "moveBackwards" "not a backwards move" (dstOff < srcOff)
-  $ loopM len $ \ i -> readArray arr (srcOff + i) >>= writeArray arr (dstOff + i)
-
-{-# INLINE moveForwardsSmallOverlap #-}
--- Performs a move when dstOff > srcOff, optimized for when the overlap of the intervals is small.
-moveForwardsSmallOverlap :: PrimMonad m => MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
-moveForwardsSmallOverlap !arr !dstOff !srcOff !len =
-  INTERNAL_CHECK(check) "moveForwardsSmallOverlap" "not a forward move" (dstOff > srcOff)
-  $ do
-      tmp <- newArray overlap uninitialised
-      loopM overlap $ \ i -> readArray arr (dstOff + i) >>= writeArray tmp i
-      loopM nonOverlap $ \ i -> readArray arr (srcOff + i) >>= writeArray arr (dstOff + i)
-      loopM overlap $ \ i -> readArray tmp i >>= writeArray arr (dstOff + nonOverlap + i)
-  where nonOverlap = dstOff - srcOff; overlap = len - nonOverlap
-
--- Performs a move when dstOff > srcOff, optimized for when the overlap of the intervals is large.
-moveForwardsLargeOverlap :: PrimMonad m => MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
-moveForwardsLargeOverlap !arr !dstOff !srcOff !len =
-  INTERNAL_CHECK(check) "moveForwardsLargeOverlap" "not a forward move" (dstOff > srcOff)
-  $ do
-      queue <- newArray nonOverlap uninitialised
-      loopM nonOverlap $ \ i -> readArray arr (srcOff + i) >>= writeArray queue i
-      let mov !i !qTop = when (i < dstOff + len) $ do
-            x <- readArray arr i
-            y <- readArray queue qTop
-            writeArray arr i y
-            writeArray queue qTop x
-            mov (i+1) (if qTop + 1 >= nonOverlap then 0 else qTop + 1)
-      mov dstOff 0
-  where nonOverlap = dstOff - srcOff
-
-{-# INLINE loopM #-}
-loopM :: Monad m => Int -> (Int -> m a) -> m ()
-loopM !n k = let
-  go i = when (i < n) (k i >> go (i+1))
-  in go 0
-
-uninitialised :: a
-uninitialised = error "Data.Vector.Mutable: uninitialised element"
-
--- Length information
--- ------------------
-
--- | Length of the mutable vector.
-length :: MVector s a -> Int
-{-# INLINE length #-}
-length = G.length
-
--- | Check whether the vector is empty
-null :: MVector s a -> Bool
-{-# INLINE null #-}
-null = G.null
-
--- Extracting subvectors
--- ---------------------
-
--- | Yield a part of the mutable vector without copying it.
-slice :: Int -> Int -> MVector s a -> MVector s a
-{-# INLINE slice #-}
-slice = G.slice
-
-take :: Int -> MVector s a -> MVector s a
-{-# INLINE take #-}
-take = G.take
-
-drop :: Int -> MVector s a -> MVector s a
-{-# INLINE drop #-}
-drop = G.drop
-
-{-# INLINE splitAt #-}
-splitAt :: Int -> MVector s a -> (MVector s a, MVector s a)
-splitAt = G.splitAt
-
-init :: MVector s a -> MVector s a
-{-# INLINE init #-}
-init = G.init
-
-tail :: MVector s a -> MVector s a
-{-# INLINE tail #-}
-tail = G.tail
-
--- | Yield a part of the mutable vector without copying it. No bounds checks
--- are performed.
-unsafeSlice :: Int  -- ^ starting index
-            -> Int  -- ^ length of the slice
-            -> MVector s a
-            -> MVector s a
-{-# INLINE unsafeSlice #-}
-unsafeSlice = G.unsafeSlice
-
-unsafeTake :: Int -> MVector s a -> MVector s a
-{-# INLINE unsafeTake #-}
-unsafeTake = G.unsafeTake
-
-unsafeDrop :: Int -> MVector s a -> MVector s a
-{-# INLINE unsafeDrop #-}
-unsafeDrop = G.unsafeDrop
-
-unsafeInit :: MVector s a -> MVector s a
-{-# INLINE unsafeInit #-}
-unsafeInit = G.unsafeInit
-
-unsafeTail :: MVector s a -> MVector s a
-{-# INLINE unsafeTail #-}
-unsafeTail = G.unsafeTail
-
--- Overlapping
--- -----------
-
--- | Check whether two vectors overlap.
-overlaps :: MVector s a -> MVector s a -> Bool
-{-# INLINE overlaps #-}
-overlaps = G.overlaps
-
--- Initialisation
--- --------------
-
--- | Create a mutable vector of the given length.
-new :: PrimMonad m => Int -> m (MVector (PrimState m) a)
-{-# INLINE new #-}
-new = G.new
-
--- | Create a mutable vector of the given length. The memory is not initialized.
-unsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) a)
-{-# INLINE unsafeNew #-}
-unsafeNew = G.unsafeNew
-
--- | Create a mutable vector of the given length (0 if the length is negative)
--- and fill it with an initial value.
-replicate :: PrimMonad m => Int -> a -> m (MVector (PrimState m) a)
-{-# INLINE replicate #-}
-replicate = G.replicate
-
--- | Create a mutable vector of the given length (0 if the length is negative)
--- and fill it with values produced by repeatedly executing the monadic action.
-replicateM :: PrimMonad m => Int -> m a -> m (MVector (PrimState m) a)
-{-# INLINE replicateM #-}
-replicateM = G.replicateM
-
--- | Create a copy of a mutable vector.
-clone :: PrimMonad m => MVector (PrimState m) a -> m (MVector (PrimState m) a)
-{-# INLINE clone #-}
-clone = G.clone
-
--- Growing
--- -------
-
--- | Grow a vector by the given number of elements. The number must be
--- positive.
-grow :: PrimMonad m
-              => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
-{-# INLINE grow #-}
-grow = G.grow
-
--- | Grow a vector by the given number of elements. The number must be
--- positive but this is not checked.
-unsafeGrow :: PrimMonad m
-               => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
-{-# INLINE unsafeGrow #-}
-unsafeGrow = G.unsafeGrow
-
--- Restricting memory usage
--- ------------------------
-
--- | Reset all elements of the vector to some undefined value, clearing all
--- references to external objects. This is usually a noop for unboxed vectors.
-clear :: PrimMonad m => MVector (PrimState m) a -> m ()
-{-# INLINE clear #-}
-clear = G.clear
-
--- Accessing individual elements
--- -----------------------------
-
--- | Yield the element at the given position.
-read :: PrimMonad m => MVector (PrimState m) a -> Int -> m a
-{-# INLINE read #-}
-read = G.read
-
--- | Replace the element at the given position.
-write :: PrimMonad m => MVector (PrimState m) a -> Int -> a -> m ()
-{-# INLINE write #-}
-write = G.write
-
--- | Modify the element at the given position.
-modify :: PrimMonad m => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
-{-# INLINE modify #-}
-modify = G.modify
-
--- | Swap the elements at the given positions.
-swap :: PrimMonad m => MVector (PrimState m) a -> Int -> Int -> m ()
-{-# INLINE swap #-}
-swap = G.swap
-
-
--- | Yield the element at the given position. No bounds checks are performed.
-unsafeRead :: PrimMonad m => MVector (PrimState m) a -> Int -> m a
-{-# INLINE unsafeRead #-}
-unsafeRead = G.unsafeRead
-
--- | Replace the element at the given position. No bounds checks are performed.
-unsafeWrite :: PrimMonad m => MVector (PrimState m) a -> Int -> a -> m ()
-{-# INLINE unsafeWrite #-}
-unsafeWrite = G.unsafeWrite
-
--- | Modify the element at the given position. No bounds checks are performed.
-unsafeModify :: PrimMonad m => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
-{-# INLINE unsafeModify #-}
-unsafeModify = G.unsafeModify
-
--- | Swap the elements at the given positions. No bounds checks are performed.
-unsafeSwap :: PrimMonad m => MVector (PrimState m) a -> Int -> Int -> m ()
-{-# INLINE unsafeSwap #-}
-unsafeSwap = G.unsafeSwap
-
--- Filling and copying
--- -------------------
-
--- | Set all elements of the vector to the given value.
-set :: PrimMonad m => MVector (PrimState m) a -> a -> m ()
-{-# INLINE set #-}
-set = G.set
-
--- | Copy a vector. The two vectors must have the same length and may not
--- overlap.
-copy :: PrimMonad m
-                 => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
-{-# INLINE copy #-}
-copy = G.copy
-
--- | Copy a vector. The two vectors must have the same length and may not
--- overlap. This is not checked.
-unsafeCopy :: PrimMonad m => MVector (PrimState m) a   -- ^ target
-                          -> MVector (PrimState m) a   -- ^ source
-                          -> m ()
-{-# INLINE unsafeCopy #-}
-unsafeCopy = G.unsafeCopy
-
--- | Move the contents of a vector. The two vectors must have the same
--- length.
---
--- If the vectors do not overlap, then this is equivalent to 'copy'.
--- Otherwise, the copying is performed as if the source vector were
--- copied to a temporary vector and then the temporary vector was copied
--- to the target vector.
-move :: PrimMonad m
-                 => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
-{-# INLINE move #-}
-move = G.move
-
--- | Move the contents of a vector. The two vectors must have the same
--- length, but this is not checked.
---
--- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
--- Otherwise, the copying is performed as if the source vector were
--- copied to a temporary vector and then the temporary vector was copied
--- to the target vector.
-unsafeMove :: PrimMonad m => MVector (PrimState m) a   -- ^ target
-                          -> MVector (PrimState m) a   -- ^ source
-                          -> m ()
-{-# INLINE unsafeMove #-}
-unsafeMove = G.unsafeMove
-
--- | Compute the next (lexicographically) permutation of given vector in-place.
---   Returns False when input is the last permtuation
-nextPermutation :: (PrimMonad m,Ord e) => MVector (PrimState m) e -> m Bool
-{-# INLINE nextPermutation #-}
-nextPermutation = G.nextPermutation
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Primitive.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Primitive.hs
deleted file mode 100644
index ba18f9ba957f..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Primitive.hs
+++ /dev/null
@@ -1,1393 +0,0 @@
-{-# LANGUAGE CPP, DeriveDataTypeable, FlexibleInstances, MultiParamTypeClasses, TypeFamilies, ScopedTypeVariables, Rank2Types #-}
-
--- |
--- Module      : Data.Vector.Primitive
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Unboxed vectors of primitive types. The use of this module is not
--- recommended except in very special cases. Adaptive unboxed vectors defined
--- in "Data.Vector.Unboxed" are significantly more flexible at no performance
--- cost.
---
-
-module Data.Vector.Primitive (
-  -- * Primitive vectors
-  Vector(..), MVector(..), Prim,
-
-  -- * Accessors
-
-  -- ** Length information
-  length, null,
-
-  -- ** Indexing
-  (!), (!?), head, last,
-  unsafeIndex, unsafeHead, unsafeLast,
-
-  -- ** Monadic indexing
-  indexM, headM, lastM,
-  unsafeIndexM, unsafeHeadM, unsafeLastM,
-
-  -- ** Extracting subvectors (slicing)
-  slice, init, tail, take, drop, splitAt,
-  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-
-  -- * Construction
-
-  -- ** Initialisation
-  empty, singleton, replicate, generate, iterateN,
-
-  -- ** Monadic initialisation
-  replicateM, generateM, iterateNM, create, createT,
-
-  -- ** Unfolding
-  unfoldr, unfoldrN,
-  unfoldrM, unfoldrNM,
-  constructN, constructrN,
-
-  -- ** Enumeration
-  enumFromN, enumFromStepN, enumFromTo, enumFromThenTo,
-
-  -- ** Concatenation
-  cons, snoc, (++), concat,
-
-  -- ** Restricting memory usage
-  force,
-
-  -- * Modifying vectors
-
-  -- ** Bulk updates
-  (//), update_,
-  unsafeUpd, unsafeUpdate_,
-
-  -- ** Accumulations
-  accum, accumulate_,
-  unsafeAccum, unsafeAccumulate_,
-
-  -- ** Permutations
-  reverse, backpermute, unsafeBackpermute,
-
-  -- ** Safe destructive updates
-  modify,
-
-  -- * Elementwise operations
-
-  -- ** Mapping
-  map, imap, concatMap,
-
-  -- ** Monadic mapping
-  mapM, mapM_, forM, forM_,
-
-  -- ** Zipping
-  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
-  izipWith, izipWith3, izipWith4, izipWith5, izipWith6,
-
-  -- ** Monadic zipping
-  zipWithM, zipWithM_,
-
-  -- * Working with predicates
-
-  -- ** Filtering
-  filter, ifilter, uniq,
-  mapMaybe, imapMaybe,
-  filterM,
-  takeWhile, dropWhile,
-
-  -- ** Partitioning
-  partition, unstablePartition, span, break,
-
-  -- ** Searching
-  elem, notElem, find, findIndex, findIndices, elemIndex, elemIndices,
-
-  -- * Folding
-  foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1',
-  ifoldl, ifoldl', ifoldr, ifoldr',
-
-  -- ** Specialised folds
-  all, any,
-  sum, product,
-  maximum, maximumBy, minimum, minimumBy,
-  minIndex, minIndexBy, maxIndex, maxIndexBy,
-
-  -- ** Monadic folds
-  foldM, foldM', fold1M, fold1M',
-  foldM_, foldM'_, fold1M_, fold1M'_,
-
-  -- * Prefix sums (scans)
-  prescanl, prescanl',
-  postscanl, postscanl',
-  scanl, scanl', scanl1, scanl1',
-  prescanr, prescanr',
-  postscanr, postscanr',
-  scanr, scanr', scanr1, scanr1',
-
-  -- * Conversions
-
-  -- ** Lists
-  toList, fromList, fromListN,
-
-  -- ** Other vector types
-  G.convert,
-
-  -- ** Mutable vectors
-  freeze, thaw, copy, unsafeFreeze, unsafeThaw, unsafeCopy
-) where
-
-import qualified Data.Vector.Generic           as G
-import           Data.Vector.Primitive.Mutable ( MVector(..) )
-import qualified Data.Vector.Fusion.Bundle as Bundle
-import           Data.Primitive.ByteArray
-import           Data.Primitive ( Prim, sizeOf )
-
-import Control.DeepSeq ( NFData(rnf) )
-
-import Control.Monad ( liftM )
-import Control.Monad.ST ( ST )
-import Control.Monad.Primitive
-
-import Prelude hiding ( length, null,
-                        replicate, (++), concat,
-                        head, last,
-                        init, tail, take, drop, splitAt, reverse,
-                        map, concatMap,
-                        zipWith, zipWith3, zip, zip3, unzip, unzip3,
-                        filter, takeWhile, dropWhile, span, break,
-                        elem, notElem,
-                        foldl, foldl1, foldr, foldr1,
-                        all, any, sum, product, minimum, maximum,
-                        scanl, scanl1, scanr, scanr1,
-                        enumFromTo, enumFromThenTo,
-                        mapM, mapM_ )
-
-import Data.Typeable  ( Typeable )
-import Data.Data      ( Data(..) )
-import Text.Read      ( Read(..), readListPrecDefault )
-import Data.Semigroup ( Semigroup(..) )
-
-#if !MIN_VERSION_base(4,8,0)
-import Data.Monoid   ( Monoid(..) )
-import Data.Traversable ( Traversable )
-#endif
-
-#if __GLASGOW_HASKELL__ >= 708
-import qualified GHC.Exts as Exts
-#endif
-
--- | Unboxed vectors of primitive types
-data Vector a = Vector {-# UNPACK #-} !Int
-                       {-# UNPACK #-} !Int
-                       {-# UNPACK #-} !ByteArray -- ^ offset, length, underlying byte array
-  deriving ( Typeable )
-
-instance NFData (Vector a) where
-  rnf (Vector _ _ _) = ()
-
-instance (Show a, Prim a) => Show (Vector a) where
-  showsPrec = G.showsPrec
-
-instance (Read a, Prim a) => Read (Vector a) where
-  readPrec = G.readPrec
-  readListPrec = readListPrecDefault
-
-instance (Data a, Prim a) => Data (Vector a) where
-  gfoldl       = G.gfoldl
-  toConstr _   = error "toConstr"
-  gunfold _ _  = error "gunfold"
-  dataTypeOf _ = G.mkType "Data.Vector.Primitive.Vector"
-  dataCast1    = G.dataCast
-
-
-type instance G.Mutable Vector = MVector
-
-instance Prim a => G.Vector Vector a where
-  {-# INLINE basicUnsafeFreeze #-}
-  basicUnsafeFreeze (MVector i n marr)
-    = Vector i n `liftM` unsafeFreezeByteArray marr
-
-  {-# INLINE basicUnsafeThaw #-}
-  basicUnsafeThaw (Vector i n arr)
-    = MVector i n `liftM` unsafeThawByteArray arr
-
-  {-# INLINE basicLength #-}
-  basicLength (Vector _ n _) = n
-
-  {-# INLINE basicUnsafeSlice #-}
-  basicUnsafeSlice j n (Vector i _ arr) = Vector (i+j) n arr
-
-  {-# INLINE basicUnsafeIndexM #-}
-  basicUnsafeIndexM (Vector i _ arr) j = return $! indexByteArray arr (i+j)
-
-  {-# INLINE basicUnsafeCopy #-}
-  basicUnsafeCopy (MVector i n dst) (Vector j _ src)
-    = copyByteArray dst (i*sz) src (j*sz) (n*sz)
-    where
-      sz = sizeOf (undefined :: a)
-
-  {-# INLINE elemseq #-}
-  elemseq _ = seq
-
--- See http://trac.haskell.org/vector/ticket/12
-instance (Prim a, Eq a) => Eq (Vector a) where
-  {-# INLINE (==) #-}
-  xs == ys = Bundle.eq (G.stream xs) (G.stream ys)
-
-  {-# INLINE (/=) #-}
-  xs /= ys = not (Bundle.eq (G.stream xs) (G.stream ys))
-
--- See http://trac.haskell.org/vector/ticket/12
-instance (Prim a, Ord a) => Ord (Vector a) where
-  {-# INLINE compare #-}
-  compare xs ys = Bundle.cmp (G.stream xs) (G.stream ys)
-
-  {-# INLINE (<) #-}
-  xs < ys = Bundle.cmp (G.stream xs) (G.stream ys) == LT
-
-  {-# INLINE (<=) #-}
-  xs <= ys = Bundle.cmp (G.stream xs) (G.stream ys) /= GT
-
-  {-# INLINE (>) #-}
-  xs > ys = Bundle.cmp (G.stream xs) (G.stream ys) == GT
-
-  {-# INLINE (>=) #-}
-  xs >= ys = Bundle.cmp (G.stream xs) (G.stream ys) /= LT
-
-instance Prim a => Semigroup (Vector a) where
-  {-# INLINE (<>) #-}
-  (<>) = (++)
-
-  {-# INLINE sconcat #-}
-  sconcat = G.concatNE
-
-instance Prim a => Monoid (Vector a) where
-  {-# INLINE mempty #-}
-  mempty = empty
-
-  {-# INLINE mappend #-}
-  mappend = (++)
-
-  {-# INLINE mconcat #-}
-  mconcat = concat
-
-#if __GLASGOW_HASKELL__ >= 708
-
-instance Prim a => Exts.IsList (Vector a) where
-  type Item (Vector a) = a
-  fromList = fromList
-  fromListN = fromListN
-  toList = toList
-
-#endif
--- Length
--- ------
-
--- | /O(1)/ Yield the length of the vector
-length :: Prim a => Vector a -> Int
-{-# INLINE length #-}
-length = G.length
-
--- | /O(1)/ Test whether a vector is empty
-null :: Prim a => Vector a -> Bool
-{-# INLINE null #-}
-null = G.null
-
--- Indexing
--- --------
-
--- | O(1) Indexing
-(!) :: Prim a => Vector a -> Int -> a
-{-# INLINE (!) #-}
-(!) = (G.!)
-
--- | O(1) Safe indexing
-(!?) :: Prim a => Vector a -> Int -> Maybe a
-{-# INLINE (!?) #-}
-(!?) = (G.!?)
-
--- | /O(1)/ First element
-head :: Prim a => Vector a -> a
-{-# INLINE head #-}
-head = G.head
-
--- | /O(1)/ Last element
-last :: Prim a => Vector a -> a
-{-# INLINE last #-}
-last = G.last
-
--- | /O(1)/ Unsafe indexing without bounds checking
-unsafeIndex :: Prim a => Vector a -> Int -> a
-{-# INLINE unsafeIndex #-}
-unsafeIndex = G.unsafeIndex
-
--- | /O(1)/ First element without checking if the vector is empty
-unsafeHead :: Prim a => Vector a -> a
-{-# INLINE unsafeHead #-}
-unsafeHead = G.unsafeHead
-
--- | /O(1)/ Last element without checking if the vector is empty
-unsafeLast :: Prim a => Vector a -> a
-{-# INLINE unsafeLast #-}
-unsafeLast = G.unsafeLast
-
--- Monadic indexing
--- ----------------
-
--- | /O(1)/ Indexing in a monad.
---
--- The monad allows operations to be strict in the vector when necessary.
--- Suppose vector copying is implemented like this:
---
--- > copy mv v = ... write mv i (v ! i) ...
---
--- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@
--- would unnecessarily retain a reference to @v@ in each element written.
---
--- With 'indexM', copying can be implemented like this instead:
---
--- > copy mv v = ... do
--- >                   x <- indexM v i
--- >                   write mv i x
---
--- Here, no references to @v@ are retained because indexing (but /not/ the
--- elements) is evaluated eagerly.
---
-indexM :: (Prim a, Monad m) => Vector a -> Int -> m a
-{-# INLINE indexM #-}
-indexM = G.indexM
-
--- | /O(1)/ First element of a vector in a monad. See 'indexM' for an
--- explanation of why this is useful.
-headM :: (Prim a, Monad m) => Vector a -> m a
-{-# INLINE headM #-}
-headM = G.headM
-
--- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an
--- explanation of why this is useful.
-lastM :: (Prim a, Monad m) => Vector a -> m a
-{-# INLINE lastM #-}
-lastM = G.lastM
-
--- | /O(1)/ Indexing in a monad without bounds checks. See 'indexM' for an
--- explanation of why this is useful.
-unsafeIndexM :: (Prim a, Monad m) => Vector a -> Int -> m a
-{-# INLINE unsafeIndexM #-}
-unsafeIndexM = G.unsafeIndexM
-
--- | /O(1)/ First element in a monad without checking for empty vectors.
--- See 'indexM' for an explanation of why this is useful.
-unsafeHeadM :: (Prim a, Monad m) => Vector a -> m a
-{-# INLINE unsafeHeadM #-}
-unsafeHeadM = G.unsafeHeadM
-
--- | /O(1)/ Last element in a monad without checking for empty vectors.
--- See 'indexM' for an explanation of why this is useful.
-unsafeLastM :: (Prim a, Monad m) => Vector a -> m a
-{-# INLINE unsafeLastM #-}
-unsafeLastM = G.unsafeLastM
-
--- Extracting subvectors (slicing)
--- -------------------------------
-
--- | /O(1)/ Yield a slice of the vector without copying it. The vector must
--- contain at least @i+n@ elements.
-slice :: Prim a
-      => Int   -- ^ @i@ starting index
-      -> Int   -- ^ @n@ length
-      -> Vector a
-      -> Vector a
-{-# INLINE slice #-}
-slice = G.slice
-
--- | /O(1)/ Yield all but the last element without copying. The vector may not
--- be empty.
-init :: Prim a => Vector a -> Vector a
-{-# INLINE init #-}
-init = G.init
-
--- | /O(1)/ Yield all but the first element without copying. The vector may not
--- be empty.
-tail :: Prim a => Vector a -> Vector a
-{-# INLINE tail #-}
-tail = G.tail
-
--- | /O(1)/ Yield at the first @n@ elements without copying. The vector may
--- contain less than @n@ elements in which case it is returned unchanged.
-take :: Prim a => Int -> Vector a -> Vector a
-{-# INLINE take #-}
-take = G.take
-
--- | /O(1)/ Yield all but the first @n@ elements without copying. The vector may
--- contain less than @n@ elements in which case an empty vector is returned.
-drop :: Prim a => Int -> Vector a -> Vector a
-{-# INLINE drop #-}
-drop = G.drop
-
--- | /O(1)/ Yield the first @n@ elements paired with the remainder without copying.
---
--- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@
--- but slightly more efficient.
-{-# INLINE splitAt #-}
-splitAt :: Prim a => Int -> Vector a -> (Vector a, Vector a)
-splitAt = G.splitAt
-
--- | /O(1)/ Yield a slice of the vector without copying. The vector must
--- contain at least @i+n@ elements but this is not checked.
-unsafeSlice :: Prim a => Int   -- ^ @i@ starting index
-                       -> Int   -- ^ @n@ length
-                       -> Vector a
-                       -> Vector a
-{-# INLINE unsafeSlice #-}
-unsafeSlice = G.unsafeSlice
-
--- | /O(1)/ Yield all but the last element without copying. The vector may not
--- be empty but this is not checked.
-unsafeInit :: Prim a => Vector a -> Vector a
-{-# INLINE unsafeInit #-}
-unsafeInit = G.unsafeInit
-
--- | /O(1)/ Yield all but the first element without copying. The vector may not
--- be empty but this is not checked.
-unsafeTail :: Prim a => Vector a -> Vector a
-{-# INLINE unsafeTail #-}
-unsafeTail = G.unsafeTail
-
--- | /O(1)/ Yield the first @n@ elements without copying. The vector must
--- contain at least @n@ elements but this is not checked.
-unsafeTake :: Prim a => Int -> Vector a -> Vector a
-{-# INLINE unsafeTake #-}
-unsafeTake = G.unsafeTake
-
--- | /O(1)/ Yield all but the first @n@ elements without copying. The vector
--- must contain at least @n@ elements but this is not checked.
-unsafeDrop :: Prim a => Int -> Vector a -> Vector a
-{-# INLINE unsafeDrop #-}
-unsafeDrop = G.unsafeDrop
-
--- Initialisation
--- --------------
-
--- | /O(1)/ Empty vector
-empty :: Prim a => Vector a
-{-# INLINE empty #-}
-empty = G.empty
-
--- | /O(1)/ Vector with exactly one element
-singleton :: Prim a => a -> Vector a
-{-# INLINE singleton #-}
-singleton = G.singleton
-
--- | /O(n)/ Vector of the given length with the same value in each position
-replicate :: Prim a => Int -> a -> Vector a
-{-# INLINE replicate #-}
-replicate = G.replicate
-
--- | /O(n)/ Construct a vector of the given length by applying the function to
--- each index
-generate :: Prim a => Int -> (Int -> a) -> Vector a
-{-# INLINE generate #-}
-generate = G.generate
-
--- | /O(n)/ Apply function n times to value. Zeroth element is original value.
-iterateN :: Prim a => Int -> (a -> a) -> a -> Vector a
-{-# INLINE iterateN #-}
-iterateN = G.iterateN
-
--- Unfolding
--- ---------
-
--- | /O(n)/ Construct a vector by repeatedly applying the generator function
--- to a seed. The generator function yields 'Just' the next element and the
--- new seed or 'Nothing' if there are no more elements.
---
--- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10
--- >  = <10,9,8,7,6,5,4,3,2,1>
-unfoldr :: Prim a => (b -> Maybe (a, b)) -> b -> Vector a
-{-# INLINE unfoldr #-}
-unfoldr = G.unfoldr
-
--- | /O(n)/ Construct a vector with at most @n@ elements by repeatedly applying
--- the generator function to a seed. The generator function yields 'Just' the
--- next element and the new seed or 'Nothing' if there are no more elements.
---
--- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8>
-unfoldrN :: Prim a => Int -> (b -> Maybe (a, b)) -> b -> Vector a
-{-# INLINE unfoldrN #-}
-unfoldrN = G.unfoldrN
-
--- | /O(n)/ Construct a vector by repeatedly applying the monadic
--- generator function to a seed. The generator function yields 'Just'
--- the next element and the new seed or 'Nothing' if there are no more
--- elements.
-unfoldrM :: (Monad m, Prim a) => (b -> m (Maybe (a, b))) -> b -> m (Vector a)
-{-# INLINE unfoldrM #-}
-unfoldrM = G.unfoldrM
-
--- | /O(n)/ Construct a vector by repeatedly applying the monadic
--- generator function to a seed. The generator function yields 'Just'
--- the next element and the new seed or 'Nothing' if there are no more
--- elements.
-unfoldrNM :: (Monad m, Prim a) => Int -> (b -> m (Maybe (a, b))) -> b -> m (Vector a)
-{-# INLINE unfoldrNM #-}
-unfoldrNM = G.unfoldrNM
-
--- | /O(n)/ Construct a vector with @n@ elements by repeatedly applying the
--- generator function to the already constructed part of the vector.
---
--- > constructN 3 f = let a = f <> ; b = f <a> ; c = f <a,b> in f <a,b,c>
---
-constructN :: Prim a => Int -> (Vector a -> a) -> Vector a
-{-# INLINE constructN #-}
-constructN = G.constructN
-
--- | /O(n)/ Construct a vector with @n@ elements from right to left by
--- repeatedly applying the generator function to the already constructed part
--- of the vector.
---
--- > constructrN 3 f = let a = f <> ; b = f<a> ; c = f <b,a> in f <c,b,a>
---
-constructrN :: Prim a => Int -> (Vector a -> a) -> Vector a
-{-# INLINE constructrN #-}
-constructrN = G.constructrN
-
--- Enumeration
--- -----------
-
--- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+1@
--- etc. This operation is usually more efficient than 'enumFromTo'.
---
--- > enumFromN 5 3 = <5,6,7>
-enumFromN :: (Prim a, Num a) => a -> Int -> Vector a
-{-# INLINE enumFromN #-}
-enumFromN = G.enumFromN
-
--- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@,
--- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'.
---
--- > enumFromStepN 1 0.1 5 = <1,1.1,1.2,1.3,1.4>
-enumFromStepN :: (Prim a, Num a) => a -> a -> Int -> Vector a
-{-# INLINE enumFromStepN #-}
-enumFromStepN = G.enumFromStepN
-
--- | /O(n)/ Enumerate values from @x@ to @y@.
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromN' instead.
-enumFromTo :: (Prim a, Enum a) => a -> a -> Vector a
-{-# INLINE enumFromTo #-}
-enumFromTo = G.enumFromTo
-
--- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@.
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromThenTo :: (Prim a, Enum a) => a -> a -> a -> Vector a
-{-# INLINE enumFromThenTo #-}
-enumFromThenTo = G.enumFromThenTo
-
--- Concatenation
--- -------------
-
--- | /O(n)/ Prepend an element
-cons :: Prim a => a -> Vector a -> Vector a
-{-# INLINE cons #-}
-cons = G.cons
-
--- | /O(n)/ Append an element
-snoc :: Prim a => Vector a -> a -> Vector a
-{-# INLINE snoc #-}
-snoc = G.snoc
-
-infixr 5 ++
--- | /O(m+n)/ Concatenate two vectors
-(++) :: Prim a => Vector a -> Vector a -> Vector a
-{-# INLINE (++) #-}
-(++) = (G.++)
-
--- | /O(n)/ Concatenate all vectors in the list
-concat :: Prim a => [Vector a] -> Vector a
-{-# INLINE concat #-}
-concat = G.concat
-
--- Monadic initialisation
--- ----------------------
-
--- | /O(n)/ Execute the monadic action the given number of times and store the
--- results in a vector.
-replicateM :: (Monad m, Prim a) => Int -> m a -> m (Vector a)
-{-# INLINE replicateM #-}
-replicateM = G.replicateM
-
--- | /O(n)/ Construct a vector of the given length by applying the monadic
--- action to each index
-generateM :: (Monad m, Prim a) => Int -> (Int -> m a) -> m (Vector a)
-{-# INLINE generateM #-}
-generateM = G.generateM
-
--- | /O(n)/ Apply monadic function n times to value. Zeroth element is original value.
-iterateNM :: (Monad m, Prim a) => Int -> (a -> m a) -> a -> m (Vector a)
-{-# INLINE iterateNM #-}
-iterateNM = G.iterateNM
-
--- | Execute the monadic action and freeze the resulting vector.
---
--- @
--- create (do { v \<- new 2; write v 0 \'a\'; write v 1 \'b\'; return v }) = \<'a','b'\>
--- @
-create :: Prim a => (forall s. ST s (MVector s a)) -> Vector a
-{-# INLINE create #-}
--- NOTE: eta-expanded due to http://hackage.haskell.org/trac/ghc/ticket/4120
-create p = G.create p
-
--- | Execute the monadic action and freeze the resulting vectors.
-createT :: (Traversable f, Prim a) => (forall s. ST s (f (MVector s a))) -> f (Vector a)
-{-# INLINE createT #-}
-createT p = G.createT p
-
--- Restricting memory usage
--- ------------------------
-
--- | /O(n)/ Yield the argument but force it not to retain any extra memory,
--- possibly by copying it.
---
--- This is especially useful when dealing with slices. For example:
---
--- > force (slice 0 2 <huge vector>)
---
--- Here, the slice retains a reference to the huge vector. Forcing it creates
--- a copy of just the elements that belong to the slice and allows the huge
--- vector to be garbage collected.
-force :: Prim a => Vector a -> Vector a
-{-# INLINE force #-}
-force = G.force
-
--- Bulk updates
--- ------------
-
--- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector
--- element at position @i@ by @a@.
---
--- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7>
---
-(//) :: Prim a => Vector a   -- ^ initial vector (of length @m@)
-                -> [(Int, a)] -- ^ list of index/value pairs (of length @n@)
-                -> Vector a
-{-# INLINE (//) #-}
-(//) = (G.//)
-
--- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
--- corresponding value @a@ from the value vector, replace the element of the
--- initial vector at position @i@ by @a@.
---
--- > update_ <5,9,2,7>  <2,0,2> <1,3,8> = <3,9,8,7>
---
-update_ :: Prim a
-        => Vector a   -- ^ initial vector (of length @m@)
-        -> Vector Int -- ^ index vector (of length @n1@)
-        -> Vector a   -- ^ value vector (of length @n2@)
-        -> Vector a
-{-# INLINE update_ #-}
-update_ = G.update_
-
--- | Same as ('//') but without bounds checking.
-unsafeUpd :: Prim a => Vector a -> [(Int, a)] -> Vector a
-{-# INLINE unsafeUpd #-}
-unsafeUpd = G.unsafeUpd
-
--- | Same as 'update_' but without bounds checking.
-unsafeUpdate_ :: Prim a => Vector a -> Vector Int -> Vector a -> Vector a
-{-# INLINE unsafeUpdate_ #-}
-unsafeUpdate_ = G.unsafeUpdate_
-
--- Accumulations
--- -------------
-
--- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element
--- @a@ at position @i@ by @f a b@.
---
--- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4>
-accum :: Prim a
-      => (a -> b -> a) -- ^ accumulating function @f@
-      -> Vector a      -- ^ initial vector (of length @m@)
-      -> [(Int,b)]     -- ^ list of index/value pairs (of length @n@)
-      -> Vector a
-{-# INLINE accum #-}
-accum = G.accum
-
--- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
--- corresponding value @b@ from the the value vector,
--- replace the element of the initial vector at
--- position @i@ by @f a b@.
---
--- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4>
---
-accumulate_ :: (Prim a, Prim b)
-            => (a -> b -> a) -- ^ accumulating function @f@
-            -> Vector a      -- ^ initial vector (of length @m@)
-            -> Vector Int    -- ^ index vector (of length @n1@)
-            -> Vector b      -- ^ value vector (of length @n2@)
-            -> Vector a
-{-# INLINE accumulate_ #-}
-accumulate_ = G.accumulate_
-
--- | Same as 'accum' but without bounds checking.
-unsafeAccum :: Prim a => (a -> b -> a) -> Vector a -> [(Int,b)] -> Vector a
-{-# INLINE unsafeAccum #-}
-unsafeAccum = G.unsafeAccum
-
--- | Same as 'accumulate_' but without bounds checking.
-unsafeAccumulate_ :: (Prim a, Prim b) =>
-               (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a
-{-# INLINE unsafeAccumulate_ #-}
-unsafeAccumulate_ = G.unsafeAccumulate_
-
--- Permutations
--- ------------
-
--- | /O(n)/ Reverse a vector
-reverse :: Prim a => Vector a -> Vector a
-{-# INLINE reverse #-}
-reverse = G.reverse
-
--- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the
--- index vector by @xs'!'i@. This is equivalent to @'map' (xs'!') is@ but is
--- often much more efficient.
---
--- > backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a>
-backpermute :: Prim a => Vector a -> Vector Int -> Vector a
-{-# INLINE backpermute #-}
-backpermute = G.backpermute
-
--- | Same as 'backpermute' but without bounds checking.
-unsafeBackpermute :: Prim a => Vector a -> Vector Int -> Vector a
-{-# INLINE unsafeBackpermute #-}
-unsafeBackpermute = G.unsafeBackpermute
-
--- Safe destructive updates
--- ------------------------
-
--- | Apply a destructive operation to a vector. The operation will be
--- performed in place if it is safe to do so and will modify a copy of the
--- vector otherwise.
---
--- @
--- modify (\\v -> write v 0 \'x\') ('replicate' 3 \'a\') = \<\'x\',\'a\',\'a\'\>
--- @
-modify :: Prim a => (forall s. MVector s a -> ST s ()) -> Vector a -> Vector a
-{-# INLINE modify #-}
-modify p = G.modify p
-
--- Mapping
--- -------
-
--- | /O(n)/ Map a function over a vector
-map :: (Prim a, Prim b) => (a -> b) -> Vector a -> Vector b
-{-# INLINE map #-}
-map = G.map
-
--- | /O(n)/ Apply a function to every element of a vector and its index
-imap :: (Prim a, Prim b) => (Int -> a -> b) -> Vector a -> Vector b
-{-# INLINE imap #-}
-imap = G.imap
-
--- | Map a function over a vector and concatenate the results.
-concatMap :: (Prim a, Prim b) => (a -> Vector b) -> Vector a -> Vector b
-{-# INLINE concatMap #-}
-concatMap = G.concatMap
-
--- Monadic mapping
--- ---------------
-
--- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
--- vector of results
-mapM :: (Monad m, Prim a, Prim b) => (a -> m b) -> Vector a -> m (Vector b)
-{-# INLINE mapM #-}
-mapM = G.mapM
-
--- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
--- results
-mapM_ :: (Monad m, Prim a) => (a -> m b) -> Vector a -> m ()
-{-# INLINE mapM_ #-}
-mapM_ = G.mapM_
-
--- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
--- vector of results. Equivalent to @flip 'mapM'@.
-forM :: (Monad m, Prim a, Prim b) => Vector a -> (a -> m b) -> m (Vector b)
-{-# INLINE forM #-}
-forM = G.forM
-
--- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
--- results. Equivalent to @flip 'mapM_'@.
-forM_ :: (Monad m, Prim a) => Vector a -> (a -> m b) -> m ()
-{-# INLINE forM_ #-}
-forM_ = G.forM_
-
--- Zipping
--- -------
-
--- | /O(min(m,n))/ Zip two vectors with the given function.
-zipWith :: (Prim a, Prim b, Prim c)
-        => (a -> b -> c) -> Vector a -> Vector b -> Vector c
-{-# INLINE zipWith #-}
-zipWith = G.zipWith
-
--- | Zip three vectors with the given function.
-zipWith3 :: (Prim a, Prim b, Prim c, Prim d)
-         => (a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d
-{-# INLINE zipWith3 #-}
-zipWith3 = G.zipWith3
-
-zipWith4 :: (Prim a, Prim b, Prim c, Prim d, Prim e)
-         => (a -> b -> c -> d -> e)
-         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-{-# INLINE zipWith4 #-}
-zipWith4 = G.zipWith4
-
-zipWith5 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
-             Prim f)
-         => (a -> b -> c -> d -> e -> f)
-         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-         -> Vector f
-{-# INLINE zipWith5 #-}
-zipWith5 = G.zipWith5
-
-zipWith6 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
-             Prim f, Prim g)
-         => (a -> b -> c -> d -> e -> f -> g)
-         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-         -> Vector f -> Vector g
-{-# INLINE zipWith6 #-}
-zipWith6 = G.zipWith6
-
--- | /O(min(m,n))/ Zip two vectors with a function that also takes the
--- elements' indices.
-izipWith :: (Prim a, Prim b, Prim c)
-         => (Int -> a -> b -> c) -> Vector a -> Vector b -> Vector c
-{-# INLINE izipWith #-}
-izipWith = G.izipWith
-
--- | Zip three vectors and their indices with the given function.
-izipWith3 :: (Prim a, Prim b, Prim c, Prim d)
-          => (Int -> a -> b -> c -> d)
-          -> Vector a -> Vector b -> Vector c -> Vector d
-{-# INLINE izipWith3 #-}
-izipWith3 = G.izipWith3
-
-izipWith4 :: (Prim a, Prim b, Prim c, Prim d, Prim e)
-          => (Int -> a -> b -> c -> d -> e)
-          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-{-# INLINE izipWith4 #-}
-izipWith4 = G.izipWith4
-
-izipWith5 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
-              Prim f)
-          => (Int -> a -> b -> c -> d -> e -> f)
-          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-          -> Vector f
-{-# INLINE izipWith5 #-}
-izipWith5 = G.izipWith5
-
-izipWith6 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
-              Prim f, Prim g)
-          => (Int -> a -> b -> c -> d -> e -> f -> g)
-          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-          -> Vector f -> Vector g
-{-# INLINE izipWith6 #-}
-izipWith6 = G.izipWith6
-
--- Monadic zipping
--- ---------------
-
--- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a
--- vector of results
-zipWithM :: (Monad m, Prim a, Prim b, Prim c)
-         => (a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
-{-# INLINE zipWithM #-}
-zipWithM = G.zipWithM
-
--- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the
--- results
-zipWithM_ :: (Monad m, Prim a, Prim b)
-          => (a -> b -> m c) -> Vector a -> Vector b -> m ()
-{-# INLINE zipWithM_ #-}
-zipWithM_ = G.zipWithM_
-
--- Filtering
--- ---------
-
--- | /O(n)/ Drop elements that do not satisfy the predicate
-filter :: Prim a => (a -> Bool) -> Vector a -> Vector a
-{-# INLINE filter #-}
-filter = G.filter
-
--- | /O(n)/ Drop elements that do not satisfy the predicate which is applied to
--- values and their indices
-ifilter :: Prim a => (Int -> a -> Bool) -> Vector a -> Vector a
-{-# INLINE ifilter #-}
-ifilter = G.ifilter
-
--- | /O(n)/ Drop repeated adjacent elements.
-uniq :: (Prim a, Eq a) => Vector a -> Vector a
-{-# INLINE uniq #-}
-uniq = G.uniq
-
--- | /O(n)/ Drop elements when predicate returns Nothing
-mapMaybe :: (Prim a, Prim b) => (a -> Maybe b) -> Vector a -> Vector b
-{-# INLINE mapMaybe #-}
-mapMaybe = G.mapMaybe
-
--- | /O(n)/ Drop elements when predicate, applied to index and value, returns Nothing
-imapMaybe :: (Prim a, Prim b) => (Int -> a -> Maybe b) -> Vector a -> Vector b
-{-# INLINE imapMaybe #-}
-imapMaybe = G.imapMaybe
-
--- | /O(n)/ Drop elements that do not satisfy the monadic predicate
-filterM :: (Monad m, Prim a) => (a -> m Bool) -> Vector a -> m (Vector a)
-{-# INLINE filterM #-}
-filterM = G.filterM
-
--- | /O(n)/ Yield the longest prefix of elements satisfying the predicate
--- without copying.
-takeWhile :: Prim a => (a -> Bool) -> Vector a -> Vector a
-{-# INLINE takeWhile #-}
-takeWhile = G.takeWhile
-
--- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate
--- without copying.
-dropWhile :: Prim a => (a -> Bool) -> Vector a -> Vector a
-{-# INLINE dropWhile #-}
-dropWhile = G.dropWhile
-
--- Parititioning
--- -------------
-
--- | /O(n)/ Split the vector in two parts, the first one containing those
--- elements that satisfy the predicate and the second one those that don't. The
--- relative order of the elements is preserved at the cost of a sometimes
--- reduced performance compared to 'unstablePartition'.
-partition :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE partition #-}
-partition = G.partition
-
--- | /O(n)/ Split the vector in two parts, the first one containing those
--- elements that satisfy the predicate and the second one those that don't.
--- The order of the elements is not preserved but the operation is often
--- faster than 'partition'.
-unstablePartition :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE unstablePartition #-}
-unstablePartition = G.unstablePartition
-
--- | /O(n)/ Split the vector into the longest prefix of elements that satisfy
--- the predicate and the rest without copying.
-span :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE span #-}
-span = G.span
-
--- | /O(n)/ Split the vector into the longest prefix of elements that do not
--- satisfy the predicate and the rest without copying.
-break :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE break #-}
-break = G.break
-
--- Searching
--- ---------
-
-infix 4 `elem`
--- | /O(n)/ Check if the vector contains an element
-elem :: (Prim a, Eq a) => a -> Vector a -> Bool
-{-# INLINE elem #-}
-elem = G.elem
-
-infix 4 `notElem`
--- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem')
-notElem :: (Prim a, Eq a) => a -> Vector a -> Bool
-{-# INLINE notElem #-}
-notElem = G.notElem
-
--- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing'
--- if no such element exists.
-find :: Prim a => (a -> Bool) -> Vector a -> Maybe a
-{-# INLINE find #-}
-find = G.find
-
--- | /O(n)/ Yield 'Just' the index of the first element matching the predicate
--- or 'Nothing' if no such element exists.
-findIndex :: Prim a => (a -> Bool) -> Vector a -> Maybe Int
-{-# INLINE findIndex #-}
-findIndex = G.findIndex
-
--- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending
--- order.
-findIndices :: Prim a => (a -> Bool) -> Vector a -> Vector Int
-{-# INLINE findIndices #-}
-findIndices = G.findIndices
-
--- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or
--- 'Nothing' if the vector does not contain the element. This is a specialised
--- version of 'findIndex'.
-elemIndex :: (Prim a, Eq a) => a -> Vector a -> Maybe Int
-{-# INLINE elemIndex #-}
-elemIndex = G.elemIndex
-
--- | /O(n)/ Yield the indices of all occurences of the given element in
--- ascending order. This is a specialised version of 'findIndices'.
-elemIndices :: (Prim a, Eq a) => a -> Vector a -> Vector Int
-{-# INLINE elemIndices #-}
-elemIndices = G.elemIndices
-
--- Folding
--- -------
-
--- | /O(n)/ Left fold
-foldl :: Prim b => (a -> b -> a) -> a -> Vector b -> a
-{-# INLINE foldl #-}
-foldl = G.foldl
-
--- | /O(n)/ Left fold on non-empty vectors
-foldl1 :: Prim a => (a -> a -> a) -> Vector a -> a
-{-# INLINE foldl1 #-}
-foldl1 = G.foldl1
-
--- | /O(n)/ Left fold with strict accumulator
-foldl' :: Prim b => (a -> b -> a) -> a -> Vector b -> a
-{-# INLINE foldl' #-}
-foldl' = G.foldl'
-
--- | /O(n)/ Left fold on non-empty vectors with strict accumulator
-foldl1' :: Prim a => (a -> a -> a) -> Vector a -> a
-{-# INLINE foldl1' #-}
-foldl1' = G.foldl1'
-
--- | /O(n)/ Right fold
-foldr :: Prim a => (a -> b -> b) -> b -> Vector a -> b
-{-# INLINE foldr #-}
-foldr = G.foldr
-
--- | /O(n)/ Right fold on non-empty vectors
-foldr1 :: Prim a => (a -> a -> a) -> Vector a -> a
-{-# INLINE foldr1 #-}
-foldr1 = G.foldr1
-
--- | /O(n)/ Right fold with a strict accumulator
-foldr' :: Prim a => (a -> b -> b) -> b -> Vector a -> b
-{-# INLINE foldr' #-}
-foldr' = G.foldr'
-
--- | /O(n)/ Right fold on non-empty vectors with strict accumulator
-foldr1' :: Prim a => (a -> a -> a) -> Vector a -> a
-{-# INLINE foldr1' #-}
-foldr1' = G.foldr1'
-
--- | /O(n)/ Left fold (function applied to each element and its index)
-ifoldl :: Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a
-{-# INLINE ifoldl #-}
-ifoldl = G.ifoldl
-
--- | /O(n)/ Left fold with strict accumulator (function applied to each element
--- and its index)
-ifoldl' :: Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a
-{-# INLINE ifoldl' #-}
-ifoldl' = G.ifoldl'
-
--- | /O(n)/ Right fold (function applied to each element and its index)
-ifoldr :: Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b
-{-# INLINE ifoldr #-}
-ifoldr = G.ifoldr
-
--- | /O(n)/ Right fold with strict accumulator (function applied to each
--- element and its index)
-ifoldr' :: Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b
-{-# INLINE ifoldr' #-}
-ifoldr' = G.ifoldr'
-
--- Specialised folds
--- -----------------
-
--- | /O(n)/ Check if all elements satisfy the predicate.
-all :: Prim a => (a -> Bool) -> Vector a -> Bool
-{-# INLINE all #-}
-all = G.all
-
--- | /O(n)/ Check if any element satisfies the predicate.
-any :: Prim a => (a -> Bool) -> Vector a -> Bool
-{-# INLINE any #-}
-any = G.any
-
--- | /O(n)/ Compute the sum of the elements
-sum :: (Prim a, Num a) => Vector a -> a
-{-# INLINE sum #-}
-sum = G.sum
-
--- | /O(n)/ Compute the produce of the elements
-product :: (Prim a, Num a) => Vector a -> a
-{-# INLINE product #-}
-product = G.product
-
--- | /O(n)/ Yield the maximum element of the vector. The vector may not be
--- empty.
-maximum :: (Prim a, Ord a) => Vector a -> a
-{-# INLINE maximum #-}
-maximum = G.maximum
-
--- | /O(n)/ Yield the maximum element of the vector according to the given
--- comparison function. The vector may not be empty.
-maximumBy :: Prim a => (a -> a -> Ordering) -> Vector a -> a
-{-# INLINE maximumBy #-}
-maximumBy = G.maximumBy
-
--- | /O(n)/ Yield the minimum element of the vector. The vector may not be
--- empty.
-minimum :: (Prim a, Ord a) => Vector a -> a
-{-# INLINE minimum #-}
-minimum = G.minimum
-
--- | /O(n)/ Yield the minimum element of the vector according to the given
--- comparison function. The vector may not be empty.
-minimumBy :: Prim a => (a -> a -> Ordering) -> Vector a -> a
-{-# INLINE minimumBy #-}
-minimumBy = G.minimumBy
-
--- | /O(n)/ Yield the index of the maximum element of the vector. The vector
--- may not be empty.
-maxIndex :: (Prim a, Ord a) => Vector a -> Int
-{-# INLINE maxIndex #-}
-maxIndex = G.maxIndex
-
--- | /O(n)/ Yield the index of the maximum element of the vector according to
--- the given comparison function. The vector may not be empty.
-maxIndexBy :: Prim a => (a -> a -> Ordering) -> Vector a -> Int
-{-# INLINE maxIndexBy #-}
-maxIndexBy = G.maxIndexBy
-
--- | /O(n)/ Yield the index of the minimum element of the vector. The vector
--- may not be empty.
-minIndex :: (Prim a, Ord a) => Vector a -> Int
-{-# INLINE minIndex #-}
-minIndex = G.minIndex
-
--- | /O(n)/ Yield the index of the minimum element of the vector according to
--- the given comparison function. The vector may not be empty.
-minIndexBy :: Prim a => (a -> a -> Ordering) -> Vector a -> Int
-{-# INLINE minIndexBy #-}
-minIndexBy = G.minIndexBy
-
--- Monadic folds
--- -------------
-
--- | /O(n)/ Monadic fold
-foldM :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m a
-{-# INLINE foldM #-}
-foldM = G.foldM
-
--- | /O(n)/ Monadic fold over non-empty vectors
-fold1M :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m a
-{-# INLINE fold1M #-}
-fold1M = G.fold1M
-
--- | /O(n)/ Monadic fold with strict accumulator
-foldM' :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m a
-{-# INLINE foldM' #-}
-foldM' = G.foldM'
-
--- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator
-fold1M' :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m a
-{-# INLINE fold1M' #-}
-fold1M' = G.fold1M'
-
--- | /O(n)/ Monadic fold that discards the result
-foldM_ :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m ()
-{-# INLINE foldM_ #-}
-foldM_ = G.foldM_
-
--- | /O(n)/ Monadic fold over non-empty vectors that discards the result
-fold1M_ :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m ()
-{-# INLINE fold1M_ #-}
-fold1M_ = G.fold1M_
-
--- | /O(n)/ Monadic fold with strict accumulator that discards the result
-foldM'_ :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m ()
-{-# INLINE foldM'_ #-}
-foldM'_ = G.foldM'_
-
--- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator
--- that discards the result
-fold1M'_ :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m ()
-{-# INLINE fold1M'_ #-}
-fold1M'_ = G.fold1M'_
-
--- Prefix sums (scans)
--- -------------------
-
--- | /O(n)/ Prescan
---
--- @
--- prescanl f z = 'init' . 'scanl' f z
--- @
---
--- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@
---
-prescanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE prescanl #-}
-prescanl = G.prescanl
-
--- | /O(n)/ Prescan with strict accumulator
-prescanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE prescanl' #-}
-prescanl' = G.prescanl'
-
--- | /O(n)/ Scan
---
--- @
--- postscanl f z = 'tail' . 'scanl' f z
--- @
---
--- Example: @postscanl (+) 0 \<1,2,3,4\> = \<1,3,6,10\>@
---
-postscanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE postscanl #-}
-postscanl = G.postscanl
-
--- | /O(n)/ Scan with strict accumulator
-postscanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE postscanl' #-}
-postscanl' = G.postscanl'
-
--- | /O(n)/ Haskell-style scan
---
--- > scanl f z <x1,...,xn> = <y1,...,y(n+1)>
--- >   where y1 = z
--- >         yi = f y(i-1) x(i-1)
---
--- Example: @scanl (+) 0 \<1,2,3,4\> = \<0,1,3,6,10\>@
---
-scanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE scanl #-}
-scanl = G.scanl
-
--- | /O(n)/ Haskell-style scan with strict accumulator
-scanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE scanl' #-}
-scanl' = G.scanl'
-
--- | /O(n)/ Scan over a non-empty vector
---
--- > scanl f <x1,...,xn> = <y1,...,yn>
--- >   where y1 = x1
--- >         yi = f y(i-1) xi
---
-scanl1 :: Prim a => (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanl1 #-}
-scanl1 = G.scanl1
-
--- | /O(n)/ Scan over a non-empty vector with a strict accumulator
-scanl1' :: Prim a => (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanl1' #-}
-scanl1' = G.scanl1'
-
--- | /O(n)/ Right-to-left prescan
---
--- @
--- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse'
--- @
---
-prescanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE prescanr #-}
-prescanr = G.prescanr
-
--- | /O(n)/ Right-to-left prescan with strict accumulator
-prescanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE prescanr' #-}
-prescanr' = G.prescanr'
-
--- | /O(n)/ Right-to-left scan
-postscanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE postscanr #-}
-postscanr = G.postscanr
-
--- | /O(n)/ Right-to-left scan with strict accumulator
-postscanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE postscanr' #-}
-postscanr' = G.postscanr'
-
--- | /O(n)/ Right-to-left Haskell-style scan
-scanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE scanr #-}
-scanr = G.scanr
-
--- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator
-scanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE scanr' #-}
-scanr' = G.scanr'
-
--- | /O(n)/ Right-to-left scan over a non-empty vector
-scanr1 :: Prim a => (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanr1 #-}
-scanr1 = G.scanr1
-
--- | /O(n)/ Right-to-left scan over a non-empty vector with a strict
--- accumulator
-scanr1' :: Prim a => (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanr1' #-}
-scanr1' = G.scanr1'
-
--- Conversions - Lists
--- ------------------------
-
--- | /O(n)/ Convert a vector to a list
-toList :: Prim a => Vector a -> [a]
-{-# INLINE toList #-}
-toList = G.toList
-
--- | /O(n)/ Convert a list to a vector
-fromList :: Prim a => [a] -> Vector a
-{-# INLINE fromList #-}
-fromList = G.fromList
-
--- | /O(n)/ Convert the first @n@ elements of a list to a vector
---
--- @
--- fromListN n xs = 'fromList' ('take' n xs)
--- @
-fromListN :: Prim a => Int -> [a] -> Vector a
-{-# INLINE fromListN #-}
-fromListN = G.fromListN
-
--- Conversions - Mutable vectors
--- -----------------------------
-
--- | /O(1)/ Unsafe convert a mutable vector to an immutable one without
--- copying. The mutable vector may not be used after this operation.
-unsafeFreeze :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a)
-{-# INLINE unsafeFreeze #-}
-unsafeFreeze = G.unsafeFreeze
-
--- | /O(1)/ Unsafely convert an immutable vector to a mutable one without
--- copying. The immutable vector may not be used after this operation.
-unsafeThaw :: (Prim a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a)
-{-# INLINE unsafeThaw #-}
-unsafeThaw = G.unsafeThaw
-
--- | /O(n)/ Yield a mutable copy of the immutable vector.
-thaw :: (Prim a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a)
-{-# INLINE thaw #-}
-thaw = G.thaw
-
--- | /O(n)/ Yield an immutable copy of the mutable vector.
-freeze :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a)
-{-# INLINE freeze #-}
-freeze = G.freeze
-
--- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
--- have the same length. This is not checked.
-unsafeCopy
-  :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m ()
-{-# INLINE unsafeCopy #-}
-unsafeCopy = G.unsafeCopy
-
--- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
--- have the same length.
-copy :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m ()
-{-# INLINE copy #-}
-copy = G.copy
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Primitive/Mutable.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Primitive/Mutable.hs
deleted file mode 100644
index 33aca812e208..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Primitive/Mutable.hs
+++ /dev/null
@@ -1,366 +0,0 @@
-{-# LANGUAGE CPP, DeriveDataTypeable, MultiParamTypeClasses, FlexibleInstances, ScopedTypeVariables #-}
-
--- |
--- Module      : Data.Vector.Primitive.Mutable
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Mutable primitive vectors.
---
-
-module Data.Vector.Primitive.Mutable (
-  -- * Mutable vectors of primitive types
-  MVector(..), IOVector, STVector, Prim,
-
-  -- * Accessors
-
-  -- ** Length information
-  length, null,
-
-  -- ** Extracting subvectors
-  slice, init, tail, take, drop, splitAt,
-  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-
-  -- ** Overlapping
-  overlaps,
-
-  -- * Construction
-
-  -- ** Initialisation
-  new, unsafeNew, replicate, replicateM, clone,
-
-  -- ** Growing
-  grow, unsafeGrow,
-
-  -- ** Restricting memory usage
-  clear,
-
-  -- * Accessing individual elements
-  read, write, modify, swap,
-  unsafeRead, unsafeWrite, unsafeModify, unsafeSwap,
-
-  -- * Modifying vectors
-  nextPermutation,
-
-  -- ** Filling and copying
-  set, copy, move, unsafeCopy, unsafeMove
-) where
-
-import qualified Data.Vector.Generic.Mutable as G
-import           Data.Primitive.ByteArray
-import           Data.Primitive ( Prim, sizeOf )
-import           Data.Word ( Word8 )
-import           Control.Monad.Primitive
-import           Control.Monad ( liftM )
-
-import Control.DeepSeq ( NFData(rnf) )
-
-import Prelude hiding ( length, null, replicate, reverse, map, read,
-                        take, drop, splitAt, init, tail )
-
-import Data.Typeable ( Typeable )
-
--- Data.Vector.Internal.Check is unnecessary
-#define NOT_VECTOR_MODULE
-#include "vector.h"
-
--- | Mutable vectors of primitive types.
-data MVector s a = MVector {-# UNPACK #-} !Int
-                           {-# UNPACK #-} !Int
-                           {-# UNPACK #-} !(MutableByteArray s) -- ^ offset, length, underlying mutable byte array
-        deriving ( Typeable )
-
-type IOVector = MVector RealWorld
-type STVector s = MVector s
-
-instance NFData (MVector s a) where
-  rnf (MVector _ _ _) = ()
-
-instance Prim a => G.MVector MVector a where
-  basicLength (MVector _ n _) = n
-  basicUnsafeSlice j m (MVector i _ arr)
-    = MVector (i+j) m arr
-
-  {-# INLINE basicOverlaps #-}
-  basicOverlaps (MVector i m arr1) (MVector j n arr2)
-    = sameMutableByteArray arr1 arr2
-      && (between i j (j+n) || between j i (i+m))
-    where
-      between x y z = x >= y && x < z
-
-  {-# INLINE basicUnsafeNew #-}
-  basicUnsafeNew n
-    | n < 0 = error $ "Primitive.basicUnsafeNew: negative length: " ++ show n
-    | n > mx = error $ "Primitive.basicUnsafeNew: length to large: " ++ show n
-    | otherwise = MVector 0 n `liftM` newByteArray (n * size)
-    where
-      size = sizeOf (undefined :: a)
-      mx = maxBound `div` size :: Int
-
-  {-# INLINE basicInitialize #-}
-  basicInitialize (MVector off n v) =
-      setByteArray v (off * size) (n * size) (0 :: Word8)
-    where
-      size = sizeOf (undefined :: a)
-
-
-  {-# INLINE basicUnsafeRead #-}
-  basicUnsafeRead (MVector i _ arr) j = readByteArray arr (i+j)
-
-  {-# INLINE basicUnsafeWrite #-}
-  basicUnsafeWrite (MVector i _ arr) j x = writeByteArray arr (i+j) x
-
-  {-# INLINE basicUnsafeCopy #-}
-  basicUnsafeCopy (MVector i n dst) (MVector j _ src)
-    = copyMutableByteArray dst (i*sz) src (j*sz) (n*sz)
-    where
-      sz = sizeOf (undefined :: a)
-
-  {-# INLINE basicUnsafeMove #-}
-  basicUnsafeMove (MVector i n dst) (MVector j _ src)
-    = moveByteArray dst (i*sz) src (j*sz) (n * sz)
-    where
-      sz = sizeOf (undefined :: a)
-
-  {-# INLINE basicSet #-}
-  basicSet (MVector i n arr) x = setByteArray arr i n x
-
--- Length information
--- ------------------
-
--- | Length of the mutable vector.
-length :: Prim a => MVector s a -> Int
-{-# INLINE length #-}
-length = G.length
-
--- | Check whether the vector is empty
-null :: Prim a => MVector s a -> Bool
-{-# INLINE null #-}
-null = G.null
-
--- Extracting subvectors
--- ---------------------
-
--- | Yield a part of the mutable vector without copying it.
-slice :: Prim a => Int -> Int -> MVector s a -> MVector s a
-{-# INLINE slice #-}
-slice = G.slice
-
-take :: Prim a => Int -> MVector s a -> MVector s a
-{-# INLINE take #-}
-take = G.take
-
-drop :: Prim a => Int -> MVector s a -> MVector s a
-{-# INLINE drop #-}
-drop = G.drop
-
-splitAt :: Prim a => Int -> MVector s a -> (MVector s a, MVector s a)
-{-# INLINE splitAt #-}
-splitAt = G.splitAt
-
-init :: Prim a => MVector s a -> MVector s a
-{-# INLINE init #-}
-init = G.init
-
-tail :: Prim a => MVector s a -> MVector s a
-{-# INLINE tail #-}
-tail = G.tail
-
--- | Yield a part of the mutable vector without copying it. No bounds checks
--- are performed.
-unsafeSlice :: Prim a
-            => Int  -- ^ starting index
-            -> Int  -- ^ length of the slice
-            -> MVector s a
-            -> MVector s a
-{-# INLINE unsafeSlice #-}
-unsafeSlice = G.unsafeSlice
-
-unsafeTake :: Prim a => Int -> MVector s a -> MVector s a
-{-# INLINE unsafeTake #-}
-unsafeTake = G.unsafeTake
-
-unsafeDrop :: Prim a => Int -> MVector s a -> MVector s a
-{-# INLINE unsafeDrop #-}
-unsafeDrop = G.unsafeDrop
-
-unsafeInit :: Prim a => MVector s a -> MVector s a
-{-# INLINE unsafeInit #-}
-unsafeInit = G.unsafeInit
-
-unsafeTail :: Prim a => MVector s a -> MVector s a
-{-# INLINE unsafeTail #-}
-unsafeTail = G.unsafeTail
-
--- Overlapping
--- -----------
-
--- | Check whether two vectors overlap.
-overlaps :: Prim a => MVector s a -> MVector s a -> Bool
-{-# INLINE overlaps #-}
-overlaps = G.overlaps
-
--- Initialisation
--- --------------
-
--- | Create a mutable vector of the given length.
-new :: (PrimMonad m, Prim a) => Int -> m (MVector (PrimState m) a)
-{-# INLINE new #-}
-new = G.new
-
--- | Create a mutable vector of the given length. The memory is not initialized.
-unsafeNew :: (PrimMonad m, Prim a) => Int -> m (MVector (PrimState m) a)
-{-# INLINE unsafeNew #-}
-unsafeNew = G.unsafeNew
-
--- | Create a mutable vector of the given length (0 if the length is negative)
--- and fill it with an initial value.
-replicate :: (PrimMonad m, Prim a) => Int -> a -> m (MVector (PrimState m) a)
-{-# INLINE replicate #-}
-replicate = G.replicate
-
--- | Create a mutable vector of the given length (0 if the length is negative)
--- and fill it with values produced by repeatedly executing the monadic action.
-replicateM :: (PrimMonad m, Prim a) => Int -> m a -> m (MVector (PrimState m) a)
-{-# INLINE replicateM #-}
-replicateM = G.replicateM
-
--- | Create a copy of a mutable vector.
-clone :: (PrimMonad m, Prim a)
-      => MVector (PrimState m) a -> m (MVector (PrimState m) a)
-{-# INLINE clone #-}
-clone = G.clone
-
--- Growing
--- -------
-
--- | Grow a vector by the given number of elements. The number must be
--- positive.
-grow :: (PrimMonad m, Prim a)
-              => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
-{-# INLINE grow #-}
-grow = G.grow
-
--- | Grow a vector by the given number of elements. The number must be
--- positive but this is not checked.
-unsafeGrow :: (PrimMonad m, Prim a)
-               => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
-{-# INLINE unsafeGrow #-}
-unsafeGrow = G.unsafeGrow
-
--- Restricting memory usage
--- ------------------------
-
--- | Reset all elements of the vector to some undefined value, clearing all
--- references to external objects. This is usually a noop for unboxed vectors.
-clear :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> m ()
-{-# INLINE clear #-}
-clear = G.clear
-
--- Accessing individual elements
--- -----------------------------
-
--- | Yield the element at the given position.
-read :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m a
-{-# INLINE read #-}
-read = G.read
-
--- | Replace the element at the given position.
-write :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> a -> m ()
-{-# INLINE write #-}
-write = G.write
-
--- | Modify the element at the given position.
-modify :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
-{-# INLINE modify #-}
-modify = G.modify
-
--- | Swap the elements at the given positions.
-swap :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> Int -> m ()
-{-# INLINE swap #-}
-swap = G.swap
-
-
--- | Yield the element at the given position. No bounds checks are performed.
-unsafeRead :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m a
-{-# INLINE unsafeRead #-}
-unsafeRead = G.unsafeRead
-
--- | Replace the element at the given position. No bounds checks are performed.
-unsafeWrite
-    :: (PrimMonad m, Prim a) =>  MVector (PrimState m) a -> Int -> a -> m ()
-{-# INLINE unsafeWrite #-}
-unsafeWrite = G.unsafeWrite
-
--- | Modify the element at the given position. No bounds checks are performed.
-unsafeModify :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
-{-# INLINE unsafeModify #-}
-unsafeModify = G.unsafeModify
-
--- | Swap the elements at the given positions. No bounds checks are performed.
-unsafeSwap
-    :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> Int -> m ()
-{-# INLINE unsafeSwap #-}
-unsafeSwap = G.unsafeSwap
-
--- Filling and copying
--- -------------------
-
--- | Set all elements of the vector to the given value.
-set :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> a -> m ()
-{-# INLINE set #-}
-set = G.set
-
--- | Copy a vector. The two vectors must have the same length and may not
--- overlap.
-copy :: (PrimMonad m, Prim a)
-     => MVector (PrimState m) a   -- ^ target
-     -> MVector (PrimState m) a   -- ^ source
-     -> m ()
-{-# INLINE copy #-}
-copy = G.copy
-
--- | Copy a vector. The two vectors must have the same length and may not
--- overlap. This is not checked.
-unsafeCopy :: (PrimMonad m, Prim a)
-           => MVector (PrimState m) a   -- ^ target
-           -> MVector (PrimState m) a   -- ^ source
-           -> m ()
-{-# INLINE unsafeCopy #-}
-unsafeCopy = G.unsafeCopy
-
--- | Move the contents of a vector. The two vectors must have the same
--- length.
---
--- If the vectors do not overlap, then this is equivalent to 'copy'.
--- Otherwise, the copying is performed as if the source vector were
--- copied to a temporary vector and then the temporary vector was copied
--- to the target vector.
-move :: (PrimMonad m, Prim a)
-                 => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
-{-# INLINE move #-}
-move = G.move
-
--- | Move the contents of a vector. The two vectors must have the same
--- length, but this is not checked.
---
--- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
--- Otherwise, the copying is performed as if the source vector were
--- copied to a temporary vector and then the temporary vector was copied
--- to the target vector.
-unsafeMove :: (PrimMonad m, Prim a)
-                          => MVector (PrimState m) a   -- ^ target
-                          -> MVector (PrimState m) a   -- ^ source
-                          -> m ()
-{-# INLINE unsafeMove #-}
-unsafeMove = G.unsafeMove
-
--- | Compute the next (lexicographically) permutation of given vector in-place.
---   Returns False when input is the last permtuation
-nextPermutation :: (PrimMonad m,Ord e,Prim e) => MVector (PrimState m) e -> m Bool
-{-# INLINE nextPermutation #-}
-nextPermutation = G.nextPermutation
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable.hs
deleted file mode 100644
index 30c9a4615c60..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable.hs
+++ /dev/null
@@ -1,1489 +0,0 @@
-{-# LANGUAGE CPP, DeriveDataTypeable, MultiParamTypeClasses, FlexibleInstances, TypeFamilies, Rank2Types, ScopedTypeVariables #-}
-
--- |
--- Module      : Data.Vector.Storable
--- Copyright   : (c) Roman Leshchinskiy 2009-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- 'Storable'-based vectors.
---
-
-module Data.Vector.Storable (
-  -- * Storable vectors
-  Vector, MVector(..), Storable,
-
-  -- * Accessors
-
-  -- ** Length information
-  length, null,
-
-  -- ** Indexing
-  (!), (!?), head, last,
-  unsafeIndex, unsafeHead, unsafeLast,
-
-  -- ** Monadic indexing
-  indexM, headM, lastM,
-  unsafeIndexM, unsafeHeadM, unsafeLastM,
-
-  -- ** Extracting subvectors (slicing)
-  slice, init, tail, take, drop, splitAt,
-  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-
-  -- * Construction
-
-  -- ** Initialisation
-  empty, singleton, replicate, generate, iterateN,
-
-  -- ** Monadic initialisation
-  replicateM, generateM, iterateNM, create, createT,
-
-  -- ** Unfolding
-  unfoldr, unfoldrN,
-  unfoldrM, unfoldrNM,
-  constructN, constructrN,
-
-  -- ** Enumeration
-  enumFromN, enumFromStepN, enumFromTo, enumFromThenTo,
-
-  -- ** Concatenation
-  cons, snoc, (++), concat,
-
-  -- ** Restricting memory usage
-  force,
-
-  -- * Modifying vectors
-
-  -- ** Bulk updates
-  (//), update_,
-  unsafeUpd, unsafeUpdate_,
-
-  -- ** Accumulations
-  accum, accumulate_,
-  unsafeAccum, unsafeAccumulate_,
-
-  -- ** Permutations
-  reverse, backpermute, unsafeBackpermute,
-
-  -- ** Safe destructive updates
-  modify,
-
-  -- * Elementwise operations
-
-  -- ** Mapping
-  map, imap, concatMap,
-
-  -- ** Monadic mapping
-  mapM, mapM_, forM, forM_,
-
-  -- ** Zipping
-  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
-  izipWith, izipWith3, izipWith4, izipWith5, izipWith6,
-
-  -- ** Monadic zipping
-  zipWithM, zipWithM_,
-
-  -- * Working with predicates
-
-  -- ** Filtering
-  filter, ifilter, uniq,
-  mapMaybe, imapMaybe,
-  filterM,
-  takeWhile, dropWhile,
-
-  -- ** Partitioning
-  partition, unstablePartition, span, break,
-
-  -- ** Searching
-  elem, notElem, find, findIndex, findIndices, elemIndex, elemIndices,
-
-  -- * Folding
-  foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1',
-  ifoldl, ifoldl', ifoldr, ifoldr',
-
-  -- ** Specialised folds
-  all, any, and, or,
-  sum, product,
-  maximum, maximumBy, minimum, minimumBy,
-  minIndex, minIndexBy, maxIndex, maxIndexBy,
-
-  -- ** Monadic folds
-  foldM, foldM', fold1M, fold1M',
-  foldM_, foldM'_, fold1M_, fold1M'_,
-
-  -- * Prefix sums (scans)
-  prescanl, prescanl',
-  postscanl, postscanl',
-  scanl, scanl', scanl1, scanl1',
-  prescanr, prescanr',
-  postscanr, postscanr',
-  scanr, scanr', scanr1, scanr1',
-
-  -- * Conversions
-
-  -- ** Lists
-  toList, fromList, fromListN,
-
-  -- ** Other vector types
-  G.convert, unsafeCast,
-
-  -- ** Mutable vectors
-  freeze, thaw, copy, unsafeFreeze, unsafeThaw, unsafeCopy,
-
-  -- * Raw pointers
-  unsafeFromForeignPtr, unsafeFromForeignPtr0,
-  unsafeToForeignPtr,   unsafeToForeignPtr0,
-  unsafeWith
-) where
-
-import qualified Data.Vector.Generic          as G
-import           Data.Vector.Storable.Mutable ( MVector(..) )
-import Data.Vector.Storable.Internal
-import qualified Data.Vector.Fusion.Bundle as Bundle
-
-import Foreign.Storable
-import Foreign.ForeignPtr
-import Foreign.Ptr
-import Foreign.Marshal.Array ( advancePtr, copyArray )
-
-import Control.DeepSeq ( NFData(rnf) )
-
-import Control.Monad.ST ( ST )
-import Control.Monad.Primitive
-
-import Prelude hiding ( length, null,
-                        replicate, (++), concat,
-                        head, last,
-                        init, tail, take, drop, splitAt, reverse,
-                        map, concatMap,
-                        zipWith, zipWith3, zip, zip3, unzip, unzip3,
-                        filter, takeWhile, dropWhile, span, break,
-                        elem, notElem,
-                        foldl, foldl1, foldr, foldr1,
-                        all, any, and, or, sum, product, minimum, maximum,
-                        scanl, scanl1, scanr, scanr1,
-                        enumFromTo, enumFromThenTo,
-                        mapM, mapM_ )
-
-import Data.Typeable  ( Typeable )
-import Data.Data      ( Data(..) )
-import Text.Read      ( Read(..), readListPrecDefault )
-import Data.Semigroup ( Semigroup(..) )
-
-#if !MIN_VERSION_base(4,8,0)
-import Data.Monoid   ( Monoid(..) )
-import Data.Traversable ( Traversable )
-#endif
-
-#if __GLASGOW_HASKELL__ >= 708
-import qualified GHC.Exts as Exts
-#endif
-
--- Data.Vector.Internal.Check is unused
-#define NOT_VECTOR_MODULE
-#include "vector.h"
-
--- | 'Storable'-based vectors
-data Vector a = Vector {-# UNPACK #-} !Int
-                       {-# UNPACK #-} !(ForeignPtr a)
-        deriving ( Typeable )
-
-instance NFData (Vector a) where
-  rnf (Vector _ _) = ()
-
-instance (Show a, Storable a) => Show (Vector a) where
-  showsPrec = G.showsPrec
-
-instance (Read a, Storable a) => Read (Vector a) where
-  readPrec = G.readPrec
-  readListPrec = readListPrecDefault
-
-instance (Data a, Storable a) => Data (Vector a) where
-  gfoldl       = G.gfoldl
-  toConstr _   = error "toConstr"
-  gunfold _ _  = error "gunfold"
-  dataTypeOf _ = G.mkType "Data.Vector.Storable.Vector"
-  dataCast1    = G.dataCast
-
-type instance G.Mutable Vector = MVector
-
-instance Storable a => G.Vector Vector a where
-  {-# INLINE basicUnsafeFreeze #-}
-  basicUnsafeFreeze (MVector n fp) = return $ Vector n fp
-
-  {-# INLINE basicUnsafeThaw #-}
-  basicUnsafeThaw (Vector n fp) = return $ MVector n fp
-
-  {-# INLINE basicLength #-}
-  basicLength (Vector n _) = n
-
-  {-# INLINE basicUnsafeSlice #-}
-  basicUnsafeSlice i n (Vector _ fp) = Vector n (updPtr (`advancePtr` i) fp)
-
-  {-# INLINE basicUnsafeIndexM #-}
-  basicUnsafeIndexM (Vector _ fp) i = return
-                                    . unsafeInlineIO
-                                    $ withForeignPtr fp $ \p ->
-                                      peekElemOff p i
-
-  {-# INLINE basicUnsafeCopy #-}
-  basicUnsafeCopy (MVector n fp) (Vector _ fq)
-    = unsafePrimToPrim
-    $ withForeignPtr fp $ \p ->
-      withForeignPtr fq $ \q ->
-      copyArray p q n
-
-  {-# INLINE elemseq #-}
-  elemseq _ = seq
-
--- See http://trac.haskell.org/vector/ticket/12
-instance (Storable a, Eq a) => Eq (Vector a) where
-  {-# INLINE (==) #-}
-  xs == ys = Bundle.eq (G.stream xs) (G.stream ys)
-
-  {-# INLINE (/=) #-}
-  xs /= ys = not (Bundle.eq (G.stream xs) (G.stream ys))
-
--- See http://trac.haskell.org/vector/ticket/12
-instance (Storable a, Ord a) => Ord (Vector a) where
-  {-# INLINE compare #-}
-  compare xs ys = Bundle.cmp (G.stream xs) (G.stream ys)
-
-  {-# INLINE (<) #-}
-  xs < ys = Bundle.cmp (G.stream xs) (G.stream ys) == LT
-
-  {-# INLINE (<=) #-}
-  xs <= ys = Bundle.cmp (G.stream xs) (G.stream ys) /= GT
-
-  {-# INLINE (>) #-}
-  xs > ys = Bundle.cmp (G.stream xs) (G.stream ys) == GT
-
-  {-# INLINE (>=) #-}
-  xs >= ys = Bundle.cmp (G.stream xs) (G.stream ys) /= LT
-
-instance Storable a => Semigroup (Vector a) where
-  {-# INLINE (<>) #-}
-  (<>) = (++)
-
-  {-# INLINE sconcat #-}
-  sconcat = G.concatNE
-
-instance Storable a => Monoid (Vector a) where
-  {-# INLINE mempty #-}
-  mempty = empty
-
-  {-# INLINE mappend #-}
-  mappend = (++)
-
-  {-# INLINE mconcat #-}
-  mconcat = concat
-
-#if __GLASGOW_HASKELL__ >= 708
-
-instance Storable a => Exts.IsList (Vector a) where
-  type Item (Vector a) = a
-  fromList = fromList
-  fromListN = fromListN
-  toList = toList
-
-#endif
-
--- Length
--- ------
-
--- | /O(1)/ Yield the length of the vector
-length :: Storable a => Vector a -> Int
-{-# INLINE length #-}
-length = G.length
-
--- | /O(1)/ Test whether a vector is empty
-null :: Storable a => Vector a -> Bool
-{-# INLINE null #-}
-null = G.null
-
--- Indexing
--- --------
-
--- | O(1) Indexing
-(!) :: Storable a => Vector a -> Int -> a
-{-# INLINE (!) #-}
-(!) = (G.!)
-
--- | O(1) Safe indexing
-(!?) :: Storable a => Vector a -> Int -> Maybe a
-{-# INLINE (!?) #-}
-(!?) = (G.!?)
-
--- | /O(1)/ First element
-head :: Storable a => Vector a -> a
-{-# INLINE head #-}
-head = G.head
-
--- | /O(1)/ Last element
-last :: Storable a => Vector a -> a
-{-# INLINE last #-}
-last = G.last
-
--- | /O(1)/ Unsafe indexing without bounds checking
-unsafeIndex :: Storable a => Vector a -> Int -> a
-{-# INLINE unsafeIndex #-}
-unsafeIndex = G.unsafeIndex
-
--- | /O(1)/ First element without checking if the vector is empty
-unsafeHead :: Storable a => Vector a -> a
-{-# INLINE unsafeHead #-}
-unsafeHead = G.unsafeHead
-
--- | /O(1)/ Last element without checking if the vector is empty
-unsafeLast :: Storable a => Vector a -> a
-{-# INLINE unsafeLast #-}
-unsafeLast = G.unsafeLast
-
--- Monadic indexing
--- ----------------
-
--- | /O(1)/ Indexing in a monad.
---
--- The monad allows operations to be strict in the vector when necessary.
--- Suppose vector copying is implemented like this:
---
--- > copy mv v = ... write mv i (v ! i) ...
---
--- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@
--- would unnecessarily retain a reference to @v@ in each element written.
---
--- With 'indexM', copying can be implemented like this instead:
---
--- > copy mv v = ... do
--- >                   x <- indexM v i
--- >                   write mv i x
---
--- Here, no references to @v@ are retained because indexing (but /not/ the
--- elements) is evaluated eagerly.
---
-indexM :: (Storable a, Monad m) => Vector a -> Int -> m a
-{-# INLINE indexM #-}
-indexM = G.indexM
-
--- | /O(1)/ First element of a vector in a monad. See 'indexM' for an
--- explanation of why this is useful.
-headM :: (Storable a, Monad m) => Vector a -> m a
-{-# INLINE headM #-}
-headM = G.headM
-
--- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an
--- explanation of why this is useful.
-lastM :: (Storable a, Monad m) => Vector a -> m a
-{-# INLINE lastM #-}
-lastM = G.lastM
-
--- | /O(1)/ Indexing in a monad without bounds checks. See 'indexM' for an
--- explanation of why this is useful.
-unsafeIndexM :: (Storable a, Monad m) => Vector a -> Int -> m a
-{-# INLINE unsafeIndexM #-}
-unsafeIndexM = G.unsafeIndexM
-
--- | /O(1)/ First element in a monad without checking for empty vectors.
--- See 'indexM' for an explanation of why this is useful.
-unsafeHeadM :: (Storable a, Monad m) => Vector a -> m a
-{-# INLINE unsafeHeadM #-}
-unsafeHeadM = G.unsafeHeadM
-
--- | /O(1)/ Last element in a monad without checking for empty vectors.
--- See 'indexM' for an explanation of why this is useful.
-unsafeLastM :: (Storable a, Monad m) => Vector a -> m a
-{-# INLINE unsafeLastM #-}
-unsafeLastM = G.unsafeLastM
-
--- Extracting subvectors (slicing)
--- -------------------------------
-
--- | /O(1)/ Yield a slice of the vector without copying it. The vector must
--- contain at least @i+n@ elements.
-slice :: Storable a
-      => Int   -- ^ @i@ starting index
-      -> Int   -- ^ @n@ length
-      -> Vector a
-      -> Vector a
-{-# INLINE slice #-}
-slice = G.slice
-
--- | /O(1)/ Yield all but the last element without copying. The vector may not
--- be empty.
-init :: Storable a => Vector a -> Vector a
-{-# INLINE init #-}
-init = G.init
-
--- | /O(1)/ Yield all but the first element without copying. The vector may not
--- be empty.
-tail :: Storable a => Vector a -> Vector a
-{-# INLINE tail #-}
-tail = G.tail
-
--- | /O(1)/ Yield at the first @n@ elements without copying. The vector may
--- contain less than @n@ elements in which case it is returned unchanged.
-take :: Storable a => Int -> Vector a -> Vector a
-{-# INLINE take #-}
-take = G.take
-
--- | /O(1)/ Yield all but the first @n@ elements without copying. The vector may
--- contain less than @n@ elements in which case an empty vector is returned.
-drop :: Storable a => Int -> Vector a -> Vector a
-{-# INLINE drop #-}
-drop = G.drop
-
--- | /O(1)/ Yield the first @n@ elements paired with the remainder without copying.
---
--- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@
--- but slightly more efficient.
-{-# INLINE splitAt #-}
-splitAt :: Storable a => Int -> Vector a -> (Vector a, Vector a)
-splitAt = G.splitAt
-
--- | /O(1)/ Yield a slice of the vector without copying. The vector must
--- contain at least @i+n@ elements but this is not checked.
-unsafeSlice :: Storable a => Int   -- ^ @i@ starting index
-                       -> Int   -- ^ @n@ length
-                       -> Vector a
-                       -> Vector a
-{-# INLINE unsafeSlice #-}
-unsafeSlice = G.unsafeSlice
-
--- | /O(1)/ Yield all but the last element without copying. The vector may not
--- be empty but this is not checked.
-unsafeInit :: Storable a => Vector a -> Vector a
-{-# INLINE unsafeInit #-}
-unsafeInit = G.unsafeInit
-
--- | /O(1)/ Yield all but the first element without copying. The vector may not
--- be empty but this is not checked.
-unsafeTail :: Storable a => Vector a -> Vector a
-{-# INLINE unsafeTail #-}
-unsafeTail = G.unsafeTail
-
--- | /O(1)/ Yield the first @n@ elements without copying. The vector must
--- contain at least @n@ elements but this is not checked.
-unsafeTake :: Storable a => Int -> Vector a -> Vector a
-{-# INLINE unsafeTake #-}
-unsafeTake = G.unsafeTake
-
--- | /O(1)/ Yield all but the first @n@ elements without copying. The vector
--- must contain at least @n@ elements but this is not checked.
-unsafeDrop :: Storable a => Int -> Vector a -> Vector a
-{-# INLINE unsafeDrop #-}
-unsafeDrop = G.unsafeDrop
-
--- Initialisation
--- --------------
-
--- | /O(1)/ Empty vector
-empty :: Storable a => Vector a
-{-# INLINE empty #-}
-empty = G.empty
-
--- | /O(1)/ Vector with exactly one element
-singleton :: Storable a => a -> Vector a
-{-# INLINE singleton #-}
-singleton = G.singleton
-
--- | /O(n)/ Vector of the given length with the same value in each position
-replicate :: Storable a => Int -> a -> Vector a
-{-# INLINE replicate #-}
-replicate = G.replicate
-
--- | /O(n)/ Construct a vector of the given length by applying the function to
--- each index
-generate :: Storable a => Int -> (Int -> a) -> Vector a
-{-# INLINE generate #-}
-generate = G.generate
-
--- | /O(n)/ Apply function n times to value. Zeroth element is original value.
-iterateN :: Storable a => Int -> (a -> a) -> a -> Vector a
-{-# INLINE iterateN #-}
-iterateN = G.iterateN
-
--- Unfolding
--- ---------
-
--- | /O(n)/ Construct a vector by repeatedly applying the generator function
--- to a seed. The generator function yields 'Just' the next element and the
--- new seed or 'Nothing' if there are no more elements.
---
--- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10
--- >  = <10,9,8,7,6,5,4,3,2,1>
-unfoldr :: Storable a => (b -> Maybe (a, b)) -> b -> Vector a
-{-# INLINE unfoldr #-}
-unfoldr = G.unfoldr
-
--- | /O(n)/ Construct a vector with at most @n@ elements by repeatedly applying
--- the generator function to a seed. The generator function yields 'Just' the
--- next element and the new seed or 'Nothing' if there are no more elements.
---
--- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8>
-unfoldrN :: Storable a => Int -> (b -> Maybe (a, b)) -> b -> Vector a
-{-# INLINE unfoldrN #-}
-unfoldrN = G.unfoldrN
-
--- | /O(n)/ Construct a vector by repeatedly applying the monadic
--- generator function to a seed. The generator function yields 'Just'
--- the next element and the new seed or 'Nothing' if there are no more
--- elements.
-unfoldrM :: (Monad m, Storable a) => (b -> m (Maybe (a, b))) -> b -> m (Vector a)
-{-# INLINE unfoldrM #-}
-unfoldrM = G.unfoldrM
-
--- | /O(n)/ Construct a vector by repeatedly applying the monadic
--- generator function to a seed. The generator function yields 'Just'
--- the next element and the new seed or 'Nothing' if there are no more
--- elements.
-unfoldrNM :: (Monad m, Storable a) => Int -> (b -> m (Maybe (a, b))) -> b -> m (Vector a)
-{-# INLINE unfoldrNM #-}
-unfoldrNM = G.unfoldrNM
-
--- | /O(n)/ Construct a vector with @n@ elements by repeatedly applying the
--- generator function to the already constructed part of the vector.
---
--- > constructN 3 f = let a = f <> ; b = f <a> ; c = f <a,b> in f <a,b,c>
---
-constructN :: Storable a => Int -> (Vector a -> a) -> Vector a
-{-# INLINE constructN #-}
-constructN = G.constructN
-
--- | /O(n)/ Construct a vector with @n@ elements from right to left by
--- repeatedly applying the generator function to the already constructed part
--- of the vector.
---
--- > constructrN 3 f = let a = f <> ; b = f<a> ; c = f <b,a> in f <c,b,a>
---
-constructrN :: Storable a => Int -> (Vector a -> a) -> Vector a
-{-# INLINE constructrN #-}
-constructrN = G.constructrN
-
--- Enumeration
--- -----------
-
--- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+1@
--- etc. This operation is usually more efficient than 'enumFromTo'.
---
--- > enumFromN 5 3 = <5,6,7>
-enumFromN :: (Storable a, Num a) => a -> Int -> Vector a
-{-# INLINE enumFromN #-}
-enumFromN = G.enumFromN
-
--- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@,
--- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'.
---
--- > enumFromStepN 1 0.1 5 = <1,1.1,1.2,1.3,1.4>
-enumFromStepN :: (Storable a, Num a) => a -> a -> Int -> Vector a
-{-# INLINE enumFromStepN #-}
-enumFromStepN = G.enumFromStepN
-
--- | /O(n)/ Enumerate values from @x@ to @y@.
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromN' instead.
-enumFromTo :: (Storable a, Enum a) => a -> a -> Vector a
-{-# INLINE enumFromTo #-}
-enumFromTo = G.enumFromTo
-
--- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@.
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromThenTo :: (Storable a, Enum a) => a -> a -> a -> Vector a
-{-# INLINE enumFromThenTo #-}
-enumFromThenTo = G.enumFromThenTo
-
--- Concatenation
--- -------------
-
--- | /O(n)/ Prepend an element
-cons :: Storable a => a -> Vector a -> Vector a
-{-# INLINE cons #-}
-cons = G.cons
-
--- | /O(n)/ Append an element
-snoc :: Storable a => Vector a -> a -> Vector a
-{-# INLINE snoc #-}
-snoc = G.snoc
-
-infixr 5 ++
--- | /O(m+n)/ Concatenate two vectors
-(++) :: Storable a => Vector a -> Vector a -> Vector a
-{-# INLINE (++) #-}
-(++) = (G.++)
-
--- | /O(n)/ Concatenate all vectors in the list
-concat :: Storable a => [Vector a] -> Vector a
-{-# INLINE concat #-}
-concat = G.concat
-
--- Monadic initialisation
--- ----------------------
-
--- | /O(n)/ Execute the monadic action the given number of times and store the
--- results in a vector.
-replicateM :: (Monad m, Storable a) => Int -> m a -> m (Vector a)
-{-# INLINE replicateM #-}
-replicateM = G.replicateM
-
--- | /O(n)/ Construct a vector of the given length by applying the monadic
--- action to each index
-generateM :: (Monad m, Storable a) => Int -> (Int -> m a) -> m (Vector a)
-{-# INLINE generateM #-}
-generateM = G.generateM
-
--- | /O(n)/ Apply monadic function n times to value. Zeroth element is original value.
-iterateNM :: (Monad m, Storable a) => Int -> (a -> m a) -> a -> m (Vector a)
-{-# INLINE iterateNM #-}
-iterateNM = G.iterateNM
-
--- | Execute the monadic action and freeze the resulting vector.
---
--- @
--- create (do { v \<- new 2; write v 0 \'a\'; write v 1 \'b\'; return v }) = \<'a','b'\>
--- @
-create :: Storable a => (forall s. ST s (MVector s a)) -> Vector a
-{-# INLINE create #-}
--- NOTE: eta-expanded due to http://hackage.haskell.org/trac/ghc/ticket/4120
-create p = G.create p
-
--- | Execute the monadic action and freeze the resulting vectors.
-createT :: (Traversable f, Storable a) => (forall s. ST s (f (MVector s a))) -> f (Vector a)
-{-# INLINE createT #-}
-createT p = G.createT p
-
--- Restricting memory usage
--- ------------------------
-
--- | /O(n)/ Yield the argument but force it not to retain any extra memory,
--- possibly by copying it.
---
--- This is especially useful when dealing with slices. For example:
---
--- > force (slice 0 2 <huge vector>)
---
--- Here, the slice retains a reference to the huge vector. Forcing it creates
--- a copy of just the elements that belong to the slice and allows the huge
--- vector to be garbage collected.
-force :: Storable a => Vector a -> Vector a
-{-# INLINE force #-}
-force = G.force
-
--- Bulk updates
--- ------------
-
--- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector
--- element at position @i@ by @a@.
---
--- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7>
---
-(//) :: Storable a => Vector a   -- ^ initial vector (of length @m@)
-                -> [(Int, a)] -- ^ list of index/value pairs (of length @n@)
-                -> Vector a
-{-# INLINE (//) #-}
-(//) = (G.//)
-
--- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
--- corresponding value @a@ from the value vector, replace the element of the
--- initial vector at position @i@ by @a@.
---
--- > update_ <5,9,2,7>  <2,0,2> <1,3,8> = <3,9,8,7>
---
-update_ :: Storable a
-        => Vector a   -- ^ initial vector (of length @m@)
-        -> Vector Int -- ^ index vector (of length @n1@)
-        -> Vector a   -- ^ value vector (of length @n2@)
-        -> Vector a
-{-# INLINE update_ #-}
-update_ = G.update_
-
--- | Same as ('//') but without bounds checking.
-unsafeUpd :: Storable a => Vector a -> [(Int, a)] -> Vector a
-{-# INLINE unsafeUpd #-}
-unsafeUpd = G.unsafeUpd
-
--- | Same as 'update_' but without bounds checking.
-unsafeUpdate_ :: Storable a => Vector a -> Vector Int -> Vector a -> Vector a
-{-# INLINE unsafeUpdate_ #-}
-unsafeUpdate_ = G.unsafeUpdate_
-
--- Accumulations
--- -------------
-
--- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element
--- @a@ at position @i@ by @f a b@.
---
--- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4>
-accum :: Storable a
-      => (a -> b -> a) -- ^ accumulating function @f@
-      -> Vector a      -- ^ initial vector (of length @m@)
-      -> [(Int,b)]     -- ^ list of index/value pairs (of length @n@)
-      -> Vector a
-{-# INLINE accum #-}
-accum = G.accum
-
--- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
--- corresponding value @b@ from the the value vector,
--- replace the element of the initial vector at
--- position @i@ by @f a b@.
---
--- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4>
---
-accumulate_ :: (Storable a, Storable b)
-            => (a -> b -> a) -- ^ accumulating function @f@
-            -> Vector a      -- ^ initial vector (of length @m@)
-            -> Vector Int    -- ^ index vector (of length @n1@)
-            -> Vector b      -- ^ value vector (of length @n2@)
-            -> Vector a
-{-# INLINE accumulate_ #-}
-accumulate_ = G.accumulate_
-
--- | Same as 'accum' but without bounds checking.
-unsafeAccum :: Storable a => (a -> b -> a) -> Vector a -> [(Int,b)] -> Vector a
-{-# INLINE unsafeAccum #-}
-unsafeAccum = G.unsafeAccum
-
--- | Same as 'accumulate_' but without bounds checking.
-unsafeAccumulate_ :: (Storable a, Storable b) =>
-               (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a
-{-# INLINE unsafeAccumulate_ #-}
-unsafeAccumulate_ = G.unsafeAccumulate_
-
--- Permutations
--- ------------
-
--- | /O(n)/ Reverse a vector
-reverse :: Storable a => Vector a -> Vector a
-{-# INLINE reverse #-}
-reverse = G.reverse
-
--- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the
--- index vector by @xs'!'i@. This is equivalent to @'map' (xs'!') is@ but is
--- often much more efficient.
---
--- > backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a>
-backpermute :: Storable a => Vector a -> Vector Int -> Vector a
-{-# INLINE backpermute #-}
-backpermute = G.backpermute
-
--- | Same as 'backpermute' but without bounds checking.
-unsafeBackpermute :: Storable a => Vector a -> Vector Int -> Vector a
-{-# INLINE unsafeBackpermute #-}
-unsafeBackpermute = G.unsafeBackpermute
-
--- Safe destructive updates
--- ------------------------
-
--- | Apply a destructive operation to a vector. The operation will be
--- performed in place if it is safe to do so and will modify a copy of the
--- vector otherwise.
---
--- @
--- modify (\\v -> write v 0 \'x\') ('replicate' 3 \'a\') = \<\'x\',\'a\',\'a\'\>
--- @
-modify :: Storable a => (forall s. MVector s a -> ST s ()) -> Vector a -> Vector a
-{-# INLINE modify #-}
-modify p = G.modify p
-
--- Mapping
--- -------
-
--- | /O(n)/ Map a function over a vector
-map :: (Storable a, Storable b) => (a -> b) -> Vector a -> Vector b
-{-# INLINE map #-}
-map = G.map
-
--- | /O(n)/ Apply a function to every element of a vector and its index
-imap :: (Storable a, Storable b) => (Int -> a -> b) -> Vector a -> Vector b
-{-# INLINE imap #-}
-imap = G.imap
-
--- | Map a function over a vector and concatenate the results.
-concatMap :: (Storable a, Storable b) => (a -> Vector b) -> Vector a -> Vector b
-{-# INLINE concatMap #-}
-concatMap = G.concatMap
-
--- Monadic mapping
--- ---------------
-
--- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
--- vector of results
-mapM :: (Monad m, Storable a, Storable b) => (a -> m b) -> Vector a -> m (Vector b)
-{-# INLINE mapM #-}
-mapM = G.mapM
-
--- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
--- results
-mapM_ :: (Monad m, Storable a) => (a -> m b) -> Vector a -> m ()
-{-# INLINE mapM_ #-}
-mapM_ = G.mapM_
-
--- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
--- vector of results. Equivalent to @flip 'mapM'@.
-forM :: (Monad m, Storable a, Storable b) => Vector a -> (a -> m b) -> m (Vector b)
-{-# INLINE forM #-}
-forM = G.forM
-
--- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
--- results. Equivalent to @flip 'mapM_'@.
-forM_ :: (Monad m, Storable a) => Vector a -> (a -> m b) -> m ()
-{-# INLINE forM_ #-}
-forM_ = G.forM_
-
--- Zipping
--- -------
-
--- | /O(min(m,n))/ Zip two vectors with the given function.
-zipWith :: (Storable a, Storable b, Storable c)
-        => (a -> b -> c) -> Vector a -> Vector b -> Vector c
-{-# INLINE zipWith #-}
-zipWith = G.zipWith
-
--- | Zip three vectors with the given function.
-zipWith3 :: (Storable a, Storable b, Storable c, Storable d)
-         => (a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d
-{-# INLINE zipWith3 #-}
-zipWith3 = G.zipWith3
-
-zipWith4 :: (Storable a, Storable b, Storable c, Storable d, Storable e)
-         => (a -> b -> c -> d -> e)
-         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-{-# INLINE zipWith4 #-}
-zipWith4 = G.zipWith4
-
-zipWith5 :: (Storable a, Storable b, Storable c, Storable d, Storable e,
-             Storable f)
-         => (a -> b -> c -> d -> e -> f)
-         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-         -> Vector f
-{-# INLINE zipWith5 #-}
-zipWith5 = G.zipWith5
-
-zipWith6 :: (Storable a, Storable b, Storable c, Storable d, Storable e,
-             Storable f, Storable g)
-         => (a -> b -> c -> d -> e -> f -> g)
-         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-         -> Vector f -> Vector g
-{-# INLINE zipWith6 #-}
-zipWith6 = G.zipWith6
-
--- | /O(min(m,n))/ Zip two vectors with a function that also takes the
--- elements' indices.
-izipWith :: (Storable a, Storable b, Storable c)
-         => (Int -> a -> b -> c) -> Vector a -> Vector b -> Vector c
-{-# INLINE izipWith #-}
-izipWith = G.izipWith
-
--- | Zip three vectors and their indices with the given function.
-izipWith3 :: (Storable a, Storable b, Storable c, Storable d)
-          => (Int -> a -> b -> c -> d)
-          -> Vector a -> Vector b -> Vector c -> Vector d
-{-# INLINE izipWith3 #-}
-izipWith3 = G.izipWith3
-
-izipWith4 :: (Storable a, Storable b, Storable c, Storable d, Storable e)
-          => (Int -> a -> b -> c -> d -> e)
-          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-{-# INLINE izipWith4 #-}
-izipWith4 = G.izipWith4
-
-izipWith5 :: (Storable a, Storable b, Storable c, Storable d, Storable e,
-              Storable f)
-          => (Int -> a -> b -> c -> d -> e -> f)
-          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-          -> Vector f
-{-# INLINE izipWith5 #-}
-izipWith5 = G.izipWith5
-
-izipWith6 :: (Storable a, Storable b, Storable c, Storable d, Storable e,
-              Storable f, Storable g)
-          => (Int -> a -> b -> c -> d -> e -> f -> g)
-          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-          -> Vector f -> Vector g
-{-# INLINE izipWith6 #-}
-izipWith6 = G.izipWith6
-
--- Monadic zipping
--- ---------------
-
--- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a
--- vector of results
-zipWithM :: (Monad m, Storable a, Storable b, Storable c)
-         => (a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
-{-# INLINE zipWithM #-}
-zipWithM = G.zipWithM
-
--- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the
--- results
-zipWithM_ :: (Monad m, Storable a, Storable b)
-          => (a -> b -> m c) -> Vector a -> Vector b -> m ()
-{-# INLINE zipWithM_ #-}
-zipWithM_ = G.zipWithM_
-
--- Filtering
--- ---------
-
--- | /O(n)/ Drop elements that do not satisfy the predicate
-filter :: Storable a => (a -> Bool) -> Vector a -> Vector a
-{-# INLINE filter #-}
-filter = G.filter
-
--- | /O(n)/ Drop elements that do not satisfy the predicate which is applied to
--- values and their indices
-ifilter :: Storable a => (Int -> a -> Bool) -> Vector a -> Vector a
-{-# INLINE ifilter #-}
-ifilter = G.ifilter
-
--- | /O(n)/ Drop repeated adjacent elements.
-uniq :: (Storable a, Eq a) => Vector a -> Vector a
-{-# INLINE uniq #-}
-uniq = G.uniq
-
--- | /O(n)/ Drop elements when predicate returns Nothing
-mapMaybe :: (Storable a, Storable b) => (a -> Maybe b) -> Vector a -> Vector b
-{-# INLINE mapMaybe #-}
-mapMaybe = G.mapMaybe
-
--- | /O(n)/ Drop elements when predicate, applied to index and value, returns Nothing
-imapMaybe :: (Storable a, Storable b) => (Int -> a -> Maybe b) -> Vector a -> Vector b
-{-# INLINE imapMaybe #-}
-imapMaybe = G.imapMaybe
-
--- | /O(n)/ Drop elements that do not satisfy the monadic predicate
-filterM :: (Monad m, Storable a) => (a -> m Bool) -> Vector a -> m (Vector a)
-{-# INLINE filterM #-}
-filterM = G.filterM
-
--- | /O(n)/ Yield the longest prefix of elements satisfying the predicate
--- without copying.
-takeWhile :: Storable a => (a -> Bool) -> Vector a -> Vector a
-{-# INLINE takeWhile #-}
-takeWhile = G.takeWhile
-
--- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate
--- without copying.
-dropWhile :: Storable a => (a -> Bool) -> Vector a -> Vector a
-{-# INLINE dropWhile #-}
-dropWhile = G.dropWhile
-
--- Parititioning
--- -------------
-
--- | /O(n)/ Split the vector in two parts, the first one containing those
--- elements that satisfy the predicate and the second one those that don't. The
--- relative order of the elements is preserved at the cost of a sometimes
--- reduced performance compared to 'unstablePartition'.
-partition :: Storable a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE partition #-}
-partition = G.partition
-
--- | /O(n)/ Split the vector in two parts, the first one containing those
--- elements that satisfy the predicate and the second one those that don't.
--- The order of the elements is not preserved but the operation is often
--- faster than 'partition'.
-unstablePartition :: Storable a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE unstablePartition #-}
-unstablePartition = G.unstablePartition
-
--- | /O(n)/ Split the vector into the longest prefix of elements that satisfy
--- the predicate and the rest without copying.
-span :: Storable a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE span #-}
-span = G.span
-
--- | /O(n)/ Split the vector into the longest prefix of elements that do not
--- satisfy the predicate and the rest without copying.
-break :: Storable a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE break #-}
-break = G.break
-
--- Searching
--- ---------
-
-infix 4 `elem`
--- | /O(n)/ Check if the vector contains an element
-elem :: (Storable a, Eq a) => a -> Vector a -> Bool
-{-# INLINE elem #-}
-elem = G.elem
-
-infix 4 `notElem`
--- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem')
-notElem :: (Storable a, Eq a) => a -> Vector a -> Bool
-{-# INLINE notElem #-}
-notElem = G.notElem
-
--- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing'
--- if no such element exists.
-find :: Storable a => (a -> Bool) -> Vector a -> Maybe a
-{-# INLINE find #-}
-find = G.find
-
--- | /O(n)/ Yield 'Just' the index of the first element matching the predicate
--- or 'Nothing' if no such element exists.
-findIndex :: Storable a => (a -> Bool) -> Vector a -> Maybe Int
-{-# INLINE findIndex #-}
-findIndex = G.findIndex
-
--- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending
--- order.
-findIndices :: Storable a => (a -> Bool) -> Vector a -> Vector Int
-{-# INLINE findIndices #-}
-findIndices = G.findIndices
-
--- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or
--- 'Nothing' if the vector does not contain the element. This is a specialised
--- version of 'findIndex'.
-elemIndex :: (Storable a, Eq a) => a -> Vector a -> Maybe Int
-{-# INLINE elemIndex #-}
-elemIndex = G.elemIndex
-
--- | /O(n)/ Yield the indices of all occurences of the given element in
--- ascending order. This is a specialised version of 'findIndices'.
-elemIndices :: (Storable a, Eq a) => a -> Vector a -> Vector Int
-{-# INLINE elemIndices #-}
-elemIndices = G.elemIndices
-
--- Folding
--- -------
-
--- | /O(n)/ Left fold
-foldl :: Storable b => (a -> b -> a) -> a -> Vector b -> a
-{-# INLINE foldl #-}
-foldl = G.foldl
-
--- | /O(n)/ Left fold on non-empty vectors
-foldl1 :: Storable a => (a -> a -> a) -> Vector a -> a
-{-# INLINE foldl1 #-}
-foldl1 = G.foldl1
-
--- | /O(n)/ Left fold with strict accumulator
-foldl' :: Storable b => (a -> b -> a) -> a -> Vector b -> a
-{-# INLINE foldl' #-}
-foldl' = G.foldl'
-
--- | /O(n)/ Left fold on non-empty vectors with strict accumulator
-foldl1' :: Storable a => (a -> a -> a) -> Vector a -> a
-{-# INLINE foldl1' #-}
-foldl1' = G.foldl1'
-
--- | /O(n)/ Right fold
-foldr :: Storable a => (a -> b -> b) -> b -> Vector a -> b
-{-# INLINE foldr #-}
-foldr = G.foldr
-
--- | /O(n)/ Right fold on non-empty vectors
-foldr1 :: Storable a => (a -> a -> a) -> Vector a -> a
-{-# INLINE foldr1 #-}
-foldr1 = G.foldr1
-
--- | /O(n)/ Right fold with a strict accumulator
-foldr' :: Storable a => (a -> b -> b) -> b -> Vector a -> b
-{-# INLINE foldr' #-}
-foldr' = G.foldr'
-
--- | /O(n)/ Right fold on non-empty vectors with strict accumulator
-foldr1' :: Storable a => (a -> a -> a) -> Vector a -> a
-{-# INLINE foldr1' #-}
-foldr1' = G.foldr1'
-
--- | /O(n)/ Left fold (function applied to each element and its index)
-ifoldl :: Storable b => (a -> Int -> b -> a) -> a -> Vector b -> a
-{-# INLINE ifoldl #-}
-ifoldl = G.ifoldl
-
--- | /O(n)/ Left fold with strict accumulator (function applied to each element
--- and its index)
-ifoldl' :: Storable b => (a -> Int -> b -> a) -> a -> Vector b -> a
-{-# INLINE ifoldl' #-}
-ifoldl' = G.ifoldl'
-
--- | /O(n)/ Right fold (function applied to each element and its index)
-ifoldr :: Storable a => (Int -> a -> b -> b) -> b -> Vector a -> b
-{-# INLINE ifoldr #-}
-ifoldr = G.ifoldr
-
--- | /O(n)/ Right fold with strict accumulator (function applied to each
--- element and its index)
-ifoldr' :: Storable a => (Int -> a -> b -> b) -> b -> Vector a -> b
-{-# INLINE ifoldr' #-}
-ifoldr' = G.ifoldr'
-
--- Specialised folds
--- -----------------
-
--- | /O(n)/ Check if all elements satisfy the predicate.
-all :: Storable a => (a -> Bool) -> Vector a -> Bool
-{-# INLINE all #-}
-all = G.all
-
--- | /O(n)/ Check if any element satisfies the predicate.
-any :: Storable a => (a -> Bool) -> Vector a -> Bool
-{-# INLINE any #-}
-any = G.any
-
--- | /O(n)/ Check if all elements are 'True'
-and :: Vector Bool -> Bool
-{-# INLINE and #-}
-and = G.and
-
--- | /O(n)/ Check if any element is 'True'
-or :: Vector Bool -> Bool
-{-# INLINE or #-}
-or = G.or
-
--- | /O(n)/ Compute the sum of the elements
-sum :: (Storable a, Num a) => Vector a -> a
-{-# INLINE sum #-}
-sum = G.sum
-
--- | /O(n)/ Compute the produce of the elements
-product :: (Storable a, Num a) => Vector a -> a
-{-# INLINE product #-}
-product = G.product
-
--- | /O(n)/ Yield the maximum element of the vector. The vector may not be
--- empty.
-maximum :: (Storable a, Ord a) => Vector a -> a
-{-# INLINE maximum #-}
-maximum = G.maximum
-
--- | /O(n)/ Yield the maximum element of the vector according to the given
--- comparison function. The vector may not be empty.
-maximumBy :: Storable a => (a -> a -> Ordering) -> Vector a -> a
-{-# INLINE maximumBy #-}
-maximumBy = G.maximumBy
-
--- | /O(n)/ Yield the minimum element of the vector. The vector may not be
--- empty.
-minimum :: (Storable a, Ord a) => Vector a -> a
-{-# INLINE minimum #-}
-minimum = G.minimum
-
--- | /O(n)/ Yield the minimum element of the vector according to the given
--- comparison function. The vector may not be empty.
-minimumBy :: Storable a => (a -> a -> Ordering) -> Vector a -> a
-{-# INLINE minimumBy #-}
-minimumBy = G.minimumBy
-
--- | /O(n)/ Yield the index of the maximum element of the vector. The vector
--- may not be empty.
-maxIndex :: (Storable a, Ord a) => Vector a -> Int
-{-# INLINE maxIndex #-}
-maxIndex = G.maxIndex
-
--- | /O(n)/ Yield the index of the maximum element of the vector according to
--- the given comparison function. The vector may not be empty.
-maxIndexBy :: Storable a => (a -> a -> Ordering) -> Vector a -> Int
-{-# INLINE maxIndexBy #-}
-maxIndexBy = G.maxIndexBy
-
--- | /O(n)/ Yield the index of the minimum element of the vector. The vector
--- may not be empty.
-minIndex :: (Storable a, Ord a) => Vector a -> Int
-{-# INLINE minIndex #-}
-minIndex = G.minIndex
-
--- | /O(n)/ Yield the index of the minimum element of the vector according to
--- the given comparison function. The vector may not be empty.
-minIndexBy :: Storable a => (a -> a -> Ordering) -> Vector a -> Int
-{-# INLINE minIndexBy #-}
-minIndexBy = G.minIndexBy
-
--- Monadic folds
--- -------------
-
--- | /O(n)/ Monadic fold
-foldM :: (Monad m, Storable b) => (a -> b -> m a) -> a -> Vector b -> m a
-{-# INLINE foldM #-}
-foldM = G.foldM
-
--- | /O(n)/ Monadic fold over non-empty vectors
-fold1M :: (Monad m, Storable a) => (a -> a -> m a) -> Vector a -> m a
-{-# INLINE fold1M #-}
-fold1M = G.fold1M
-
--- | /O(n)/ Monadic fold with strict accumulator
-foldM' :: (Monad m, Storable b) => (a -> b -> m a) -> a -> Vector b -> m a
-{-# INLINE foldM' #-}
-foldM' = G.foldM'
-
--- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator
-fold1M' :: (Monad m, Storable a) => (a -> a -> m a) -> Vector a -> m a
-{-# INLINE fold1M' #-}
-fold1M' = G.fold1M'
-
--- | /O(n)/ Monadic fold that discards the result
-foldM_ :: (Monad m, Storable b) => (a -> b -> m a) -> a -> Vector b -> m ()
-{-# INLINE foldM_ #-}
-foldM_ = G.foldM_
-
--- | /O(n)/ Monadic fold over non-empty vectors that discards the result
-fold1M_ :: (Monad m, Storable a) => (a -> a -> m a) -> Vector a -> m ()
-{-# INLINE fold1M_ #-}
-fold1M_ = G.fold1M_
-
--- | /O(n)/ Monadic fold with strict accumulator that discards the result
-foldM'_ :: (Monad m, Storable b) => (a -> b -> m a) -> a -> Vector b -> m ()
-{-# INLINE foldM'_ #-}
-foldM'_ = G.foldM'_
-
--- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator
--- that discards the result
-fold1M'_ :: (Monad m, Storable a) => (a -> a -> m a) -> Vector a -> m ()
-{-# INLINE fold1M'_ #-}
-fold1M'_ = G.fold1M'_
-
--- Prefix sums (scans)
--- -------------------
-
--- | /O(n)/ Prescan
---
--- @
--- prescanl f z = 'init' . 'scanl' f z
--- @
---
--- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@
---
-prescanl :: (Storable a, Storable b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE prescanl #-}
-prescanl = G.prescanl
-
--- | /O(n)/ Prescan with strict accumulator
-prescanl' :: (Storable a, Storable b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE prescanl' #-}
-prescanl' = G.prescanl'
-
--- | /O(n)/ Scan
---
--- @
--- postscanl f z = 'tail' . 'scanl' f z
--- @
---
--- Example: @postscanl (+) 0 \<1,2,3,4\> = \<1,3,6,10\>@
---
-postscanl :: (Storable a, Storable b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE postscanl #-}
-postscanl = G.postscanl
-
--- | /O(n)/ Scan with strict accumulator
-postscanl' :: (Storable a, Storable b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE postscanl' #-}
-postscanl' = G.postscanl'
-
--- | /O(n)/ Haskell-style scan
---
--- > scanl f z <x1,...,xn> = <y1,...,y(n+1)>
--- >   where y1 = z
--- >         yi = f y(i-1) x(i-1)
---
--- Example: @scanl (+) 0 \<1,2,3,4\> = \<0,1,3,6,10\>@
---
-scanl :: (Storable a, Storable b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE scanl #-}
-scanl = G.scanl
-
--- | /O(n)/ Haskell-style scan with strict accumulator
-scanl' :: (Storable a, Storable b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE scanl' #-}
-scanl' = G.scanl'
-
--- | /O(n)/ Scan over a non-empty vector
---
--- > scanl f <x1,...,xn> = <y1,...,yn>
--- >   where y1 = x1
--- >         yi = f y(i-1) xi
---
-scanl1 :: Storable a => (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanl1 #-}
-scanl1 = G.scanl1
-
--- | /O(n)/ Scan over a non-empty vector with a strict accumulator
-scanl1' :: Storable a => (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanl1' #-}
-scanl1' = G.scanl1'
-
--- | /O(n)/ Right-to-left prescan
---
--- @
--- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse'
--- @
---
-prescanr :: (Storable a, Storable b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE prescanr #-}
-prescanr = G.prescanr
-
--- | /O(n)/ Right-to-left prescan with strict accumulator
-prescanr' :: (Storable a, Storable b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE prescanr' #-}
-prescanr' = G.prescanr'
-
--- | /O(n)/ Right-to-left scan
-postscanr :: (Storable a, Storable b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE postscanr #-}
-postscanr = G.postscanr
-
--- | /O(n)/ Right-to-left scan with strict accumulator
-postscanr' :: (Storable a, Storable b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE postscanr' #-}
-postscanr' = G.postscanr'
-
--- | /O(n)/ Right-to-left Haskell-style scan
-scanr :: (Storable a, Storable b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE scanr #-}
-scanr = G.scanr
-
--- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator
-scanr' :: (Storable a, Storable b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE scanr' #-}
-scanr' = G.scanr'
-
--- | /O(n)/ Right-to-left scan over a non-empty vector
-scanr1 :: Storable a => (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanr1 #-}
-scanr1 = G.scanr1
-
--- | /O(n)/ Right-to-left scan over a non-empty vector with a strict
--- accumulator
-scanr1' :: Storable a => (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanr1' #-}
-scanr1' = G.scanr1'
-
--- Conversions - Lists
--- ------------------------
-
--- | /O(n)/ Convert a vector to a list
-toList :: Storable a => Vector a -> [a]
-{-# INLINE toList #-}
-toList = G.toList
-
--- | /O(n)/ Convert a list to a vector
-fromList :: Storable a => [a] -> Vector a
-{-# INLINE fromList #-}
-fromList = G.fromList
-
--- | /O(n)/ Convert the first @n@ elements of a list to a vector
---
--- @
--- fromListN n xs = 'fromList' ('take' n xs)
--- @
-fromListN :: Storable a => Int -> [a] -> Vector a
-{-# INLINE fromListN #-}
-fromListN = G.fromListN
-
--- Conversions - Unsafe casts
--- --------------------------
-
--- | /O(1)/ Unsafely cast a vector from one element type to another.
--- The operation just changes the type of the underlying pointer and does not
--- modify the elements.
---
--- The resulting vector contains as many elements as can fit into the
--- underlying memory block.
---
-unsafeCast :: forall a b. (Storable a, Storable b) => Vector a -> Vector b
-{-# INLINE unsafeCast #-}
-unsafeCast (Vector n fp)
-  = Vector ((n * sizeOf (undefined :: a)) `div` sizeOf (undefined :: b))
-           (castForeignPtr fp)
-
-
--- Conversions - Mutable vectors
--- -----------------------------
-
--- | /O(1)/ Unsafe convert a mutable vector to an immutable one without
--- copying. The mutable vector may not be used after this operation.
-unsafeFreeze
-        :: (Storable a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a)
-{-# INLINE unsafeFreeze #-}
-unsafeFreeze = G.unsafeFreeze
-
--- | /O(1)/ Unsafely convert an immutable vector to a mutable one without
--- copying. The immutable vector may not be used after this operation.
-unsafeThaw
-        :: (Storable a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a)
-{-# INLINE unsafeThaw #-}
-unsafeThaw = G.unsafeThaw
-
--- | /O(n)/ Yield a mutable copy of the immutable vector.
-thaw :: (Storable a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a)
-{-# INLINE thaw #-}
-thaw = G.thaw
-
--- | /O(n)/ Yield an immutable copy of the mutable vector.
-freeze :: (Storable a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a)
-{-# INLINE freeze #-}
-freeze = G.freeze
-
--- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
--- have the same length. This is not checked.
-unsafeCopy
-  :: (Storable a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m ()
-{-# INLINE unsafeCopy #-}
-unsafeCopy = G.unsafeCopy
-
--- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
--- have the same length.
-copy :: (Storable a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m ()
-{-# INLINE copy #-}
-copy = G.copy
-
--- Conversions - Raw pointers
--- --------------------------
-
--- | /O(1)/ Create a vector from a 'ForeignPtr' with an offset and a length.
---
--- The data may not be modified through the 'ForeignPtr' afterwards.
---
--- If your offset is 0 it is more efficient to use 'unsafeFromForeignPtr0'.
-unsafeFromForeignPtr :: Storable a
-                     => ForeignPtr a    -- ^ pointer
-                     -> Int             -- ^ offset
-                     -> Int             -- ^ length
-                     -> Vector a
-{-# INLINE_FUSED unsafeFromForeignPtr #-}
-unsafeFromForeignPtr fp i n = unsafeFromForeignPtr0 fp' n
-    where
-      fp' = updPtr (`advancePtr` i) fp
-
-{-# RULES
-"unsafeFromForeignPtr fp 0 n -> unsafeFromForeignPtr0 fp n " forall fp n.
-  unsafeFromForeignPtr fp 0 n = unsafeFromForeignPtr0 fp n   #-}
-
-
--- | /O(1)/ Create a vector from a 'ForeignPtr' and a length.
---
--- It is assumed the pointer points directly to the data (no offset).
--- Use `unsafeFromForeignPtr` if you need to specify an offset.
---
--- The data may not be modified through the 'ForeignPtr' afterwards.
-unsafeFromForeignPtr0 :: Storable a
-                      => ForeignPtr a    -- ^ pointer
-                      -> Int             -- ^ length
-                      -> Vector a
-{-# INLINE unsafeFromForeignPtr0 #-}
-unsafeFromForeignPtr0 fp n = Vector n fp
-
--- | /O(1)/ Yield the underlying 'ForeignPtr' together with the offset to the
--- data and its length. The data may not be modified through the 'ForeignPtr'.
-unsafeToForeignPtr :: Storable a => Vector a -> (ForeignPtr a, Int, Int)
-{-# INLINE unsafeToForeignPtr #-}
-unsafeToForeignPtr (Vector n fp) = (fp, 0, n)
-
--- | /O(1)/ Yield the underlying 'ForeignPtr' together with its length.
---
--- You can assume the pointer points directly to the data (no offset).
---
--- The data may not be modified through the 'ForeignPtr'.
-unsafeToForeignPtr0 :: Storable a => Vector a -> (ForeignPtr a, Int)
-{-# INLINE unsafeToForeignPtr0 #-}
-unsafeToForeignPtr0 (Vector n fp) = (fp, n)
-
--- | Pass a pointer to the vector's data to the IO action. The data may not be
--- modified through the 'Ptr.
-unsafeWith :: Storable a => Vector a -> (Ptr a -> IO b) -> IO b
-{-# INLINE unsafeWith #-}
-unsafeWith (Vector _ fp) = withForeignPtr fp
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Internal.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Internal.hs
deleted file mode 100644
index 69a46d84215b..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Internal.hs
+++ /dev/null
@@ -1,33 +0,0 @@
--- |
--- Module      : Data.Vector.Storable.Internal
--- Copyright   : (c) Roman Leshchinskiy 2009-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Ugly internal utility functions for implementing 'Storable'-based vectors.
---
-
-module Data.Vector.Storable.Internal (
-  getPtr, setPtr, updPtr
-) where
-
-import Foreign.ForeignPtr
-import Foreign.Ptr
-import GHC.ForeignPtr   ( ForeignPtr(..) )
-import GHC.Ptr          ( Ptr(..) )
-
-getPtr :: ForeignPtr a -> Ptr a
-{-# INLINE getPtr #-}
-getPtr (ForeignPtr addr _) = Ptr addr
-
-setPtr :: ForeignPtr a -> Ptr a -> ForeignPtr a
-{-# INLINE setPtr #-}
-setPtr (ForeignPtr _ c) (Ptr addr) = ForeignPtr addr c
-
-updPtr :: (Ptr a -> Ptr a) -> ForeignPtr a -> ForeignPtr a
-{-# INLINE updPtr #-}
-updPtr f (ForeignPtr p c) = case f (Ptr p) of { Ptr q -> ForeignPtr q c }
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Mutable.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Mutable.hs
deleted file mode 100644
index 29eb2fbfa31e..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Mutable.hs
+++ /dev/null
@@ -1,543 +0,0 @@
-{-# LANGUAGE CPP, DeriveDataTypeable, FlexibleInstances, MagicHash, MultiParamTypeClasses, ScopedTypeVariables #-}
-
--- |
--- Module      : Data.Vector.Storable.Mutable
--- Copyright   : (c) Roman Leshchinskiy 2009-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Mutable vectors based on Storable.
---
-
-module Data.Vector.Storable.Mutable(
-  -- * Mutable vectors of 'Storable' types
-  MVector(..), IOVector, STVector, Storable,
-
-  -- * Accessors
-
-  -- ** Length information
-  length, null,
-
-  -- ** Extracting subvectors
-  slice, init, tail, take, drop, splitAt,
-  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-
-  -- ** Overlapping
-  overlaps,
-
-  -- * Construction
-
-  -- ** Initialisation
-  new, unsafeNew, replicate, replicateM, clone,
-
-  -- ** Growing
-  grow, unsafeGrow,
-
-  -- ** Restricting memory usage
-  clear,
-
-  -- * Accessing individual elements
-  read, write, modify, swap,
-  unsafeRead, unsafeWrite, unsafeModify, unsafeSwap,
-
-  -- * Modifying vectors
-
-  -- ** Filling and copying
-  set, copy, move, unsafeCopy, unsafeMove,
-
-  -- * Unsafe conversions
-  unsafeCast,
-
-  -- * Raw pointers
-  unsafeFromForeignPtr, unsafeFromForeignPtr0,
-  unsafeToForeignPtr,   unsafeToForeignPtr0,
-  unsafeWith
-) where
-
-import Control.DeepSeq ( NFData(rnf) )
-
-import qualified Data.Vector.Generic.Mutable as G
-import Data.Vector.Storable.Internal
-
-import Foreign.Storable
-import Foreign.ForeignPtr
-
-#if __GLASGOW_HASKELL__ >= 706
-import GHC.ForeignPtr (mallocPlainForeignPtrAlignedBytes)
-#elif __GLASGOW_HASKELL__ >= 700
-import Data.Primitive.ByteArray (MutableByteArray(..), newAlignedPinnedByteArray,
-                                 unsafeFreezeByteArray)
-import GHC.Prim (byteArrayContents#, unsafeCoerce#)
-import GHC.ForeignPtr
-#endif
-
-import Foreign.Ptr
-import Foreign.Marshal.Array ( advancePtr, copyArray, moveArray )
-
-import Control.Monad.Primitive
-import Data.Primitive.Addr
-import Data.Primitive.Types (Prim)
-
-import GHC.Word (Word8, Word16, Word32, Word64)
-import GHC.Ptr (Ptr(..))
-
-import Prelude hiding ( length, null, replicate, reverse, map, read,
-                        take, drop, splitAt, init, tail )
-
-import Data.Typeable ( Typeable )
-
--- Data.Vector.Internal.Check is not needed
-#define NOT_VECTOR_MODULE
-#include "vector.h"
-
--- | Mutable 'Storable'-based vectors
-data MVector s a = MVector {-# UNPACK #-} !Int
-                           {-# UNPACK #-} !(ForeignPtr a)
-        deriving ( Typeable )
-
-type IOVector = MVector RealWorld
-type STVector s = MVector s
-
-instance NFData (MVector s a) where
-  rnf (MVector _ _) = ()
-
-instance Storable a => G.MVector MVector a where
-  {-# INLINE basicLength #-}
-  basicLength (MVector n _) = n
-
-  {-# INLINE basicUnsafeSlice #-}
-  basicUnsafeSlice j m (MVector _ fp) = MVector m (updPtr (`advancePtr` j) fp)
-
-  -- FIXME: this relies on non-portable pointer comparisons
-  {-# INLINE basicOverlaps #-}
-  basicOverlaps (MVector m fp) (MVector n fq)
-    = between p q (q `advancePtr` n) || between q p (p `advancePtr` m)
-    where
-      between x y z = x >= y && x < z
-      p = getPtr fp
-      q = getPtr fq
-
-  {-# INLINE basicUnsafeNew #-}
-  basicUnsafeNew n
-    | n < 0 = error $ "Storable.basicUnsafeNew: negative length: " ++ show n
-    | n > mx = error $ "Storable.basicUnsafeNew: length too large: " ++ show n
-    | otherwise = unsafePrimToPrim $ do
-        fp <- mallocVector n
-        return $ MVector n fp
-    where
-      size = sizeOf (undefined :: a)
-      mx = maxBound `quot` size :: Int
-
-  {-# INLINE basicInitialize #-}
-  basicInitialize = storableZero
-
-  {-# INLINE basicUnsafeRead #-}
-  basicUnsafeRead (MVector _ fp) i
-    = unsafePrimToPrim
-    $ withForeignPtr fp (`peekElemOff` i)
-
-  {-# INLINE basicUnsafeWrite #-}
-  basicUnsafeWrite (MVector _ fp) i x
-    = unsafePrimToPrim
-    $ withForeignPtr fp $ \p -> pokeElemOff p i x
-
-  {-# INLINE basicSet #-}
-  basicSet = storableSet
-
-  {-# INLINE basicUnsafeCopy #-}
-  basicUnsafeCopy (MVector n fp) (MVector _ fq)
-    = unsafePrimToPrim
-    $ withForeignPtr fp $ \p ->
-      withForeignPtr fq $ \q ->
-      copyArray p q n
-
-  {-# INLINE basicUnsafeMove #-}
-  basicUnsafeMove (MVector n fp) (MVector _ fq)
-    = unsafePrimToPrim
-    $ withForeignPtr fp $ \p ->
-      withForeignPtr fq $ \q ->
-      moveArray p q n
-
-storableZero :: forall a m. (Storable a, PrimMonad m) => MVector (PrimState m) a -> m ()
-{-# INLINE storableZero #-}
-storableZero (MVector n fp) = unsafePrimToPrim . withForeignPtr fp $ \(Ptr p) -> do
-  let q = Addr p
-  setAddr q byteSize (0 :: Word8)
- where
- x :: a
- x = undefined
-
- byteSize :: Int
- byteSize = n * sizeOf x
-
-storableSet :: (Storable a, PrimMonad m) => MVector (PrimState m) a -> a -> m ()
-{-# INLINE storableSet #-}
-storableSet (MVector n fp) x
-  | n == 0 = return ()
-  | otherwise = unsafePrimToPrim $
-                case sizeOf x of
-                  1 -> storableSetAsPrim n fp x (undefined :: Word8)
-                  2 -> storableSetAsPrim n fp x (undefined :: Word16)
-                  4 -> storableSetAsPrim n fp x (undefined :: Word32)
-                  8 -> storableSetAsPrim n fp x (undefined :: Word64)
-                  _ -> withForeignPtr fp $ \p -> do
-                       poke p x
-
-                       let do_set i
-                             | 2*i < n = do
-                                 copyArray (p `advancePtr` i) p i
-                                 do_set (2*i)
-                             | otherwise = copyArray (p `advancePtr` i) p (n-i)
-
-                       do_set 1
-
-storableSetAsPrim
-  :: (Storable a, Prim b) => Int -> ForeignPtr a -> a -> b -> IO ()
-{-# INLINE [0] storableSetAsPrim #-}
-storableSetAsPrim n fp x y = withForeignPtr fp $ \(Ptr p) -> do
-  poke (Ptr p) x
-  let q = Addr p
-  w <- readOffAddr q 0
-  setAddr (q `plusAddr` sizeOf x) (n-1) (w `asTypeOf` y)
-
-{-# INLINE mallocVector #-}
-mallocVector :: Storable a => Int -> IO (ForeignPtr a)
-mallocVector =
-#if __GLASGOW_HASKELL__ >= 706
-  doMalloc undefined
-  where
-    doMalloc :: Storable b => b -> Int -> IO (ForeignPtr b)
-    doMalloc dummy size =
-      mallocPlainForeignPtrAlignedBytes (size * sizeOf dummy) (alignment dummy)
-#elif __GLASGOW_HASKELL__ >= 700
-  doMalloc undefined
-  where
-    doMalloc :: Storable b => b -> Int -> IO (ForeignPtr b)
-    doMalloc dummy size = do
-      arr@(MutableByteArray arr#) <- newAlignedPinnedByteArray arrSize arrAlign
-      newConcForeignPtr
-        (Ptr (byteArrayContents# (unsafeCoerce# arr#)))
-        -- Keep reference to mutable byte array until whole ForeignPtr goes out
-        -- of scope.
-        (touch arr)
-      where
-        arrSize  = size * sizeOf dummy
-        arrAlign = alignment dummy
-#else
-    mallocForeignPtrArray
-#endif
-
--- Length information
--- ------------------
-
--- | Length of the mutable vector.
-length :: Storable a => MVector s a -> Int
-{-# INLINE length #-}
-length = G.length
-
--- | Check whether the vector is empty
-null :: Storable a => MVector s a -> Bool
-{-# INLINE null #-}
-null = G.null
-
--- Extracting subvectors
--- ---------------------
-
--- | Yield a part of the mutable vector without copying it.
-slice :: Storable a => Int -> Int -> MVector s a -> MVector s a
-{-# INLINE slice #-}
-slice = G.slice
-
-take :: Storable a => Int -> MVector s a -> MVector s a
-{-# INLINE take #-}
-take = G.take
-
-drop :: Storable a => Int -> MVector s a -> MVector s a
-{-# INLINE drop #-}
-drop = G.drop
-
-splitAt :: Storable a => Int -> MVector s a -> (MVector s a, MVector s a)
-{-# INLINE splitAt #-}
-splitAt = G.splitAt
-
-init :: Storable a => MVector s a -> MVector s a
-{-# INLINE init #-}
-init = G.init
-
-tail :: Storable a => MVector s a -> MVector s a
-{-# INLINE tail #-}
-tail = G.tail
-
--- | Yield a part of the mutable vector without copying it. No bounds checks
--- are performed.
-unsafeSlice :: Storable a
-            => Int  -- ^ starting index
-            -> Int  -- ^ length of the slice
-            -> MVector s a
-            -> MVector s a
-{-# INLINE unsafeSlice #-}
-unsafeSlice = G.unsafeSlice
-
-unsafeTake :: Storable a => Int -> MVector s a -> MVector s a
-{-# INLINE unsafeTake #-}
-unsafeTake = G.unsafeTake
-
-unsafeDrop :: Storable a => Int -> MVector s a -> MVector s a
-{-# INLINE unsafeDrop #-}
-unsafeDrop = G.unsafeDrop
-
-unsafeInit :: Storable a => MVector s a -> MVector s a
-{-# INLINE unsafeInit #-}
-unsafeInit = G.unsafeInit
-
-unsafeTail :: Storable a => MVector s a -> MVector s a
-{-# INLINE unsafeTail #-}
-unsafeTail = G.unsafeTail
-
--- Overlapping
--- -----------
-
--- | Check whether two vectors overlap.
-overlaps :: Storable a => MVector s a -> MVector s a -> Bool
-{-# INLINE overlaps #-}
-overlaps = G.overlaps
-
--- Initialisation
--- --------------
-
--- | Create a mutable vector of the given length.
-new :: (PrimMonad m, Storable a) => Int -> m (MVector (PrimState m) a)
-{-# INLINE new #-}
-new = G.new
-
--- | Create a mutable vector of the given length. The memory is not initialized.
-unsafeNew :: (PrimMonad m, Storable a) => Int -> m (MVector (PrimState m) a)
-{-# INLINE unsafeNew #-}
-unsafeNew = G.unsafeNew
-
--- | Create a mutable vector of the given length (0 if the length is negative)
--- and fill it with an initial value.
-replicate :: (PrimMonad m, Storable a) => Int -> a -> m (MVector (PrimState m) a)
-{-# INLINE replicate #-}
-replicate = G.replicate
-
--- | Create a mutable vector of the given length (0 if the length is negative)
--- and fill it with values produced by repeatedly executing the monadic action.
-replicateM :: (PrimMonad m, Storable a) => Int -> m a -> m (MVector (PrimState m) a)
-{-# INLINE replicateM #-}
-replicateM = G.replicateM
-
--- | Create a copy of a mutable vector.
-clone :: (PrimMonad m, Storable a)
-      => MVector (PrimState m) a -> m (MVector (PrimState m) a)
-{-# INLINE clone #-}
-clone = G.clone
-
--- Growing
--- -------
-
--- | Grow a vector by the given number of elements. The number must be
--- positive.
-grow :: (PrimMonad m, Storable a)
-     => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
-{-# INLINE grow #-}
-grow = G.grow
-
--- | Grow a vector by the given number of elements. The number must be
--- positive but this is not checked.
-unsafeGrow :: (PrimMonad m, Storable a)
-           => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
-{-# INLINE unsafeGrow #-}
-unsafeGrow = G.unsafeGrow
-
--- Restricting memory usage
--- ------------------------
-
--- | Reset all elements of the vector to some undefined value, clearing all
--- references to external objects. This is usually a noop for unboxed vectors.
-clear :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> m ()
-{-# INLINE clear #-}
-clear = G.clear
-
--- Accessing individual elements
--- -----------------------------
-
--- | Yield the element at the given position.
-read :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> m a
-{-# INLINE read #-}
-read = G.read
-
--- | Replace the element at the given position.
-write
-    :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> a -> m ()
-{-# INLINE write #-}
-write = G.write
-
--- | Modify the element at the given position.
-modify :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
-{-# INLINE modify #-}
-modify = G.modify
-
--- | Swap the elements at the given positions.
-swap
-    :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> Int -> m ()
-{-# INLINE swap #-}
-swap = G.swap
-
-
--- | Yield the element at the given position. No bounds checks are performed.
-unsafeRead :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> m a
-{-# INLINE unsafeRead #-}
-unsafeRead = G.unsafeRead
-
--- | Replace the element at the given position. No bounds checks are performed.
-unsafeWrite
-    :: (PrimMonad m, Storable a) =>  MVector (PrimState m) a -> Int -> a -> m ()
-{-# INLINE unsafeWrite #-}
-unsafeWrite = G.unsafeWrite
-
--- | Modify the element at the given position. No bounds checks are performed.
-unsafeModify :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
-{-# INLINE unsafeModify #-}
-unsafeModify = G.unsafeModify
-
--- | Swap the elements at the given positions. No bounds checks are performed.
-unsafeSwap
-    :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> Int -> m ()
-{-# INLINE unsafeSwap #-}
-unsafeSwap = G.unsafeSwap
-
--- Filling and copying
--- -------------------
-
--- | Set all elements of the vector to the given value.
-set :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> a -> m ()
-{-# INLINE set #-}
-set = G.set
-
--- | Copy a vector. The two vectors must have the same length and may not
--- overlap.
-copy :: (PrimMonad m, Storable a)
-     => MVector (PrimState m) a   -- ^ target
-     -> MVector (PrimState m) a   -- ^ source
-     -> m ()
-{-# INLINE copy #-}
-copy = G.copy
-
--- | Copy a vector. The two vectors must have the same length and may not
--- overlap. This is not checked.
-unsafeCopy :: (PrimMonad m, Storable a)
-           => MVector (PrimState m) a   -- ^ target
-           -> MVector (PrimState m) a   -- ^ source
-           -> m ()
-{-# INLINE unsafeCopy #-}
-unsafeCopy = G.unsafeCopy
-
--- | Move the contents of a vector. The two vectors must have the same
--- length.
---
--- If the vectors do not overlap, then this is equivalent to 'copy'.
--- Otherwise, the copying is performed as if the source vector were
--- copied to a temporary vector and then the temporary vector was copied
--- to the target vector.
-move :: (PrimMonad m, Storable a)
-     => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
-{-# INLINE move #-}
-move = G.move
-
--- | Move the contents of a vector. The two vectors must have the same
--- length, but this is not checked.
---
--- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
--- Otherwise, the copying is performed as if the source vector were
--- copied to a temporary vector and then the temporary vector was copied
--- to the target vector.
-unsafeMove :: (PrimMonad m, Storable a)
-           => MVector (PrimState m) a   -- ^ target
-           -> MVector (PrimState m) a   -- ^ source
-           -> m ()
-{-# INLINE unsafeMove #-}
-unsafeMove = G.unsafeMove
-
--- Unsafe conversions
--- ------------------
-
--- | /O(1)/ Unsafely cast a mutable vector from one element type to another.
--- The operation just changes the type of the underlying pointer and does not
--- modify the elements.
---
--- The resulting vector contains as many elements as can fit into the
--- underlying memory block.
---
-unsafeCast :: forall a b s.
-              (Storable a, Storable b) => MVector s a -> MVector s b
-{-# INLINE unsafeCast #-}
-unsafeCast (MVector n fp)
-  = MVector ((n * sizeOf (undefined :: a)) `div` sizeOf (undefined :: b))
-            (castForeignPtr fp)
-
--- Raw pointers
--- ------------
-
--- | Create a mutable vector from a 'ForeignPtr' with an offset and a length.
---
--- Modifying data through the 'ForeignPtr' afterwards is unsafe if the vector
--- could have been frozen before the modification.
---
---  If your offset is 0 it is more efficient to use 'unsafeFromForeignPtr0'.
-unsafeFromForeignPtr :: Storable a
-                     => ForeignPtr a    -- ^ pointer
-                     -> Int             -- ^ offset
-                     -> Int             -- ^ length
-                     -> MVector s a
-{-# INLINE_FUSED unsafeFromForeignPtr #-}
-unsafeFromForeignPtr fp i n = unsafeFromForeignPtr0 fp' n
-    where
-      fp' = updPtr (`advancePtr` i) fp
-
-{-# RULES
-"unsafeFromForeignPtr fp 0 n -> unsafeFromForeignPtr0 fp n " forall fp n.
-  unsafeFromForeignPtr fp 0 n = unsafeFromForeignPtr0 fp n   #-}
-
-
--- | /O(1)/ Create a mutable vector from a 'ForeignPtr' and a length.
---
--- It is assumed the pointer points directly to the data (no offset).
--- Use `unsafeFromForeignPtr` if you need to specify an offset.
---
--- Modifying data through the 'ForeignPtr' afterwards is unsafe if the vector
--- could have been frozen before the modification.
-unsafeFromForeignPtr0 :: Storable a
-                      => ForeignPtr a    -- ^ pointer
-                      -> Int             -- ^ length
-                      -> MVector s a
-{-# INLINE unsafeFromForeignPtr0 #-}
-unsafeFromForeignPtr0 fp n = MVector n fp
-
--- | Yield the underlying 'ForeignPtr' together with the offset to the data
--- and its length. Modifying the data through the 'ForeignPtr' is
--- unsafe if the vector could have frozen before the modification.
-unsafeToForeignPtr :: Storable a => MVector s a -> (ForeignPtr a, Int, Int)
-{-# INLINE unsafeToForeignPtr #-}
-unsafeToForeignPtr (MVector n fp) = (fp, 0, n)
-
--- | /O(1)/ Yield the underlying 'ForeignPtr' together with its length.
---
--- You can assume the pointer points directly to the data (no offset).
---
--- Modifying the data through the 'ForeignPtr' is unsafe if the vector could
--- have frozen before the modification.
-unsafeToForeignPtr0 :: Storable a => MVector s a -> (ForeignPtr a, Int)
-{-# INLINE unsafeToForeignPtr0 #-}
-unsafeToForeignPtr0 (MVector n fp) = (fp, n)
-
--- | Pass a pointer to the vector's data to the IO action. Modifying data
--- through the pointer is unsafe if the vector could have been frozen before
--- the modification.
-unsafeWith :: Storable a => IOVector a -> (Ptr a -> IO b) -> IO b
-{-# INLINE unsafeWith #-}
-unsafeWith (MVector _ fp) = withForeignPtr fp
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Unboxed.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Unboxed.hs
deleted file mode 100644
index 72dd109fb3b4..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Unboxed.hs
+++ /dev/null
@@ -1,1488 +0,0 @@
-{-# LANGUAGE CPP, Rank2Types, TypeFamilies #-}
-
--- |
--- Module      : Data.Vector.Unboxed
--- Copyright   : (c) Roman Leshchinskiy 2009-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Adaptive unboxed vectors. The implementation is based on type families
--- and picks an efficient, specialised representation for every element type.
--- In particular, unboxed vectors of pairs are represented as pairs of unboxed
--- vectors.
---
--- Implementing unboxed vectors for new data types can be very easy. Here is
--- how the library does this for 'Complex' by simply wrapping vectors of
--- pairs.
---
--- @
--- newtype instance 'MVector' s ('Complex' a) = MV_Complex ('MVector' s (a,a))
--- newtype instance 'Vector'    ('Complex' a) = V_Complex  ('Vector'    (a,a))
---
--- instance ('RealFloat' a, 'Unbox' a) => 'Data.Vector.Generic.Mutable.MVector' 'MVector' ('Complex' a) where
---   {-\# INLINE basicLength \#-}
---   basicLength (MV_Complex v) = 'Data.Vector.Generic.Mutable.basicLength' v
---   ...
---
--- instance ('RealFloat' a, 'Unbox' a) => Data.Vector.Generic.Vector 'Vector' ('Complex' a) where
---   {-\# INLINE basicLength \#-}
---   basicLength (V_Complex v) = Data.Vector.Generic.basicLength v
---   ...
---
--- instance ('RealFloat' a, 'Unbox' a) => 'Unbox' ('Complex' a)
--- @
-
-module Data.Vector.Unboxed (
-  -- * Unboxed vectors
-  Vector, MVector(..), Unbox,
-
-  -- * Accessors
-
-  -- ** Length information
-  length, null,
-
-  -- ** Indexing
-  (!), (!?), head, last,
-  unsafeIndex, unsafeHead, unsafeLast,
-
-  -- ** Monadic indexing
-  indexM, headM, lastM,
-  unsafeIndexM, unsafeHeadM, unsafeLastM,
-
-  -- ** Extracting subvectors (slicing)
-  slice, init, tail, take, drop, splitAt,
-  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-
-  -- * Construction
-
-  -- ** Initialisation
-  empty, singleton, replicate, generate, iterateN,
-
-  -- ** Monadic initialisation
-  replicateM, generateM, iterateNM, create, createT,
-
-  -- ** Unfolding
-  unfoldr, unfoldrN,
-  unfoldrM, unfoldrNM,
-  constructN, constructrN,
-
-  -- ** Enumeration
-  enumFromN, enumFromStepN, enumFromTo, enumFromThenTo,
-
-  -- ** Concatenation
-  cons, snoc, (++), concat,
-
-  -- ** Restricting memory usage
-  force,
-
-  -- * Modifying vectors
-
-  -- ** Bulk updates
-  (//), update, update_,
-  unsafeUpd, unsafeUpdate, unsafeUpdate_,
-
-  -- ** Accumulations
-  accum, accumulate, accumulate_,
-  unsafeAccum, unsafeAccumulate, unsafeAccumulate_,
-
-  -- ** Permutations
-  reverse, backpermute, unsafeBackpermute,
-
-  -- ** Safe destructive updates
-  modify,
-
-  -- * Elementwise operations
-
-  -- ** Indexing
-  indexed,
-
-  -- ** Mapping
-  map, imap, concatMap,
-
-  -- ** Monadic mapping
-  mapM, imapM, mapM_, imapM_, forM, forM_,
-
-  -- ** Zipping
-  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
-  izipWith, izipWith3, izipWith4, izipWith5, izipWith6,
-  zip, zip3, zip4, zip5, zip6,
-
-  -- ** Monadic zipping
-  zipWithM, izipWithM, zipWithM_, izipWithM_,
-
-  -- ** Unzipping
-  unzip, unzip3, unzip4, unzip5, unzip6,
-
-  -- * Working with predicates
-
-  -- ** Filtering
-  filter, ifilter, uniq,
-  mapMaybe, imapMaybe,
-  filterM,
-  takeWhile, dropWhile,
-
-  -- ** Partitioning
-  partition, unstablePartition, span, break,
-
-  -- ** Searching
-  elem, notElem, find, findIndex, findIndices, elemIndex, elemIndices,
-
-  -- * Folding
-  foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1',
-  ifoldl, ifoldl', ifoldr, ifoldr',
-
-  -- ** Specialised folds
-  all, any, and, or,
-  sum, product,
-  maximum, maximumBy, minimum, minimumBy,
-  minIndex, minIndexBy, maxIndex, maxIndexBy,
-
-  -- ** Monadic folds
-  foldM, ifoldM, foldM', ifoldM',
-  fold1M, fold1M', foldM_, ifoldM_,
-  foldM'_, ifoldM'_, fold1M_, fold1M'_,
-
-  -- * Prefix sums (scans)
-  prescanl, prescanl',
-  postscanl, postscanl',
-  scanl, scanl', scanl1, scanl1',
-  prescanr, prescanr',
-  postscanr, postscanr',
-  scanr, scanr', scanr1, scanr1',
-
-  -- * Conversions
-
-  -- ** Lists
-  toList, fromList, fromListN,
-
-  -- ** Other vector types
-  G.convert,
-
-  -- ** Mutable vectors
-  freeze, thaw, copy, unsafeFreeze, unsafeThaw, unsafeCopy
-) where
-
-import Data.Vector.Unboxed.Base
-import qualified Data.Vector.Generic as G
-import qualified Data.Vector.Fusion.Bundle as Bundle
-import Data.Vector.Fusion.Util ( delayed_min )
-
-import Control.Monad.ST ( ST )
-import Control.Monad.Primitive
-
-import Prelude hiding ( length, null,
-                        replicate, (++), concat,
-                        head, last,
-                        init, tail, take, drop, splitAt, reverse,
-                        map, concatMap,
-                        zipWith, zipWith3, zip, zip3, unzip, unzip3,
-                        filter, takeWhile, dropWhile, span, break,
-                        elem, notElem,
-                        foldl, foldl1, foldr, foldr1,
-                        all, any, and, or, sum, product, minimum, maximum,
-                        scanl, scanl1, scanr, scanr1,
-                        enumFromTo, enumFromThenTo,
-                        mapM, mapM_ )
-
-import Text.Read      ( Read(..), readListPrecDefault )
-import Data.Semigroup ( Semigroup(..) )
-
-#if !MIN_VERSION_base(4,8,0)
-import Data.Monoid   ( Monoid(..) )
-import Data.Traversable ( Traversable )
-#endif
-
-#if __GLASGOW_HASKELL__ >= 708
-import qualified GHC.Exts as Exts (IsList(..))
-#endif
-
-#define NOT_VECTOR_MODULE
-#include "vector.h"
-
--- See http://trac.haskell.org/vector/ticket/12
-instance (Unbox a, Eq a) => Eq (Vector a) where
-  {-# INLINE (==) #-}
-  xs == ys = Bundle.eq (G.stream xs) (G.stream ys)
-
-  {-# INLINE (/=) #-}
-  xs /= ys = not (Bundle.eq (G.stream xs) (G.stream ys))
-
--- See http://trac.haskell.org/vector/ticket/12
-instance (Unbox a, Ord a) => Ord (Vector a) where
-  {-# INLINE compare #-}
-  compare xs ys = Bundle.cmp (G.stream xs) (G.stream ys)
-
-  {-# INLINE (<) #-}
-  xs < ys = Bundle.cmp (G.stream xs) (G.stream ys) == LT
-
-  {-# INLINE (<=) #-}
-  xs <= ys = Bundle.cmp (G.stream xs) (G.stream ys) /= GT
-
-  {-# INLINE (>) #-}
-  xs > ys = Bundle.cmp (G.stream xs) (G.stream ys) == GT
-
-  {-# INLINE (>=) #-}
-  xs >= ys = Bundle.cmp (G.stream xs) (G.stream ys) /= LT
-
-instance Unbox a => Semigroup (Vector a) where
-  {-# INLINE (<>) #-}
-  (<>) = (++)
-
-  {-# INLINE sconcat #-}
-  sconcat = G.concatNE
-
-instance Unbox a => Monoid (Vector a) where
-  {-# INLINE mempty #-}
-  mempty = empty
-
-  {-# INLINE mappend #-}
-  mappend = (++)
-
-  {-# INLINE mconcat #-}
-  mconcat = concat
-
-instance (Show a, Unbox a) => Show (Vector a) where
-  showsPrec = G.showsPrec
-
-instance (Read a, Unbox a) => Read (Vector a) where
-  readPrec = G.readPrec
-  readListPrec = readListPrecDefault
-
-#if __GLASGOW_HASKELL__ >= 708
-
-instance (Unbox e) => Exts.IsList (Vector e) where
-  type Item (Vector e) = e
-  fromList = fromList
-  fromListN = fromListN
-  toList = toList
-
-#endif
-
--- Length information
--- ------------------
-
--- | /O(1)/ Yield the length of the vector
-length :: Unbox a => Vector a -> Int
-{-# INLINE length #-}
-length = G.length
-
--- | /O(1)/ Test whether a vector is empty
-null :: Unbox a => Vector a -> Bool
-{-# INLINE null #-}
-null = G.null
-
--- Indexing
--- --------
-
--- | O(1) Indexing
-(!) :: Unbox a => Vector a -> Int -> a
-{-# INLINE (!) #-}
-(!) = (G.!)
-
--- | O(1) Safe indexing
-(!?) :: Unbox a => Vector a -> Int -> Maybe a
-{-# INLINE (!?) #-}
-(!?) = (G.!?)
-
--- | /O(1)/ First element
-head :: Unbox a => Vector a -> a
-{-# INLINE head #-}
-head = G.head
-
--- | /O(1)/ Last element
-last :: Unbox a => Vector a -> a
-{-# INLINE last #-}
-last = G.last
-
--- | /O(1)/ Unsafe indexing without bounds checking
-unsafeIndex :: Unbox a => Vector a -> Int -> a
-{-# INLINE unsafeIndex #-}
-unsafeIndex = G.unsafeIndex
-
--- | /O(1)/ First element without checking if the vector is empty
-unsafeHead :: Unbox a => Vector a -> a
-{-# INLINE unsafeHead #-}
-unsafeHead = G.unsafeHead
-
--- | /O(1)/ Last element without checking if the vector is empty
-unsafeLast :: Unbox a => Vector a -> a
-{-# INLINE unsafeLast #-}
-unsafeLast = G.unsafeLast
-
--- Monadic indexing
--- ----------------
-
--- | /O(1)/ Indexing in a monad.
---
--- The monad allows operations to be strict in the vector when necessary.
--- Suppose vector copying is implemented like this:
---
--- > copy mv v = ... write mv i (v ! i) ...
---
--- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@
--- would unnecessarily retain a reference to @v@ in each element written.
---
--- With 'indexM', copying can be implemented like this instead:
---
--- > copy mv v = ... do
--- >                   x <- indexM v i
--- >                   write mv i x
---
--- Here, no references to @v@ are retained because indexing (but /not/ the
--- elements) is evaluated eagerly.
---
-indexM :: (Unbox a, Monad m) => Vector a -> Int -> m a
-{-# INLINE indexM #-}
-indexM = G.indexM
-
--- | /O(1)/ First element of a vector in a monad. See 'indexM' for an
--- explanation of why this is useful.
-headM :: (Unbox a, Monad m) => Vector a -> m a
-{-# INLINE headM #-}
-headM = G.headM
-
--- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an
--- explanation of why this is useful.
-lastM :: (Unbox a, Monad m) => Vector a -> m a
-{-# INLINE lastM #-}
-lastM = G.lastM
-
--- | /O(1)/ Indexing in a monad without bounds checks. See 'indexM' for an
--- explanation of why this is useful.
-unsafeIndexM :: (Unbox a, Monad m) => Vector a -> Int -> m a
-{-# INLINE unsafeIndexM #-}
-unsafeIndexM = G.unsafeIndexM
-
--- | /O(1)/ First element in a monad without checking for empty vectors.
--- See 'indexM' for an explanation of why this is useful.
-unsafeHeadM :: (Unbox a, Monad m) => Vector a -> m a
-{-# INLINE unsafeHeadM #-}
-unsafeHeadM = G.unsafeHeadM
-
--- | /O(1)/ Last element in a monad without checking for empty vectors.
--- See 'indexM' for an explanation of why this is useful.
-unsafeLastM :: (Unbox a, Monad m) => Vector a -> m a
-{-# INLINE unsafeLastM #-}
-unsafeLastM = G.unsafeLastM
-
--- Extracting subvectors (slicing)
--- -------------------------------
-
--- | /O(1)/ Yield a slice of the vector without copying it. The vector must
--- contain at least @i+n@ elements.
-slice :: Unbox a => Int   -- ^ @i@ starting index
-                 -> Int   -- ^ @n@ length
-                 -> Vector a
-                 -> Vector a
-{-# INLINE slice #-}
-slice = G.slice
-
--- | /O(1)/ Yield all but the last element without copying. The vector may not
--- be empty.
-init :: Unbox a => Vector a -> Vector a
-{-# INLINE init #-}
-init = G.init
-
--- | /O(1)/ Yield all but the first element without copying. The vector may not
--- be empty.
-tail :: Unbox a => Vector a -> Vector a
-{-# INLINE tail #-}
-tail = G.tail
-
--- | /O(1)/ Yield at the first @n@ elements without copying. The vector may
--- contain less than @n@ elements in which case it is returned unchanged.
-take :: Unbox a => Int -> Vector a -> Vector a
-{-# INLINE take #-}
-take = G.take
-
--- | /O(1)/ Yield all but the first @n@ elements without copying. The vector may
--- contain less than @n@ elements in which case an empty vector is returned.
-drop :: Unbox a => Int -> Vector a -> Vector a
-{-# INLINE drop #-}
-drop = G.drop
-
--- | /O(1)/ Yield the first @n@ elements paired with the remainder without copying.
---
--- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@
--- but slightly more efficient.
-{-# INLINE splitAt #-}
-splitAt :: Unbox a => Int -> Vector a -> (Vector a, Vector a)
-splitAt = G.splitAt
-
--- | /O(1)/ Yield a slice of the vector without copying. The vector must
--- contain at least @i+n@ elements but this is not checked.
-unsafeSlice :: Unbox a => Int   -- ^ @i@ starting index
-                       -> Int   -- ^ @n@ length
-                       -> Vector a
-                       -> Vector a
-{-# INLINE unsafeSlice #-}
-unsafeSlice = G.unsafeSlice
-
--- | /O(1)/ Yield all but the last element without copying. The vector may not
--- be empty but this is not checked.
-unsafeInit :: Unbox a => Vector a -> Vector a
-{-# INLINE unsafeInit #-}
-unsafeInit = G.unsafeInit
-
--- | /O(1)/ Yield all but the first element without copying. The vector may not
--- be empty but this is not checked.
-unsafeTail :: Unbox a => Vector a -> Vector a
-{-# INLINE unsafeTail #-}
-unsafeTail = G.unsafeTail
-
--- | /O(1)/ Yield the first @n@ elements without copying. The vector must
--- contain at least @n@ elements but this is not checked.
-unsafeTake :: Unbox a => Int -> Vector a -> Vector a
-{-# INLINE unsafeTake #-}
-unsafeTake = G.unsafeTake
-
--- | /O(1)/ Yield all but the first @n@ elements without copying. The vector
--- must contain at least @n@ elements but this is not checked.
-unsafeDrop :: Unbox a => Int -> Vector a -> Vector a
-{-# INLINE unsafeDrop #-}
-unsafeDrop = G.unsafeDrop
-
--- Initialisation
--- --------------
-
--- | /O(1)/ Empty vector
-empty :: Unbox a => Vector a
-{-# INLINE empty #-}
-empty = G.empty
-
--- | /O(1)/ Vector with exactly one element
-singleton :: Unbox a => a -> Vector a
-{-# INLINE singleton #-}
-singleton = G.singleton
-
--- | /O(n)/ Vector of the given length with the same value in each position
-replicate :: Unbox a => Int -> a -> Vector a
-{-# INLINE replicate #-}
-replicate = G.replicate
-
--- | /O(n)/ Construct a vector of the given length by applying the function to
--- each index
-generate :: Unbox a => Int -> (Int -> a) -> Vector a
-{-# INLINE generate #-}
-generate = G.generate
-
--- | /O(n)/ Apply function n times to value. Zeroth element is original value.
-iterateN :: Unbox a => Int -> (a -> a) -> a -> Vector a
-{-# INLINE iterateN #-}
-iterateN = G.iterateN
-
--- Unfolding
--- ---------
-
--- | /O(n)/ Construct a vector by repeatedly applying the generator function
--- to a seed. The generator function yields 'Just' the next element and the
--- new seed or 'Nothing' if there are no more elements.
---
--- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10
--- >  = <10,9,8,7,6,5,4,3,2,1>
-unfoldr :: Unbox a => (b -> Maybe (a, b)) -> b -> Vector a
-{-# INLINE unfoldr #-}
-unfoldr = G.unfoldr
-
--- | /O(n)/ Construct a vector with at most @n@ elements by repeatedly applying
--- the generator function to a seed. The generator function yields 'Just' the
--- next element and the new seed or 'Nothing' if there are no more elements.
---
--- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8>
-unfoldrN :: Unbox a => Int -> (b -> Maybe (a, b)) -> b -> Vector a
-{-# INLINE unfoldrN #-}
-unfoldrN = G.unfoldrN
-
--- | /O(n)/ Construct a vector by repeatedly applying the monadic
--- generator function to a seed. The generator function yields 'Just'
--- the next element and the new seed or 'Nothing' if there are no more
--- elements.
-unfoldrM :: (Monad m, Unbox a) => (b -> m (Maybe (a, b))) -> b -> m (Vector a)
-{-# INLINE unfoldrM #-}
-unfoldrM = G.unfoldrM
-
--- | /O(n)/ Construct a vector by repeatedly applying the monadic
--- generator function to a seed. The generator function yields 'Just'
--- the next element and the new seed or 'Nothing' if there are no more
--- elements.
-unfoldrNM :: (Monad m, Unbox a) => Int -> (b -> m (Maybe (a, b))) -> b -> m (Vector a)
-{-# INLINE unfoldrNM #-}
-unfoldrNM = G.unfoldrNM
-
--- | /O(n)/ Construct a vector with @n@ elements by repeatedly applying the
--- generator function to the already constructed part of the vector.
---
--- > constructN 3 f = let a = f <> ; b = f <a> ; c = f <a,b> in f <a,b,c>
---
-constructN :: Unbox a => Int -> (Vector a -> a) -> Vector a
-{-# INLINE constructN #-}
-constructN = G.constructN
-
--- | /O(n)/ Construct a vector with @n@ elements from right to left by
--- repeatedly applying the generator function to the already constructed part
--- of the vector.
---
--- > constructrN 3 f = let a = f <> ; b = f<a> ; c = f <b,a> in f <c,b,a>
---
-constructrN :: Unbox a => Int -> (Vector a -> a) -> Vector a
-{-# INLINE constructrN #-}
-constructrN = G.constructrN
-
--- Enumeration
--- -----------
-
--- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+1@
--- etc. This operation is usually more efficient than 'enumFromTo'.
---
--- > enumFromN 5 3 = <5,6,7>
-enumFromN :: (Unbox a, Num a) => a -> Int -> Vector a
-{-# INLINE enumFromN #-}
-enumFromN = G.enumFromN
-
--- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@,
--- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'.
---
--- > enumFromStepN 1 0.1 5 = <1,1.1,1.2,1.3,1.4>
-enumFromStepN :: (Unbox a, Num a) => a -> a -> Int -> Vector a
-{-# INLINE enumFromStepN #-}
-enumFromStepN = G.enumFromStepN
-
--- | /O(n)/ Enumerate values from @x@ to @y@.
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromN' instead.
-enumFromTo :: (Unbox a, Enum a) => a -> a -> Vector a
-{-# INLINE enumFromTo #-}
-enumFromTo = G.enumFromTo
-
--- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@.
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromThenTo :: (Unbox a, Enum a) => a -> a -> a -> Vector a
-{-# INLINE enumFromThenTo #-}
-enumFromThenTo = G.enumFromThenTo
-
--- Concatenation
--- -------------
-
--- | /O(n)/ Prepend an element
-cons :: Unbox a => a -> Vector a -> Vector a
-{-# INLINE cons #-}
-cons = G.cons
-
--- | /O(n)/ Append an element
-snoc :: Unbox a => Vector a -> a -> Vector a
-{-# INLINE snoc #-}
-snoc = G.snoc
-
-infixr 5 ++
--- | /O(m+n)/ Concatenate two vectors
-(++) :: Unbox a => Vector a -> Vector a -> Vector a
-{-# INLINE (++) #-}
-(++) = (G.++)
-
--- | /O(n)/ Concatenate all vectors in the list
-concat :: Unbox a => [Vector a] -> Vector a
-{-# INLINE concat #-}
-concat = G.concat
-
--- Monadic initialisation
--- ----------------------
-
--- | /O(n)/ Execute the monadic action the given number of times and store the
--- results in a vector.
-replicateM :: (Monad m, Unbox a) => Int -> m a -> m (Vector a)
-{-# INLINE replicateM #-}
-replicateM = G.replicateM
-
--- | /O(n)/ Construct a vector of the given length by applying the monadic
--- action to each index
-generateM :: (Monad m, Unbox a) => Int -> (Int -> m a) -> m (Vector a)
-{-# INLINE generateM #-}
-generateM = G.generateM
-
--- | /O(n)/ Apply monadic function n times to value. Zeroth element is original value.
-iterateNM :: (Monad m, Unbox a) => Int -> (a -> m a) -> a -> m (Vector a)
-{-# INLINE iterateNM #-}
-iterateNM = G.iterateNM
-
--- | Execute the monadic action and freeze the resulting vector.
---
--- @
--- create (do { v \<- new 2; write v 0 \'a\'; write v 1 \'b\'; return v }) = \<'a','b'\>
--- @
-create :: Unbox a => (forall s. ST s (MVector s a)) -> Vector a
-{-# INLINE create #-}
--- NOTE: eta-expanded due to http://hackage.haskell.org/trac/ghc/ticket/4120
-create p = G.create p
-
--- | Execute the monadic action and freeze the resulting vectors.
-createT :: (Traversable f, Unbox a) => (forall s. ST s (f (MVector s a))) -> f (Vector a)
-{-# INLINE createT #-}
-createT p = G.createT p
-
--- Restricting memory usage
--- ------------------------
-
--- | /O(n)/ Yield the argument but force it not to retain any extra memory,
--- possibly by copying it.
---
--- This is especially useful when dealing with slices. For example:
---
--- > force (slice 0 2 <huge vector>)
---
--- Here, the slice retains a reference to the huge vector. Forcing it creates
--- a copy of just the elements that belong to the slice and allows the huge
--- vector to be garbage collected.
-force :: Unbox a => Vector a -> Vector a
-{-# INLINE force #-}
-force = G.force
-
--- Bulk updates
--- ------------
-
--- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector
--- element at position @i@ by @a@.
---
--- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7>
---
-(//) :: Unbox a => Vector a   -- ^ initial vector (of length @m@)
-                -> [(Int, a)] -- ^ list of index/value pairs (of length @n@)
-                -> Vector a
-{-# INLINE (//) #-}
-(//) = (G.//)
-
--- | /O(m+n)/ For each pair @(i,a)@ from the vector of index/value pairs,
--- replace the vector element at position @i@ by @a@.
---
--- > update <5,9,2,7> <(2,1),(0,3),(2,8)> = <3,9,8,7>
---
-update :: Unbox a
-       => Vector a        -- ^ initial vector (of length @m@)
-       -> Vector (Int, a) -- ^ vector of index/value pairs (of length @n@)
-       -> Vector a
-{-# INLINE update #-}
-update = G.update
-
--- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
--- corresponding value @a@ from the value vector, replace the element of the
--- initial vector at position @i@ by @a@.
---
--- > update_ <5,9,2,7>  <2,0,2> <1,3,8> = <3,9,8,7>
---
--- The function 'update' provides the same functionality and is usually more
--- convenient.
---
--- @
--- update_ xs is ys = 'update' xs ('zip' is ys)
--- @
-update_ :: Unbox a
-        => Vector a   -- ^ initial vector (of length @m@)
-        -> Vector Int -- ^ index vector (of length @n1@)
-        -> Vector a   -- ^ value vector (of length @n2@)
-        -> Vector a
-{-# INLINE update_ #-}
-update_ = G.update_
-
--- | Same as ('//') but without bounds checking.
-unsafeUpd :: Unbox a => Vector a -> [(Int, a)] -> Vector a
-{-# INLINE unsafeUpd #-}
-unsafeUpd = G.unsafeUpd
-
--- | Same as 'update' but without bounds checking.
-unsafeUpdate :: Unbox a => Vector a -> Vector (Int, a) -> Vector a
-{-# INLINE unsafeUpdate #-}
-unsafeUpdate = G.unsafeUpdate
-
--- | Same as 'update_' but without bounds checking.
-unsafeUpdate_ :: Unbox a => Vector a -> Vector Int -> Vector a -> Vector a
-{-# INLINE unsafeUpdate_ #-}
-unsafeUpdate_ = G.unsafeUpdate_
-
--- Accumulations
--- -------------
-
--- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element
--- @a@ at position @i@ by @f a b@.
---
--- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4>
-accum :: Unbox a
-      => (a -> b -> a) -- ^ accumulating function @f@
-      -> Vector a      -- ^ initial vector (of length @m@)
-      -> [(Int,b)]     -- ^ list of index/value pairs (of length @n@)
-      -> Vector a
-{-# INLINE accum #-}
-accum = G.accum
-
--- | /O(m+n)/ For each pair @(i,b)@ from the vector of pairs, replace the vector
--- element @a@ at position @i@ by @f a b@.
---
--- > accumulate (+) <5,9,2> <(2,4),(1,6),(0,3),(1,7)> = <5+3, 9+6+7, 2+4>
-accumulate :: (Unbox a, Unbox b)
-            => (a -> b -> a)  -- ^ accumulating function @f@
-            -> Vector a       -- ^ initial vector (of length @m@)
-            -> Vector (Int,b) -- ^ vector of index/value pairs (of length @n@)
-            -> Vector a
-{-# INLINE accumulate #-}
-accumulate = G.accumulate
-
--- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
--- corresponding value @b@ from the the value vector,
--- replace the element of the initial vector at
--- position @i@ by @f a b@.
---
--- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4>
---
--- The function 'accumulate' provides the same functionality and is usually more
--- convenient.
---
--- @
--- accumulate_ f as is bs = 'accumulate' f as ('zip' is bs)
--- @
-accumulate_ :: (Unbox a, Unbox b)
-            => (a -> b -> a) -- ^ accumulating function @f@
-            -> Vector a      -- ^ initial vector (of length @m@)
-            -> Vector Int    -- ^ index vector (of length @n1@)
-            -> Vector b      -- ^ value vector (of length @n2@)
-            -> Vector a
-{-# INLINE accumulate_ #-}
-accumulate_ = G.accumulate_
-
--- | Same as 'accum' but without bounds checking.
-unsafeAccum :: Unbox a => (a -> b -> a) -> Vector a -> [(Int,b)] -> Vector a
-{-# INLINE unsafeAccum #-}
-unsafeAccum = G.unsafeAccum
-
--- | Same as 'accumulate' but without bounds checking.
-unsafeAccumulate :: (Unbox a, Unbox b)
-                => (a -> b -> a) -> Vector a -> Vector (Int,b) -> Vector a
-{-# INLINE unsafeAccumulate #-}
-unsafeAccumulate = G.unsafeAccumulate
-
--- | Same as 'accumulate_' but without bounds checking.
-unsafeAccumulate_ :: (Unbox a, Unbox b) =>
-               (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a
-{-# INLINE unsafeAccumulate_ #-}
-unsafeAccumulate_ = G.unsafeAccumulate_
-
--- Permutations
--- ------------
-
--- | /O(n)/ Reverse a vector
-reverse :: Unbox a => Vector a -> Vector a
-{-# INLINE reverse #-}
-reverse = G.reverse
-
--- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the
--- index vector by @xs'!'i@. This is equivalent to @'map' (xs'!') is@ but is
--- often much more efficient.
---
--- > backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a>
-backpermute :: Unbox a => Vector a -> Vector Int -> Vector a
-{-# INLINE backpermute #-}
-backpermute = G.backpermute
-
--- | Same as 'backpermute' but without bounds checking.
-unsafeBackpermute :: Unbox a => Vector a -> Vector Int -> Vector a
-{-# INLINE unsafeBackpermute #-}
-unsafeBackpermute = G.unsafeBackpermute
-
--- Safe destructive updates
--- ------------------------
-
--- | Apply a destructive operation to a vector. The operation will be
--- performed in place if it is safe to do so and will modify a copy of the
--- vector otherwise.
---
--- @
--- modify (\\v -> write v 0 \'x\') ('replicate' 3 \'a\') = \<\'x\',\'a\',\'a\'\>
--- @
-modify :: Unbox a => (forall s. MVector s a -> ST s ()) -> Vector a -> Vector a
-{-# INLINE modify #-}
-modify p = G.modify p
-
--- Indexing
--- --------
-
--- | /O(n)/ Pair each element in a vector with its index
-indexed :: Unbox a => Vector a -> Vector (Int,a)
-{-# INLINE indexed #-}
-indexed = G.indexed
-
--- Mapping
--- -------
-
--- | /O(n)/ Map a function over a vector
-map :: (Unbox a, Unbox b) => (a -> b) -> Vector a -> Vector b
-{-# INLINE map #-}
-map = G.map
-
--- | /O(n)/ Apply a function to every element of a vector and its index
-imap :: (Unbox a, Unbox b) => (Int -> a -> b) -> Vector a -> Vector b
-{-# INLINE imap #-}
-imap = G.imap
-
--- | Map a function over a vector and concatenate the results.
-concatMap :: (Unbox a, Unbox b) => (a -> Vector b) -> Vector a -> Vector b
-{-# INLINE concatMap #-}
-concatMap = G.concatMap
-
--- Monadic mapping
--- ---------------
-
--- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
--- vector of results
-mapM :: (Monad m, Unbox a, Unbox b) => (a -> m b) -> Vector a -> m (Vector b)
-{-# INLINE mapM #-}
-mapM = G.mapM
-
--- | /O(n)/ Apply the monadic action to every element of a vector and its
--- index, yielding a vector of results
-imapM :: (Monad m, Unbox a, Unbox b)
-      => (Int -> a -> m b) -> Vector a -> m (Vector b)
-{-# INLINE imapM #-}
-imapM = G.imapM
-
--- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
--- results
-mapM_ :: (Monad m, Unbox a) => (a -> m b) -> Vector a -> m ()
-{-# INLINE mapM_ #-}
-mapM_ = G.mapM_
-
--- | /O(n)/ Apply the monadic action to every element of a vector and its
--- index, ignoring the results
-imapM_ :: (Monad m, Unbox a) => (Int -> a -> m b) -> Vector a -> m ()
-{-# INLINE imapM_ #-}
-imapM_ = G.imapM_
-
--- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
--- vector of results. Equivalent to @flip 'mapM'@.
-forM :: (Monad m, Unbox a, Unbox b) => Vector a -> (a -> m b) -> m (Vector b)
-{-# INLINE forM #-}
-forM = G.forM
-
--- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
--- results. Equivalent to @flip 'mapM_'@.
-forM_ :: (Monad m, Unbox a) => Vector a -> (a -> m b) -> m ()
-{-# INLINE forM_ #-}
-forM_ = G.forM_
-
--- Zipping
--- -------
-
--- | /O(min(m,n))/ Zip two vectors with the given function.
-zipWith :: (Unbox a, Unbox b, Unbox c)
-        => (a -> b -> c) -> Vector a -> Vector b -> Vector c
-{-# INLINE zipWith #-}
-zipWith = G.zipWith
-
--- | Zip three vectors with the given function.
-zipWith3 :: (Unbox a, Unbox b, Unbox c, Unbox d)
-         => (a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d
-{-# INLINE zipWith3 #-}
-zipWith3 = G.zipWith3
-
-zipWith4 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e)
-         => (a -> b -> c -> d -> e)
-         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-{-# INLINE zipWith4 #-}
-zipWith4 = G.zipWith4
-
-zipWith5 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f)
-         => (a -> b -> c -> d -> e -> f)
-         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-         -> Vector f
-{-# INLINE zipWith5 #-}
-zipWith5 = G.zipWith5
-
-zipWith6 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f, Unbox g)
-         => (a -> b -> c -> d -> e -> f -> g)
-         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-         -> Vector f -> Vector g
-{-# INLINE zipWith6 #-}
-zipWith6 = G.zipWith6
-
--- | /O(min(m,n))/ Zip two vectors with a function that also takes the
--- elements' indices.
-izipWith :: (Unbox a, Unbox b, Unbox c)
-         => (Int -> a -> b -> c) -> Vector a -> Vector b -> Vector c
-{-# INLINE izipWith #-}
-izipWith = G.izipWith
-
--- | Zip three vectors and their indices with the given function.
-izipWith3 :: (Unbox a, Unbox b, Unbox c, Unbox d)
-          => (Int -> a -> b -> c -> d)
-          -> Vector a -> Vector b -> Vector c -> Vector d
-{-# INLINE izipWith3 #-}
-izipWith3 = G.izipWith3
-
-izipWith4 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e)
-          => (Int -> a -> b -> c -> d -> e)
-          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-{-# INLINE izipWith4 #-}
-izipWith4 = G.izipWith4
-
-izipWith5 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f)
-          => (Int -> a -> b -> c -> d -> e -> f)
-          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-          -> Vector f
-{-# INLINE izipWith5 #-}
-izipWith5 = G.izipWith5
-
-izipWith6 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f, Unbox g)
-          => (Int -> a -> b -> c -> d -> e -> f -> g)
-          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-          -> Vector f -> Vector g
-{-# INLINE izipWith6 #-}
-izipWith6 = G.izipWith6
-
--- Monadic zipping
--- ---------------
-
--- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a
--- vector of results
-zipWithM :: (Monad m, Unbox a, Unbox b, Unbox c)
-         => (a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
-{-# INLINE zipWithM #-}
-zipWithM = G.zipWithM
-
--- | /O(min(m,n))/ Zip the two vectors with a monadic action that also takes
--- the element index and yield a vector of results
-izipWithM :: (Monad m, Unbox a, Unbox b, Unbox c)
-         => (Int -> a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
-{-# INLINE izipWithM #-}
-izipWithM = G.izipWithM
-
--- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the
--- results
-zipWithM_ :: (Monad m, Unbox a, Unbox b)
-          => (a -> b -> m c) -> Vector a -> Vector b -> m ()
-{-# INLINE zipWithM_ #-}
-zipWithM_ = G.zipWithM_
-
--- | /O(min(m,n))/ Zip the two vectors with a monadic action that also takes
--- the element index and ignore the results
-izipWithM_ :: (Monad m, Unbox a, Unbox b)
-          => (Int -> a -> b -> m c) -> Vector a -> Vector b -> m ()
-{-# INLINE izipWithM_ #-}
-izipWithM_ = G.izipWithM_
-
--- Filtering
--- ---------
-
--- | /O(n)/ Drop elements that do not satisfy the predicate
-filter :: Unbox a => (a -> Bool) -> Vector a -> Vector a
-{-# INLINE filter #-}
-filter = G.filter
-
--- | /O(n)/ Drop repeated adjacent elements.
-uniq :: (Unbox a, Eq a) => Vector a -> Vector a
-{-# INLINE uniq #-}
-uniq = G.uniq
-
--- | /O(n)/ Drop elements that do not satisfy the predicate which is applied to
--- values and their indices
-ifilter :: Unbox a => (Int -> a -> Bool) -> Vector a -> Vector a
-{-# INLINE ifilter #-}
-ifilter = G.ifilter
-
--- | /O(n)/ Drop elements when predicate returns Nothing
-mapMaybe :: (Unbox a, Unbox b) => (a -> Maybe b) -> Vector a -> Vector b
-{-# INLINE mapMaybe #-}
-mapMaybe = G.mapMaybe
-
--- | /O(n)/ Drop elements when predicate, applied to index and value, returns Nothing
-imapMaybe :: (Unbox a, Unbox b) => (Int -> a -> Maybe b) -> Vector a -> Vector b
-{-# INLINE imapMaybe #-}
-imapMaybe = G.imapMaybe
-
--- | /O(n)/ Drop elements that do not satisfy the monadic predicate
-filterM :: (Monad m, Unbox a) => (a -> m Bool) -> Vector a -> m (Vector a)
-{-# INLINE filterM #-}
-filterM = G.filterM
-
--- | /O(n)/ Yield the longest prefix of elements satisfying the predicate
--- without copying.
-takeWhile :: Unbox a => (a -> Bool) -> Vector a -> Vector a
-{-# INLINE takeWhile #-}
-takeWhile = G.takeWhile
-
--- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate
--- without copying.
-dropWhile :: Unbox a => (a -> Bool) -> Vector a -> Vector a
-{-# INLINE dropWhile #-}
-dropWhile = G.dropWhile
-
--- Parititioning
--- -------------
-
--- | /O(n)/ Split the vector in two parts, the first one containing those
--- elements that satisfy the predicate and the second one those that don't. The
--- relative order of the elements is preserved at the cost of a sometimes
--- reduced performance compared to 'unstablePartition'.
-partition :: Unbox a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE partition #-}
-partition = G.partition
-
--- | /O(n)/ Split the vector in two parts, the first one containing those
--- elements that satisfy the predicate and the second one those that don't.
--- The order of the elements is not preserved but the operation is often
--- faster than 'partition'.
-unstablePartition :: Unbox a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE unstablePartition #-}
-unstablePartition = G.unstablePartition
-
--- | /O(n)/ Split the vector into the longest prefix of elements that satisfy
--- the predicate and the rest without copying.
-span :: Unbox a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE span #-}
-span = G.span
-
--- | /O(n)/ Split the vector into the longest prefix of elements that do not
--- satisfy the predicate and the rest without copying.
-break :: Unbox a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
-{-# INLINE break #-}
-break = G.break
-
--- Searching
--- ---------
-
-infix 4 `elem`
--- | /O(n)/ Check if the vector contains an element
-elem :: (Unbox a, Eq a) => a -> Vector a -> Bool
-{-# INLINE elem #-}
-elem = G.elem
-
-infix 4 `notElem`
--- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem')
-notElem :: (Unbox a, Eq a) => a -> Vector a -> Bool
-{-# INLINE notElem #-}
-notElem = G.notElem
-
--- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing'
--- if no such element exists.
-find :: Unbox a => (a -> Bool) -> Vector a -> Maybe a
-{-# INLINE find #-}
-find = G.find
-
--- | /O(n)/ Yield 'Just' the index of the first element matching the predicate
--- or 'Nothing' if no such element exists.
-findIndex :: Unbox a => (a -> Bool) -> Vector a -> Maybe Int
-{-# INLINE findIndex #-}
-findIndex = G.findIndex
-
--- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending
--- order.
-findIndices :: Unbox a => (a -> Bool) -> Vector a -> Vector Int
-{-# INLINE findIndices #-}
-findIndices = G.findIndices
-
--- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or
--- 'Nothing' if the vector does not contain the element. This is a specialised
--- version of 'findIndex'.
-elemIndex :: (Unbox a, Eq a) => a -> Vector a -> Maybe Int
-{-# INLINE elemIndex #-}
-elemIndex = G.elemIndex
-
--- | /O(n)/ Yield the indices of all occurences of the given element in
--- ascending order. This is a specialised version of 'findIndices'.
-elemIndices :: (Unbox a, Eq a) => a -> Vector a -> Vector Int
-{-# INLINE elemIndices #-}
-elemIndices = G.elemIndices
-
--- Folding
--- -------
-
--- | /O(n)/ Left fold
-foldl :: Unbox b => (a -> b -> a) -> a -> Vector b -> a
-{-# INLINE foldl #-}
-foldl = G.foldl
-
--- | /O(n)/ Left fold on non-empty vectors
-foldl1 :: Unbox a => (a -> a -> a) -> Vector a -> a
-{-# INLINE foldl1 #-}
-foldl1 = G.foldl1
-
--- | /O(n)/ Left fold with strict accumulator
-foldl' :: Unbox b => (a -> b -> a) -> a -> Vector b -> a
-{-# INLINE foldl' #-}
-foldl' = G.foldl'
-
--- | /O(n)/ Left fold on non-empty vectors with strict accumulator
-foldl1' :: Unbox a => (a -> a -> a) -> Vector a -> a
-{-# INLINE foldl1' #-}
-foldl1' = G.foldl1'
-
--- | /O(n)/ Right fold
-foldr :: Unbox a => (a -> b -> b) -> b -> Vector a -> b
-{-# INLINE foldr #-}
-foldr = G.foldr
-
--- | /O(n)/ Right fold on non-empty vectors
-foldr1 :: Unbox a => (a -> a -> a) -> Vector a -> a
-{-# INLINE foldr1 #-}
-foldr1 = G.foldr1
-
--- | /O(n)/ Right fold with a strict accumulator
-foldr' :: Unbox a => (a -> b -> b) -> b -> Vector a -> b
-{-# INLINE foldr' #-}
-foldr' = G.foldr'
-
--- | /O(n)/ Right fold on non-empty vectors with strict accumulator
-foldr1' :: Unbox a => (a -> a -> a) -> Vector a -> a
-{-# INLINE foldr1' #-}
-foldr1' = G.foldr1'
-
--- | /O(n)/ Left fold (function applied to each element and its index)
-ifoldl :: Unbox b => (a -> Int -> b -> a) -> a -> Vector b -> a
-{-# INLINE ifoldl #-}
-ifoldl = G.ifoldl
-
--- | /O(n)/ Left fold with strict accumulator (function applied to each element
--- and its index)
-ifoldl' :: Unbox b => (a -> Int -> b -> a) -> a -> Vector b -> a
-{-# INLINE ifoldl' #-}
-ifoldl' = G.ifoldl'
-
--- | /O(n)/ Right fold (function applied to each element and its index)
-ifoldr :: Unbox a => (Int -> a -> b -> b) -> b -> Vector a -> b
-{-# INLINE ifoldr #-}
-ifoldr = G.ifoldr
-
--- | /O(n)/ Right fold with strict accumulator (function applied to each
--- element and its index)
-ifoldr' :: Unbox a => (Int -> a -> b -> b) -> b -> Vector a -> b
-{-# INLINE ifoldr' #-}
-ifoldr' = G.ifoldr'
-
--- Specialised folds
--- -----------------
-
--- | /O(n)/ Check if all elements satisfy the predicate.
-all :: Unbox a => (a -> Bool) -> Vector a -> Bool
-{-# INLINE all #-}
-all = G.all
-
--- | /O(n)/ Check if any element satisfies the predicate.
-any :: Unbox a => (a -> Bool) -> Vector a -> Bool
-{-# INLINE any #-}
-any = G.any
-
--- | /O(n)/ Check if all elements are 'True'
-and :: Vector Bool -> Bool
-{-# INLINE and #-}
-and = G.and
-
--- | /O(n)/ Check if any element is 'True'
-or :: Vector Bool -> Bool
-{-# INLINE or #-}
-or = G.or
-
--- | /O(n)/ Compute the sum of the elements
-sum :: (Unbox a, Num a) => Vector a -> a
-{-# INLINE sum #-}
-sum = G.sum
-
--- | /O(n)/ Compute the produce of the elements
-product :: (Unbox a, Num a) => Vector a -> a
-{-# INLINE product #-}
-product = G.product
-
--- | /O(n)/ Yield the maximum element of the vector. The vector may not be
--- empty.
-maximum :: (Unbox a, Ord a) => Vector a -> a
-{-# INLINE maximum #-}
-maximum = G.maximum
-
--- | /O(n)/ Yield the maximum element of the vector according to the given
--- comparison function. The vector may not be empty.
-maximumBy :: Unbox a => (a -> a -> Ordering) -> Vector a -> a
-{-# INLINE maximumBy #-}
-maximumBy = G.maximumBy
-
--- | /O(n)/ Yield the minimum element of the vector. The vector may not be
--- empty.
-minimum :: (Unbox a, Ord a) => Vector a -> a
-{-# INLINE minimum #-}
-minimum = G.minimum
-
--- | /O(n)/ Yield the minimum element of the vector according to the given
--- comparison function. The vector may not be empty.
-minimumBy :: Unbox a => (a -> a -> Ordering) -> Vector a -> a
-{-# INLINE minimumBy #-}
-minimumBy = G.minimumBy
-
--- | /O(n)/ Yield the index of the maximum element of the vector. The vector
--- may not be empty.
-maxIndex :: (Unbox a, Ord a) => Vector a -> Int
-{-# INLINE maxIndex #-}
-maxIndex = G.maxIndex
-
--- | /O(n)/ Yield the index of the maximum element of the vector according to
--- the given comparison function. The vector may not be empty.
-maxIndexBy :: Unbox a => (a -> a -> Ordering) -> Vector a -> Int
-{-# INLINE maxIndexBy #-}
-maxIndexBy = G.maxIndexBy
-
--- | /O(n)/ Yield the index of the minimum element of the vector. The vector
--- may not be empty.
-minIndex :: (Unbox a, Ord a) => Vector a -> Int
-{-# INLINE minIndex #-}
-minIndex = G.minIndex
-
--- | /O(n)/ Yield the index of the minimum element of the vector according to
--- the given comparison function. The vector may not be empty.
-minIndexBy :: Unbox a => (a -> a -> Ordering) -> Vector a -> Int
-{-# INLINE minIndexBy #-}
-minIndexBy = G.minIndexBy
-
--- Monadic folds
--- -------------
-
--- | /O(n)/ Monadic fold
-foldM :: (Monad m, Unbox b) => (a -> b -> m a) -> a -> Vector b -> m a
-{-# INLINE foldM #-}
-foldM = G.foldM
-
--- | /O(n)/ Monadic fold (action applied to each element and its index)
-ifoldM :: (Monad m, Unbox b) => (a -> Int -> b -> m a) -> a -> Vector b -> m a
-{-# INLINE ifoldM #-}
-ifoldM = G.ifoldM
-
--- | /O(n)/ Monadic fold over non-empty vectors
-fold1M :: (Monad m, Unbox a) => (a -> a -> m a) -> Vector a -> m a
-{-# INLINE fold1M #-}
-fold1M = G.fold1M
-
--- | /O(n)/ Monadic fold with strict accumulator
-foldM' :: (Monad m, Unbox b) => (a -> b -> m a) -> a -> Vector b -> m a
-{-# INLINE foldM' #-}
-foldM' = G.foldM'
-
--- | /O(n)/ Monadic fold with strict accumulator (action applied to each
--- element and its index)
-ifoldM' :: (Monad m, Unbox b) => (a -> Int -> b -> m a) -> a -> Vector b -> m a
-{-# INLINE ifoldM' #-}
-ifoldM' = G.ifoldM'
-
--- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator
-fold1M' :: (Monad m, Unbox a) => (a -> a -> m a) -> Vector a -> m a
-{-# INLINE fold1M' #-}
-fold1M' = G.fold1M'
-
--- | /O(n)/ Monadic fold that discards the result
-foldM_ :: (Monad m, Unbox b) => (a -> b -> m a) -> a -> Vector b -> m ()
-{-# INLINE foldM_ #-}
-foldM_ = G.foldM_
-
--- | /O(n)/ Monadic fold that discards the result (action applied to each
--- element and its index)
-ifoldM_ :: (Monad m, Unbox b) => (a -> Int -> b -> m a) -> a -> Vector b -> m ()
-{-# INLINE ifoldM_ #-}
-ifoldM_ = G.ifoldM_
-
--- | /O(n)/ Monadic fold over non-empty vectors that discards the result
-fold1M_ :: (Monad m, Unbox a) => (a -> a -> m a) -> Vector a -> m ()
-{-# INLINE fold1M_ #-}
-fold1M_ = G.fold1M_
-
--- | /O(n)/ Monadic fold with strict accumulator that discards the result
-foldM'_ :: (Monad m, Unbox b) => (a -> b -> m a) -> a -> Vector b -> m ()
-{-# INLINE foldM'_ #-}
-foldM'_ = G.foldM'_
-
--- | /O(n)/ Monadic fold with strict accumulator that discards the result
--- (action applied to each element and its index)
-ifoldM'_ :: (Monad m, Unbox b)
-         => (a -> Int -> b -> m a) -> a -> Vector b -> m ()
-{-# INLINE ifoldM'_ #-}
-ifoldM'_ = G.ifoldM'_
-
--- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator
--- that discards the result
-fold1M'_ :: (Monad m, Unbox a) => (a -> a -> m a) -> Vector a -> m ()
-{-# INLINE fold1M'_ #-}
-fold1M'_ = G.fold1M'_
-
--- Prefix sums (scans)
--- -------------------
-
--- | /O(n)/ Prescan
---
--- @
--- prescanl f z = 'init' . 'scanl' f z
--- @
---
--- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@
---
-prescanl :: (Unbox a, Unbox b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE prescanl #-}
-prescanl = G.prescanl
-
--- | /O(n)/ Prescan with strict accumulator
-prescanl' :: (Unbox a, Unbox b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE prescanl' #-}
-prescanl' = G.prescanl'
-
--- | /O(n)/ Scan
---
--- @
--- postscanl f z = 'tail' . 'scanl' f z
--- @
---
--- Example: @postscanl (+) 0 \<1,2,3,4\> = \<1,3,6,10\>@
---
-postscanl :: (Unbox a, Unbox b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE postscanl #-}
-postscanl = G.postscanl
-
--- | /O(n)/ Scan with strict accumulator
-postscanl' :: (Unbox a, Unbox b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE postscanl' #-}
-postscanl' = G.postscanl'
-
--- | /O(n)/ Haskell-style scan
---
--- > scanl f z <x1,...,xn> = <y1,...,y(n+1)>
--- >   where y1 = z
--- >         yi = f y(i-1) x(i-1)
---
--- Example: @scanl (+) 0 \<1,2,3,4\> = \<0,1,3,6,10\>@
---
-scanl :: (Unbox a, Unbox b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE scanl #-}
-scanl = G.scanl
-
--- | /O(n)/ Haskell-style scan with strict accumulator
-scanl' :: (Unbox a, Unbox b) => (a -> b -> a) -> a -> Vector b -> Vector a
-{-# INLINE scanl' #-}
-scanl' = G.scanl'
-
--- | /O(n)/ Scan over a non-empty vector
---
--- > scanl f <x1,...,xn> = <y1,...,yn>
--- >   where y1 = x1
--- >         yi = f y(i-1) xi
---
-scanl1 :: Unbox a => (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanl1 #-}
-scanl1 = G.scanl1
-
--- | /O(n)/ Scan over a non-empty vector with a strict accumulator
-scanl1' :: Unbox a => (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanl1' #-}
-scanl1' = G.scanl1'
-
--- | /O(n)/ Right-to-left prescan
---
--- @
--- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse'
--- @
---
-prescanr :: (Unbox a, Unbox b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE prescanr #-}
-prescanr = G.prescanr
-
--- | /O(n)/ Right-to-left prescan with strict accumulator
-prescanr' :: (Unbox a, Unbox b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE prescanr' #-}
-prescanr' = G.prescanr'
-
--- | /O(n)/ Right-to-left scan
-postscanr :: (Unbox a, Unbox b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE postscanr #-}
-postscanr = G.postscanr
-
--- | /O(n)/ Right-to-left scan with strict accumulator
-postscanr' :: (Unbox a, Unbox b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE postscanr' #-}
-postscanr' = G.postscanr'
-
--- | /O(n)/ Right-to-left Haskell-style scan
-scanr :: (Unbox a, Unbox b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE scanr #-}
-scanr = G.scanr
-
--- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator
-scanr' :: (Unbox a, Unbox b) => (a -> b -> b) -> b -> Vector a -> Vector b
-{-# INLINE scanr' #-}
-scanr' = G.scanr'
-
--- | /O(n)/ Right-to-left scan over a non-empty vector
-scanr1 :: Unbox a => (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanr1 #-}
-scanr1 = G.scanr1
-
--- | /O(n)/ Right-to-left scan over a non-empty vector with a strict
--- accumulator
-scanr1' :: Unbox a => (a -> a -> a) -> Vector a -> Vector a
-{-# INLINE scanr1' #-}
-scanr1' = G.scanr1'
-
--- Conversions - Lists
--- ------------------------
-
--- | /O(n)/ Convert a vector to a list
-toList :: Unbox a => Vector a -> [a]
-{-# INLINE toList #-}
-toList = G.toList
-
--- | /O(n)/ Convert a list to a vector
-fromList :: Unbox a => [a] -> Vector a
-{-# INLINE fromList #-}
-fromList = G.fromList
-
--- | /O(n)/ Convert the first @n@ elements of a list to a vector
---
--- @
--- fromListN n xs = 'fromList' ('take' n xs)
--- @
-fromListN :: Unbox a => Int -> [a] -> Vector a
-{-# INLINE fromListN #-}
-fromListN = G.fromListN
-
--- Conversions - Mutable vectors
--- -----------------------------
-
--- | /O(1)/ Unsafe convert a mutable vector to an immutable one without
--- copying. The mutable vector may not be used after this operation.
-unsafeFreeze :: (Unbox a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a)
-{-# INLINE unsafeFreeze #-}
-unsafeFreeze = G.unsafeFreeze
-
--- | /O(1)/ Unsafely convert an immutable vector to a mutable one without
--- copying. The immutable vector may not be used after this operation.
-unsafeThaw :: (Unbox a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a)
-{-# INLINE unsafeThaw #-}
-unsafeThaw = G.unsafeThaw
-
--- | /O(n)/ Yield a mutable copy of the immutable vector.
-thaw :: (Unbox a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a)
-{-# INLINE thaw #-}
-thaw = G.thaw
-
--- | /O(n)/ Yield an immutable copy of the mutable vector.
-freeze :: (Unbox a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a)
-{-# INLINE freeze #-}
-freeze = G.freeze
-
--- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
--- have the same length. This is not checked.
-unsafeCopy
-  :: (Unbox a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m ()
-{-# INLINE unsafeCopy #-}
-unsafeCopy = G.unsafeCopy
-
--- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
--- have the same length.
-copy :: (Unbox a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m ()
-{-# INLINE copy #-}
-copy = G.copy
-
-
-#define DEFINE_IMMUTABLE
-#include "unbox-tuple-instances"
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Unboxed/Base.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Unboxed/Base.hs
deleted file mode 100644
index a88795c5b4bc..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Unboxed/Base.hs
+++ /dev/null
@@ -1,408 +0,0 @@
-{-# LANGUAGE BangPatterns, CPP, MultiParamTypeClasses, TypeFamilies, FlexibleContexts #-}
-#if __GLASGOW_HASKELL__ >= 707
-{-# LANGUAGE DeriveDataTypeable, StandaloneDeriving #-}
-#endif
-{-# OPTIONS_HADDOCK hide #-}
-
--- |
--- Module      : Data.Vector.Unboxed.Base
--- Copyright   : (c) Roman Leshchinskiy 2009-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Adaptive unboxed vectors: basic implementation
---
-
-module Data.Vector.Unboxed.Base (
-  MVector(..), IOVector, STVector, Vector(..), Unbox
-) where
-
-import qualified Data.Vector.Generic         as G
-import qualified Data.Vector.Generic.Mutable as M
-
-import qualified Data.Vector.Primitive as P
-
-import Control.DeepSeq ( NFData(rnf) )
-
-import Control.Monad.Primitive
-import Control.Monad ( liftM )
-
-import Data.Word ( Word8, Word16, Word32, Word64 )
-import Data.Int  ( Int8, Int16, Int32, Int64 )
-import Data.Complex
-
-#if !MIN_VERSION_base(4,8,0)
-import Data.Word ( Word )
-#endif
-
-#if __GLASGOW_HASKELL__ >= 707
-import Data.Typeable ( Typeable )
-#else
-import Data.Typeable ( Typeable1(..), Typeable2(..), mkTyConApp,
-                       mkTyCon3
-                     )
-#endif
-
-import Data.Data     ( Data(..) )
-
--- Data.Vector.Internal.Check is unused
-#define NOT_VECTOR_MODULE
-#include "vector.h"
-
-data family MVector s a
-data family Vector    a
-
-type IOVector = MVector RealWorld
-type STVector s = MVector s
-
-type instance G.Mutable Vector = MVector
-
-class (G.Vector Vector a, M.MVector MVector a) => Unbox a
-
-instance NFData (Vector a) where rnf !_ = ()
-instance NFData (MVector s a) where rnf !_ = ()
-
--- -----------------
--- Data and Typeable
--- -----------------
-#if __GLASGOW_HASKELL__ >= 707
-deriving instance Typeable Vector
-deriving instance Typeable MVector
-#else
-vectorTyCon = mkTyCon3 "vector"
-
-instance Typeable1 Vector where
-  typeOf1 _ = mkTyConApp (vectorTyCon "Data.Vector.Unboxed" "Vector") []
-
-instance Typeable2 MVector where
-  typeOf2 _ = mkTyConApp (vectorTyCon "Data.Vector.Unboxed.Mutable" "MVector") []
-#endif
-
-instance (Data a, Unbox a) => Data (Vector a) where
-  gfoldl       = G.gfoldl
-  toConstr _   = error "toConstr"
-  gunfold _ _  = error "gunfold"
-  dataTypeOf _ = G.mkType "Data.Vector.Unboxed.Vector"
-  dataCast1    = G.dataCast
-
--- ----
--- Unit
--- ----
-
-newtype instance MVector s () = MV_Unit Int
-newtype instance Vector    () = V_Unit Int
-
-instance Unbox ()
-
-instance M.MVector MVector () where
-  {-# INLINE basicLength #-}
-  {-# INLINE basicUnsafeSlice #-}
-  {-# INLINE basicOverlaps #-}
-  {-# INLINE basicUnsafeNew #-}
-  {-# INLINE basicInitialize #-}
-  {-# INLINE basicUnsafeRead #-}
-  {-# INLINE basicUnsafeWrite #-}
-  {-# INLINE basicClear #-}
-  {-# INLINE basicSet #-}
-  {-# INLINE basicUnsafeCopy #-}
-  {-# INLINE basicUnsafeGrow #-}
-
-  basicLength (MV_Unit n) = n
-
-  basicUnsafeSlice _ m (MV_Unit _) = MV_Unit m
-
-  basicOverlaps _ _ = False
-
-  basicUnsafeNew n = return (MV_Unit n)
-
-  -- Nothing to initialize
-  basicInitialize _ = return ()
-
-  basicUnsafeRead (MV_Unit _) _ = return ()
-
-  basicUnsafeWrite (MV_Unit _) _ () = return ()
-
-  basicClear _ = return ()
-
-  basicSet (MV_Unit _) () = return ()
-
-  basicUnsafeCopy (MV_Unit _) (MV_Unit _) = return ()
-
-  basicUnsafeGrow (MV_Unit n) m = return $ MV_Unit (n+m)
-
-instance G.Vector Vector () where
-  {-# INLINE basicUnsafeFreeze #-}
-  basicUnsafeFreeze (MV_Unit n) = return $ V_Unit n
-
-  {-# INLINE basicUnsafeThaw #-}
-  basicUnsafeThaw (V_Unit n) = return $ MV_Unit n
-
-  {-# INLINE basicLength #-}
-  basicLength (V_Unit n) = n
-
-  {-# INLINE basicUnsafeSlice #-}
-  basicUnsafeSlice _ m (V_Unit _) = V_Unit m
-
-  {-# INLINE basicUnsafeIndexM #-}
-  basicUnsafeIndexM (V_Unit _) _ = return ()
-
-  {-# INLINE basicUnsafeCopy #-}
-  basicUnsafeCopy (MV_Unit _) (V_Unit _) = return ()
-
-  {-# INLINE elemseq #-}
-  elemseq _ = seq
-
-
--- ---------------
--- Primitive types
--- ---------------
-
-#define primMVector(ty,con)                                             \
-instance M.MVector MVector ty where {                                   \
-  {-# INLINE basicLength #-}                                            \
-; {-# INLINE basicUnsafeSlice #-}                                       \
-; {-# INLINE basicOverlaps #-}                                          \
-; {-# INLINE basicUnsafeNew #-}                                         \
-; {-# INLINE basicInitialize #-}                                        \
-; {-# INLINE basicUnsafeReplicate #-}                                   \
-; {-# INLINE basicUnsafeRead #-}                                        \
-; {-# INLINE basicUnsafeWrite #-}                                       \
-; {-# INLINE basicClear #-}                                             \
-; {-# INLINE basicSet #-}                                               \
-; {-# INLINE basicUnsafeCopy #-}                                        \
-; {-# INLINE basicUnsafeGrow #-}                                        \
-; basicLength (con v) = M.basicLength v                                 \
-; basicUnsafeSlice i n (con v) = con $ M.basicUnsafeSlice i n v         \
-; basicOverlaps (con v1) (con v2) = M.basicOverlaps v1 v2               \
-; basicUnsafeNew n = con `liftM` M.basicUnsafeNew n                     \
-; basicInitialize (con v) = M.basicInitialize v                         \
-; basicUnsafeReplicate n x = con `liftM` M.basicUnsafeReplicate n x     \
-; basicUnsafeRead (con v) i = M.basicUnsafeRead v i                     \
-; basicUnsafeWrite (con v) i x = M.basicUnsafeWrite v i x               \
-; basicClear (con v) = M.basicClear v                                   \
-; basicSet (con v) x = M.basicSet v x                                   \
-; basicUnsafeCopy (con v1) (con v2) = M.basicUnsafeCopy v1 v2           \
-; basicUnsafeMove (con v1) (con v2) = M.basicUnsafeMove v1 v2           \
-; basicUnsafeGrow (con v) n = con `liftM` M.basicUnsafeGrow v n }
-
-#define primVector(ty,con,mcon)                                         \
-instance G.Vector Vector ty where {                                     \
-  {-# INLINE basicUnsafeFreeze #-}                                      \
-; {-# INLINE basicUnsafeThaw #-}                                        \
-; {-# INLINE basicLength #-}                                            \
-; {-# INLINE basicUnsafeSlice #-}                                       \
-; {-# INLINE basicUnsafeIndexM #-}                                      \
-; {-# INLINE elemseq #-}                                                \
-; basicUnsafeFreeze (mcon v) = con `liftM` G.basicUnsafeFreeze v        \
-; basicUnsafeThaw (con v) = mcon `liftM` G.basicUnsafeThaw v            \
-; basicLength (con v) = G.basicLength v                                 \
-; basicUnsafeSlice i n (con v) = con $ G.basicUnsafeSlice i n v         \
-; basicUnsafeIndexM (con v) i = G.basicUnsafeIndexM v i                 \
-; basicUnsafeCopy (mcon mv) (con v) = G.basicUnsafeCopy mv v            \
-; elemseq _ = seq }
-
-newtype instance MVector s Int = MV_Int (P.MVector s Int)
-newtype instance Vector    Int = V_Int  (P.Vector    Int)
-instance Unbox Int
-primMVector(Int, MV_Int)
-primVector(Int, V_Int, MV_Int)
-
-newtype instance MVector s Int8 = MV_Int8 (P.MVector s Int8)
-newtype instance Vector    Int8 = V_Int8  (P.Vector    Int8)
-instance Unbox Int8
-primMVector(Int8, MV_Int8)
-primVector(Int8, V_Int8, MV_Int8)
-
-newtype instance MVector s Int16 = MV_Int16 (P.MVector s Int16)
-newtype instance Vector    Int16 = V_Int16  (P.Vector    Int16)
-instance Unbox Int16
-primMVector(Int16, MV_Int16)
-primVector(Int16, V_Int16, MV_Int16)
-
-newtype instance MVector s Int32 = MV_Int32 (P.MVector s Int32)
-newtype instance Vector    Int32 = V_Int32  (P.Vector    Int32)
-instance Unbox Int32
-primMVector(Int32, MV_Int32)
-primVector(Int32, V_Int32, MV_Int32)
-
-newtype instance MVector s Int64 = MV_Int64 (P.MVector s Int64)
-newtype instance Vector    Int64 = V_Int64  (P.Vector    Int64)
-instance Unbox Int64
-primMVector(Int64, MV_Int64)
-primVector(Int64, V_Int64, MV_Int64)
-
-
-newtype instance MVector s Word = MV_Word (P.MVector s Word)
-newtype instance Vector    Word = V_Word  (P.Vector    Word)
-instance Unbox Word
-primMVector(Word, MV_Word)
-primVector(Word, V_Word, MV_Word)
-
-newtype instance MVector s Word8 = MV_Word8 (P.MVector s Word8)
-newtype instance Vector    Word8 = V_Word8  (P.Vector    Word8)
-instance Unbox Word8
-primMVector(Word8, MV_Word8)
-primVector(Word8, V_Word8, MV_Word8)
-
-newtype instance MVector s Word16 = MV_Word16 (P.MVector s Word16)
-newtype instance Vector    Word16 = V_Word16  (P.Vector    Word16)
-instance Unbox Word16
-primMVector(Word16, MV_Word16)
-primVector(Word16, V_Word16, MV_Word16)
-
-newtype instance MVector s Word32 = MV_Word32 (P.MVector s Word32)
-newtype instance Vector    Word32 = V_Word32  (P.Vector    Word32)
-instance Unbox Word32
-primMVector(Word32, MV_Word32)
-primVector(Word32, V_Word32, MV_Word32)
-
-newtype instance MVector s Word64 = MV_Word64 (P.MVector s Word64)
-newtype instance Vector    Word64 = V_Word64  (P.Vector    Word64)
-instance Unbox Word64
-primMVector(Word64, MV_Word64)
-primVector(Word64, V_Word64, MV_Word64)
-
-
-newtype instance MVector s Float = MV_Float (P.MVector s Float)
-newtype instance Vector    Float = V_Float  (P.Vector    Float)
-instance Unbox Float
-primMVector(Float, MV_Float)
-primVector(Float, V_Float, MV_Float)
-
-newtype instance MVector s Double = MV_Double (P.MVector s Double)
-newtype instance Vector    Double = V_Double  (P.Vector    Double)
-instance Unbox Double
-primMVector(Double, MV_Double)
-primVector(Double, V_Double, MV_Double)
-
-
-newtype instance MVector s Char = MV_Char (P.MVector s Char)
-newtype instance Vector    Char = V_Char  (P.Vector    Char)
-instance Unbox Char
-primMVector(Char, MV_Char)
-primVector(Char, V_Char, MV_Char)
-
--- ----
--- Bool
--- ----
-
-fromBool :: Bool -> Word8
-{-# INLINE fromBool #-}
-fromBool True = 1
-fromBool False = 0
-
-toBool :: Word8 -> Bool
-{-# INLINE toBool #-}
-toBool 0 = False
-toBool _ = True
-
-newtype instance MVector s Bool = MV_Bool (P.MVector s Word8)
-newtype instance Vector    Bool = V_Bool  (P.Vector    Word8)
-
-instance Unbox Bool
-
-instance M.MVector MVector Bool where
-  {-# INLINE basicLength #-}
-  {-# INLINE basicUnsafeSlice #-}
-  {-# INLINE basicOverlaps #-}
-  {-# INLINE basicUnsafeNew #-}
-  {-# INLINE basicInitialize #-}
-  {-# INLINE basicUnsafeReplicate #-}
-  {-# INLINE basicUnsafeRead #-}
-  {-# INLINE basicUnsafeWrite #-}
-  {-# INLINE basicClear #-}
-  {-# INLINE basicSet #-}
-  {-# INLINE basicUnsafeCopy #-}
-  {-# INLINE basicUnsafeGrow #-}
-  basicLength (MV_Bool v) = M.basicLength v
-  basicUnsafeSlice i n (MV_Bool v) = MV_Bool $ M.basicUnsafeSlice i n v
-  basicOverlaps (MV_Bool v1) (MV_Bool v2) = M.basicOverlaps v1 v2
-  basicUnsafeNew n = MV_Bool `liftM` M.basicUnsafeNew n
-  basicInitialize (MV_Bool v) = M.basicInitialize v
-  basicUnsafeReplicate n x = MV_Bool `liftM` M.basicUnsafeReplicate n (fromBool x)
-  basicUnsafeRead (MV_Bool v) i = toBool `liftM` M.basicUnsafeRead v i
-  basicUnsafeWrite (MV_Bool v) i x = M.basicUnsafeWrite v i (fromBool x)
-  basicClear (MV_Bool v) = M.basicClear v
-  basicSet (MV_Bool v) x = M.basicSet v (fromBool x)
-  basicUnsafeCopy (MV_Bool v1) (MV_Bool v2) = M.basicUnsafeCopy v1 v2
-  basicUnsafeMove (MV_Bool v1) (MV_Bool v2) = M.basicUnsafeMove v1 v2
-  basicUnsafeGrow (MV_Bool v) n = MV_Bool `liftM` M.basicUnsafeGrow v n
-
-instance G.Vector Vector Bool where
-  {-# INLINE basicUnsafeFreeze #-}
-  {-# INLINE basicUnsafeThaw #-}
-  {-# INLINE basicLength #-}
-  {-# INLINE basicUnsafeSlice #-}
-  {-# INLINE basicUnsafeIndexM #-}
-  {-# INLINE elemseq #-}
-  basicUnsafeFreeze (MV_Bool v) = V_Bool `liftM` G.basicUnsafeFreeze v
-  basicUnsafeThaw (V_Bool v) = MV_Bool `liftM` G.basicUnsafeThaw v
-  basicLength (V_Bool v) = G.basicLength v
-  basicUnsafeSlice i n (V_Bool v) = V_Bool $ G.basicUnsafeSlice i n v
-  basicUnsafeIndexM (V_Bool v) i = toBool `liftM` G.basicUnsafeIndexM v i
-  basicUnsafeCopy (MV_Bool mv) (V_Bool v) = G.basicUnsafeCopy mv v
-  elemseq _ = seq
-
--- -------
--- Complex
--- -------
-
-newtype instance MVector s (Complex a) = MV_Complex (MVector s (a,a))
-newtype instance Vector    (Complex a) = V_Complex  (Vector    (a,a))
-
-instance (Unbox a) => Unbox (Complex a)
-
-instance (Unbox a) => M.MVector MVector (Complex a) where
-  {-# INLINE basicLength #-}
-  {-# INLINE basicUnsafeSlice #-}
-  {-# INLINE basicOverlaps #-}
-  {-# INLINE basicUnsafeNew #-}
-  {-# INLINE basicInitialize #-}
-  {-# INLINE basicUnsafeReplicate #-}
-  {-# INLINE basicUnsafeRead #-}
-  {-# INLINE basicUnsafeWrite #-}
-  {-# INLINE basicClear #-}
-  {-# INLINE basicSet #-}
-  {-# INLINE basicUnsafeCopy #-}
-  {-# INLINE basicUnsafeGrow #-}
-  basicLength (MV_Complex v) = M.basicLength v
-  basicUnsafeSlice i n (MV_Complex v) = MV_Complex $ M.basicUnsafeSlice i n v
-  basicOverlaps (MV_Complex v1) (MV_Complex v2) = M.basicOverlaps v1 v2
-  basicUnsafeNew n = MV_Complex `liftM` M.basicUnsafeNew n
-  basicInitialize (MV_Complex v) = M.basicInitialize v
-  basicUnsafeReplicate n (x :+ y) = MV_Complex `liftM` M.basicUnsafeReplicate n (x,y)
-  basicUnsafeRead (MV_Complex v) i = uncurry (:+) `liftM` M.basicUnsafeRead v i
-  basicUnsafeWrite (MV_Complex v) i (x :+ y) = M.basicUnsafeWrite v i (x,y)
-  basicClear (MV_Complex v) = M.basicClear v
-  basicSet (MV_Complex v) (x :+ y) = M.basicSet v (x,y)
-  basicUnsafeCopy (MV_Complex v1) (MV_Complex v2) = M.basicUnsafeCopy v1 v2
-  basicUnsafeMove (MV_Complex v1) (MV_Complex v2) = M.basicUnsafeMove v1 v2
-  basicUnsafeGrow (MV_Complex v) n = MV_Complex `liftM` M.basicUnsafeGrow v n
-
-instance (Unbox a) => G.Vector Vector (Complex a) where
-  {-# INLINE basicUnsafeFreeze #-}
-  {-# INLINE basicUnsafeThaw #-}
-  {-# INLINE basicLength #-}
-  {-# INLINE basicUnsafeSlice #-}
-  {-# INLINE basicUnsafeIndexM #-}
-  {-# INLINE elemseq #-}
-  basicUnsafeFreeze (MV_Complex v) = V_Complex `liftM` G.basicUnsafeFreeze v
-  basicUnsafeThaw (V_Complex v) = MV_Complex `liftM` G.basicUnsafeThaw v
-  basicLength (V_Complex v) = G.basicLength v
-  basicUnsafeSlice i n (V_Complex v) = V_Complex $ G.basicUnsafeSlice i n v
-  basicUnsafeIndexM (V_Complex v) i
-                = uncurry (:+) `liftM` G.basicUnsafeIndexM v i
-  basicUnsafeCopy (MV_Complex mv) (V_Complex v)
-                = G.basicUnsafeCopy mv v
-  elemseq _ (x :+ y) z = G.elemseq (undefined :: Vector a) x
-                       $ G.elemseq (undefined :: Vector a) y z
-
--- ------
--- Tuples
--- ------
-
-#define DEFINE_INSTANCES
-#include "unbox-tuple-instances"
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Unboxed/Mutable.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Unboxed/Mutable.hs
deleted file mode 100644
index cb82acea8f87..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Unboxed/Mutable.hs
+++ /dev/null
@@ -1,307 +0,0 @@
-{-# LANGUAGE CPP #-}
-
--- |
--- Module      : Data.Vector.Unboxed.Mutable
--- Copyright   : (c) Roman Leshchinskiy 2009-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Mutable adaptive unboxed vectors
---
-
-module Data.Vector.Unboxed.Mutable (
-  -- * Mutable vectors of primitive types
-  MVector(..), IOVector, STVector, Unbox,
-
-  -- * Accessors
-
-  -- ** Length information
-  length, null,
-
-  -- ** Extracting subvectors
-  slice, init, tail, take, drop, splitAt,
-  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-
-  -- ** Overlapping
-  overlaps,
-
-  -- * Construction
-
-  -- ** Initialisation
-  new, unsafeNew, replicate, replicateM, clone,
-
-  -- ** Growing
-  grow, unsafeGrow,
-
-  -- ** Restricting memory usage
-  clear,
-
-  -- * Zipping and unzipping
-  zip, zip3, zip4, zip5, zip6,
-  unzip, unzip3, unzip4, unzip5, unzip6,
-
-  -- * Accessing individual elements
-  read, write, modify, swap,
-  unsafeRead, unsafeWrite, unsafeModify, unsafeSwap,
-
-  -- * Modifying vectors
-  nextPermutation,
-
-  -- ** Filling and copying
-  set, copy, move, unsafeCopy, unsafeMove
-) where
-
-import Data.Vector.Unboxed.Base
-import qualified Data.Vector.Generic.Mutable as G
-import Data.Vector.Fusion.Util ( delayed_min )
-import Control.Monad.Primitive
-
-import Prelude hiding ( length, null, replicate, reverse, map, read,
-                        take, drop, splitAt, init, tail,
-                        zip, zip3, unzip, unzip3 )
-
--- don't import an unused Data.Vector.Internal.Check
-#define NOT_VECTOR_MODULE
-#include "vector.h"
-
--- Length information
--- ------------------
-
--- | Length of the mutable vector.
-length :: Unbox a => MVector s a -> Int
-{-# INLINE length #-}
-length = G.length
-
--- | Check whether the vector is empty
-null :: Unbox a => MVector s a -> Bool
-{-# INLINE null #-}
-null = G.null
-
--- Extracting subvectors
--- ---------------------
-
--- | Yield a part of the mutable vector without copying it.
-slice :: Unbox a => Int -> Int -> MVector s a -> MVector s a
-{-# INLINE slice #-}
-slice = G.slice
-
-take :: Unbox a => Int -> MVector s a -> MVector s a
-{-# INLINE take #-}
-take = G.take
-
-drop :: Unbox a => Int -> MVector s a -> MVector s a
-{-# INLINE drop #-}
-drop = G.drop
-
-splitAt :: Unbox a => Int -> MVector s a -> (MVector s a, MVector s a)
-{-# INLINE splitAt #-}
-splitAt = G.splitAt
-
-init :: Unbox a => MVector s a -> MVector s a
-{-# INLINE init #-}
-init = G.init
-
-tail :: Unbox a => MVector s a -> MVector s a
-{-# INLINE tail #-}
-tail = G.tail
-
--- | Yield a part of the mutable vector without copying it. No bounds checks
--- are performed.
-unsafeSlice :: Unbox a
-            => Int  -- ^ starting index
-            -> Int  -- ^ length of the slice
-            -> MVector s a
-            -> MVector s a
-{-# INLINE unsafeSlice #-}
-unsafeSlice = G.unsafeSlice
-
-unsafeTake :: Unbox a => Int -> MVector s a -> MVector s a
-{-# INLINE unsafeTake #-}
-unsafeTake = G.unsafeTake
-
-unsafeDrop :: Unbox a => Int -> MVector s a -> MVector s a
-{-# INLINE unsafeDrop #-}
-unsafeDrop = G.unsafeDrop
-
-unsafeInit :: Unbox a => MVector s a -> MVector s a
-{-# INLINE unsafeInit #-}
-unsafeInit = G.unsafeInit
-
-unsafeTail :: Unbox a => MVector s a -> MVector s a
-{-# INLINE unsafeTail #-}
-unsafeTail = G.unsafeTail
-
--- Overlapping
--- -----------
-
--- | Check whether two vectors overlap.
-overlaps :: Unbox a => MVector s a -> MVector s a -> Bool
-{-# INLINE overlaps #-}
-overlaps = G.overlaps
-
--- Initialisation
--- --------------
-
--- | Create a mutable vector of the given length.
-new :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a)
-{-# INLINE new #-}
-new = G.new
-
--- | Create a mutable vector of the given length. The memory is not initialized.
-unsafeNew :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a)
-{-# INLINE unsafeNew #-}
-unsafeNew = G.unsafeNew
-
--- | Create a mutable vector of the given length (0 if the length is negative)
--- and fill it with an initial value.
-replicate :: (PrimMonad m, Unbox a) => Int -> a -> m (MVector (PrimState m) a)
-{-# INLINE replicate #-}
-replicate = G.replicate
-
--- | Create a mutable vector of the given length (0 if the length is negative)
--- and fill it with values produced by repeatedly executing the monadic action.
-replicateM :: (PrimMonad m, Unbox a) => Int -> m a -> m (MVector (PrimState m) a)
-{-# INLINE replicateM #-}
-replicateM = G.replicateM
-
--- | Create a copy of a mutable vector.
-clone :: (PrimMonad m, Unbox a)
-      => MVector (PrimState m) a -> m (MVector (PrimState m) a)
-{-# INLINE clone #-}
-clone = G.clone
-
--- Growing
--- -------
-
--- | Grow a vector by the given number of elements. The number must be
--- positive.
-grow :: (PrimMonad m, Unbox a)
-              => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
-{-# INLINE grow #-}
-grow = G.grow
-
--- | Grow a vector by the given number of elements. The number must be
--- positive but this is not checked.
-unsafeGrow :: (PrimMonad m, Unbox a)
-               => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
-{-# INLINE unsafeGrow #-}
-unsafeGrow = G.unsafeGrow
-
--- Restricting memory usage
--- ------------------------
-
--- | Reset all elements of the vector to some undefined value, clearing all
--- references to external objects. This is usually a noop for unboxed vectors.
-clear :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> m ()
-{-# INLINE clear #-}
-clear = G.clear
-
--- Accessing individual elements
--- -----------------------------
-
--- | Yield the element at the given position.
-read :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m a
-{-# INLINE read #-}
-read = G.read
-
--- | Replace the element at the given position.
-write :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m ()
-{-# INLINE write #-}
-write = G.write
-
--- | Modify the element at the given position.
-modify :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
-{-# INLINE modify #-}
-modify = G.modify
-
--- | Swap the elements at the given positions.
-swap :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m ()
-{-# INLINE swap #-}
-swap = G.swap
-
-
--- | Yield the element at the given position. No bounds checks are performed.
-unsafeRead :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m a
-{-# INLINE unsafeRead #-}
-unsafeRead = G.unsafeRead
-
--- | Replace the element at the given position. No bounds checks are performed.
-unsafeWrite
-    :: (PrimMonad m, Unbox a) =>  MVector (PrimState m) a -> Int -> a -> m ()
-{-# INLINE unsafeWrite #-}
-unsafeWrite = G.unsafeWrite
-
--- | Modify the element at the given position. No bounds checks are performed.
-unsafeModify :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
-{-# INLINE unsafeModify #-}
-unsafeModify = G.unsafeModify
-
--- | Swap the elements at the given positions. No bounds checks are performed.
-unsafeSwap
-    :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m ()
-{-# INLINE unsafeSwap #-}
-unsafeSwap = G.unsafeSwap
-
--- Filling and copying
--- -------------------
-
--- | Set all elements of the vector to the given value.
-set :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> a -> m ()
-{-# INLINE set #-}
-set = G.set
-
--- | Copy a vector. The two vectors must have the same length and may not
--- overlap.
-copy :: (PrimMonad m, Unbox a)
-     => MVector (PrimState m) a   -- ^ target
-     -> MVector (PrimState m) a   -- ^ source
-     -> m ()
-{-# INLINE copy #-}
-copy = G.copy
-
--- | Copy a vector. The two vectors must have the same length and may not
--- overlap. This is not checked.
-unsafeCopy :: (PrimMonad m, Unbox a)
-           => MVector (PrimState m) a   -- ^ target
-           -> MVector (PrimState m) a   -- ^ source
-           -> m ()
-{-# INLINE unsafeCopy #-}
-unsafeCopy = G.unsafeCopy
-
--- | Move the contents of a vector. The two vectors must have the same
--- length.
---
--- If the vectors do not overlap, then this is equivalent to 'copy'.
--- Otherwise, the copying is performed as if the source vector were
--- copied to a temporary vector and then the temporary vector was copied
--- to the target vector.
-move :: (PrimMonad m, Unbox a)
-                 => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
-{-# INLINE move #-}
-move = G.move
-
--- | Move the contents of a vector. The two vectors must have the same
--- length, but this is not checked.
---
--- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
--- Otherwise, the copying is performed as if the source vector were
--- copied to a temporary vector and then the temporary vector was copied
--- to the target vector.
-unsafeMove :: (PrimMonad m, Unbox a)
-                          => MVector (PrimState m) a   -- ^ target
-                          -> MVector (PrimState m) a   -- ^ source
-                          -> m ()
-{-# INLINE unsafeMove #-}
-unsafeMove = G.unsafeMove
-
--- | Compute the next (lexicographically) permutation of given vector in-place.
---   Returns False when input is the last permtuation
-nextPermutation :: (PrimMonad m,Ord e,Unbox e) => MVector (PrimState m) e -> m Bool
-{-# INLINE nextPermutation #-}
-nextPermutation = G.nextPermutation
-
-#define DEFINE_MUTABLE
-#include "unbox-tuple-instances"
diff --git a/third_party/bazel/rules_haskell/examples/vector/LICENSE b/third_party/bazel/rules_haskell/examples/vector/LICENSE
deleted file mode 100644
index cafa68efb33e..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/LICENSE
+++ /dev/null
@@ -1,30 +0,0 @@
-Copyright (c) 2008-2012, Roman Leshchinskiy
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
-- Redistributions of source code must retain the above copyright notice,
-this list of conditions and the following disclaimer.
- 
-- Redistributions in binary form must reproduce the above copyright notice,
-this list of conditions and the following disclaimer in the documentation
-and/or other materials provided with the distribution.
- 
-- Neither name of the University nor the names of its contributors may be
-used to endorse or promote products derived from this software without
-specific prior written permission. 
-
-THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
-GLASGOW AND THE CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
-INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
-FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE CONTRIBUTORS BE LIABLE
-FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-DAMAGE.
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/README.md b/third_party/bazel/rules_haskell/examples/vector/README.md
deleted file mode 100644
index 079dbd0b6b93..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/README.md
+++ /dev/null
@@ -1,6 +0,0 @@
-The `vector` package [![Build Status](https://travis-ci.org/haskell/vector.png?branch=master)](https://travis-ci.org/haskell/vector)
-====================
-
-An efficient implementation of Int-indexed arrays (both mutable and immutable), with a powerful loop optimisation framework.
-
-See [`vector` on Hackage](http://hackage.haskell.org/package/vector) for more information.
diff --git a/third_party/bazel/rules_haskell/examples/vector/Setup.hs b/third_party/bazel/rules_haskell/examples/vector/Setup.hs
deleted file mode 100644
index 200a2e51d0b4..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Setup.hs
+++ /dev/null
@@ -1,3 +0,0 @@
-import Distribution.Simple
-main = defaultMain
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/AwShCC.hs b/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/AwShCC.hs
deleted file mode 100644
index 404e289fae15..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/AwShCC.hs
+++ /dev/null
@@ -1,38 +0,0 @@
-{-# OPTIONS -fno-spec-constr-count #-}
-module Algo.AwShCC (awshcc) where
-
-import Data.Vector.Unboxed as V
-
-awshcc :: (Int, Vector Int, Vector Int) -> Vector Int
-{-# NOINLINE awshcc #-}
-awshcc (n, es1, es2) = concomp ds es1' es2'
-    where
-      ds = V.enumFromTo 0 (n-1) V.++ V.enumFromTo 0 (n-1)
-      es1' = es1 V.++ es2
-      es2' = es2 V.++ es1
-
-      starCheck ds = V.backpermute st' gs
-        where
-          gs  = V.backpermute ds ds
-          st  = V.zipWith (==) ds gs
-          st' = V.update st . V.filter (not . snd)
-                            $ V.zip gs st
-
-      concomp ds es1 es2
-        | V.and (starCheck ds'') = ds''
-        | otherwise              = concomp (V.backpermute ds'' ds'') es1 es2
-        where
-          ds'  = V.update ds
-               . V.map (\(di, dj, gi) -> (di, dj))
-               . V.filter (\(di, dj, gi) -> gi == di && di > dj)
-               $ V.zip3 (V.backpermute ds es1)
-                        (V.backpermute ds es2)
-                        (V.backpermute ds (V.backpermute ds es1))
-
-          ds'' = V.update ds'
-               . V.map (\(di, dj, st) -> (di, dj))
-               . V.filter (\(di, dj, st) -> st && di /= dj)
-               $ V.zip3 (V.backpermute ds' es1)
-                        (V.backpermute ds' es2)
-                        (V.backpermute (starCheck ds') es1)
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/HybCC.hs b/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/HybCC.hs
deleted file mode 100644
index 876d08f75b62..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/HybCC.hs
+++ /dev/null
@@ -1,42 +0,0 @@
-module Algo.HybCC (hybcc) where
-
-import Data.Vector.Unboxed as V
-
-hybcc :: (Int, Vector Int, Vector Int) -> Vector Int
-{-# NOINLINE hybcc #-}
-hybcc (n, e1, e2) = concomp (V.zip e1 e2) n
-    where
-      concomp es n
-        | V.null es = V.enumFromTo 0 (n-1)
-        | otherwise = V.backpermute ins ins
-        where
-          p = shortcut_all
-            $ V.update (V.enumFromTo 0 (n-1)) es
-
-          (es',i) = compress p es
-          r = concomp es' (V.length i)
-          ins = V.update_ p i
-              $ V.backpermute i r
-
-      enumerate bs = V.prescanl' (+) 0 $ V.map (\b -> if b then 1 else 0) bs
-
-      pack_index bs = V.map fst
-                    . V.filter snd
-                    $ V.zip (V.enumFromTo 0 (V.length bs - 1)) bs
-
-      shortcut_all p | p == pp   = pp
-                     | otherwise = shortcut_all pp
-        where
-          pp = V.backpermute p p
-
-      compress p es = (new_es, pack_index roots)
-        where
-          (e1,e2) = V.unzip es
-          es' = V.map (\(x,y) -> if x > y then (y,x) else (x,y))
-              . V.filter (\(x,y) -> x /= y)
-              $ V.zip (V.backpermute p e1) (V.backpermute p e2)
-
-          roots = V.zipWith (==) p (V.enumFromTo 0 (V.length p - 1))
-          labels = enumerate roots
-          (e1',e2') = V.unzip es'
-          new_es = V.zip (V.backpermute labels e1') (V.backpermute labels e2')
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Leaffix.hs b/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Leaffix.hs
deleted file mode 100644
index 40ec517556fe..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Leaffix.hs
+++ /dev/null
@@ -1,16 +0,0 @@
-module Algo.Leaffix where
-
-import Data.Vector.Unboxed as V
-
-leaffix :: (Vector Int, Vector Int) -> Vector Int
-{-# NOINLINE leaffix #-}
-leaffix (ls,rs)
-    = leaffix (V.replicate (V.length ls) 1) ls rs
-    where
-      leaffix xs ls rs
-        = let zs   = V.replicate (V.length ls * 2) 0
-              vs   = V.update_ zs ls xs
-              sums = V.prescanl' (+) 0 vs
-          in
-          V.zipWith (-) (V.backpermute sums ls) (V.backpermute sums rs)
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/ListRank.hs b/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/ListRank.hs
deleted file mode 100644
index 933bd8eb2ec9..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/ListRank.hs
+++ /dev/null
@@ -1,21 +0,0 @@
-module Algo.ListRank
-where
-
-import Data.Vector.Unboxed as V
-
-listRank :: Int -> Vector Int
-{-# NOINLINE listRank #-}
-listRank n = pointer_jump xs val
-  where
-    xs = 0 `V.cons` V.enumFromTo 0 (n-2)
-
-    val = V.zipWith (\i j -> if i == j then 0 else 1)
-                    xs (V.enumFromTo 0 (n-1))
-
-    pointer_jump pt val
-      | npt == pt = val
-      | otherwise = pointer_jump npt nval
-      where
-        npt  = V.backpermute pt pt
-        nval = V.zipWith (+) val (V.backpermute val pt)
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Quickhull.hs b/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Quickhull.hs
deleted file mode 100644
index 694bea3097a3..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Quickhull.hs
+++ /dev/null
@@ -1,32 +0,0 @@
-module Algo.Quickhull (quickhull) where
-
-import Data.Vector.Unboxed as V
-
-quickhull :: (Vector Double, Vector Double) -> (Vector Double, Vector Double)
-{-# NOINLINE quickhull #-}
-quickhull (xs, ys) = xs' `seq` ys' `seq` (xs',ys')
-    where
-      (xs',ys') = V.unzip
-                $ hsplit points pmin pmax V.++ hsplit points pmax pmin
-
-      imin = V.minIndex xs
-      imax = V.maxIndex xs
-
-      points = V.zip xs ys
-      pmin   = points V.! imin
-      pmax   = points V.! imax
-
-
-      hsplit points p1 p2
-        | V.length packed < 2 = p1 `V.cons` packed
-        | otherwise = hsplit packed p1 pm V.++ hsplit packed pm p2
-        where
-          cs     = V.map (\p -> cross p p1 p2) points
-          packed = V.map fst
-                 $ V.filter (\t -> snd t > 0)
-                 $ V.zip points cs
-
-          pm     = points V.! V.maxIndex cs
-
-      cross (x,y) (x1,y1) (x2,y2) = (x1-x)*(y2-y) - (y1-y)*(x2-x)
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Rootfix.hs b/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Rootfix.hs
deleted file mode 100644
index 1b112a801a5e..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Rootfix.hs
+++ /dev/null
@@ -1,15 +0,0 @@
-module Algo.Rootfix where
-
-import Data.Vector.Unboxed as V
-
-rootfix :: (V.Vector Int, V.Vector Int) -> V.Vector Int
-{-# NOINLINE rootfix #-}
-rootfix (ls, rs) = rootfix (V.replicate (V.length ls) 1) ls rs
-    where
-      rootfix xs ls rs
-        = let zs   = V.replicate (V.length ls * 2) 0
-              vs   = V.update_ (V.update_ zs ls xs) rs (V.map negate xs)
-              sums = V.prescanl' (+) 0 vs
-          in
-          V.backpermute sums ls
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Spectral.hs b/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Spectral.hs
deleted file mode 100644
index 811c58269e84..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Spectral.hs
+++ /dev/null
@@ -1,21 +0,0 @@
-module Algo.Spectral ( spectral ) where
-
-import Data.Vector.Unboxed as V
-
-import Data.Bits
-
-spectral :: Vector Double -> Vector Double
-{-# NOINLINE spectral #-}
-spectral us = us `seq` V.map row (V.enumFromTo 0 (n-1))
-    where
-      n = V.length us
-
-      row i = i `seq` V.sum (V.imap (\j u -> eval_A i j * u) us)
-
-      eval_A i j = 1 / fromIntegral r
-        where
-          r = u + (i+1)
-          u = t `shiftR` 1
-          t = n * (n+1)
-          n = i+j
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Tridiag.hs b/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Tridiag.hs
deleted file mode 100644
index 7668deace132..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Algo/Tridiag.hs
+++ /dev/null
@@ -1,16 +0,0 @@
-module Algo.Tridiag ( tridiag ) where
-
-import Data.Vector.Unboxed as V
-
-tridiag :: (Vector Double, Vector Double, Vector Double, Vector Double)
-            -> Vector Double
-{-# NOINLINE tridiag #-}
-tridiag (as,bs,cs,ds) = V.prescanr' (\(c,d) x' -> d - c*x') 0
-                      $ V.prescanl' modify (0,0)
-                      $ V.zip (V.zip as bs) (V.zip cs ds)
-    where
-      modify (c',d') ((a,b),(c,d)) = 
-                   let id = 1 / (b - c'*a)
-                   in
-                   id `seq` (c*id, (d-d'*a)*id)
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/LICENSE b/third_party/bazel/rules_haskell/examples/vector/benchmarks/LICENSE
deleted file mode 100644
index fc213a6ffbfe..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/LICENSE
+++ /dev/null
@@ -1,30 +0,0 @@
-Copyright (c) 2008-2009, Roman Leshchinskiy
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
-- Redistributions of source code must retain the above copyright notice,
-this list of conditions and the following disclaimer.
- 
-- Redistributions in binary form must reproduce the above copyright notice,
-this list of conditions and the following disclaimer in the documentation
-and/or other materials provided with the distribution.
- 
-- Neither name of the University nor the names of its contributors may be
-used to endorse or promote products derived from this software without
-specific prior written permission. 
-
-THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
-GLASGOW AND THE CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
-INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
-FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE CONTRIBUTORS BE LIABLE
-FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-DAMAGE.
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Main.hs b/third_party/bazel/rules_haskell/examples/vector/benchmarks/Main.hs
deleted file mode 100644
index 65bd297a7552..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Main.hs
+++ /dev/null
@@ -1,46 +0,0 @@
-module Main where
-
-import Criterion.Main
-
-import Algo.ListRank  (listRank)
-import Algo.Rootfix   (rootfix)
-import Algo.Leaffix   (leaffix)
-import Algo.AwShCC    (awshcc)
-import Algo.HybCC     (hybcc)
-import Algo.Quickhull (quickhull)
-import Algo.Spectral  ( spectral )
-import Algo.Tridiag   ( tridiag )
-
-import TestData.ParenTree ( parenTree )
-import TestData.Graph     ( randomGraph )
-import TestData.Random    ( randomVector )
-
-import Data.Vector.Unboxed ( Vector )
-
-size :: Int
-size = 100000
-
-main = lparens `seq` rparens `seq`
-       nodes `seq` edges1 `seq` edges2 `seq`
-       do
-         as <- randomVector size :: IO (Vector Double)
-         bs <- randomVector size :: IO (Vector Double)
-         cs <- randomVector size :: IO (Vector Double)
-         ds <- randomVector size :: IO (Vector Double)
-         sp <- randomVector (floor $ sqrt $ fromIntegral size)
-                                 :: IO (Vector Double)
-         as `seq` bs `seq` cs `seq` ds `seq` sp `seq`
-           defaultMain [ bench "listRank"  $ whnf listRank size
-                       , bench "rootfix"   $ whnf rootfix (lparens, rparens)
-                       , bench "leaffix"   $ whnf leaffix (lparens, rparens)
-                       , bench "awshcc"    $ whnf awshcc (nodes, edges1, edges2)
-                       , bench "hybcc"     $ whnf hybcc  (nodes, edges1, edges2)
-                       , bench "quickhull" $ whnf quickhull (as,bs)
-                       , bench "spectral"  $ whnf spectral sp
-                       , bench "tridiag"   $ whnf tridiag (as,bs,cs,ds)
-                       ]
-  where
-    (lparens, rparens) = parenTree size
-    (nodes, edges1, edges2) = randomGraph size
-    
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Setup.hs b/third_party/bazel/rules_haskell/examples/vector/benchmarks/Setup.hs
deleted file mode 100644
index 200a2e51d0b4..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/Setup.hs
+++ /dev/null
@@ -1,3 +0,0 @@
-import Distribution.Simple
-main = defaultMain
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/TestData/Graph.hs b/third_party/bazel/rules_haskell/examples/vector/benchmarks/TestData/Graph.hs
deleted file mode 100644
index 8b8ca837b890..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/TestData/Graph.hs
+++ /dev/null
@@ -1,45 +0,0 @@
-module TestData.Graph ( randomGraph )
-where
-
-import System.Random.MWC
-import qualified Data.Array.ST as STA
-import qualified Data.Vector.Unboxed as V
-
-import Control.Monad.ST ( ST, runST )
-
-randomGraph :: Int -> (Int, V.Vector Int, V.Vector Int)
-randomGraph e
-  = runST (
-    do
-      g <- create
-      arr <- STA.newArray (0,n-1) [] :: ST s (STA.STArray s Int [Int])
-      addRandomEdges n g arr e
-      xs <- STA.getAssocs arr
-      let (as,bs) = unzip [(i,j) | (i,js) <- xs, j <- js ]
-      return (n, V.fromListN (length as) as, V.fromListN (length bs) bs)
-    )
-  where
-    n = e `div` 10
-
-addRandomEdges :: Int -> Gen s -> STA.STArray s Int [Int] -> Int -> ST s ()
-addRandomEdges n g arr = fill
-  where
-    fill 0 = return ()
-    fill e
-      = do
-          m <- random_index
-          n <- random_index
-          let lo = min m n
-              hi = max m n
-          ns <- STA.readArray arr lo
-          if lo == hi || hi `elem` ns
-            then fill e
-            else do
-                   STA.writeArray arr lo (hi:ns)
-                   fill (e-1)
-
-    random_index = do
-                     x <- uniform g
-                     let i = floor ((x::Double) * toEnum n)
-                     if i == n then return 0 else return i
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/TestData/ParenTree.hs b/third_party/bazel/rules_haskell/examples/vector/benchmarks/TestData/ParenTree.hs
deleted file mode 100644
index 4aeb750954a9..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/TestData/ParenTree.hs
+++ /dev/null
@@ -1,20 +0,0 @@
-module TestData.ParenTree where
-
-import qualified Data.Vector.Unboxed as V
-
-parenTree :: Int -> (V.Vector Int, V.Vector Int)
-parenTree n = case go ([],[]) 0 (if even n then n else n+1) of
-               (ls,rs) -> (V.fromListN (length ls) (reverse ls),
-                           V.fromListN (length rs) (reverse rs))
-  where
-    go (ls,rs) i j = case j-i of
-                       0 -> (ls,rs)
-                       2 -> (ls',rs')
-                       d -> let k = ((d-2) `div` 4) * 2
-                            in
-                            go (go (ls',rs') (i+1) (i+1+k)) (i+1+k) (j-1)
-      where
-        ls' = i:ls
-        rs' = j-1:rs
-
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/TestData/Random.hs b/third_party/bazel/rules_haskell/examples/vector/benchmarks/TestData/Random.hs
deleted file mode 100644
index f9b741fb97ae..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/TestData/Random.hs
+++ /dev/null
@@ -1,16 +0,0 @@
-module TestData.Random ( randomVector ) where
-
-import qualified Data.Vector.Unboxed as V
-
-import System.Random.MWC
-import Control.Monad.ST ( runST )
-
-randomVector :: (Variate a, V.Unbox a) => Int -> IO (V.Vector a)
-randomVector n = withSystemRandom $ \g ->
-  do
-    xs <- sequence $ replicate n $ uniform g
-    io (return $ V.fromListN n xs)
-  where
-    io :: IO a -> IO a
-    io = id
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/benchmarks/vector-benchmarks.cabal b/third_party/bazel/rules_haskell/examples/vector/benchmarks/vector-benchmarks.cabal
deleted file mode 100644
index 3e825c0fa4e6..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/benchmarks/vector-benchmarks.cabal
+++ /dev/null
@@ -1,37 +0,0 @@
-Name:           vector-benchmarks
-Version:        0.10.9
-License:        BSD3
-License-File:   LICENSE
-Author:         Roman Leshchinskiy <rl@cse.unsw.edu.au>
-Maintainer:     Roman Leshchinskiy <rl@cse.unsw.edu.au>
-Copyright:      (c) Roman Leshchinskiy 2010-2012
-Cabal-Version:  >= 1.2
-Build-Type:     Simple
-
-Executable algorithms
-  Main-Is: Main.hs
-
-  Build-Depends: base >= 2 && < 5, array,
-                 criterion >= 0.5 && < 0.7,
-                 mwc-random >= 0.5 && < 0.13,
-                 vector == 0.10.9
-
-  if impl(ghc<6.13)
-    Ghc-Options: -finline-if-enough-args -fno-method-sharing
-  
-  Ghc-Options: -O2
-
-  Other-Modules:
-        Algo.ListRank
-        Algo.Rootfix
-        Algo.Leaffix
-        Algo.AwShCC
-        Algo.HybCC
-        Algo.Quickhull
-        Algo.Spectral
-        Algo.Tridiag
-
-        TestData.ParenTree
-        TestData.Graph
-        TestData.Random
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/changelog b/third_party/bazel/rules_haskell/examples/vector/changelog
deleted file mode 100644
index 3d824b74d123..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/changelog
+++ /dev/null
@@ -1,75 +0,0 @@
-Changes in version 0.12.0.1
-
- * Make sure `length` can be inlined
- * Include modules that test-suites depend on in other-modules
-
-Changes in version 0.12.0.0
-
- * Documentation fixes/additions
- * New functions: createT, iscanl/r, iterateNM, unfoldrM, uniq
- * New instances for various vector types: Semigroup, MonadZip
- * Made `Storable` vectors respect memory alignment
- * Changed some macros to ConstraintKinds
-   - Dropped compatibility with old GHCs to support this
- * Add `Eq1`, `Ord1`, `Show1`, and `Read1` `Vector` instances, and related
-   helper functions.
- * Relax context for `Unbox (Complex a)`.
-
-Changes in version 0.11.0.0
-
- * Define `Applicative` instances for `Data.Vector.Fusion.Util.{Box,Id}`
- * Define non-bottom `fail` for `instance Monad Vector`
- * New generalized stream fusion framework
- * Various safety fixes
-   - Various overflows due to vector size have been eliminated
-   - Memory is initialized on creation of unboxed vectors
- * Changes to SPEC usage to allow building under more conditions
-
-Changes in version 0.10.12.3
-
- * Allow building with `primtive-0.6`
-
-Changes in version 0.10.12.2
-
- * Add support for `deepseq-1.4.0.0`
-
-Changes in version 0.10.12.1
-
- * Fixed compilation on non-head GHCs
-
-Changes in version 0.10.12.0
-
- * Export MVector constructor from Data.Vector.Primitive to match Vector's
-   (which was already exported).
-
- * Fix building on GHC 7.9 by adding Applicative instances for Id and Box
-
-Changes in version 0.10.11.0
-
- * Support OverloadedLists for boxed Vector in GHC >= 7.8
-
-Changes in version 0.10.10.0
-
- * Minor version bump to rectify PVP violation occured in 0.10.9.3 release
-
-Changes in version 0.10.9.3 (deprecated)
-
- * Add support for OverloadedLists in GHC >= 7.8
-
-Changes in version 0.10.9.2
-
- * Fix compilation with GHC 7.9
-
-Changes in version 0.10.9.1
-
- * Implement poly-kinded Typeable
-
-Changes in version 0.10.0.1
-
- * Require `primitive` to include workaround for a GHC array copying bug
-
-Changes in version 0.10
-
- * `NFData` instances
- * More efficient block fills
- * Safe Haskell support removed
diff --git a/third_party/bazel/rules_haskell/examples/vector/include/vector.h b/third_party/bazel/rules_haskell/examples/vector/include/vector.h
deleted file mode 100644
index 1568bb290633..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/include/vector.h
+++ /dev/null
@@ -1,20 +0,0 @@
-#define PHASE_FUSED [1]
-#define PHASE_INNER [0]
-
-#define INLINE_FUSED INLINE PHASE_FUSED
-#define INLINE_INNER INLINE PHASE_INNER
-
-#ifndef NOT_VECTOR_MODULE
-import qualified Data.Vector.Internal.Check as Ck
-#endif
-
-#define ERROR          (Ck.error __FILE__ __LINE__)
-#define INTERNAL_ERROR (Ck.internalError __FILE__ __LINE__)
-
-#define CHECK(f) (Ck.f __FILE__ __LINE__)
-#define BOUNDS_CHECK(f) (CHECK(f) Ck.Bounds)
-#define UNSAFE_CHECK(f) (CHECK(f) Ck.Unsafe)
-#define INTERNAL_CHECK(f) (CHECK(f) Ck.Internal)
-
-#define PHASE_STREAM  Please use "PHASE_FUSED" instead
-#define INLINE_STREAM Please use "INLINE_FUSED" instead
diff --git a/third_party/bazel/rules_haskell/examples/vector/internal/GenUnboxTuple.hs b/third_party/bazel/rules_haskell/examples/vector/internal/GenUnboxTuple.hs
deleted file mode 100644
index 8debff23a975..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/internal/GenUnboxTuple.hs
+++ /dev/null
@@ -1,239 +0,0 @@
-{-# LANGUAGE ParallelListComp #-}
-module Main where
-
-import Text.PrettyPrint
-
-import System.Environment ( getArgs )
-
-main = do
-         [s] <- getArgs
-         let n = read s
-         mapM_ (putStrLn . render . generate) [2..n]
-
-generate :: Int -> Doc
-generate n =
-  vcat [ text "#ifdef DEFINE_INSTANCES"
-       , data_instance "MVector s" "MV"
-       , data_instance "Vector" "V"
-       , class_instance "Unbox"
-       , class_instance "M.MVector MVector" <+> text "where"
-       , nest 2 $ vcat $ map method methods_MVector
-       , class_instance "G.Vector Vector" <+> text "where"
-       , nest 2 $ vcat $ map method methods_Vector
-       , text "#endif"
-       , text "#ifdef DEFINE_MUTABLE"
-       , define_zip "MVector s" "MV"
-       , define_unzip "MVector s" "MV"
-       , text "#endif"
-       , text "#ifdef DEFINE_IMMUTABLE"
-       , define_zip "Vector" "V"
-       , define_zip_rule
-       , define_unzip "Vector" "V"
-       , text "#endif"
-       ]
-
-  where
-    vars  = map (\c -> text ['_',c]) $ take n ['a'..]
-    varss = map (<> char 's') vars
-    tuple xs = parens $ hsep $ punctuate comma xs
-    vtuple xs = parens $ sep $ punctuate comma xs
-    con s = text s <> char '_' <> int n
-    var c = text ('_' : c : "_")
-
-    data_instance ty c
-      = hang (hsep [text "data instance", text ty, tuple vars])
-             4
-             (hsep [char '=', con c, text "{-# UNPACK #-} !Int"
-                   , vcat $ map (\v -> char '!' <> parens (text ty <+> v)) vars])
-
-    class_instance cls
-      = text "instance" <+> vtuple [text "Unbox" <+> v | v <- vars]
-                        <+> text "=>" <+> text cls <+> tuple vars
-
-
-    define_zip ty c
-      = sep [text "-- | /O(1)/ Zip" <+> int n <+> text "vectors"
-            ,name <+> text "::"
-                  <+> vtuple [text "Unbox" <+> v | v <- vars]
-                  <+> text "=>"
-                  <+> sep (punctuate (text " ->") [text ty <+> v | v <- vars])
-                  <+> text "->"
-                  <+> text ty <+> tuple vars
-             ,text "{-# INLINE_FUSED"  <+> name <+> text "#-}"
-             ,name <+> sep varss
-                   <+> text "="
-                   <+> con c
-                   <+> text "len"
-                   <+> sep [parens $ text "unsafeSlice"
-                                     <+> char '0'
-                                     <+> text "len"
-                                     <+> vs | vs <- varss]
-             ,nest 2 $ hang (text "where")
-                            2
-                     $ text "len ="
-                       <+> sep (punctuate (text " `delayed_min`")
-                                          [text "length" <+> vs | vs <- varss])
-             ]
-      where
-        name | n == 2    = text "zip"
-             | otherwise = text "zip" <> int n
-
-    define_zip_rule
-      = hang (text "{-# RULES" <+> text "\"stream/" <> name "zip"
-              <> text " [Vector.Unboxed]\" forall" <+> sep varss <+> char '.')
-             2 $
-             text "G.stream" <+> parens (name "zip" <+> sep varss)
-             <+> char '='
-             <+> text "Bundle." <> name "zipWith" <+> tuple (replicate n empty)
-             <+> sep [parens $ text "G.stream" <+> vs | vs <- varss]
-             $$ text "#-}"
-     where
-       name s | n == 2    = text s
-              | otherwise = text s <> int n
-       
-
-    define_unzip ty c
-      = sep [text "-- | /O(1)/ Unzip" <+> int n <+> text "vectors"
-            ,name <+> text "::"
-                  <+> vtuple [text "Unbox" <+> v | v <- vars]
-                  <+> text "=>"
-                  <+> text ty <+> tuple vars
-                  <+> text "->" <+> vtuple [text ty <+> v | v <- vars]
-            ,text "{-# INLINE" <+> name <+> text "#-}"
-            ,name <+> pat c <+> text "="
-                  <+> vtuple varss
-            ]
-      where
-        name | n == 2    = text "unzip"
-             | otherwise = text "unzip" <> int n
-
-    pat c = parens $ con c <+> var 'n' <+> sep varss
-    patn c n = parens $ con c <+> (var 'n' <> int n)
-                              <+> sep [v <> int n | v <- varss]
-
-    qM s = text "M." <> text s
-    qG s = text "G." <> text s
-
-    gen_length c _ = (pat c, var 'n')
-
-    gen_unsafeSlice mod c rec
-      = (var 'i' <+> var 'm' <+> pat c,
-         con c <+> var 'm'
-               <+> vcat [parens
-                         $ text mod <> char '.' <> text rec
-                                    <+> var 'i' <+> var 'm' <+> vs
-                                        | vs <- varss])
-
-
-    gen_overlaps rec = (patn "MV" 1 <+> patn "MV" 2,
-                        vcat $ r : [text "||" <+> r | r <- rs])
-      where
-        r : rs = [qM rec <+> v <> char '1' <+> v <> char '2' | v <- varss]
-
-    gen_unsafeNew rec
-      = (var 'n',
-         mk_do [v <+> text "<-" <+> qM rec <+> var 'n' | v <- varss]
-               $ text "return $" <+> con "MV" <+> var 'n' <+> sep varss)
-
-    gen_unsafeReplicate rec
-      = (var 'n' <+> tuple vars,
-         mk_do [vs <+> text "<-" <+> qM rec <+> var 'n' <+> v
-                        | v  <- vars | vs <- varss]
-               $ text "return $" <+> con "MV" <+> var 'n' <+> sep varss)
-
-    gen_unsafeRead rec
-      = (pat "MV" <+> var 'i',
-         mk_do [v <+> text "<-" <+> qM rec <+> vs <+> var 'i' | v  <- vars
-                                                              | vs <- varss]
-               $ text "return" <+> tuple vars)
-
-    gen_unsafeWrite rec
-      = (pat "MV" <+> var 'i' <+> tuple vars,
-         mk_do [qM rec <+> vs <+> var 'i' <+> v | v  <- vars | vs <- varss]
-               empty)
-
-    gen_clear rec
-      = (pat "MV", mk_do [qM rec <+> vs | vs <- varss] empty)
-
-    gen_set rec
-      = (pat "MV" <+> tuple vars,
-         mk_do [qM rec <+> vs <+> v | vs <- varss | v <- vars] empty)
-
-    gen_unsafeCopy c q rec
-      = (patn "MV" 1 <+> patn c 2,
-         mk_do [q rec <+> vs <> char '1' <+> vs <> char '2' | vs <- varss]
-               empty)
-
-    gen_unsafeMove rec
-      = (patn "MV" 1 <+> patn "MV" 2,
-         mk_do [qM rec <+> vs <> char '1' <+> vs <> char '2' | vs <- varss]
-               empty)
-
-    gen_unsafeGrow rec
-      = (pat "MV" <+> var 'm',
-         mk_do [vs <> char '\'' <+> text "<-"
-                                <+> qM rec <+> vs <+> var 'm' | vs <- varss]
-               $ text "return $" <+> con "MV"
-                                 <+> parens (var 'm' <> char '+' <> var 'n')
-                                 <+> sep (map (<> char '\'') varss))
-
-    gen_initialize rec
-      = (pat "MV", mk_do [qM rec <+> vs | vs <- varss] empty)
-
-    gen_unsafeFreeze rec
-      = (pat "MV",
-         mk_do [vs <> char '\'' <+> text "<-" <+> qG rec <+> vs | vs <- varss]
-               $ text "return $" <+> con "V" <+> var 'n'
-                                 <+> sep [vs <> char '\'' | vs <- varss])
-
-    gen_unsafeThaw rec
-      = (pat "V",
-         mk_do [vs <> char '\'' <+> text "<-" <+> qG rec <+> vs | vs <- varss]
-               $ text "return $" <+> con "MV" <+> var 'n'
-                                 <+> sep [vs <> char '\'' | vs <- varss])
-
-    gen_basicUnsafeIndexM rec
-      = (pat "V" <+> var 'i',
-         mk_do [v <+> text "<-" <+> qG rec <+> vs <+> var 'i'
-                        | vs <- varss | v <- vars]
-               $ text "return" <+> tuple vars)
-
-    gen_elemseq rec
-      = (char '_' <+> tuple vars,
-         vcat $ r : [char '.' <+> r | r <- rs])
-      where
-        r : rs = [qG rec <+> parens (text "undefined :: Vector" <+> v)
-                         <+> v | v <- vars]
-
-    mk_do cmds ret = hang (text "do")
-                          2
-                          $ vcat $ cmds ++ [ret]
-
-    method (s, f) = case f s of
-                      (p,e) ->  text "{-# INLINE" <+> text s <+> text " #-}"
-                                $$ hang (text s <+> p)
-                                   4
-                                   (char '=' <+> e)
-                             
-
-    methods_MVector = [("basicLength",            gen_length "MV")
-                      ,("basicUnsafeSlice",       gen_unsafeSlice "M" "MV")
-                      ,("basicOverlaps",          gen_overlaps)
-                      ,("basicUnsafeNew",         gen_unsafeNew)
-                      ,("basicUnsafeReplicate",   gen_unsafeReplicate)
-                      ,("basicUnsafeRead",        gen_unsafeRead)
-                      ,("basicUnsafeWrite",       gen_unsafeWrite)
-                      ,("basicClear",             gen_clear)
-                      ,("basicSet",               gen_set)
-                      ,("basicUnsafeCopy",        gen_unsafeCopy "MV" qM)
-                      ,("basicUnsafeMove",        gen_unsafeMove)
-                      ,("basicUnsafeGrow",        gen_unsafeGrow)
-                      ,("basicInitialize",        gen_initialize)]
-
-    methods_Vector  = [("basicUnsafeFreeze",      gen_unsafeFreeze)
-                      ,("basicUnsafeThaw",        gen_unsafeThaw)
-                      ,("basicLength",            gen_length "V")
-                      ,("basicUnsafeSlice",       gen_unsafeSlice "G" "V")
-                      ,("basicUnsafeIndexM",      gen_basicUnsafeIndexM)
-                      ,("basicUnsafeCopy",        gen_unsafeCopy "V" qG)
-                      ,("elemseq",                gen_elemseq)]
diff --git a/third_party/bazel/rules_haskell/examples/vector/internal/unbox-tuple-instances b/third_party/bazel/rules_haskell/examples/vector/internal/unbox-tuple-instances
deleted file mode 100644
index 6fb88d4a4047..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/internal/unbox-tuple-instances
+++ /dev/null
@@ -1,1134 +0,0 @@
-#ifdef DEFINE_INSTANCES
-data instance MVector s (a, b)
-    = MV_2 {-# UNPACK #-} !Int !(MVector s a)
-                               !(MVector s b)
-data instance Vector (a, b)
-    = V_2 {-# UNPACK #-} !Int !(Vector a)
-                              !(Vector b)
-instance (Unbox a, Unbox b) => Unbox (a, b)
-instance (Unbox a, Unbox b) => M.MVector MVector (a, b) where
-  {-# INLINE basicLength  #-}
-  basicLength (MV_2 n_ _ _) = n_
-  {-# INLINE basicUnsafeSlice  #-}
-  basicUnsafeSlice i_ m_ (MV_2 _ as bs)
-      = MV_2 m_ (M.basicUnsafeSlice i_ m_ as)
-                (M.basicUnsafeSlice i_ m_ bs)
-  {-# INLINE basicOverlaps  #-}
-  basicOverlaps (MV_2 _ as1 bs1) (MV_2 _ as2 bs2)
-      = M.basicOverlaps as1 as2
-        || M.basicOverlaps bs1 bs2
-  {-# INLINE basicUnsafeNew  #-}
-  basicUnsafeNew n_
-      = do
-          as <- M.basicUnsafeNew n_
-          bs <- M.basicUnsafeNew n_
-          return $ MV_2 n_ as bs
-  {-# INLINE basicInitialize  #-}
-  basicInitialize (MV_2 _ as bs)
-      = do
-          M.basicInitialize as
-          M.basicInitialize bs
-  {-# INLINE basicUnsafeReplicate  #-}
-  basicUnsafeReplicate n_ (a, b)
-      = do
-          as <- M.basicUnsafeReplicate n_ a
-          bs <- M.basicUnsafeReplicate n_ b
-          return $ MV_2 n_ as bs
-  {-# INLINE basicUnsafeRead  #-}
-  basicUnsafeRead (MV_2 _ as bs) i_
-      = do
-          a <- M.basicUnsafeRead as i_
-          b <- M.basicUnsafeRead bs i_
-          return (a, b)
-  {-# INLINE basicUnsafeWrite  #-}
-  basicUnsafeWrite (MV_2 _ as bs) i_ (a, b)
-      = do
-          M.basicUnsafeWrite as i_ a
-          M.basicUnsafeWrite bs i_ b
-  {-# INLINE basicClear  #-}
-  basicClear (MV_2 _ as bs)
-      = do
-          M.basicClear as
-          M.basicClear bs
-  {-# INLINE basicSet  #-}
-  basicSet (MV_2 _ as bs) (a, b)
-      = do
-          M.basicSet as a
-          M.basicSet bs b
-  {-# INLINE basicUnsafeCopy  #-}
-  basicUnsafeCopy (MV_2 _ as1 bs1) (MV_2 _ as2 bs2)
-      = do
-          M.basicUnsafeCopy as1 as2
-          M.basicUnsafeCopy bs1 bs2
-  {-# INLINE basicUnsafeMove  #-}
-  basicUnsafeMove (MV_2 _ as1 bs1) (MV_2 _ as2 bs2)
-      = do
-          M.basicUnsafeMove as1 as2
-          M.basicUnsafeMove bs1 bs2
-  {-# INLINE basicUnsafeGrow  #-}
-  basicUnsafeGrow (MV_2 n_ as bs) m_
-      = do
-          as' <- M.basicUnsafeGrow as m_
-          bs' <- M.basicUnsafeGrow bs m_
-          return $ MV_2 (m_+n_) as' bs'
-instance (Unbox a, Unbox b) => G.Vector Vector (a, b) where
-  {-# INLINE basicUnsafeFreeze  #-}
-  basicUnsafeFreeze (MV_2 n_ as bs)
-      = do
-          as' <- G.basicUnsafeFreeze as
-          bs' <- G.basicUnsafeFreeze bs
-          return $ V_2 n_ as' bs'
-  {-# INLINE basicUnsafeThaw  #-}
-  basicUnsafeThaw (V_2 n_ as bs)
-      = do
-          as' <- G.basicUnsafeThaw as
-          bs' <- G.basicUnsafeThaw bs
-          return $ MV_2 n_ as' bs'
-  {-# INLINE basicLength  #-}
-  basicLength (V_2 n_ _ _) = n_
-  {-# INLINE basicUnsafeSlice  #-}
-  basicUnsafeSlice i_ m_ (V_2 _ as bs)
-      = V_2 m_ (G.basicUnsafeSlice i_ m_ as)
-               (G.basicUnsafeSlice i_ m_ bs)
-  {-# INLINE basicUnsafeIndexM  #-}
-  basicUnsafeIndexM (V_2 _ as bs) i_
-      = do
-          a <- G.basicUnsafeIndexM as i_
-          b <- G.basicUnsafeIndexM bs i_
-          return (a, b)
-  {-# INLINE basicUnsafeCopy  #-}
-  basicUnsafeCopy (MV_2 _ as1 bs1) (V_2 _ as2 bs2)
-      = do
-          G.basicUnsafeCopy as1 as2
-          G.basicUnsafeCopy bs1 bs2
-  {-# INLINE elemseq  #-}
-  elemseq _ (a, b)
-      = G.elemseq (undefined :: Vector a) a
-        . G.elemseq (undefined :: Vector b) b
-#endif
-#ifdef DEFINE_MUTABLE
--- | /O(1)/ Zip 2 vectors
-zip :: (Unbox a, Unbox b) => MVector s a ->
-                             MVector s b -> MVector s (a, b)
-{-# INLINE_FUSED zip #-}
-zip as bs = MV_2 len (unsafeSlice 0 len as) (unsafeSlice 0 len bs)
-  where len = length as `delayed_min` length bs
--- | /O(1)/ Unzip 2 vectors
-unzip :: (Unbox a, Unbox b) => MVector s (a, b) -> (MVector s a,
-                                                    MVector s b)
-{-# INLINE unzip #-}
-unzip (MV_2 _ as bs) = (as, bs)
-#endif
-#ifdef DEFINE_IMMUTABLE
--- | /O(1)/ Zip 2 vectors
-zip :: (Unbox a, Unbox b) => Vector a -> Vector b -> Vector (a, b)
-{-# INLINE_FUSED zip #-}
-zip as bs = V_2 len (unsafeSlice 0 len as) (unsafeSlice 0 len bs)
-  where len = length as `delayed_min` length bs
-{-# RULES "stream/zip [Vector.Unboxed]" forall as bs .
-  G.stream (zip as bs) = Bundle.zipWith (,) (G.stream as)
-                                            (G.stream bs)   #-}
-
--- | /O(1)/ Unzip 2 vectors
-unzip :: (Unbox a, Unbox b) => Vector (a, b) -> (Vector a,
-                                                 Vector b)
-{-# INLINE unzip #-}
-unzip (V_2 _ as bs) = (as, bs)
-#endif
-#ifdef DEFINE_INSTANCES
-data instance MVector s (a, b, c)
-    = MV_3 {-# UNPACK #-} !Int !(MVector s a)
-                               !(MVector s b)
-                               !(MVector s c)
-data instance Vector (a, b, c)
-    = V_3 {-# UNPACK #-} !Int !(Vector a)
-                              !(Vector b)
-                              !(Vector c)
-instance (Unbox a, Unbox b, Unbox c) => Unbox (a, b, c)
-instance (Unbox a,
-          Unbox b,
-          Unbox c) => M.MVector MVector (a, b, c) where
-  {-# INLINE basicLength  #-}
-  basicLength (MV_3 n_ _ _ _) = n_
-  {-# INLINE basicUnsafeSlice  #-}
-  basicUnsafeSlice i_ m_ (MV_3 _ as bs cs)
-      = MV_3 m_ (M.basicUnsafeSlice i_ m_ as)
-                (M.basicUnsafeSlice i_ m_ bs)
-                (M.basicUnsafeSlice i_ m_ cs)
-  {-# INLINE basicOverlaps  #-}
-  basicOverlaps (MV_3 _ as1 bs1 cs1) (MV_3 _ as2 bs2 cs2)
-      = M.basicOverlaps as1 as2
-        || M.basicOverlaps bs1 bs2
-        || M.basicOverlaps cs1 cs2
-  {-# INLINE basicUnsafeNew  #-}
-  basicUnsafeNew n_
-      = do
-          as <- M.basicUnsafeNew n_
-          bs <- M.basicUnsafeNew n_
-          cs <- M.basicUnsafeNew n_
-          return $ MV_3 n_ as bs cs
-  {-# INLINE basicInitialize #-}
-  basicInitialize (MV_3 _ as bs cs)
-      = do
-          M.basicInitialize as
-          M.basicInitialize bs
-          M.basicInitialize cs
-  {-# INLINE basicUnsafeReplicate  #-}
-  basicUnsafeReplicate n_ (a, b, c)
-      = do
-          as <- M.basicUnsafeReplicate n_ a
-          bs <- M.basicUnsafeReplicate n_ b
-          cs <- M.basicUnsafeReplicate n_ c
-          return $ MV_3 n_ as bs cs
-  {-# INLINE basicUnsafeRead  #-}
-  basicUnsafeRead (MV_3 _ as bs cs) i_
-      = do
-          a <- M.basicUnsafeRead as i_
-          b <- M.basicUnsafeRead bs i_
-          c <- M.basicUnsafeRead cs i_
-          return (a, b, c)
-  {-# INLINE basicUnsafeWrite  #-}
-  basicUnsafeWrite (MV_3 _ as bs cs) i_ (a, b, c)
-      = do
-          M.basicUnsafeWrite as i_ a
-          M.basicUnsafeWrite bs i_ b
-          M.basicUnsafeWrite cs i_ c
-  {-# INLINE basicClear  #-}
-  basicClear (MV_3 _ as bs cs)
-      = do
-          M.basicClear as
-          M.basicClear bs
-          M.basicClear cs
-  {-# INLINE basicSet  #-}
-  basicSet (MV_3 _ as bs cs) (a, b, c)
-      = do
-          M.basicSet as a
-          M.basicSet bs b
-          M.basicSet cs c
-  {-# INLINE basicUnsafeCopy  #-}
-  basicUnsafeCopy (MV_3 _ as1 bs1 cs1) (MV_3 _ as2 bs2 cs2)
-      = do
-          M.basicUnsafeCopy as1 as2
-          M.basicUnsafeCopy bs1 bs2
-          M.basicUnsafeCopy cs1 cs2
-  {-# INLINE basicUnsafeMove  #-}
-  basicUnsafeMove (MV_3 _ as1 bs1 cs1) (MV_3 _ as2 bs2 cs2)
-      = do
-          M.basicUnsafeMove as1 as2
-          M.basicUnsafeMove bs1 bs2
-          M.basicUnsafeMove cs1 cs2
-  {-# INLINE basicUnsafeGrow  #-}
-  basicUnsafeGrow (MV_3 n_ as bs cs) m_
-      = do
-          as' <- M.basicUnsafeGrow as m_
-          bs' <- M.basicUnsafeGrow bs m_
-          cs' <- M.basicUnsafeGrow cs m_
-          return $ MV_3 (m_+n_) as' bs' cs'
-instance (Unbox a,
-          Unbox b,
-          Unbox c) => G.Vector Vector (a, b, c) where
-  {-# INLINE basicUnsafeFreeze  #-}
-  basicUnsafeFreeze (MV_3 n_ as bs cs)
-      = do
-          as' <- G.basicUnsafeFreeze as
-          bs' <- G.basicUnsafeFreeze bs
-          cs' <- G.basicUnsafeFreeze cs
-          return $ V_3 n_ as' bs' cs'
-  {-# INLINE basicUnsafeThaw  #-}
-  basicUnsafeThaw (V_3 n_ as bs cs)
-      = do
-          as' <- G.basicUnsafeThaw as
-          bs' <- G.basicUnsafeThaw bs
-          cs' <- G.basicUnsafeThaw cs
-          return $ MV_3 n_ as' bs' cs'
-  {-# INLINE basicLength  #-}
-  basicLength (V_3 n_ _ _ _) = n_
-  {-# INLINE basicUnsafeSlice  #-}
-  basicUnsafeSlice i_ m_ (V_3 _ as bs cs)
-      = V_3 m_ (G.basicUnsafeSlice i_ m_ as)
-               (G.basicUnsafeSlice i_ m_ bs)
-               (G.basicUnsafeSlice i_ m_ cs)
-  {-# INLINE basicUnsafeIndexM  #-}
-  basicUnsafeIndexM (V_3 _ as bs cs) i_
-      = do
-          a <- G.basicUnsafeIndexM as i_
-          b <- G.basicUnsafeIndexM bs i_
-          c <- G.basicUnsafeIndexM cs i_
-          return (a, b, c)
-  {-# INLINE basicUnsafeCopy  #-}
-  basicUnsafeCopy (MV_3 _ as1 bs1 cs1) (V_3 _ as2 bs2 cs2)
-      = do
-          G.basicUnsafeCopy as1 as2
-          G.basicUnsafeCopy bs1 bs2
-          G.basicUnsafeCopy cs1 cs2
-  {-# INLINE elemseq  #-}
-  elemseq _ (a, b, c)
-      = G.elemseq (undefined :: Vector a) a
-        . G.elemseq (undefined :: Vector b) b
-        . G.elemseq (undefined :: Vector c) c
-#endif
-#ifdef DEFINE_MUTABLE
--- | /O(1)/ Zip 3 vectors
-zip3 :: (Unbox a, Unbox b, Unbox c) => MVector s a ->
-                                       MVector s b ->
-                                       MVector s c -> MVector s (a, b, c)
-{-# INLINE_FUSED zip3 #-}
-zip3 as bs cs = MV_3 len (unsafeSlice 0 len as)
-                         (unsafeSlice 0 len bs)
-                         (unsafeSlice 0 len cs)
-  where
-    len = length as `delayed_min` length bs `delayed_min` length cs
--- | /O(1)/ Unzip 3 vectors
-unzip3 :: (Unbox a,
-           Unbox b,
-           Unbox c) => MVector s (a, b, c) -> (MVector s a,
-                                               MVector s b,
-                                               MVector s c)
-{-# INLINE unzip3 #-}
-unzip3 (MV_3 _ as bs cs) = (as, bs, cs)
-#endif
-#ifdef DEFINE_IMMUTABLE
--- | /O(1)/ Zip 3 vectors
-zip3 :: (Unbox a, Unbox b, Unbox c) => Vector a ->
-                                       Vector b ->
-                                       Vector c -> Vector (a, b, c)
-{-# INLINE_FUSED zip3 #-}
-zip3 as bs cs = V_3 len (unsafeSlice 0 len as)
-                        (unsafeSlice 0 len bs)
-                        (unsafeSlice 0 len cs)
-  where
-    len = length as `delayed_min` length bs `delayed_min` length cs
-{-# RULES "stream/zip3 [Vector.Unboxed]" forall as bs cs .
-  G.stream (zip3 as bs cs) = Bundle.zipWith3 (, ,) (G.stream as)
-                                                   (G.stream bs)
-                                                   (G.stream cs)   #-}
-
--- | /O(1)/ Unzip 3 vectors
-unzip3 :: (Unbox a,
-           Unbox b,
-           Unbox c) => Vector (a, b, c) -> (Vector a, Vector b, Vector c)
-{-# INLINE unzip3 #-}
-unzip3 (V_3 _ as bs cs) = (as, bs, cs)
-#endif
-#ifdef DEFINE_INSTANCES
-data instance MVector s (a, b, c, d)
-    = MV_4 {-# UNPACK #-} !Int !(MVector s a)
-                               !(MVector s b)
-                               !(MVector s c)
-                               !(MVector s d)
-data instance Vector (a, b, c, d)
-    = V_4 {-# UNPACK #-} !Int !(Vector a)
-                              !(Vector b)
-                              !(Vector c)
-                              !(Vector d)
-instance (Unbox a, Unbox b, Unbox c, Unbox d) => Unbox (a, b, c, d)
-instance (Unbox a,
-          Unbox b,
-          Unbox c,
-          Unbox d) => M.MVector MVector (a, b, c, d) where
-  {-# INLINE basicLength  #-}
-  basicLength (MV_4 n_ _ _ _ _) = n_
-  {-# INLINE basicUnsafeSlice  #-}
-  basicUnsafeSlice i_ m_ (MV_4 _ as bs cs ds)
-      = MV_4 m_ (M.basicUnsafeSlice i_ m_ as)
-                (M.basicUnsafeSlice i_ m_ bs)
-                (M.basicUnsafeSlice i_ m_ cs)
-                (M.basicUnsafeSlice i_ m_ ds)
-  {-# INLINE basicOverlaps  #-}
-  basicOverlaps (MV_4 _ as1 bs1 cs1 ds1) (MV_4 _ as2 bs2 cs2 ds2)
-      = M.basicOverlaps as1 as2
-        || M.basicOverlaps bs1 bs2
-        || M.basicOverlaps cs1 cs2
-        || M.basicOverlaps ds1 ds2
-  {-# INLINE basicUnsafeNew  #-}
-  basicUnsafeNew n_
-      = do
-          as <- M.basicUnsafeNew n_
-          bs <- M.basicUnsafeNew n_
-          cs <- M.basicUnsafeNew n_
-          ds <- M.basicUnsafeNew n_
-          return $ MV_4 n_ as bs cs ds
-  {-# INLINE basicInitialize #-}
-  basicInitialize (MV_4 _ as bs cs ds)
-      = do
-          M.basicInitialize as
-          M.basicInitialize bs
-          M.basicInitialize cs
-          M.basicInitialize ds
-  {-# INLINE basicUnsafeReplicate  #-}
-  basicUnsafeReplicate n_ (a, b, c, d)
-      = do
-          as <- M.basicUnsafeReplicate n_ a
-          bs <- M.basicUnsafeReplicate n_ b
-          cs <- M.basicUnsafeReplicate n_ c
-          ds <- M.basicUnsafeReplicate n_ d
-          return $ MV_4 n_ as bs cs ds
-  {-# INLINE basicUnsafeRead  #-}
-  basicUnsafeRead (MV_4 _ as bs cs ds) i_
-      = do
-          a <- M.basicUnsafeRead as i_
-          b <- M.basicUnsafeRead bs i_
-          c <- M.basicUnsafeRead cs i_
-          d <- M.basicUnsafeRead ds i_
-          return (a, b, c, d)
-  {-# INLINE basicUnsafeWrite  #-}
-  basicUnsafeWrite (MV_4 _ as bs cs ds) i_ (a, b, c, d)
-      = do
-          M.basicUnsafeWrite as i_ a
-          M.basicUnsafeWrite bs i_ b
-          M.basicUnsafeWrite cs i_ c
-          M.basicUnsafeWrite ds i_ d
-  {-# INLINE basicClear  #-}
-  basicClear (MV_4 _ as bs cs ds)
-      = do
-          M.basicClear as
-          M.basicClear bs
-          M.basicClear cs
-          M.basicClear ds
-  {-# INLINE basicSet  #-}
-  basicSet (MV_4 _ as bs cs ds) (a, b, c, d)
-      = do
-          M.basicSet as a
-          M.basicSet bs b
-          M.basicSet cs c
-          M.basicSet ds d
-  {-# INLINE basicUnsafeCopy  #-}
-  basicUnsafeCopy (MV_4 _ as1 bs1 cs1 ds1) (MV_4 _ as2
-                                                   bs2
-                                                   cs2
-                                                   ds2)
-      = do
-          M.basicUnsafeCopy as1 as2
-          M.basicUnsafeCopy bs1 bs2
-          M.basicUnsafeCopy cs1 cs2
-          M.basicUnsafeCopy ds1 ds2
-  {-# INLINE basicUnsafeMove  #-}
-  basicUnsafeMove (MV_4 _ as1 bs1 cs1 ds1) (MV_4 _ as2
-                                                   bs2
-                                                   cs2
-                                                   ds2)
-      = do
-          M.basicUnsafeMove as1 as2
-          M.basicUnsafeMove bs1 bs2
-          M.basicUnsafeMove cs1 cs2
-          M.basicUnsafeMove ds1 ds2
-  {-# INLINE basicUnsafeGrow  #-}
-  basicUnsafeGrow (MV_4 n_ as bs cs ds) m_
-      = do
-          as' <- M.basicUnsafeGrow as m_
-          bs' <- M.basicUnsafeGrow bs m_
-          cs' <- M.basicUnsafeGrow cs m_
-          ds' <- M.basicUnsafeGrow ds m_
-          return $ MV_4 (m_+n_) as' bs' cs' ds'
-instance (Unbox a,
-          Unbox b,
-          Unbox c,
-          Unbox d) => G.Vector Vector (a, b, c, d) where
-  {-# INLINE basicUnsafeFreeze  #-}
-  basicUnsafeFreeze (MV_4 n_ as bs cs ds)
-      = do
-          as' <- G.basicUnsafeFreeze as
-          bs' <- G.basicUnsafeFreeze bs
-          cs' <- G.basicUnsafeFreeze cs
-          ds' <- G.basicUnsafeFreeze ds
-          return $ V_4 n_ as' bs' cs' ds'
-  {-# INLINE basicUnsafeThaw  #-}
-  basicUnsafeThaw (V_4 n_ as bs cs ds)
-      = do
-          as' <- G.basicUnsafeThaw as
-          bs' <- G.basicUnsafeThaw bs
-          cs' <- G.basicUnsafeThaw cs
-          ds' <- G.basicUnsafeThaw ds
-          return $ MV_4 n_ as' bs' cs' ds'
-  {-# INLINE basicLength  #-}
-  basicLength (V_4 n_ _ _ _ _) = n_
-  {-# INLINE basicUnsafeSlice  #-}
-  basicUnsafeSlice i_ m_ (V_4 _ as bs cs ds)
-      = V_4 m_ (G.basicUnsafeSlice i_ m_ as)
-               (G.basicUnsafeSlice i_ m_ bs)
-               (G.basicUnsafeSlice i_ m_ cs)
-               (G.basicUnsafeSlice i_ m_ ds)
-  {-# INLINE basicUnsafeIndexM  #-}
-  basicUnsafeIndexM (V_4 _ as bs cs ds) i_
-      = do
-          a <- G.basicUnsafeIndexM as i_
-          b <- G.basicUnsafeIndexM bs i_
-          c <- G.basicUnsafeIndexM cs i_
-          d <- G.basicUnsafeIndexM ds i_
-          return (a, b, c, d)
-  {-# INLINE basicUnsafeCopy  #-}
-  basicUnsafeCopy (MV_4 _ as1 bs1 cs1 ds1) (V_4 _ as2
-                                                  bs2
-                                                  cs2
-                                                  ds2)
-      = do
-          G.basicUnsafeCopy as1 as2
-          G.basicUnsafeCopy bs1 bs2
-          G.basicUnsafeCopy cs1 cs2
-          G.basicUnsafeCopy ds1 ds2
-  {-# INLINE elemseq  #-}
-  elemseq _ (a, b, c, d)
-      = G.elemseq (undefined :: Vector a) a
-        . G.elemseq (undefined :: Vector b) b
-        . G.elemseq (undefined :: Vector c) c
-        . G.elemseq (undefined :: Vector d) d
-#endif
-#ifdef DEFINE_MUTABLE
--- | /O(1)/ Zip 4 vectors
-zip4 :: (Unbox a, Unbox b, Unbox c, Unbox d) => MVector s a ->
-                                                MVector s b ->
-                                                MVector s c ->
-                                                MVector s d -> MVector s (a, b, c, d)
-{-# INLINE_FUSED zip4 #-}
-zip4 as bs cs ds = MV_4 len (unsafeSlice 0 len as)
-                            (unsafeSlice 0 len bs)
-                            (unsafeSlice 0 len cs)
-                            (unsafeSlice 0 len ds)
-  where
-    len = length as `delayed_min`
-          length bs `delayed_min`
-          length cs `delayed_min`
-          length ds
--- | /O(1)/ Unzip 4 vectors
-unzip4 :: (Unbox a,
-           Unbox b,
-           Unbox c,
-           Unbox d) => MVector s (a, b, c, d) -> (MVector s a,
-                                                  MVector s b,
-                                                  MVector s c,
-                                                  MVector s d)
-{-# INLINE unzip4 #-}
-unzip4 (MV_4 _ as bs cs ds) = (as, bs, cs, ds)
-#endif
-#ifdef DEFINE_IMMUTABLE
--- | /O(1)/ Zip 4 vectors
-zip4 :: (Unbox a, Unbox b, Unbox c, Unbox d) => Vector a ->
-                                                Vector b ->
-                                                Vector c ->
-                                                Vector d -> Vector (a, b, c, d)
-{-# INLINE_FUSED zip4 #-}
-zip4 as bs cs ds = V_4 len (unsafeSlice 0 len as)
-                           (unsafeSlice 0 len bs)
-                           (unsafeSlice 0 len cs)
-                           (unsafeSlice 0 len ds)
-  where
-    len = length as `delayed_min`
-          length bs `delayed_min`
-          length cs `delayed_min`
-          length ds
-{-# RULES "stream/zip4 [Vector.Unboxed]" forall as bs cs ds .
-  G.stream (zip4 as bs cs ds) = Bundle.zipWith4 (, , ,) (G.stream as)
-                                                        (G.stream bs)
-                                                        (G.stream cs)
-                                                        (G.stream ds)   #-}
-
--- | /O(1)/ Unzip 4 vectors
-unzip4 :: (Unbox a,
-           Unbox b,
-           Unbox c,
-           Unbox d) => Vector (a, b, c, d) -> (Vector a,
-                                               Vector b,
-                                               Vector c,
-                                               Vector d)
-{-# INLINE unzip4 #-}
-unzip4 (V_4 _ as bs cs ds) = (as, bs, cs, ds)
-#endif
-#ifdef DEFINE_INSTANCES
-data instance MVector s (a, b, c, d, e)
-    = MV_5 {-# UNPACK #-} !Int !(MVector s a)
-                               !(MVector s b)
-                               !(MVector s c)
-                               !(MVector s d)
-                               !(MVector s e)
-data instance Vector (a, b, c, d, e)
-    = V_5 {-# UNPACK #-} !Int !(Vector a)
-                              !(Vector b)
-                              !(Vector c)
-                              !(Vector d)
-                              !(Vector e)
-instance (Unbox a,
-          Unbox b,
-          Unbox c,
-          Unbox d,
-          Unbox e) => Unbox (a, b, c, d, e)
-instance (Unbox a,
-          Unbox b,
-          Unbox c,
-          Unbox d,
-          Unbox e) => M.MVector MVector (a, b, c, d, e) where
-  {-# INLINE basicLength  #-}
-  basicLength (MV_5 n_ _ _ _ _ _) = n_
-  {-# INLINE basicUnsafeSlice  #-}
-  basicUnsafeSlice i_ m_ (MV_5 _ as bs cs ds es)
-      = MV_5 m_ (M.basicUnsafeSlice i_ m_ as)
-                (M.basicUnsafeSlice i_ m_ bs)
-                (M.basicUnsafeSlice i_ m_ cs)
-                (M.basicUnsafeSlice i_ m_ ds)
-                (M.basicUnsafeSlice i_ m_ es)
-  {-# INLINE basicOverlaps  #-}
-  basicOverlaps (MV_5 _ as1 bs1 cs1 ds1 es1) (MV_5 _ as2
-                                                     bs2
-                                                     cs2
-                                                     ds2
-                                                     es2)
-      = M.basicOverlaps as1 as2
-        || M.basicOverlaps bs1 bs2
-        || M.basicOverlaps cs1 cs2
-        || M.basicOverlaps ds1 ds2
-        || M.basicOverlaps es1 es2
-  {-# INLINE basicUnsafeNew  #-}
-  basicUnsafeNew n_
-      = do
-          as <- M.basicUnsafeNew n_
-          bs <- M.basicUnsafeNew n_
-          cs <- M.basicUnsafeNew n_
-          ds <- M.basicUnsafeNew n_
-          es <- M.basicUnsafeNew n_
-          return $ MV_5 n_ as bs cs ds es
-  {-# INLINE basicInitialize #-}
-  basicInitialize (MV_5 _ as bs cs ds es)
-      = do
-          M.basicInitialize as
-          M.basicInitialize bs
-          M.basicInitialize cs
-          M.basicInitialize ds
-          M.basicInitialize es
-  {-# INLINE basicUnsafeReplicate  #-}
-  basicUnsafeReplicate n_ (a, b, c, d, e)
-      = do
-          as <- M.basicUnsafeReplicate n_ a
-          bs <- M.basicUnsafeReplicate n_ b
-          cs <- M.basicUnsafeReplicate n_ c
-          ds <- M.basicUnsafeReplicate n_ d
-          es <- M.basicUnsafeReplicate n_ e
-          return $ MV_5 n_ as bs cs ds es
-  {-# INLINE basicUnsafeRead  #-}
-  basicUnsafeRead (MV_5 _ as bs cs ds es) i_
-      = do
-          a <- M.basicUnsafeRead as i_
-          b <- M.basicUnsafeRead bs i_
-          c <- M.basicUnsafeRead cs i_
-          d <- M.basicUnsafeRead ds i_
-          e <- M.basicUnsafeRead es i_
-          return (a, b, c, d, e)
-  {-# INLINE basicUnsafeWrite  #-}
-  basicUnsafeWrite (MV_5 _ as bs cs ds es) i_ (a, b, c, d, e)
-      = do
-          M.basicUnsafeWrite as i_ a
-          M.basicUnsafeWrite bs i_ b
-          M.basicUnsafeWrite cs i_ c
-          M.basicUnsafeWrite ds i_ d
-          M.basicUnsafeWrite es i_ e
-  {-# INLINE basicClear  #-}
-  basicClear (MV_5 _ as bs cs ds es)
-      = do
-          M.basicClear as
-          M.basicClear bs
-          M.basicClear cs
-          M.basicClear ds
-          M.basicClear es
-  {-# INLINE basicSet  #-}
-  basicSet (MV_5 _ as bs cs ds es) (a, b, c, d, e)
-      = do
-          M.basicSet as a
-          M.basicSet bs b
-          M.basicSet cs c
-          M.basicSet ds d
-          M.basicSet es e
-  {-# INLINE basicUnsafeCopy  #-}
-  basicUnsafeCopy (MV_5 _ as1 bs1 cs1 ds1 es1) (MV_5 _ as2
-                                                       bs2
-                                                       cs2
-                                                       ds2
-                                                       es2)
-      = do
-          M.basicUnsafeCopy as1 as2
-          M.basicUnsafeCopy bs1 bs2
-          M.basicUnsafeCopy cs1 cs2
-          M.basicUnsafeCopy ds1 ds2
-          M.basicUnsafeCopy es1 es2
-  {-# INLINE basicUnsafeMove  #-}
-  basicUnsafeMove (MV_5 _ as1 bs1 cs1 ds1 es1) (MV_5 _ as2
-                                                       bs2
-                                                       cs2
-                                                       ds2
-                                                       es2)
-      = do
-          M.basicUnsafeMove as1 as2
-          M.basicUnsafeMove bs1 bs2
-          M.basicUnsafeMove cs1 cs2
-          M.basicUnsafeMove ds1 ds2
-          M.basicUnsafeMove es1 es2
-  {-# INLINE basicUnsafeGrow  #-}
-  basicUnsafeGrow (MV_5 n_ as bs cs ds es) m_
-      = do
-          as' <- M.basicUnsafeGrow as m_
-          bs' <- M.basicUnsafeGrow bs m_
-          cs' <- M.basicUnsafeGrow cs m_
-          ds' <- M.basicUnsafeGrow ds m_
-          es' <- M.basicUnsafeGrow es m_
-          return $ MV_5 (m_+n_) as' bs' cs' ds' es'
-instance (Unbox a,
-          Unbox b,
-          Unbox c,
-          Unbox d,
-          Unbox e) => G.Vector Vector (a, b, c, d, e) where
-  {-# INLINE basicUnsafeFreeze  #-}
-  basicUnsafeFreeze (MV_5 n_ as bs cs ds es)
-      = do
-          as' <- G.basicUnsafeFreeze as
-          bs' <- G.basicUnsafeFreeze bs
-          cs' <- G.basicUnsafeFreeze cs
-          ds' <- G.basicUnsafeFreeze ds
-          es' <- G.basicUnsafeFreeze es
-          return $ V_5 n_ as' bs' cs' ds' es'
-  {-# INLINE basicUnsafeThaw  #-}
-  basicUnsafeThaw (V_5 n_ as bs cs ds es)
-      = do
-          as' <- G.basicUnsafeThaw as
-          bs' <- G.basicUnsafeThaw bs
-          cs' <- G.basicUnsafeThaw cs
-          ds' <- G.basicUnsafeThaw ds
-          es' <- G.basicUnsafeThaw es
-          return $ MV_5 n_ as' bs' cs' ds' es'
-  {-# INLINE basicLength  #-}
-  basicLength (V_5 n_ _ _ _ _ _) = n_
-  {-# INLINE basicUnsafeSlice  #-}
-  basicUnsafeSlice i_ m_ (V_5 _ as bs cs ds es)
-      = V_5 m_ (G.basicUnsafeSlice i_ m_ as)
-               (G.basicUnsafeSlice i_ m_ bs)
-               (G.basicUnsafeSlice i_ m_ cs)
-               (G.basicUnsafeSlice i_ m_ ds)
-               (G.basicUnsafeSlice i_ m_ es)
-  {-# INLINE basicUnsafeIndexM  #-}
-  basicUnsafeIndexM (V_5 _ as bs cs ds es) i_
-      = do
-          a <- G.basicUnsafeIndexM as i_
-          b <- G.basicUnsafeIndexM bs i_
-          c <- G.basicUnsafeIndexM cs i_
-          d <- G.basicUnsafeIndexM ds i_
-          e <- G.basicUnsafeIndexM es i_
-          return (a, b, c, d, e)
-  {-# INLINE basicUnsafeCopy  #-}
-  basicUnsafeCopy (MV_5 _ as1 bs1 cs1 ds1 es1) (V_5 _ as2
-                                                      bs2
-                                                      cs2
-                                                      ds2
-                                                      es2)
-      = do
-          G.basicUnsafeCopy as1 as2
-          G.basicUnsafeCopy bs1 bs2
-          G.basicUnsafeCopy cs1 cs2
-          G.basicUnsafeCopy ds1 ds2
-          G.basicUnsafeCopy es1 es2
-  {-# INLINE elemseq  #-}
-  elemseq _ (a, b, c, d, e)
-      = G.elemseq (undefined :: Vector a) a
-        . G.elemseq (undefined :: Vector b) b
-        . G.elemseq (undefined :: Vector c) c
-        . G.elemseq (undefined :: Vector d) d
-        . G.elemseq (undefined :: Vector e) e
-#endif
-#ifdef DEFINE_MUTABLE
--- | /O(1)/ Zip 5 vectors
-zip5 :: (Unbox a,
-         Unbox b,
-         Unbox c,
-         Unbox d,
-         Unbox e) => MVector s a ->
-                     MVector s b ->
-                     MVector s c ->
-                     MVector s d ->
-                     MVector s e -> MVector s (a, b, c, d, e)
-{-# INLINE_FUSED zip5 #-}
-zip5 as bs cs ds es = MV_5 len (unsafeSlice 0 len as)
-                               (unsafeSlice 0 len bs)
-                               (unsafeSlice 0 len cs)
-                               (unsafeSlice 0 len ds)
-                               (unsafeSlice 0 len es)
-  where
-    len = length as `delayed_min`
-          length bs `delayed_min`
-          length cs `delayed_min`
-          length ds `delayed_min`
-          length es
--- | /O(1)/ Unzip 5 vectors
-unzip5 :: (Unbox a,
-           Unbox b,
-           Unbox c,
-           Unbox d,
-           Unbox e) => MVector s (a, b, c, d, e) -> (MVector s a,
-                                                     MVector s b,
-                                                     MVector s c,
-                                                     MVector s d,
-                                                     MVector s e)
-{-# INLINE unzip5 #-}
-unzip5 (MV_5 _ as bs cs ds es) = (as, bs, cs, ds, es)
-#endif
-#ifdef DEFINE_IMMUTABLE
--- | /O(1)/ Zip 5 vectors
-zip5 :: (Unbox a,
-         Unbox b,
-         Unbox c,
-         Unbox d,
-         Unbox e) => Vector a ->
-                     Vector b ->
-                     Vector c ->
-                     Vector d ->
-                     Vector e -> Vector (a, b, c, d, e)
-{-# INLINE_FUSED zip5 #-}
-zip5 as bs cs ds es = V_5 len (unsafeSlice 0 len as)
-                              (unsafeSlice 0 len bs)
-                              (unsafeSlice 0 len cs)
-                              (unsafeSlice 0 len ds)
-                              (unsafeSlice 0 len es)
-  where
-    len = length as `delayed_min`
-          length bs `delayed_min`
-          length cs `delayed_min`
-          length ds `delayed_min`
-          length es
-{-# RULES "stream/zip5 [Vector.Unboxed]" forall as bs cs ds es .
-  G.stream (zip5 as
-                 bs
-                 cs
-                 ds
-                 es) = Bundle.zipWith5 (, , , ,) (G.stream as)
-                                                 (G.stream bs)
-                                                 (G.stream cs)
-                                                 (G.stream ds)
-                                                 (G.stream es)   #-}
-
--- | /O(1)/ Unzip 5 vectors
-unzip5 :: (Unbox a,
-           Unbox b,
-           Unbox c,
-           Unbox d,
-           Unbox e) => Vector (a, b, c, d, e) -> (Vector a,
-                                                  Vector b,
-                                                  Vector c,
-                                                  Vector d,
-                                                  Vector e)
-{-# INLINE unzip5 #-}
-unzip5 (V_5 _ as bs cs ds es) = (as, bs, cs, ds, es)
-#endif
-#ifdef DEFINE_INSTANCES
-data instance MVector s (a, b, c, d, e, f)
-    = MV_6 {-# UNPACK #-} !Int !(MVector s a)
-                               !(MVector s b)
-                               !(MVector s c)
-                               !(MVector s d)
-                               !(MVector s e)
-                               !(MVector s f)
-data instance Vector (a, b, c, d, e, f)
-    = V_6 {-# UNPACK #-} !Int !(Vector a)
-                              !(Vector b)
-                              !(Vector c)
-                              !(Vector d)
-                              !(Vector e)
-                              !(Vector f)
-instance (Unbox a,
-          Unbox b,
-          Unbox c,
-          Unbox d,
-          Unbox e,
-          Unbox f) => Unbox (a, b, c, d, e, f)
-instance (Unbox a,
-          Unbox b,
-          Unbox c,
-          Unbox d,
-          Unbox e,
-          Unbox f) => M.MVector MVector (a, b, c, d, e, f) where
-  {-# INLINE basicLength  #-}
-  basicLength (MV_6 n_ _ _ _ _ _ _) = n_
-  {-# INLINE basicUnsafeSlice  #-}
-  basicUnsafeSlice i_ m_ (MV_6 _ as bs cs ds es fs)
-      = MV_6 m_ (M.basicUnsafeSlice i_ m_ as)
-                (M.basicUnsafeSlice i_ m_ bs)
-                (M.basicUnsafeSlice i_ m_ cs)
-                (M.basicUnsafeSlice i_ m_ ds)
-                (M.basicUnsafeSlice i_ m_ es)
-                (M.basicUnsafeSlice i_ m_ fs)
-  {-# INLINE basicOverlaps  #-}
-  basicOverlaps (MV_6 _ as1 bs1 cs1 ds1 es1 fs1) (MV_6 _ as2
-                                                         bs2
-                                                         cs2
-                                                         ds2
-                                                         es2
-                                                         fs2)
-      = M.basicOverlaps as1 as2
-        || M.basicOverlaps bs1 bs2
-        || M.basicOverlaps cs1 cs2
-        || M.basicOverlaps ds1 ds2
-        || M.basicOverlaps es1 es2
-        || M.basicOverlaps fs1 fs2
-  {-# INLINE basicUnsafeNew  #-}
-  basicUnsafeNew n_
-      = do
-          as <- M.basicUnsafeNew n_
-          bs <- M.basicUnsafeNew n_
-          cs <- M.basicUnsafeNew n_
-          ds <- M.basicUnsafeNew n_
-          es <- M.basicUnsafeNew n_
-          fs <- M.basicUnsafeNew n_
-          return $ MV_6 n_ as bs cs ds es fs
-  {-# INLINE basicInitialize #-}
-  basicInitialize (MV_6 _ as bs cs ds es fs)
-      = do
-          M.basicInitialize as
-          M.basicInitialize bs
-          M.basicInitialize cs
-          M.basicInitialize ds
-          M.basicInitialize es
-          M.basicInitialize fs
-  {-# INLINE basicUnsafeReplicate  #-}
-  basicUnsafeReplicate n_ (a, b, c, d, e, f)
-      = do
-          as <- M.basicUnsafeReplicate n_ a
-          bs <- M.basicUnsafeReplicate n_ b
-          cs <- M.basicUnsafeReplicate n_ c
-          ds <- M.basicUnsafeReplicate n_ d
-          es <- M.basicUnsafeReplicate n_ e
-          fs <- M.basicUnsafeReplicate n_ f
-          return $ MV_6 n_ as bs cs ds es fs
-  {-# INLINE basicUnsafeRead  #-}
-  basicUnsafeRead (MV_6 _ as bs cs ds es fs) i_
-      = do
-          a <- M.basicUnsafeRead as i_
-          b <- M.basicUnsafeRead bs i_
-          c <- M.basicUnsafeRead cs i_
-          d <- M.basicUnsafeRead ds i_
-          e <- M.basicUnsafeRead es i_
-          f <- M.basicUnsafeRead fs i_
-          return (a, b, c, d, e, f)
-  {-# INLINE basicUnsafeWrite  #-}
-  basicUnsafeWrite (MV_6 _ as bs cs ds es fs) i_ (a, b, c, d, e, f)
-      = do
-          M.basicUnsafeWrite as i_ a
-          M.basicUnsafeWrite bs i_ b
-          M.basicUnsafeWrite cs i_ c
-          M.basicUnsafeWrite ds i_ d
-          M.basicUnsafeWrite es i_ e
-          M.basicUnsafeWrite fs i_ f
-  {-# INLINE basicClear  #-}
-  basicClear (MV_6 _ as bs cs ds es fs)
-      = do
-          M.basicClear as
-          M.basicClear bs
-          M.basicClear cs
-          M.basicClear ds
-          M.basicClear es
-          M.basicClear fs
-  {-# INLINE basicSet  #-}
-  basicSet (MV_6 _ as bs cs ds es fs) (a, b, c, d, e, f)
-      = do
-          M.basicSet as a
-          M.basicSet bs b
-          M.basicSet cs c
-          M.basicSet ds d
-          M.basicSet es e
-          M.basicSet fs f
-  {-# INLINE basicUnsafeCopy  #-}
-  basicUnsafeCopy (MV_6 _ as1 bs1 cs1 ds1 es1 fs1) (MV_6 _ as2
-                                                           bs2
-                                                           cs2
-                                                           ds2
-                                                           es2
-                                                           fs2)
-      = do
-          M.basicUnsafeCopy as1 as2
-          M.basicUnsafeCopy bs1 bs2
-          M.basicUnsafeCopy cs1 cs2
-          M.basicUnsafeCopy ds1 ds2
-          M.basicUnsafeCopy es1 es2
-          M.basicUnsafeCopy fs1 fs2
-  {-# INLINE basicUnsafeMove  #-}
-  basicUnsafeMove (MV_6 _ as1 bs1 cs1 ds1 es1 fs1) (MV_6 _ as2
-                                                           bs2
-                                                           cs2
-                                                           ds2
-                                                           es2
-                                                           fs2)
-      = do
-          M.basicUnsafeMove as1 as2
-          M.basicUnsafeMove bs1 bs2
-          M.basicUnsafeMove cs1 cs2
-          M.basicUnsafeMove ds1 ds2
-          M.basicUnsafeMove es1 es2
-          M.basicUnsafeMove fs1 fs2
-  {-# INLINE basicUnsafeGrow  #-}
-  basicUnsafeGrow (MV_6 n_ as bs cs ds es fs) m_
-      = do
-          as' <- M.basicUnsafeGrow as m_
-          bs' <- M.basicUnsafeGrow bs m_
-          cs' <- M.basicUnsafeGrow cs m_
-          ds' <- M.basicUnsafeGrow ds m_
-          es' <- M.basicUnsafeGrow es m_
-          fs' <- M.basicUnsafeGrow fs m_
-          return $ MV_6 (m_+n_) as' bs' cs' ds' es' fs'
-instance (Unbox a,
-          Unbox b,
-          Unbox c,
-          Unbox d,
-          Unbox e,
-          Unbox f) => G.Vector Vector (a, b, c, d, e, f) where
-  {-# INLINE basicUnsafeFreeze  #-}
-  basicUnsafeFreeze (MV_6 n_ as bs cs ds es fs)
-      = do
-          as' <- G.basicUnsafeFreeze as
-          bs' <- G.basicUnsafeFreeze bs
-          cs' <- G.basicUnsafeFreeze cs
-          ds' <- G.basicUnsafeFreeze ds
-          es' <- G.basicUnsafeFreeze es
-          fs' <- G.basicUnsafeFreeze fs
-          return $ V_6 n_ as' bs' cs' ds' es' fs'
-  {-# INLINE basicUnsafeThaw  #-}
-  basicUnsafeThaw (V_6 n_ as bs cs ds es fs)
-      = do
-          as' <- G.basicUnsafeThaw as
-          bs' <- G.basicUnsafeThaw bs
-          cs' <- G.basicUnsafeThaw cs
-          ds' <- G.basicUnsafeThaw ds
-          es' <- G.basicUnsafeThaw es
-          fs' <- G.basicUnsafeThaw fs
-          return $ MV_6 n_ as' bs' cs' ds' es' fs'
-  {-# INLINE basicLength  #-}
-  basicLength (V_6 n_ _ _ _ _ _ _) = n_
-  {-# INLINE basicUnsafeSlice  #-}
-  basicUnsafeSlice i_ m_ (V_6 _ as bs cs ds es fs)
-      = V_6 m_ (G.basicUnsafeSlice i_ m_ as)
-               (G.basicUnsafeSlice i_ m_ bs)
-               (G.basicUnsafeSlice i_ m_ cs)
-               (G.basicUnsafeSlice i_ m_ ds)
-               (G.basicUnsafeSlice i_ m_ es)
-               (G.basicUnsafeSlice i_ m_ fs)
-  {-# INLINE basicUnsafeIndexM  #-}
-  basicUnsafeIndexM (V_6 _ as bs cs ds es fs) i_
-      = do
-          a <- G.basicUnsafeIndexM as i_
-          b <- G.basicUnsafeIndexM bs i_
-          c <- G.basicUnsafeIndexM cs i_
-          d <- G.basicUnsafeIndexM ds i_
-          e <- G.basicUnsafeIndexM es i_
-          f <- G.basicUnsafeIndexM fs i_
-          return (a, b, c, d, e, f)
-  {-# INLINE basicUnsafeCopy  #-}
-  basicUnsafeCopy (MV_6 _ as1 bs1 cs1 ds1 es1 fs1) (V_6 _ as2
-                                                          bs2
-                                                          cs2
-                                                          ds2
-                                                          es2
-                                                          fs2)
-      = do
-          G.basicUnsafeCopy as1 as2
-          G.basicUnsafeCopy bs1 bs2
-          G.basicUnsafeCopy cs1 cs2
-          G.basicUnsafeCopy ds1 ds2
-          G.basicUnsafeCopy es1 es2
-          G.basicUnsafeCopy fs1 fs2
-  {-# INLINE elemseq  #-}
-  elemseq _ (a, b, c, d, e, f)
-      = G.elemseq (undefined :: Vector a) a
-        . G.elemseq (undefined :: Vector b) b
-        . G.elemseq (undefined :: Vector c) c
-        . G.elemseq (undefined :: Vector d) d
-        . G.elemseq (undefined :: Vector e) e
-        . G.elemseq (undefined :: Vector f) f
-#endif
-#ifdef DEFINE_MUTABLE
--- | /O(1)/ Zip 6 vectors
-zip6 :: (Unbox a,
-         Unbox b,
-         Unbox c,
-         Unbox d,
-         Unbox e,
-         Unbox f) => MVector s a ->
-                     MVector s b ->
-                     MVector s c ->
-                     MVector s d ->
-                     MVector s e ->
-                     MVector s f -> MVector s (a, b, c, d, e, f)
-{-# INLINE_FUSED zip6 #-}
-zip6 as bs cs ds es fs = MV_6 len (unsafeSlice 0 len as)
-                                  (unsafeSlice 0 len bs)
-                                  (unsafeSlice 0 len cs)
-                                  (unsafeSlice 0 len ds)
-                                  (unsafeSlice 0 len es)
-                                  (unsafeSlice 0 len fs)
-  where
-    len = length as `delayed_min`
-          length bs `delayed_min`
-          length cs `delayed_min`
-          length ds `delayed_min`
-          length es `delayed_min`
-          length fs
--- | /O(1)/ Unzip 6 vectors
-unzip6 :: (Unbox a,
-           Unbox b,
-           Unbox c,
-           Unbox d,
-           Unbox e,
-           Unbox f) => MVector s (a, b, c, d, e, f) -> (MVector s a,
-                                                        MVector s b,
-                                                        MVector s c,
-                                                        MVector s d,
-                                                        MVector s e,
-                                                        MVector s f)
-{-# INLINE unzip6 #-}
-unzip6 (MV_6 _ as bs cs ds es fs) = (as, bs, cs, ds, es, fs)
-#endif
-#ifdef DEFINE_IMMUTABLE
--- | /O(1)/ Zip 6 vectors
-zip6 :: (Unbox a,
-         Unbox b,
-         Unbox c,
-         Unbox d,
-         Unbox e,
-         Unbox f) => Vector a ->
-                     Vector b ->
-                     Vector c ->
-                     Vector d ->
-                     Vector e ->
-                     Vector f -> Vector (a, b, c, d, e, f)
-{-# INLINE_FUSED zip6 #-}
-zip6 as bs cs ds es fs = V_6 len (unsafeSlice 0 len as)
-                                 (unsafeSlice 0 len bs)
-                                 (unsafeSlice 0 len cs)
-                                 (unsafeSlice 0 len ds)
-                                 (unsafeSlice 0 len es)
-                                 (unsafeSlice 0 len fs)
-  where
-    len = length as `delayed_min`
-          length bs `delayed_min`
-          length cs `delayed_min`
-          length ds `delayed_min`
-          length es `delayed_min`
-          length fs
-{-# RULES "stream/zip6 [Vector.Unboxed]" forall as bs cs ds es fs .
-  G.stream (zip6 as
-                 bs
-                 cs
-                 ds
-                 es
-                 fs) = Bundle.zipWith6 (, , , , ,) (G.stream as)
-                                                   (G.stream bs)
-                                                   (G.stream cs)
-                                                   (G.stream ds)
-                                                   (G.stream es)
-                                                   (G.stream fs)   #-}
-
--- | /O(1)/ Unzip 6 vectors
-unzip6 :: (Unbox a,
-           Unbox b,
-           Unbox c,
-           Unbox d,
-           Unbox e,
-           Unbox f) => Vector (a, b, c, d, e, f) -> (Vector a,
-                                                     Vector b,
-                                                     Vector c,
-                                                     Vector d,
-                                                     Vector e,
-                                                     Vector f)
-{-# INLINE unzip6 #-}
-unzip6 (V_6 _ as bs cs ds es fs) = (as, bs, cs, ds, es, fs)
-#endif
diff --git a/third_party/bazel/rules_haskell/examples/vector/tests/Boilerplater.hs b/third_party/bazel/rules_haskell/examples/vector/tests/Boilerplater.hs
deleted file mode 100644
index 5506209ebc01..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/tests/Boilerplater.hs
+++ /dev/null
@@ -1,27 +0,0 @@
-module Boilerplater where
-
-import Test.Framework.Providers.QuickCheck2
-
-import Language.Haskell.TH
-
-
-testProperties :: [Name] -> Q Exp
-testProperties nms = fmap ListE $ sequence [[| testProperty $(stringE prop_name) $(varE nm) |]
-                                           | nm <- nms
-                                           , Just prop_name <- [stripPrefix_maybe "prop_" (nameBase nm)]]
-
--- This nice clean solution doesn't quite work since I need to use lexically-scoped type
--- variables, which aren't supported by Template Haskell. Argh!
--- testProperties :: Q [Dec] -> Q Exp
--- testProperties mdecs = do
---     decs <- mdecs
---     property_exprs <- sequence [[| testProperty "$prop_name" $(return $ VarE nm) |]
---                                | FunD nm _clauses <- decs
---                                , Just prop_name <- [stripPrefix_maybe "prop_" (nameBase nm)]]
---     return $ LetE decs (ListE property_exprs)
-
-stripPrefix_maybe :: String -> String -> Maybe String
-stripPrefix_maybe prefix what
-  | what_start == prefix = Just what_end
-  | otherwise            = Nothing
-  where (what_start, what_end) = splitAt (length prefix) what
diff --git a/third_party/bazel/rules_haskell/examples/vector/tests/LICENSE b/third_party/bazel/rules_haskell/examples/vector/tests/LICENSE
deleted file mode 100644
index 43c0cee637be..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/tests/LICENSE
+++ /dev/null
@@ -1,30 +0,0 @@
-Copyright (c) 2009, Max Bolingbroke and Roman Leshchinskiy
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
-- Redistributions of source code must retain the above copyright notice,
-this list of conditions and the following disclaimer.
- 
-- Redistributions in binary form must reproduce the above copyright notice,
-this list of conditions and the following disclaimer in the documentation
-and/or other materials provided with the distribution.
- 
-- Neither name of the University nor the names of its contributors may be
-used to endorse or promote products derived from this software without
-specific prior written permission. 
-
-THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
-GLASGOW AND THE CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
-INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
-FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE CONTRIBUTORS BE LIABLE
-FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-DAMAGE.
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/tests/Main.hs b/third_party/bazel/rules_haskell/examples/vector/tests/Main.hs
deleted file mode 100644
index 6642888323fd..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/tests/Main.hs
+++ /dev/null
@@ -1,15 +0,0 @@
-module Main (main) where
-
-import qualified Tests.Vector
-import qualified Tests.Vector.UnitTests
-import qualified Tests.Bundle
-import qualified Tests.Move
-
-import Test.Framework (defaultMain)
-
-main :: IO ()
-main = defaultMain $ Tests.Bundle.tests
-                  ++ Tests.Vector.tests
-                  ++ Tests.Vector.UnitTests.tests
-                  ++ Tests.Move.tests
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/tests/Setup.hs b/third_party/bazel/rules_haskell/examples/vector/tests/Setup.hs
deleted file mode 100644
index 200a2e51d0b4..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/tests/Setup.hs
+++ /dev/null
@@ -1,3 +0,0 @@
-import Distribution.Simple
-main = defaultMain
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Bundle.hs b/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Bundle.hs
deleted file mode 100644
index 09368a199971..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Bundle.hs
+++ /dev/null
@@ -1,163 +0,0 @@
-module Tests.Bundle ( tests ) where
-
-import Boilerplater
-import Utilities
-
-import qualified Data.Vector.Fusion.Bundle as S
-
-import Test.QuickCheck
-
-import Test.Framework
-import Test.Framework.Providers.QuickCheck2
-
-import Text.Show.Functions ()
-import Data.List           (foldl', foldl1', unfoldr, find, findIndex)
-import System.Random       (Random)
-
-#define COMMON_CONTEXT(a) \
- VANILLA_CONTEXT(a)
-
-#define VANILLA_CONTEXT(a) \
-  Eq a,     Show a,     Arbitrary a,     CoArbitrary a,     TestData a,     Model a ~ a,        EqTest a ~ Property
-
-testSanity :: forall v a. (COMMON_CONTEXT(a)) => S.Bundle v a -> [Test]
-testSanity _ = [
-        testProperty "fromList.toList == id" prop_fromList_toList,
-        testProperty "toList.fromList == id" prop_toList_fromList
-    ]
-  where
-    prop_fromList_toList :: P (S.Bundle v a -> S.Bundle v a)
-        = (S.fromList . S.toList) `eq` id
-    prop_toList_fromList :: P ([a] -> [a])
-        = (S.toList . (S.fromList :: [a] -> S.Bundle v a)) `eq` id
-
-testPolymorphicFunctions :: forall v a. (COMMON_CONTEXT(a)) => S.Bundle v a -> [Test]
-testPolymorphicFunctions _ = $(testProperties [
-        'prop_eq,
-
-        'prop_length, 'prop_null,
-
-        'prop_empty, 'prop_singleton, 'prop_replicate,
-        'prop_cons, 'prop_snoc, 'prop_append,
-
-        'prop_head, 'prop_last, 'prop_index,
-
-        'prop_extract, 'prop_init, 'prop_tail, 'prop_take, 'prop_drop,
-
-        'prop_map, 'prop_zipWith, 'prop_zipWith3,
-        'prop_filter, 'prop_takeWhile, 'prop_dropWhile,
-
-        'prop_elem, 'prop_notElem,
-        'prop_find, 'prop_findIndex,
-
-        'prop_foldl, 'prop_foldl1, 'prop_foldl', 'prop_foldl1',
-        'prop_foldr, 'prop_foldr1,
-
-        'prop_prescanl, 'prop_prescanl',
-        'prop_postscanl, 'prop_postscanl',
-        'prop_scanl, 'prop_scanl', 'prop_scanl1, 'prop_scanl1',
-
-        'prop_concatMap,
-        'prop_unfoldr
-    ])
-  where
-    -- Prelude
-    prop_eq :: P (S.Bundle v a -> S.Bundle v a -> Bool) = (==) `eq` (==)
-
-    prop_length :: P (S.Bundle v a -> Int)     = S.length `eq` length
-    prop_null   :: P (S.Bundle v a -> Bool)    = S.null `eq` null
-    prop_empty  :: P (S.Bundle v a)            = S.empty `eq` []
-    prop_singleton :: P (a -> S.Bundle v a)    = S.singleton `eq` singleton
-    prop_replicate :: P (Int -> a -> S.Bundle v a)
-              = (\n _ -> n < 1000) ===> S.replicate `eq` replicate
-    prop_cons      :: P (a -> S.Bundle v a -> S.Bundle v a) = S.cons `eq` (:)
-    prop_snoc      :: P (S.Bundle v a -> a -> S.Bundle v a) = S.snoc `eq` snoc
-    prop_append    :: P (S.Bundle v a -> S.Bundle v a -> S.Bundle v a) = (S.++) `eq` (++)
-
-    prop_head      :: P (S.Bundle v a -> a) = not . S.null ===> S.head `eq` head
-    prop_last      :: P (S.Bundle v a -> a) = not . S.null ===> S.last `eq` last
-    prop_index        = \xs ->
-                        not (S.null xs) ==>
-                        forAll (choose (0, S.length xs-1)) $ \i ->
-                        unP prop xs i
-      where
-        prop :: P (S.Bundle v a -> Int -> a) = (S.!!) `eq` (!!)
-
-    prop_extract      = \xs ->
-                        forAll (choose (0, S.length xs))     $ \i ->
-                        forAll (choose (0, S.length xs - i)) $ \n ->
-                        unP prop i n xs
-      where
-        prop :: P (Int -> Int -> S.Bundle v a -> S.Bundle v a) = S.slice `eq` slice
-
-    prop_tail :: P (S.Bundle v a -> S.Bundle v a) = not . S.null ===> S.tail `eq` tail
-    prop_init :: P (S.Bundle v a -> S.Bundle v a) = not . S.null ===> S.init `eq` init
-    prop_take :: P (Int -> S.Bundle v a -> S.Bundle v a) = S.take `eq` take
-    prop_drop :: P (Int -> S.Bundle v a -> S.Bundle v a) = S.drop `eq` drop
-
-    prop_map :: P ((a -> a) -> S.Bundle v a -> S.Bundle v a) = S.map `eq` map
-    prop_zipWith :: P ((a -> a -> a) -> S.Bundle v a -> S.Bundle v a -> S.Bundle v a) = S.zipWith `eq` zipWith
-    prop_zipWith3 :: P ((a -> a -> a -> a) -> S.Bundle v a -> S.Bundle v a -> S.Bundle v a -> S.Bundle v a)
-             = S.zipWith3 `eq` zipWith3
-
-    prop_filter :: P ((a -> Bool) -> S.Bundle v a -> S.Bundle v a) = S.filter `eq` filter
-    prop_takeWhile :: P ((a -> Bool) -> S.Bundle v a -> S.Bundle v a) = S.takeWhile `eq` takeWhile
-    prop_dropWhile :: P ((a -> Bool) -> S.Bundle v a -> S.Bundle v a) = S.dropWhile `eq` dropWhile
-
-    prop_elem    :: P (a -> S.Bundle v a -> Bool) = S.elem `eq` elem
-    prop_notElem :: P (a -> S.Bundle v a -> Bool) = S.notElem `eq` notElem
-    prop_find    :: P ((a -> Bool) -> S.Bundle v a -> Maybe a) = S.find `eq` find
-    prop_findIndex :: P ((a -> Bool) -> S.Bundle v a -> Maybe Int)
-      = S.findIndex `eq` findIndex
-
-    prop_foldl :: P ((a -> a -> a) -> a -> S.Bundle v a -> a) = S.foldl `eq` foldl
-    prop_foldl1 :: P ((a -> a -> a) -> S.Bundle v a -> a)     = notNullS2 ===>
-                        S.foldl1 `eq` foldl1
-    prop_foldl' :: P ((a -> a -> a) -> a -> S.Bundle v a -> a) = S.foldl' `eq` foldl'
-    prop_foldl1' :: P ((a -> a -> a) -> S.Bundle v a -> a)     = notNullS2 ===>
-                        S.foldl1' `eq` foldl1'
-    prop_foldr :: P ((a -> a -> a) -> a -> S.Bundle v a -> a) = S.foldr `eq` foldr
-    prop_foldr1 :: P ((a -> a -> a) -> S.Bundle v a -> a)     = notNullS2 ===>
-                        S.foldr1 `eq` foldr1
-
-    prop_prescanl :: P ((a -> a -> a) -> a -> S.Bundle v a -> S.Bundle v a)
-                = S.prescanl `eq` prescanl
-    prop_prescanl' :: P ((a -> a -> a) -> a -> S.Bundle v a -> S.Bundle v a)
-                = S.prescanl' `eq` prescanl
-    prop_postscanl :: P ((a -> a -> a) -> a -> S.Bundle v a -> S.Bundle v a)
-                = S.postscanl `eq` postscanl
-    prop_postscanl' :: P ((a -> a -> a) -> a -> S.Bundle v a -> S.Bundle v a)
-                = S.postscanl' `eq` postscanl
-    prop_scanl :: P ((a -> a -> a) -> a -> S.Bundle v a -> S.Bundle v a)
-                = S.scanl `eq` scanl
-    prop_scanl' :: P ((a -> a -> a) -> a -> S.Bundle v a -> S.Bundle v a)
-               = S.scanl' `eq` scanl
-    prop_scanl1 :: P ((a -> a -> a) -> S.Bundle v a -> S.Bundle v a) = notNullS2 ===>
-                 S.scanl1 `eq` scanl1
-    prop_scanl1' :: P ((a -> a -> a) -> S.Bundle v a -> S.Bundle v a) = notNullS2 ===>
-                 S.scanl1' `eq` scanl1
- 
-    prop_concatMap    = forAll arbitrary $ \xs ->
-                        forAll (sized (\n -> resize (n `div` S.length xs) arbitrary)) $ \f -> unP prop f xs
-      where
-        prop :: P ((a -> S.Bundle v a) -> S.Bundle v a -> S.Bundle v a) = S.concatMap `eq` concatMap
-
-    limitUnfolds f (theirs, ours) | ours >= 0
-                                  , Just (out, theirs') <- f theirs = Just (out, (theirs', ours - 1))
-                                  | otherwise                       = Nothing
-    prop_unfoldr :: P (Int -> (Int -> Maybe (a,Int)) -> Int -> S.Bundle v a)
-         = (\n f a -> S.unfoldr (limitUnfolds f) (a, n))
-           `eq` (\n f a -> unfoldr (limitUnfolds f) (a, n))
-
-testBoolFunctions :: forall v. S.Bundle v Bool -> [Test]
-testBoolFunctions _ = $(testProperties ['prop_and, 'prop_or ])
-  where
-    prop_and :: P (S.Bundle v Bool -> Bool) = S.and `eq` and
-    prop_or  :: P (S.Bundle v Bool -> Bool) = S.or `eq` or
-
-testBundleFunctions = testSanity (undefined :: S.Bundle v Int)
-                      ++ testPolymorphicFunctions (undefined :: S.Bundle v Int)
-                      ++ testBoolFunctions (undefined :: S.Bundle v Bool)
-
-tests = [ testGroup "Data.Vector.Fusion.Bundle" testBundleFunctions ]
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Move.hs b/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Move.hs
deleted file mode 100644
index 60ea8d334600..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Move.hs
+++ /dev/null
@@ -1,49 +0,0 @@
-module Tests.Move (tests) where
-
-import Test.QuickCheck
-import Test.Framework.Providers.QuickCheck2
-import Test.QuickCheck.Property (Property(..))
-
-import Utilities ()
-
-import Control.Monad (replicateM)
-import Control.Monad.ST (runST)
-import Data.List (sort,permutations)
-
-import qualified Data.Vector.Generic as G
-import qualified Data.Vector.Generic.Mutable as M
-
-import qualified Data.Vector as V
-import qualified Data.Vector.Primitive as P
-import qualified Data.Vector.Storable as S
-import qualified Data.Vector.Unboxed as U
-
-basicMove :: G.Vector v a => v a -> Int -> Int -> Int -> v a
-basicMove v dstOff srcOff len
-  | len > 0 = G.modify (\ mv -> G.copy (M.slice dstOff len mv) (G.slice srcOff len v)) v
-  | otherwise = v
-
-testMove :: (G.Vector v a, Show (v a), Eq (v a)) => v a -> Property
-testMove v = G.length v > 0 ==> (MkProperty $ do
-  dstOff <- choose (0, G.length v - 1)
-  srcOff <- choose (0, G.length v - 1)
-  len <- choose (1, G.length v - max dstOff srcOff)
-  expected <- return $ basicMove v dstOff srcOff len
-  actual <- return $  G.modify (\ mv -> M.move (M.slice dstOff len mv) (M.slice srcOff len mv)) v
-  unProperty $ counterexample ("Move: " ++ show (v, dstOff, srcOff, len)) (expected == actual))
-
-checkPermutations :: Int -> Bool
-checkPermutations n = runST $ do
-    vec <- U.thaw (U.fromList [1..n])
-    res <- replicateM (product [1..n]) $ M.nextPermutation vec >> U.freeze vec >>= return . U.toList
-    return $! ([1..n] : res) == sort (permutations [1..n]) ++ [[n,n-1..1]]
-
-testPermutations :: Bool
-testPermutations = all checkPermutations [1..7]
-
-tests =
-    [testProperty "Data.Vector.Mutable (Move)" (testMove :: V.Vector Int -> Property),
-     testProperty "Data.Vector.Primitive.Mutable (Move)" (testMove :: P.Vector Int -> Property),
-     testProperty "Data.Vector.Unboxed.Mutable (Move)" (testMove :: U.Vector Int -> Property),
-     testProperty "Data.Vector.Storable.Mutable (Move)" (testMove :: S.Vector Int -> Property),
-     testProperty "Data.Vector.Generic.Mutable (nextPermutation)" testPermutations]
diff --git a/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs b/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs
deleted file mode 100644
index 46569d909549..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs
+++ /dev/null
@@ -1,706 +0,0 @@
-{-# LANGUAGE ConstraintKinds #-}
-module Tests.Vector (tests) where
-
-import Boilerplater
-import Utilities as Util
-
-import Data.Functor.Identity
-import qualified Data.Traversable as T (Traversable(..))
-import Data.Foldable (Foldable(foldMap))
-
-import qualified Data.Vector.Generic as V
-import qualified Data.Vector
-import qualified Data.Vector.Primitive
-import qualified Data.Vector.Storable
-import qualified Data.Vector.Unboxed
-import qualified Data.Vector.Fusion.Bundle as S
-
-import Test.QuickCheck
-
-import Test.Framework
-import Test.Framework.Providers.QuickCheck2
-
-import Text.Show.Functions ()
-import Data.List
-import Data.Monoid
-import qualified Control.Applicative as Applicative
-import System.Random       (Random)
-
-import Data.Functor.Identity
-import Control.Monad.Trans.Writer
-
-import Control.Monad.Zip
-
-type CommonContext  a v = (VanillaContext a, VectorContext a v)
-type VanillaContext a   = ( Eq a , Show a, Arbitrary a, CoArbitrary a
-                          , TestData a, Model a ~ a, EqTest a ~ Property)
-type VectorContext  a v = ( Eq (v a), Show (v a), Arbitrary (v a), CoArbitrary (v a)
-                          , TestData (v a), Model (v a) ~ [a],  EqTest (v a) ~ Property, V.Vector v a)
-
--- TODO: implement Vector equivalents of list functions for some of the commented out properties
-
--- TODO: test and implement some of these other Prelude functions:
---  mapM *
---  mapM_ *
---  sequence
---  sequence_
---  sum *
---  product *
---  scanl *
---  scanl1 *
---  scanr *
---  scanr1 *
---  lookup *
---  lines
---  words
---  unlines
---  unwords
--- NB: this is an exhaustive list of all Prelude list functions that make sense for vectors.
--- Ones with *s are the most plausible candidates.
-
--- TODO: add tests for the other extra functions
--- IVector exports still needing tests:
---  copy,
---  slice,
---  (//), update, bpermute,
---  prescanl, prescanl',
---  new,
---  unsafeSlice, unsafeIndex,
---  vlength, vnew
-
--- TODO: test non-IVector stuff?
-
-#if !MIN_VERSION_base(4,7,0)
-instance Foldable ((,) a) where
-  foldMap f (_, b) = f b
-
-instance T.Traversable ((,) a) where
-  traverse f (a, b) = fmap ((,) a) $ f b
-#endif
-
-testSanity :: forall a v. (CommonContext a v) => v a -> [Test]
-testSanity _ = [
-        testProperty "fromList.toList == id" prop_fromList_toList,
-        testProperty "toList.fromList == id" prop_toList_fromList,
-        testProperty "unstream.stream == id" prop_unstream_stream,
-        testProperty "stream.unstream == id" prop_stream_unstream
-    ]
-  where
-    prop_fromList_toList (v :: v a)        = (V.fromList . V.toList)                        v == v
-    prop_toList_fromList (l :: [a])        = ((V.toList :: v a -> [a]) . V.fromList)        l == l
-    prop_unstream_stream (v :: v a)        = (V.unstream . V.stream)                        v == v
-    prop_stream_unstream (s :: S.Bundle v a) = ((V.stream :: v a -> S.Bundle v a) . V.unstream) s == s
-
-testPolymorphicFunctions :: forall a v. (CommonContext a v, VectorContext Int v) => v a -> [Test]
-testPolymorphicFunctions _ = $(testProperties [
-        'prop_eq,
-
-        -- Length information
-        'prop_length, 'prop_null,
-
-        -- Indexing (FIXME)
-        'prop_index, 'prop_safeIndex, 'prop_head, 'prop_last,
-        'prop_unsafeIndex, 'prop_unsafeHead, 'prop_unsafeLast,
-
-        -- Monadic indexing (FIXME)
-        {- 'prop_indexM, 'prop_headM, 'prop_lastM,
-        'prop_unsafeIndexM, 'prop_unsafeHeadM, 'prop_unsafeLastM, -}
-
-        -- Subvectors (FIXME)
-        'prop_slice, 'prop_init, 'prop_tail, 'prop_take, 'prop_drop,
-        'prop_splitAt,
-        {- 'prop_unsafeSlice, 'prop_unsafeInit, 'prop_unsafeTail,
-        'prop_unsafeTake, 'prop_unsafeDrop, -}
-
-        -- Initialisation (FIXME)
-        'prop_empty, 'prop_singleton, 'prop_replicate,
-        'prop_generate, 'prop_iterateN, 'prop_iterateNM,
-
-        -- Monadic initialisation (FIXME)
-        'prop_createT,
-        {- 'prop_replicateM, 'prop_generateM, 'prop_create, -}
-
-        -- Unfolding
-        'prop_unfoldr, 'prop_unfoldrN, 'prop_unfoldrM, 'prop_unfoldrNM,
-        'prop_constructN, 'prop_constructrN,
-
-        -- Enumeration? (FIXME?)
-
-        -- Concatenation (FIXME)
-        'prop_cons, 'prop_snoc, 'prop_append,
-        'prop_concat,
-
-        -- Restricting memory usage
-        'prop_force,
-
-
-        -- Bulk updates (FIXME)
-        'prop_upd,
-        {- 'prop_update, 'prop_update_,
-        'prop_unsafeUpd, 'prop_unsafeUpdate, 'prop_unsafeUpdate_, -}
-
-        -- Accumulations (FIXME)
-        'prop_accum,
-        {- 'prop_accumulate, 'prop_accumulate_,
-        'prop_unsafeAccum, 'prop_unsafeAccumulate, 'prop_unsafeAccumulate_, -}
-
-        -- Permutations
-        'prop_reverse, 'prop_backpermute,
-        {- 'prop_unsafeBackpermute, -}
-
-        -- Elementwise indexing
-        {- 'prop_indexed, -}
-
-        -- Mapping
-        'prop_map, 'prop_imap, 'prop_concatMap,
-
-        -- Monadic mapping
-        {- 'prop_mapM, 'prop_mapM_, 'prop_forM, 'prop_forM_, -}
-        'prop_imapM, 'prop_imapM_,
-
-        -- Zipping
-        'prop_zipWith, 'prop_zipWith3, {- ... -}
-        'prop_izipWith, 'prop_izipWith3, {- ... -}
-        'prop_izipWithM, 'prop_izipWithM_,
-        {- 'prop_zip, ... -}
-
-        -- Monadic zipping
-        {- 'prop_zipWithM, 'prop_zipWithM_, -}
-
-        -- Unzipping
-        {- 'prop_unzip, ... -}
-
-        -- Filtering
-        'prop_filter, 'prop_ifilter, {- prop_filterM, -}
-        'prop_uniq,
-        'prop_mapMaybe, 'prop_imapMaybe,
-        'prop_takeWhile, 'prop_dropWhile,
-
-        -- Paritioning
-        'prop_partition, {- 'prop_unstablePartition, -}
-        'prop_span, 'prop_break,
-
-        -- Searching
-        'prop_elem, 'prop_notElem,
-        'prop_find, 'prop_findIndex, 'prop_findIndices,
-        'prop_elemIndex, 'prop_elemIndices,
-
-        -- Folding
-        'prop_foldl, 'prop_foldl1, 'prop_foldl', 'prop_foldl1',
-        'prop_foldr, 'prop_foldr1, 'prop_foldr', 'prop_foldr1',
-        'prop_ifoldl, 'prop_ifoldl', 'prop_ifoldr, 'prop_ifoldr',
-        'prop_ifoldM, 'prop_ifoldM', 'prop_ifoldM_, 'prop_ifoldM'_,
-
-        -- Specialised folds
-        'prop_all, 'prop_any,
-        {- 'prop_maximumBy, 'prop_minimumBy,
-        'prop_maxIndexBy, 'prop_minIndexBy, -}
-
-        -- Monadic folds
-        {- ... -}
-
-        -- Monadic sequencing
-        {- ... -}
-
-        -- Scans
-        'prop_prescanl, 'prop_prescanl',
-        'prop_postscanl, 'prop_postscanl',
-        'prop_scanl, 'prop_scanl', 'prop_scanl1, 'prop_scanl1',
-        'prop_iscanl, 'prop_iscanl',
-
-        'prop_prescanr, 'prop_prescanr',
-        'prop_postscanr, 'prop_postscanr',
-        'prop_scanr, 'prop_scanr', 'prop_scanr1, 'prop_scanr1',
-        'prop_iscanr, 'prop_iscanr'
-    ])
-  where
-    -- Prelude
-    prop_eq :: P (v a -> v a -> Bool) = (==) `eq` (==)
-
-    prop_length :: P (v a -> Int)     = V.length `eq` length
-    prop_null   :: P (v a -> Bool)    = V.null `eq` null
-
-    prop_empty  :: P (v a)            = V.empty `eq` []
-    prop_singleton :: P (a -> v a)    = V.singleton `eq` singleton
-    prop_replicate :: P (Int -> a -> v a)
-              = (\n _ -> n < 1000) ===> V.replicate `eq` replicate
-    prop_cons      :: P (a -> v a -> v a) = V.cons `eq` (:)
-    prop_snoc      :: P (v a -> a -> v a) = V.snoc `eq` snoc
-    prop_append    :: P (v a -> v a -> v a) = (V.++) `eq` (++)
-    prop_concat    :: P ([v a] -> v a) = V.concat `eq` concat
-    prop_force     :: P (v a -> v a)        = V.force `eq` id
-    prop_generate  :: P (Int -> (Int -> a) -> v a)
-              = (\n _ -> n < 1000) ===> V.generate `eq` Util.generate
-    prop_iterateN  :: P (Int -> (a -> a) -> a -> v a)
-              = (\n _ _ -> n < 1000) ===> V.iterateN `eq` (\n f -> take n . iterate f)
-    prop_iterateNM :: P (Int -> (a -> Writer [Int] a) -> a -> Writer [Int] (v a))
-              = (\n _ _ -> n < 1000) ===> V.iterateNM `eq` Util.iterateNM
-    prop_createT :: P ((a, v a) -> (a, v a))
-    prop_createT = (\v -> V.createT (T.mapM V.thaw v)) `eq` id
-
-    prop_head      :: P (v a -> a) = not . V.null ===> V.head `eq` head
-    prop_last      :: P (v a -> a) = not . V.null ===> V.last `eq` last
-    prop_index        = \xs ->
-                        not (V.null xs) ==>
-                        forAll (choose (0, V.length xs-1)) $ \i ->
-                        unP prop xs i
-      where
-        prop :: P (v a -> Int -> a) = (V.!) `eq` (!!)
-    prop_safeIndex :: P (v a -> Int -> Maybe a) = (V.!?) `eq` fn
-      where
-        fn xs i = case drop i xs of
-                    x:_ | i >= 0 -> Just x
-                    _            -> Nothing
-    prop_unsafeHead  :: P (v a -> a) = not . V.null ===> V.unsafeHead `eq` head
-    prop_unsafeLast  :: P (v a -> a) = not . V.null ===> V.unsafeLast `eq` last
-    prop_unsafeIndex  = \xs ->
-                        not (V.null xs) ==>
-                        forAll (choose (0, V.length xs-1)) $ \i ->
-                        unP prop xs i
-      where
-        prop :: P (v a -> Int -> a) = V.unsafeIndex `eq` (!!)
-
-    prop_slice        = \xs ->
-                        forAll (choose (0, V.length xs))     $ \i ->
-                        forAll (choose (0, V.length xs - i)) $ \n ->
-                        unP prop i n xs
-      where
-        prop :: P (Int -> Int -> v a -> v a) = V.slice `eq` slice
-
-    prop_tail :: P (v a -> v a) = not . V.null ===> V.tail `eq` tail
-    prop_init :: P (v a -> v a) = not . V.null ===> V.init `eq` init
-    prop_take :: P (Int -> v a -> v a) = V.take `eq` take
-    prop_drop :: P (Int -> v a -> v a) = V.drop `eq` drop
-    prop_splitAt :: P (Int -> v a -> (v a, v a)) = V.splitAt `eq` splitAt
-
-    prop_accum = \f xs ->
-                 forAll (index_value_pairs (V.length xs)) $ \ps ->
-                 unP prop f xs ps
-      where
-        prop :: P ((a -> a -> a) -> v a -> [(Int,a)] -> v a)
-          = V.accum `eq` accum
-
-    prop_upd        = \xs ->
-                        forAll (index_value_pairs (V.length xs)) $ \ps ->
-                        unP prop xs ps
-      where
-        prop :: P (v a -> [(Int,a)] -> v a) = (V.//) `eq` (//)
-
-    prop_backpermute  = \xs ->
-                        forAll (indices (V.length xs)) $ \is ->
-                        unP prop xs (V.fromList is)
-      where
-        prop :: P (v a -> v Int -> v a) = V.backpermute `eq` backpermute
-
-    prop_reverse :: P (v a -> v a) = V.reverse `eq` reverse
-
-    prop_map :: P ((a -> a) -> v a -> v a) = V.map `eq` map
-    prop_zipWith :: P ((a -> a -> a) -> v a -> v a -> v a) = V.zipWith `eq` zipWith
-    prop_zipWith3 :: P ((a -> a -> a -> a) -> v a -> v a -> v a -> v a)
-             = V.zipWith3 `eq` zipWith3
-    prop_imap :: P ((Int -> a -> a) -> v a -> v a) = V.imap `eq` imap
-    prop_imapM :: P ((Int -> a -> Identity a) -> v a -> Identity (v a))
-            = V.imapM `eq` imapM
-    prop_imapM_ :: P ((Int -> a -> Writer [a] ()) -> v a -> Writer [a] ())
-            = V.imapM_ `eq` imapM_
-    prop_izipWith :: P ((Int -> a -> a -> a) -> v a -> v a -> v a) = V.izipWith `eq` izipWith
-    prop_izipWithM :: P ((Int -> a -> a -> Identity a) -> v a -> v a -> Identity (v a))
-            = V.izipWithM `eq` izipWithM
-    prop_izipWithM_ :: P ((Int -> a -> a -> Writer [a] ()) -> v a -> v a -> Writer [a] ())
-            = V.izipWithM_ `eq` izipWithM_
-    prop_izipWith3 :: P ((Int -> a -> a -> a -> a) -> v a -> v a -> v a -> v a)
-             = V.izipWith3 `eq` izipWith3
-
-    prop_filter :: P ((a -> Bool) -> v a -> v a) = V.filter `eq` filter
-    prop_ifilter :: P ((Int -> a -> Bool) -> v a -> v a) = V.ifilter `eq` ifilter
-    prop_mapMaybe :: P ((a -> Maybe a) -> v a -> v a) = V.mapMaybe `eq` mapMaybe
-    prop_imapMaybe :: P ((Int -> a -> Maybe a) -> v a -> v a) = V.imapMaybe `eq` imapMaybe
-    prop_takeWhile :: P ((a -> Bool) -> v a -> v a) = V.takeWhile `eq` takeWhile
-    prop_dropWhile :: P ((a -> Bool) -> v a -> v a) = V.dropWhile `eq` dropWhile
-    prop_partition :: P ((a -> Bool) -> v a -> (v a, v a))
-      = V.partition `eq` partition
-    prop_span :: P ((a -> Bool) -> v a -> (v a, v a)) = V.span `eq` span
-    prop_break :: P ((a -> Bool) -> v a -> (v a, v a)) = V.break `eq` break
-
-    prop_elem    :: P (a -> v a -> Bool) = V.elem `eq` elem
-    prop_notElem :: P (a -> v a -> Bool) = V.notElem `eq` notElem
-    prop_find    :: P ((a -> Bool) -> v a -> Maybe a) = V.find `eq` find
-    prop_findIndex :: P ((a -> Bool) -> v a -> Maybe Int)
-      = V.findIndex `eq` findIndex
-    prop_findIndices :: P ((a -> Bool) -> v a -> v Int)
-        = V.findIndices `eq` findIndices
-    prop_elemIndex :: P (a -> v a -> Maybe Int) = V.elemIndex `eq` elemIndex
-    prop_elemIndices :: P (a -> v a -> v Int) = V.elemIndices `eq` elemIndices
-
-    prop_foldl :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl `eq` foldl
-    prop_foldl1 :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
-                        V.foldl1 `eq` foldl1
-    prop_foldl' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl' `eq` foldl'
-    prop_foldl1' :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
-                        V.foldl1' `eq` foldl1'
-    prop_foldr :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr `eq` foldr
-    prop_foldr1 :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
-                        V.foldr1 `eq` foldr1
-    prop_foldr' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr' `eq` foldr
-    prop_foldr1' :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
-                        V.foldr1' `eq` foldr1
-    prop_ifoldl :: P ((a -> Int -> a -> a) -> a -> v a -> a)
-        = V.ifoldl `eq` ifoldl
-    prop_ifoldl' :: P ((a -> Int -> a -> a) -> a -> v a -> a)
-        = V.ifoldl' `eq` ifoldl
-    prop_ifoldr :: P ((Int -> a -> a -> a) -> a -> v a -> a)
-        = V.ifoldr `eq` ifoldr
-    prop_ifoldr' :: P ((Int -> a -> a -> a) -> a -> v a -> a)
-        = V.ifoldr' `eq` ifoldr
-    prop_ifoldM :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
-        = V.ifoldM `eq` ifoldM
-    prop_ifoldM' :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
-        = V.ifoldM' `eq` ifoldM
-    prop_ifoldM_ :: P ((() -> Int -> a -> Writer [a] ()) -> () -> v a -> Writer [a] ())
-        = V.ifoldM_ `eq` ifoldM_
-    prop_ifoldM'_ :: P ((() -> Int -> a -> Writer [a] ()) -> () -> v a -> Writer [a] ())
-        = V.ifoldM'_ `eq` ifoldM_
-
-    prop_all :: P ((a -> Bool) -> v a -> Bool) = V.all `eq` all
-    prop_any :: P ((a -> Bool) -> v a -> Bool) = V.any `eq` any
-
-    prop_prescanl :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.prescanl `eq` prescanl
-    prop_prescanl' :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.prescanl' `eq` prescanl
-    prop_postscanl :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.postscanl `eq` postscanl
-    prop_postscanl' :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.postscanl' `eq` postscanl
-    prop_scanl :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.scanl `eq` scanl
-    prop_scanl' :: P ((a -> a -> a) -> a -> v a -> v a)
-               = V.scanl' `eq` scanl
-    prop_scanl1 :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
-                 V.scanl1 `eq` scanl1
-    prop_scanl1' :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
-                 V.scanl1' `eq` scanl1
-    prop_iscanl :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
-                = V.iscanl `eq` iscanl
-    prop_iscanl' :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
-               = V.iscanl' `eq` iscanl
-
-    prop_prescanr :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.prescanr `eq` prescanr
-    prop_prescanr' :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.prescanr' `eq` prescanr
-    prop_postscanr :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.postscanr `eq` postscanr
-    prop_postscanr' :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.postscanr' `eq` postscanr
-    prop_scanr :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.scanr `eq` scanr
-    prop_scanr' :: P ((a -> a -> a) -> a -> v a -> v a)
-               = V.scanr' `eq` scanr
-    prop_iscanr :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
-                = V.iscanr `eq` iscanr
-    prop_iscanr' :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
-               = V.iscanr' `eq` iscanr
-    prop_scanr1 :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
-                 V.scanr1 `eq` scanr1
-    prop_scanr1' :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
-                 V.scanr1' `eq` scanr1
-
-    prop_concatMap    = forAll arbitrary $ \xs ->
-                        forAll (sized (\n -> resize (n `div` V.length xs) arbitrary)) $ \f -> unP prop f xs
-      where
-        prop :: P ((a -> v a) -> v a -> v a) = V.concatMap `eq` concatMap
-
-    prop_uniq :: P (v a -> v a)
-      = V.uniq `eq` (map head . group)
-    --prop_span         = (V.span :: (a -> Bool) -> v a -> (v a, v a))  `eq2` span
-    --prop_break        = (V.break :: (a -> Bool) -> v a -> (v a, v a)) `eq2` break
-    --prop_splitAt      = (V.splitAt :: Int -> v a -> (v a, v a))       `eq2` splitAt
-    --prop_all          = (V.all :: (a -> Bool) -> v a -> Bool)         `eq2` all
-    --prop_any          = (V.any :: (a -> Bool) -> v a -> Bool)         `eq2` any
-
-    -- Data.List
-    --prop_findIndices  = V.findIndices `eq2` (findIndices :: (a -> Bool) -> v a -> v Int)
-    --prop_isPrefixOf   = V.isPrefixOf  `eq2` (isPrefixOf  :: v a -> v a -> Bool)
-    --prop_elemIndex    = V.elemIndex   `eq2` (elemIndex   :: a -> v a -> Maybe Int)
-    --prop_elemIndices  = V.elemIndices `eq2` (elemIndices :: a -> v a -> v Int)
-    --
-    --prop_mapAccumL  = eq3
-    --    (V.mapAccumL :: (X -> W -> (X,W)) -> X -> B   -> (X, B))
-    --    (  mapAccumL :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))
-    --
-    --prop_mapAccumR  = eq3
-    --    (V.mapAccumR :: (X -> W -> (X,W)) -> X -> B   -> (X, B))
-    --    (  mapAccumR :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))
-
-    -- Because the vectors are strict, we need to be totally sure that the unfold eventually terminates. This
-    -- is achieved by injecting our own bit of state into the unfold - the maximum number of unfolds allowed.
-    limitUnfolds f (theirs, ours)
-        | ours > 0
-        , Just (out, theirs') <- f theirs = Just (out, (theirs', ours - 1))
-        | otherwise                       = Nothing
-    limitUnfoldsM f (theirs, ours)
-        | ours >  0 = do r <- f theirs
-                         return $ (\(a,b) -> (a,(b,ours - 1))) `fmap` r
-        | otherwise = return Nothing
-
-
-    prop_unfoldr :: P (Int -> (Int -> Maybe (a,Int)) -> Int -> v a)
-         = (\n f a -> V.unfoldr (limitUnfolds f) (a, n))
-           `eq` (\n f a -> unfoldr (limitUnfolds f) (a, n))
-    prop_unfoldrN :: P (Int -> (Int -> Maybe (a,Int)) -> Int -> v a)
-         = V.unfoldrN `eq` (\n f a -> unfoldr (limitUnfolds f) (a, n))
-    prop_unfoldrM :: P (Int -> (Int -> Writer [Int] (Maybe (a,Int))) -> Int -> Writer [Int] (v a))
-         = (\n f a -> V.unfoldrM (limitUnfoldsM f) (a,n))
-           `eq` (\n f a -> Util.unfoldrM (limitUnfoldsM f) (a, n))
-    prop_unfoldrNM :: P (Int -> (Int -> Writer [Int] (Maybe (a,Int))) -> Int -> Writer [Int] (v a))
-         = V.unfoldrNM `eq` (\n f a -> Util.unfoldrM (limitUnfoldsM f) (a, n))
-
-    prop_constructN  = \f -> forAll (choose (0,20)) $ \n -> unP prop n f
-      where
-        prop :: P (Int -> (v a -> a) -> v a) = V.constructN `eq` constructN []
-
-        constructN xs 0 _ = xs
-        constructN xs n f = constructN (xs ++ [f xs]) (n-1) f
-
-    prop_constructrN  = \f -> forAll (choose (0,20)) $ \n -> unP prop n f
-      where
-        prop :: P (Int -> (v a -> a) -> v a) = V.constructrN `eq` constructrN []
-
-        constructrN xs 0 _ = xs
-        constructrN xs n f = constructrN (f xs : xs) (n-1) f
-
-testTuplyFunctions:: forall a v. (CommonContext a v, VectorContext (a, a) v, VectorContext (a, a, a) v) => v a -> [Test]
-testTuplyFunctions _ = $(testProperties [ 'prop_zip, 'prop_zip3
-                                        , 'prop_unzip, 'prop_unzip3
-                                        , 'prop_mzip, 'prop_munzip
-                                        ])
-  where
-    prop_zip    :: P (v a -> v a -> v (a, a))           = V.zip `eq` zip
-    prop_zip3   :: P (v a -> v a -> v a -> v (a, a, a)) = V.zip3 `eq` zip3
-    prop_unzip  :: P (v (a, a) -> (v a, v a))           = V.unzip `eq` unzip
-    prop_unzip3 :: P (v (a, a, a) -> (v a, v a, v a))   = V.unzip3 `eq` unzip3
-    prop_mzip   :: P (Data.Vector.Vector a -> Data.Vector.Vector a -> Data.Vector.Vector (a, a))
-        = mzip `eq` zip
-    prop_munzip :: P (Data.Vector.Vector (a, a) -> (Data.Vector.Vector a, Data.Vector.Vector a))
-        = munzip `eq` unzip
-
-testOrdFunctions :: forall a v. (CommonContext a v, Ord a, Ord (v a)) => v a -> [Test]
-testOrdFunctions _ = $(testProperties
-  ['prop_compare,
-   'prop_maximum, 'prop_minimum,
-   'prop_minIndex, 'prop_maxIndex ])
-  where
-    prop_compare :: P (v a -> v a -> Ordering) = compare `eq` compare
-    prop_maximum :: P (v a -> a) = not . V.null ===> V.maximum `eq` maximum
-    prop_minimum :: P (v a -> a) = not . V.null ===> V.minimum `eq` minimum
-    prop_minIndex :: P (v a -> Int) = not . V.null ===> V.minIndex `eq` minIndex
-    prop_maxIndex :: P (v a -> Int) = not . V.null ===> V.maxIndex `eq` maxIndex
-
-testEnumFunctions :: forall a v. (CommonContext a v, Enum a, Ord a, Num a, Random a) => v a -> [Test]
-testEnumFunctions _ = $(testProperties
-  [ 'prop_enumFromN, 'prop_enumFromThenN,
-    'prop_enumFromTo, 'prop_enumFromThenTo])
-  where
-    prop_enumFromN :: P (a -> Int -> v a)
-      = (\_ n -> n < 1000)
-        ===> V.enumFromN `eq` (\x n -> take n $ scanl (+) x $ repeat 1)
-
-    prop_enumFromThenN :: P (a -> a -> Int -> v a)
-      = (\_ _ n -> n < 1000)
-        ===> V.enumFromStepN `eq` (\x y n -> take n $ scanl (+) x $ repeat y)
-
-    prop_enumFromTo = \m ->
-                      forAll (choose (-2,100)) $ \n ->
-                      unP prop m (m+n)
-      where
-        prop  :: P (a -> a -> v a) = V.enumFromTo `eq` enumFromTo
-
-    prop_enumFromThenTo = \i j ->
-                          j /= i ==>
-                          forAll (choose (ks i j)) $ \k ->
-                          unP prop i j k
-      where
-        prop :: P (a -> a -> a -> v a) = V.enumFromThenTo `eq` enumFromThenTo
-
-        ks i j | j < i     = (i-d*100, i+d*2)
-               | otherwise = (i-d*2, i+d*100)
-          where
-            d = abs (j-i)
-
-testMonoidFunctions :: forall a v. (CommonContext a v, Monoid (v a)) => v a -> [Test]
-testMonoidFunctions _ = $(testProperties
-  [ 'prop_mempty, 'prop_mappend, 'prop_mconcat ])
-  where
-    prop_mempty  :: P (v a)               = mempty `eq` mempty
-    prop_mappend :: P (v a -> v a -> v a) = mappend `eq` mappend
-    prop_mconcat :: P ([v a] -> v a)      = mconcat `eq` mconcat
-
-testFunctorFunctions :: forall a v. (CommonContext a v, Functor v) => v a -> [Test]
-testFunctorFunctions _ = $(testProperties
-  [ 'prop_fmap ])
-  where
-    prop_fmap :: P ((a -> a) -> v a -> v a) = fmap `eq` fmap
-
-testMonadFunctions :: forall a v. (CommonContext a v, Monad v) => v a -> [Test]
-testMonadFunctions _ = $(testProperties
-  [ 'prop_return, 'prop_bind ])
-  where
-    prop_return :: P (a -> v a) = return `eq` return
-    prop_bind   :: P (v a -> (a -> v a) -> v a) = (>>=) `eq` (>>=)
-
-testApplicativeFunctions :: forall a v. (CommonContext a v, V.Vector v (a -> a), Applicative.Applicative v) => v a -> [Test]
-testApplicativeFunctions _ = $(testProperties
-  [ 'prop_applicative_pure, 'prop_applicative_appl ])
-  where
-    prop_applicative_pure :: P (a -> v a)
-      = Applicative.pure `eq` Applicative.pure
-    prop_applicative_appl :: [a -> a] -> P (v a -> v a)
-      = \fs -> (Applicative.<*>) (V.fromList fs) `eq` (Applicative.<*>) fs
-
-testAlternativeFunctions :: forall a v. (CommonContext a v, Applicative.Alternative v) => v a -> [Test]
-testAlternativeFunctions _ = $(testProperties
-  [ 'prop_alternative_empty, 'prop_alternative_or ])
-  where
-    prop_alternative_empty :: P (v a) = Applicative.empty `eq` Applicative.empty
-    prop_alternative_or :: P (v a -> v a -> v a)
-      = (Applicative.<|>) `eq` (Applicative.<|>)
-
-testBoolFunctions :: forall v. (CommonContext Bool v) => v Bool -> [Test]
-testBoolFunctions _ = $(testProperties ['prop_and, 'prop_or])
-  where
-    prop_and :: P (v Bool -> Bool) = V.and `eq` and
-    prop_or  :: P (v Bool -> Bool) = V.or `eq` or
-
-testNumFunctions :: forall a v. (CommonContext a v, Num a) => v a -> [Test]
-testNumFunctions _ = $(testProperties ['prop_sum, 'prop_product])
-  where
-    prop_sum     :: P (v a -> a) = V.sum `eq` sum
-    prop_product :: P (v a -> a) = V.product `eq` product
-
-testNestedVectorFunctions :: forall a v. (CommonContext a v) => v a -> [Test]
-testNestedVectorFunctions _ = $(testProperties [])
-  where
-    -- Prelude
-    --prop_concat       = (V.concat :: [v a] -> v a)                    `eq1` concat
-
-    -- Data.List
-    --prop_transpose    = V.transpose   `eq1` (transpose   :: [v a] -> [v a])
-    --prop_group        = V.group       `eq1` (group       :: v a -> [v a])
-    --prop_inits        = V.inits       `eq1` (inits       :: v a -> [v a])
-    --prop_tails        = V.tails       `eq1` (tails       :: v a -> [v a])
-
-testGeneralBoxedVector :: forall a. (CommonContext a Data.Vector.Vector, Ord a) => Data.Vector.Vector a -> [Test]
-testGeneralBoxedVector dummy = concatMap ($ dummy) [
-        testSanity,
-        testPolymorphicFunctions,
-        testOrdFunctions,
-        testTuplyFunctions,
-        testNestedVectorFunctions,
-        testMonoidFunctions,
-        testFunctorFunctions,
-        testMonadFunctions,
-        testApplicativeFunctions,
-        testAlternativeFunctions
-    ]
-
-testBoolBoxedVector dummy = concatMap ($ dummy)
-  [
-    testGeneralBoxedVector
-  , testBoolFunctions
-  ]
-
-testNumericBoxedVector :: forall a. (CommonContext a Data.Vector.Vector, Ord a, Num a, Enum a, Random a) => Data.Vector.Vector a -> [Test]
-testNumericBoxedVector dummy = concatMap ($ dummy)
-  [
-    testGeneralBoxedVector
-  , testNumFunctions
-  , testEnumFunctions
-  ]
-
-
-testGeneralPrimitiveVector :: forall a. (CommonContext a Data.Vector.Primitive.Vector, Data.Vector.Primitive.Prim a, Ord a) => Data.Vector.Primitive.Vector a -> [Test]
-testGeneralPrimitiveVector dummy = concatMap ($ dummy) [
-        testSanity,
-        testPolymorphicFunctions,
-        testOrdFunctions,
-        testMonoidFunctions
-    ]
-
-testNumericPrimitiveVector :: forall a. (CommonContext a Data.Vector.Primitive.Vector, Data.Vector.Primitive.Prim a, Ord a, Num a, Enum a, Random a) => Data.Vector.Primitive.Vector a -> [Test]
-testNumericPrimitiveVector dummy = concatMap ($ dummy)
- [
-   testGeneralPrimitiveVector
- , testNumFunctions
- , testEnumFunctions
- ]
-
-
-testGeneralStorableVector :: forall a. (CommonContext a Data.Vector.Storable.Vector, Data.Vector.Storable.Storable a, Ord a) => Data.Vector.Storable.Vector a -> [Test]
-testGeneralStorableVector dummy = concatMap ($ dummy) [
-        testSanity,
-        testPolymorphicFunctions,
-        testOrdFunctions,
-        testMonoidFunctions
-    ]
-
-testNumericStorableVector :: forall a. (CommonContext a Data.Vector.Storable.Vector, Data.Vector.Storable.Storable a, Ord a, Num a, Enum a, Random a) => Data.Vector.Storable.Vector a -> [Test]
-testNumericStorableVector dummy = concatMap ($ dummy)
-  [
-    testGeneralStorableVector
-  , testNumFunctions
-  , testEnumFunctions
-  ]
-
-
-testGeneralUnboxedVector :: forall a. (CommonContext a Data.Vector.Unboxed.Vector, Data.Vector.Unboxed.Unbox a, Ord a) => Data.Vector.Unboxed.Vector a -> [Test]
-testGeneralUnboxedVector dummy = concatMap ($ dummy) [
-        testSanity,
-        testPolymorphicFunctions,
-        testOrdFunctions,
-        testMonoidFunctions
-    ]
-
-testUnitUnboxedVector dummy = concatMap ($ dummy)
-  [
-    testGeneralUnboxedVector
-  ]
-
-testBoolUnboxedVector dummy = concatMap ($ dummy)
-  [
-    testGeneralUnboxedVector
-  , testBoolFunctions
-  ]
-
-testNumericUnboxedVector :: forall a. (CommonContext a Data.Vector.Unboxed.Vector, Data.Vector.Unboxed.Unbox a, Ord a, Num a, Enum a, Random a) => Data.Vector.Unboxed.Vector a -> [Test]
-testNumericUnboxedVector dummy = concatMap ($ dummy)
-  [
-    testGeneralUnboxedVector
-  , testNumFunctions
-  , testEnumFunctions
-  ]
-
-testTupleUnboxedVector :: forall a. (CommonContext a Data.Vector.Unboxed.Vector, Data.Vector.Unboxed.Unbox a, Ord a) => Data.Vector.Unboxed.Vector a -> [Test]
-testTupleUnboxedVector dummy = concatMap ($ dummy)
-  [
-    testGeneralUnboxedVector
-  ]
-
-tests = [
-        testGroup "Data.Vector.Vector (Bool)"           (testBoolBoxedVector      (undefined :: Data.Vector.Vector Bool)),
-        testGroup "Data.Vector.Vector (Int)"            (testNumericBoxedVector   (undefined :: Data.Vector.Vector Int)),
-
-        testGroup "Data.Vector.Primitive.Vector (Int)"    (testNumericPrimitiveVector (undefined :: Data.Vector.Primitive.Vector Int)),
-        testGroup "Data.Vector.Primitive.Vector (Double)" (testNumericPrimitiveVector (undefined :: Data.Vector.Primitive.Vector Double)),
-
-        testGroup "Data.Vector.Storable.Vector (Int)"    (testNumericStorableVector (undefined :: Data.Vector.Storable.Vector Int)),
-        testGroup "Data.Vector.Storable.Vector (Double)" (testNumericStorableVector (undefined :: Data.Vector.Storable.Vector Double)),
-
-        testGroup "Data.Vector.Unboxed.Vector ()"       (testUnitUnboxedVector (undefined :: Data.Vector.Unboxed.Vector ())),
-        testGroup "Data.Vector.Unboxed.Vector (Bool)"       (testBoolUnboxedVector (undefined :: Data.Vector.Unboxed.Vector Bool)),
-        testGroup "Data.Vector.Unboxed.Vector (Int)"    (testNumericUnboxedVector (undefined :: Data.Vector.Unboxed.Vector Int)),
-        testGroup "Data.Vector.Unboxed.Vector (Double)" (testNumericUnboxedVector (undefined :: Data.Vector.Unboxed.Vector Double)),
-       testGroup "Data.Vector.Unboxed.Vector (Int,Bool)" (testTupleUnboxedVector (undefined :: Data.Vector.Unboxed.Vector (Int,Bool))),
-         testGroup "Data.Vector.Unboxed.Vector (Int,Bool,Int)" (testTupleUnboxedVector (undefined :: Data.Vector.Unboxed.Vector (Int,Bool,Int)))
-
-    ]
diff --git a/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector/UnitTests.hs b/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector/UnitTests.hs
deleted file mode 100644
index 5827640d8438..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector/UnitTests.hs
+++ /dev/null
@@ -1,48 +0,0 @@
-{-# LANGUAGE ScopedTypeVariables #-}
-
-module Tests.Vector.UnitTests (tests) where
-
-import Control.Applicative as Applicative
-import qualified Data.Vector.Storable as Storable
-import Foreign.Ptr
-import Foreign.Storable
-import Text.Printf
-
-import Test.Framework
-import Test.Framework.Providers.HUnit (testCase)
-import Test.HUnit (Assertion, assertBool)
-
-newtype Aligned a = Aligned { getAligned :: a }
-
-instance (Storable a) => Storable (Aligned a) where
-  sizeOf _    = sizeOf (undefined :: a)
-  alignment _ = 128
-  peek ptr    = Aligned Applicative.<$> peek (castPtr ptr)
-  poke ptr    = poke (castPtr ptr) . getAligned
-
-checkAddressAlignment :: forall a. (Storable a) => Storable.Vector a -> Assertion
-checkAddressAlignment xs = Storable.unsafeWith xs $ \ptr -> do
-  let ptr'  = ptrToWordPtr ptr
-      msg   = printf "Expected pointer with alignment %d but got 0x%08x" (toInteger align) (toInteger ptr')
-      align :: WordPtr
-      align = fromIntegral $ alignment dummy
-  assertBool msg $ (ptr' `mod` align) == 0
-  where
-    dummy :: a
-    dummy = undefined
-
-tests :: [Test]
-tests =
-  [ testGroup "Data.Vector.Storable.Vector Alignment"
-      [ testCase "Aligned Double" $
-          checkAddressAlignment alignedDoubleVec
-      , testCase "Aligned Int" $
-          checkAddressAlignment alignedIntVec
-      ]
-  ]
-
-alignedDoubleVec :: Storable.Vector (Aligned Double)
-alignedDoubleVec = Storable.fromList $ map Aligned [1, 2, 3, 4, 5]
-
-alignedIntVec :: Storable.Vector (Aligned Int)
-alignedIntVec = Storable.fromList $ map Aligned [1, 2, 3, 4, 5]
diff --git a/third_party/bazel/rules_haskell/examples/vector/tests/Utilities.hs b/third_party/bazel/rules_haskell/examples/vector/tests/Utilities.hs
deleted file mode 100644
index 86a4f2c32462..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/tests/Utilities.hs
+++ /dev/null
@@ -1,350 +0,0 @@
-{-# LANGUAGE FlexibleInstances, GADTs #-}
-module Utilities where
-
-import Test.QuickCheck
-
-import qualified Data.Vector as DV
-import qualified Data.Vector.Generic as DVG
-import qualified Data.Vector.Primitive as DVP
-import qualified Data.Vector.Storable as DVS
-import qualified Data.Vector.Unboxed as DVU
-import qualified Data.Vector.Fusion.Bundle as S
-
-import Control.Monad (foldM, foldM_, zipWithM, zipWithM_)
-import Control.Monad.Trans.Writer
-import Data.Function (on)
-import Data.Functor.Identity
-import Data.List ( sortBy )
-import Data.Monoid
-import Data.Maybe (catMaybes)
-
-instance Show a => Show (S.Bundle v a) where
-    show s = "Data.Vector.Fusion.Bundle.fromList " ++ show (S.toList s)
-
-
-instance Arbitrary a => Arbitrary (DV.Vector a) where
-    arbitrary = fmap DV.fromList arbitrary
-
-instance CoArbitrary a => CoArbitrary (DV.Vector a) where
-    coarbitrary = coarbitrary . DV.toList
-
-instance (Arbitrary a, DVP.Prim a) => Arbitrary (DVP.Vector a) where
-    arbitrary = fmap DVP.fromList arbitrary
-
-instance (CoArbitrary a, DVP.Prim a) => CoArbitrary (DVP.Vector a) where
-    coarbitrary = coarbitrary . DVP.toList
-
-instance (Arbitrary a, DVS.Storable a) => Arbitrary (DVS.Vector a) where
-    arbitrary = fmap DVS.fromList arbitrary
-
-instance (CoArbitrary a, DVS.Storable a) => CoArbitrary (DVS.Vector a) where
-    coarbitrary = coarbitrary . DVS.toList
-
-instance (Arbitrary a, DVU.Unbox a) => Arbitrary (DVU.Vector a) where
-    arbitrary = fmap DVU.fromList arbitrary
-
-instance (CoArbitrary a, DVU.Unbox a) => CoArbitrary (DVU.Vector a) where
-    coarbitrary = coarbitrary . DVU.toList
-
-instance Arbitrary a => Arbitrary (S.Bundle v a) where
-    arbitrary = fmap S.fromList arbitrary
-
-instance CoArbitrary a => CoArbitrary (S.Bundle v a) where
-    coarbitrary = coarbitrary . S.toList
-
-instance (Arbitrary a, Arbitrary b) => Arbitrary (Writer a b) where
-    arbitrary = do b <- arbitrary
-                   a <- arbitrary
-                   return $ writer (b,a)
-
-instance CoArbitrary a => CoArbitrary (Writer a ()) where
-    coarbitrary = coarbitrary . runWriter
-
-class (Testable (EqTest a), Conclusion (EqTest a)) => TestData a where
-  type Model a
-  model :: a -> Model a
-  unmodel :: Model a -> a
-
-  type EqTest a
-  equal :: a -> a -> EqTest a
-
-instance Eq a => TestData (S.Bundle v a) where
-  type Model (S.Bundle v a) = [a]
-  model = S.toList
-  unmodel = S.fromList
-
-  type EqTest (S.Bundle v a) = Property
-  equal x y = property (x == y)
-
-instance Eq a => TestData (DV.Vector a) where
-  type Model (DV.Vector a) = [a]
-  model = DV.toList
-  unmodel = DV.fromList
-
-  type EqTest (DV.Vector a) = Property
-  equal x y = property (x == y)
-
-instance (Eq a, DVP.Prim a) => TestData (DVP.Vector a) where
-  type Model (DVP.Vector a) = [a]
-  model = DVP.toList
-  unmodel = DVP.fromList
-
-  type EqTest (DVP.Vector a) = Property
-  equal x y = property (x == y)
-
-instance (Eq a, DVS.Storable a) => TestData (DVS.Vector a) where
-  type Model (DVS.Vector a) = [a]
-  model = DVS.toList
-  unmodel = DVS.fromList
-
-  type EqTest (DVS.Vector a) = Property
-  equal x y = property (x == y)
-
-instance (Eq a, DVU.Unbox a) => TestData (DVU.Vector a) where
-  type Model (DVU.Vector a) = [a]
-  model = DVU.toList
-  unmodel = DVU.fromList
-
-  type EqTest (DVU.Vector a) = Property
-  equal x y = property (x == y)
-
-#define id_TestData(ty) \
-instance TestData ty where { \
-  type Model ty = ty;        \
-  model = id;                \
-  unmodel = id;              \
-                             \
-  type EqTest ty = Property; \
-  equal x y = property (x == y) }
-
-id_TestData(())
-id_TestData(Bool)
-id_TestData(Int)
-id_TestData(Float)
-id_TestData(Double)
-id_TestData(Ordering)
-
--- Functorish models
--- All of these need UndecidableInstances although they are actually well founded. Oh well.
-instance (Eq a, TestData a) => TestData (Maybe a) where
-  type Model (Maybe a) = Maybe (Model a)
-  model = fmap model
-  unmodel = fmap unmodel
-
-  type EqTest (Maybe a) = Property
-  equal x y = property (x == y)
-
-instance (Eq a, TestData a) => TestData [a] where
-  type Model [a] = [Model a]
-  model = fmap model
-  unmodel = fmap unmodel
-
-  type EqTest [a] = Property
-  equal x y = property (x == y)
-
-instance (Eq a, TestData a) => TestData (Identity a) where
-  type Model (Identity a) = Identity (Model a)
-  model = fmap model
-  unmodel = fmap unmodel
-
-  type EqTest (Identity a) = Property
-  equal = (property .) . on (==) runIdentity
-
-instance (Eq a, TestData a, Eq b, TestData b, Monoid a) => TestData (Writer a b) where
-  type Model (Writer a b) = Writer (Model a) (Model b)
-  model = mapWriter model
-  unmodel = mapWriter unmodel
-
-  type EqTest (Writer a b) = Property
-  equal = (property .) . on (==) runWriter
-
-instance (Eq a, Eq b, TestData a, TestData b) => TestData (a,b) where
-  type Model (a,b) = (Model a, Model b)
-  model (a,b) = (model a, model b)
-  unmodel (a,b) = (unmodel a, unmodel b)
-
-  type EqTest (a,b) = Property
-  equal x y = property (x == y)
-
-instance (Eq a, Eq b, Eq c, TestData a, TestData b, TestData c) => TestData (a,b,c) where
-  type Model (a,b,c) = (Model a, Model b, Model c)
-  model (a,b,c) = (model a, model b, model c)
-  unmodel (a,b,c) = (unmodel a, unmodel b, unmodel c)
-
-  type EqTest (a,b,c) = Property
-  equal x y = property (x == y)
-
-instance (Arbitrary a, Show a, TestData a, TestData b) => TestData (a -> b) where
-  type Model (a -> b) = Model a -> Model b
-  model f = model . f . unmodel
-  unmodel f = unmodel . f . model
-
-  type EqTest (a -> b) = a -> EqTest b
-  equal f g x = equal (f x) (g x)
-
-newtype P a = P { unP :: EqTest a }
-
-instance TestData a => Testable (P a) where
-  property (P a) = property a
-
-infix 4 `eq`
-eq :: TestData a => a -> Model a -> P a
-eq x y = P (equal x (unmodel y))
-
-class Conclusion p where
-  type Predicate p
-
-  predicate :: Predicate p -> p -> p
-
-instance Conclusion Property where
-  type Predicate Property = Bool
-
-  predicate = (==>)
-
-instance Conclusion p => Conclusion (a -> p) where
-  type Predicate (a -> p) = a -> Predicate p
-
-  predicate f p = \x -> predicate (f x) (p x)
-
-infixr 0 ===>
-(===>) :: TestData a => Predicate (EqTest a) -> P a -> P a
-p ===> P a = P (predicate p a)
-
-notNull2 _ xs = not $ DVG.null xs
-notNullS2 _ s = not $ S.null s
-
--- Generators
-index_value_pairs :: Arbitrary a => Int -> Gen [(Int,a)]
-index_value_pairs 0 = return []
-index_value_pairs m = sized $ \n ->
-  do
-    len <- choose (0,n)
-    is <- sequence [choose (0,m-1) | i <- [1..len]]
-    xs <- vector len
-    return $ zip is xs
-
-indices :: Int -> Gen [Int]
-indices 0 = return []
-indices m = sized $ \n ->
-  do
-    len <- choose (0,n)
-    sequence [choose (0,m-1) | i <- [1..len]]
-
-
--- Additional list functions
-singleton x = [x]
-snoc xs x = xs ++ [x]
-generate n f = [f i | i <- [0 .. n-1]]
-slice i n xs = take n (drop i xs)
-backpermute xs is = map (xs!!) is
-prescanl f z = init . scanl f z
-postscanl f z = tail . scanl f z
-prescanr f z = tail . scanr f z
-postscanr f z = init . scanr f z
-
-accum :: (a -> b -> a) -> [a] -> [(Int,b)] -> [a]
-accum f xs ps = go xs ps' 0
-  where
-    ps' = sortBy (\p q -> compare (fst p) (fst q)) ps
-
-    go (x:xs) ((i,y) : ps) j
-      | i == j     = go (f x y : xs) ps j
-    go (x:xs) ps j = x : go xs ps (j+1)
-    go [] _ _      = []
-
-(//) :: [a] -> [(Int, a)] -> [a]
-xs // ps = go xs ps' 0
-  where
-    ps' = sortBy (\p q -> compare (fst p) (fst q)) ps
-
-    go (x:xs) ((i,y) : ps) j
-      | i == j     = go (y:xs) ps j
-    go (x:xs) ps j = x : go xs ps (j+1)
-    go [] _ _      = []
-
-
-withIndexFirst m f = m (uncurry f) . zip [0..]
-
-imap :: (Int -> a -> a) -> [a] -> [a]
-imap = withIndexFirst map
-
-imapM :: Monad m => (Int -> a -> m a) -> [a] -> m [a]
-imapM = withIndexFirst mapM
-
-imapM_ :: Monad m => (Int -> a -> m b) -> [a] -> m ()
-imapM_ = withIndexFirst mapM_
-
-izipWith :: (Int -> a -> a -> a) -> [a] -> [a] -> [a]
-izipWith = withIndexFirst zipWith
-
-izipWithM :: Monad m => (Int -> a -> a -> m a) -> [a] -> [a] -> m [a]
-izipWithM = withIndexFirst zipWithM
-
-izipWithM_ :: Monad m => (Int -> a -> a -> m b) -> [a] -> [a] -> m ()
-izipWithM_ = withIndexFirst zipWithM_
-
-izipWith3 :: (Int -> a -> a -> a -> a) -> [a] -> [a] -> [a] -> [a]
-izipWith3 = withIndexFirst zipWith3
-
-ifilter :: (Int -> a -> Bool) -> [a] -> [a]
-ifilter f = map snd . withIndexFirst filter f
-
-mapMaybe :: (a -> Maybe b) -> [a] -> [b]
-mapMaybe f = catMaybes . map f
-
-imapMaybe :: (Int -> a -> Maybe b) -> [a] -> [b]
-imapMaybe f = catMaybes . withIndexFirst map f
-
-indexedLeftFold fld f z = fld (uncurry . f) z . zip [0..]
-
-ifoldl :: (a -> Int -> a -> a) -> a -> [a] -> a
-ifoldl = indexedLeftFold foldl
-
-iscanl :: (Int -> a -> b -> a) -> a -> [b] -> [a]
-iscanl f z = scanl (\a (i, b) -> f i a b) z . zip [0..]
-
-iscanr :: (Int -> a -> b -> b) -> b -> [a] -> [b]
-iscanr f z = scanr (uncurry f) z . zip [0..]
-
-ifoldr :: (Int -> a -> b -> b) -> b -> [a] -> b
-ifoldr f z = foldr (uncurry f) z . zip [0..]
-
-ifoldM :: Monad m => (a -> Int -> a -> m a) -> a -> [a] -> m a
-ifoldM = indexedLeftFold foldM
-
-ifoldM_ :: Monad m => (b -> Int -> a -> m b) -> b -> [a] -> m ()
-ifoldM_ = indexedLeftFold foldM_
-
-minIndex :: Ord a => [a] -> Int
-minIndex = fst . foldr1 imin . zip [0..]
-  where
-    imin (i,x) (j,y) | x <= y    = (i,x)
-                     | otherwise = (j,y)
-
-maxIndex :: Ord a => [a] -> Int
-maxIndex = fst . foldr1 imax . zip [0..]
-  where
-    imax (i,x) (j,y) | x >= y    = (i,x)
-                     | otherwise = (j,y)
-
-iterateNM :: Monad m => Int -> (a -> m a) -> a -> m [a]
-iterateNM n f x
-    | n <= 0    = return []
-    | n == 1    = return [x]
-    | otherwise =  do x' <- f x
-                      xs <- iterateNM (n-1) f x'
-                      return (x : xs)
-
-unfoldrM :: Monad m => (b -> m (Maybe (a,b))) -> b -> m [a]
-unfoldrM step b0 = do
-    r <- step b0
-    case r of
-      Nothing    -> return []
-      Just (a,b) -> do as <- unfoldrM step b
-                       return (a : as)
-
-
-limitUnfolds f (theirs, ours)
-    | ours >= 0
-    , Just (out, theirs') <- f theirs = Just (out, (theirs', ours - 1))
-    | otherwise                       = Nothing
diff --git a/third_party/bazel/rules_haskell/examples/vector/vector.cabal b/third_party/bazel/rules_haskell/examples/vector/vector.cabal
deleted file mode 100644
index 013d522b2cb4..000000000000
--- a/third_party/bazel/rules_haskell/examples/vector/vector.cabal
+++ /dev/null
@@ -1,251 +0,0 @@
-Name:           vector

-Version:        0.12.0.1

-x-revision: 2

--- don't forget to update the changelog file!

-License:        BSD3

-License-File:   LICENSE

-Author:         Roman Leshchinskiy <rl@cse.unsw.edu.au>

-Maintainer:     Haskell Libraries Team <libraries@haskell.org>

-Copyright:      (c) Roman Leshchinskiy 2008-2012

-Homepage:       https://github.com/haskell/vector

-Bug-Reports:    https://github.com/haskell/vector/issues

-Category:       Data, Data Structures

-Synopsis:       Efficient Arrays

-Description:

-        .

-        An efficient implementation of Int-indexed arrays (both mutable

-        and immutable), with a powerful loop optimisation framework .

-        .

-        It is structured as follows:

-        .

-        ["Data.Vector"] Boxed vectors of arbitrary types.

-        .

-        ["Data.Vector.Unboxed"] Unboxed vectors with an adaptive

-        representation based on data type families.

-        .

-        ["Data.Vector.Storable"] Unboxed vectors of 'Storable' types.

-        .

-        ["Data.Vector.Primitive"] Unboxed vectors of primitive types as

-        defined by the @primitive@ package. "Data.Vector.Unboxed" is more

-        flexible at no performance cost.

-        .

-        ["Data.Vector.Generic"] Generic interface to the vector types.

-        .

-        There is also a (draft) tutorial on common uses of vector.

-        .

-        * <http://haskell.org/haskellwiki/Numeric_Haskell:_A_Vector_Tutorial>

-

-Tested-With:

-  GHC == 7.4.2,

-  GHC == 7.6.3,

-  GHC == 7.8.4,

-  GHC == 7.10.3,

-  GHC == 8.0.1

-

-Cabal-Version:  >=1.10

-Build-Type:     Simple

-

-Extra-Source-Files:

-      changelog

-      README.md

-      tests/LICENSE

-      tests/Setup.hs

-      tests/Main.hs

-      benchmarks/vector-benchmarks.cabal

-      benchmarks/LICENSE

-      benchmarks/Setup.hs

-      benchmarks/Main.hs

-      benchmarks/Algo/AwShCC.hs

-      benchmarks/Algo/HybCC.hs

-      benchmarks/Algo/Leaffix.hs

-      benchmarks/Algo/ListRank.hs

-      benchmarks/Algo/Quickhull.hs

-      benchmarks/Algo/Rootfix.hs

-      benchmarks/Algo/Spectral.hs

-      benchmarks/Algo/Tridiag.hs

-      benchmarks/TestData/Graph.hs

-      benchmarks/TestData/ParenTree.hs

-      benchmarks/TestData/Random.hs

-      changelog

-      internal/GenUnboxTuple.hs

-      internal/unbox-tuple-instances

-

-Flag BoundsChecks

-  Description: Enable bounds checking

-  Default: True

-  Manual: True

-

-Flag UnsafeChecks

-  Description: Enable bounds checking in unsafe operations at the cost of a

-               significant performance penalty

-  Default: False

-  Manual: True

-

-Flag InternalChecks

-  Description: Enable internal consistency checks at the cost of a

-               significant performance penalty

-  Default: False

-  Manual: True

-

-Flag Wall

-  Description: Enable all -Wall warnings

-  Default: False

-  Manual: True

-

-Library

-  Default-Language: Haskell2010

-  Other-Extensions:

-        BangPatterns

-        CPP

-        DeriveDataTypeable

-        ExistentialQuantification

-        FlexibleContexts

-        FlexibleInstances

-        GADTs

-        KindSignatures

-        MagicHash

-        MultiParamTypeClasses

-        Rank2Types

-        ScopedTypeVariables

-        StandaloneDeriving

-        TypeFamilies

-

-  Exposed-Modules:

-        Data.Vector.Internal.Check

-

-        Data.Vector.Fusion.Util

-        Data.Vector.Fusion.Stream.Monadic

-        Data.Vector.Fusion.Bundle.Size

-        Data.Vector.Fusion.Bundle.Monadic

-        Data.Vector.Fusion.Bundle

-

-        Data.Vector.Generic.Mutable.Base

-        Data.Vector.Generic.Mutable

-        Data.Vector.Generic.Base

-        Data.Vector.Generic.New

-        Data.Vector.Generic

-

-        Data.Vector.Primitive.Mutable

-        Data.Vector.Primitive

-

-        Data.Vector.Storable.Internal

-        Data.Vector.Storable.Mutable

-        Data.Vector.Storable

-

-        Data.Vector.Unboxed.Base

-        Data.Vector.Unboxed.Mutable

-        Data.Vector.Unboxed

-

-        Data.Vector.Mutable

-        Data.Vector

-

-  Include-Dirs:

-        include, internal

-

-  Install-Includes:

-        vector.h

-

-  Build-Depends: base >= 4.5 && < 4.12

-               , primitive >= 0.5.0.1 && < 0.7

-               , ghc-prim >= 0.2 && < 0.6

-               , deepseq >= 1.1 && < 1.5

-  if !impl(ghc > 8.0)

-    Build-Depends: semigroups >= 0.18 && < 0.19

-

-  Ghc-Options: -O2 -Wall

-

-  if !flag(Wall)

-    Ghc-Options: -fno-warn-orphans

-

-    if impl(ghc >= 8.0) && impl(ghc < 8.1)

-      Ghc-Options:   -Wno-redundant-constraints

-

-  if flag(BoundsChecks)

-    cpp-options: -DVECTOR_BOUNDS_CHECKS

-

-  if flag(UnsafeChecks)

-    cpp-options: -DVECTOR_UNSAFE_CHECKS

-

-  if flag(InternalChecks)

-    cpp-options: -DVECTOR_INTERNAL_CHECKS

-

-source-repository head

-  type:     git

-  location: https://github.com/haskell/vector.git

-

-

-

-test-suite vector-tests-O0

-  Default-Language: Haskell2010

-  type: exitcode-stdio-1.0

-  Main-Is:  Main.hs

-

-  other-modules: Boilerplater

-                 Tests.Bundle

-                 Tests.Move

-                 Tests.Vector

-                 Tests.Vector.UnitTests

-                 Utilities

-

-  hs-source-dirs: tests

-  Build-Depends: base >= 4.5 && < 5, template-haskell, vector,

-                 random,

-                 QuickCheck >= 2.9 && < 2.10 , HUnit, test-framework,

-                 test-framework-hunit, test-framework-quickcheck2,

-                 transformers >= 0.2.0.0

-

-  default-extensions: CPP,

-              ScopedTypeVariables,

-              PatternGuards,

-              MultiParamTypeClasses,

-              FlexibleContexts,

-              Rank2Types,

-              TypeSynonymInstances,

-              TypeFamilies,

-              TemplateHaskell

-

-  Ghc-Options: -O0

-  Ghc-Options: -Wall

-

-  if !flag(Wall)

-    Ghc-Options: -fno-warn-orphans -fno-warn-missing-signatures

-    if impl(ghc >= 8.0) && impl( ghc < 8.1)

-      Ghc-Options: -Wno-redundant-constraints

-

-

-test-suite vector-tests-O2

-  Default-Language: Haskell2010

-  type: exitcode-stdio-1.0

-  Main-Is:  Main.hs

-

-  other-modules: Boilerplater

-                 Tests.Bundle

-                 Tests.Move

-                 Tests.Vector

-                 Tests.Vector.UnitTests

-                 Utilities

-

-  hs-source-dirs: tests

-  Build-Depends: base >= 4.5 && < 5, template-haskell, vector,

-                 random,

-                 QuickCheck >= 2.9 && < 2.10 , HUnit, test-framework,

-                 test-framework-hunit, test-framework-quickcheck2,

-                 transformers >= 0.2.0.0

-

-  default-extensions: CPP,

-              ScopedTypeVariables,

-              PatternGuards,

-              MultiParamTypeClasses,

-              FlexibleContexts,

-              Rank2Types,

-              TypeSynonymInstances,

-              TypeFamilies,

-              TemplateHaskell

-

-  Ghc-Options: -O2 -Wall

-

-  if !flag(Wall)

-    Ghc-Options: -fno-warn-orphans -fno-warn-missing-signatures

-    if impl(ghc >= 8.0) && impl(ghc < 8.1)

-      Ghc-Options: -Wno-redundant-constraints

-