about summary refs log tree commit diff
path: root/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic.hs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic.hs')
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic.hs2206
1 files changed, 0 insertions, 2206 deletions
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic.hs
deleted file mode 100644
index 066c07fd3d..0000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic.hs
+++ /dev/null
@@ -1,2206 +0,0 @@
-{-# LANGUAGE CPP, Rank2Types, MultiParamTypeClasses, FlexibleContexts,
-             TypeFamilies, ScopedTypeVariables, BangPatterns #-}
--- |
--- Module      : Data.Vector.Generic
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Generic interface to pure vectors.
---
-
-module Data.Vector.Generic (
-  -- * Immutable vectors
-  Vector(..), Mutable,
-
-  -- * Accessors
-
-  -- ** Length information
-  length, null,
-
-  -- ** Indexing
-  (!), (!?), head, last,
-  unsafeIndex, unsafeHead, unsafeLast,
-
-  -- ** Monadic indexing
-  indexM, headM, lastM,
-  unsafeIndexM, unsafeHeadM, unsafeLastM,
-
-  -- ** Extracting subvectors (slicing)
-  slice, init, tail, take, drop, splitAt,
-  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-
-  -- * Construction
-
-  -- ** Initialisation
-  empty, singleton, replicate, generate, iterateN,
-
-  -- ** Monadic initialisation
-  replicateM, generateM, iterateNM, create, createT,
-
-  -- ** Unfolding
-  unfoldr, unfoldrN,
-  unfoldrM, unfoldrNM,
-  constructN, constructrN,
-
-  -- ** Enumeration
-  enumFromN, enumFromStepN, enumFromTo, enumFromThenTo,
-
-  -- ** Concatenation
-  cons, snoc, (++), concat, concatNE,
-
-  -- ** Restricting memory usage
-  force,
-
-  -- * Modifying vectors
-
-  -- ** Bulk updates
-  (//), update, update_,
-  unsafeUpd, unsafeUpdate, unsafeUpdate_,
-
-  -- ** Accumulations
-  accum, accumulate, accumulate_,
-  unsafeAccum, unsafeAccumulate, unsafeAccumulate_,
-
-  -- ** Permutations
-  reverse, backpermute, unsafeBackpermute,
-
-  -- ** Safe destructive updates
-  modify,
-
-  -- * Elementwise operations
-
-  -- ** Indexing
-  indexed,
-
-  -- ** Mapping
-  map, imap, concatMap,
-
-  -- ** Monadic mapping
-  mapM, imapM, mapM_, imapM_, forM, forM_,
-
-  -- ** Zipping
-  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
-  izipWith, izipWith3, izipWith4, izipWith5, izipWith6,
-  zip, zip3, zip4, zip5, zip6,
-
-  -- ** Monadic zipping
-  zipWithM, izipWithM, zipWithM_, izipWithM_,
-
-  -- ** Unzipping
-  unzip, unzip3, unzip4, unzip5, unzip6,
-
-  -- * Working with predicates
-
-  -- ** Filtering
-  filter, ifilter, uniq,
-  mapMaybe, imapMaybe,
-  filterM,
-  takeWhile, dropWhile,
-
-  -- ** Partitioning
-  partition, unstablePartition, span, break,
-
-  -- ** Searching
-  elem, notElem, find, findIndex, findIndices, elemIndex, elemIndices,
-
-  -- * Folding
-  foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1',
-  ifoldl, ifoldl', ifoldr, ifoldr',
-
-  -- ** Specialised folds
-  all, any, and, or,
-  sum, product,
-  maximum, maximumBy, minimum, minimumBy,
-  minIndex, minIndexBy, maxIndex, maxIndexBy,
-
-  -- ** Monadic folds
-  foldM, ifoldM, foldM', ifoldM',
-  fold1M, fold1M', foldM_, ifoldM_,
-  foldM'_, ifoldM'_, fold1M_, fold1M'_,
-
-  -- ** Monadic sequencing
-  sequence, sequence_,
-
-  -- * Prefix sums (scans)
-  prescanl, prescanl',
-  postscanl, postscanl',
-  scanl, scanl', scanl1, scanl1',
-  iscanl, iscanl',
-  prescanr, prescanr',
-  postscanr, postscanr',
-  scanr, scanr', scanr1, scanr1',
-  iscanr, iscanr',
-
-  -- * Conversions
-
-  -- ** Lists
-  toList, fromList, fromListN,
-
-  -- ** Different vector types
-  convert,
-
-  -- ** Mutable vectors
-  freeze, thaw, copy, unsafeFreeze, unsafeThaw, unsafeCopy,
-
-  -- * Fusion support
-
-  -- ** Conversion to/from Bundles
-  stream, unstream, streamR, unstreamR,
-
-  -- ** Recycling support
-  new, clone,
-
-  -- * Utilities
-
-  -- ** Comparisons
-  eq, cmp,
-  eqBy, cmpBy,
-
-  -- ** Show and Read
-  showsPrec, readPrec,
-  liftShowsPrec, liftReadsPrec,
-
-  -- ** @Data@ and @Typeable@
-  gfoldl, dataCast, mkType
-) where
-
-import           Data.Vector.Generic.Base
-
-import qualified Data.Vector.Generic.Mutable as M
-
-import qualified Data.Vector.Generic.New as New
-import           Data.Vector.Generic.New ( New )
-
-import qualified Data.Vector.Fusion.Bundle as Bundle
-import           Data.Vector.Fusion.Bundle ( Bundle, MBundle, lift, inplace )
-import qualified Data.Vector.Fusion.Bundle.Monadic as MBundle
-import           Data.Vector.Fusion.Stream.Monadic ( Stream )
-import qualified Data.Vector.Fusion.Stream.Monadic as S
-import           Data.Vector.Fusion.Bundle.Size
-import           Data.Vector.Fusion.Util
-
-import Control.Monad.ST ( ST, runST )
-import Control.Monad.Primitive
-import Prelude hiding ( length, null,
-                        replicate, (++), concat,
-                        head, last,
-                        init, tail, take, drop, splitAt, reverse,
-                        map, concat, concatMap,
-                        zipWith, zipWith3, zip, zip3, unzip, unzip3,
-                        filter, takeWhile, dropWhile, span, break,
-                        elem, notElem,
-                        foldl, foldl1, foldr, foldr1,
-                        all, any, and, or, sum, product, maximum, minimum,
-                        scanl, scanl1, scanr, scanr1,
-                        enumFromTo, enumFromThenTo,
-                        mapM, mapM_, sequence, sequence_,
-                        showsPrec )
-
-import qualified Text.Read as Read
-import qualified Data.List.NonEmpty as NonEmpty
-
-#if __GLASGOW_HASKELL__ >= 707
-import Data.Typeable ( Typeable, gcast1 )
-#else
-import Data.Typeable ( Typeable1, gcast1 )
-#endif
-
-#include "vector.h"
-
-import Data.Data ( Data, DataType )
-#if MIN_VERSION_base(4,2,0)
-import Data.Data ( mkNoRepType )
-#else
-import Data.Data ( mkNorepType )
-mkNoRepType :: String -> DataType
-mkNoRepType = mkNorepType
-#endif
-
-import qualified Data.Traversable as T (Traversable(mapM))
-
--- Length information
--- ------------------
-
--- | /O(1)/ Yield the length of the vector
-length :: Vector v a => v a -> Int
-{-# INLINE length #-}
-length = Bundle.length . stream'
-
--- | /O(1)/ Test whether a vector is empty
-null :: Vector v a => v a -> Bool
-{-# INLINE null #-}
-null = Bundle.null . stream
-
--- Indexing
--- --------
-
-infixl 9 !
--- | O(1) Indexing
-(!) :: Vector v a => v a -> Int -> a
-{-# INLINE_FUSED (!) #-}
-(!) v i = BOUNDS_CHECK(checkIndex) "(!)" i (length v)
-        $ unId (basicUnsafeIndexM v i)
-
-infixl 9 !?
--- | O(1) Safe indexing
-(!?) :: Vector v a => v a -> Int -> Maybe a
-{-# INLINE_FUSED (!?) #-}
-v !? i | i < 0 || i >= length v = Nothing
-       | otherwise              = Just $ unsafeIndex v i
-
--- | /O(1)/ First element
-head :: Vector v a => v a -> a
-{-# INLINE_FUSED head #-}
-head v = v ! 0
-
--- | /O(1)/ Last element
-last :: Vector v a => v a -> a
-{-# INLINE_FUSED last #-}
-last v = v ! (length v - 1)
-
--- | /O(1)/ Unsafe indexing without bounds checking
-unsafeIndex :: Vector v a => v a -> Int -> a
-{-# INLINE_FUSED unsafeIndex #-}
-unsafeIndex v i = UNSAFE_CHECK(checkIndex) "unsafeIndex" i (length v)
-                $ unId (basicUnsafeIndexM v i)
-
--- | /O(1)/ First element without checking if the vector is empty
-unsafeHead :: Vector v a => v a -> a
-{-# INLINE_FUSED unsafeHead #-}
-unsafeHead v = unsafeIndex v 0
-
--- | /O(1)/ Last element without checking if the vector is empty
-unsafeLast :: Vector v a => v a -> a
-{-# INLINE_FUSED unsafeLast #-}
-unsafeLast v = unsafeIndex v (length v - 1)
-
-{-# RULES
-
-"(!)/unstream [Vector]" forall i s.
-  new (New.unstream s) ! i = s Bundle.!! i
-
-"(!?)/unstream [Vector]" forall i s.
-  new (New.unstream s) !? i = s Bundle.!? i
-
-"head/unstream [Vector]" forall s.
-  head (new (New.unstream s)) = Bundle.head s
-
-"last/unstream [Vector]" forall s.
-  last (new (New.unstream s)) = Bundle.last s
-
-"unsafeIndex/unstream [Vector]" forall i s.
-  unsafeIndex (new (New.unstream s)) i = s Bundle.!! i
-
-"unsafeHead/unstream [Vector]" forall s.
-  unsafeHead (new (New.unstream s)) = Bundle.head s
-
-"unsafeLast/unstream [Vector]" forall s.
-  unsafeLast (new (New.unstream s)) = Bundle.last s  #-}
-
-
-
--- Monadic indexing
--- ----------------
-
--- | /O(1)/ Indexing in a monad.
---
--- The monad allows operations to be strict in the vector when necessary.
--- Suppose vector copying is implemented like this:
---
--- > copy mv v = ... write mv i (v ! i) ...
---
--- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@
--- would unnecessarily retain a reference to @v@ in each element written.
---
--- With 'indexM', copying can be implemented like this instead:
---
--- > copy mv v = ... do
--- >                   x <- indexM v i
--- >                   write mv i x
---
--- Here, no references to @v@ are retained because indexing (but /not/ the
--- elements) is evaluated eagerly.
---
-indexM :: (Vector v a, Monad m) => v a -> Int -> m a
-{-# INLINE_FUSED indexM #-}
-indexM v i = BOUNDS_CHECK(checkIndex) "indexM" i (length v)
-           $ basicUnsafeIndexM v i
-
--- | /O(1)/ First element of a vector in a monad. See 'indexM' for an
--- explanation of why this is useful.
-headM :: (Vector v a, Monad m) => v a -> m a
-{-# INLINE_FUSED headM #-}
-headM v = indexM v 0
-
--- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an
--- explanation of why this is useful.
-lastM :: (Vector v a, Monad m) => v a -> m a
-{-# INLINE_FUSED lastM #-}
-lastM v = indexM v (length v - 1)
-
--- | /O(1)/ Indexing in a monad without bounds checks. See 'indexM' for an
--- explanation of why this is useful.
-unsafeIndexM :: (Vector v a, Monad m) => v a -> Int -> m a
-{-# INLINE_FUSED unsafeIndexM #-}
-unsafeIndexM v i = UNSAFE_CHECK(checkIndex) "unsafeIndexM" i (length v)
-                 $ basicUnsafeIndexM v i
-
--- | /O(1)/ First element in a monad without checking for empty vectors.
--- See 'indexM' for an explanation of why this is useful.
-unsafeHeadM :: (Vector v a, Monad m) => v a -> m a
-{-# INLINE_FUSED unsafeHeadM #-}
-unsafeHeadM v = unsafeIndexM v 0
-
--- | /O(1)/ Last element in a monad without checking for empty vectors.
--- See 'indexM' for an explanation of why this is useful.
-unsafeLastM :: (Vector v a, Monad m) => v a -> m a
-{-# INLINE_FUSED unsafeLastM #-}
-unsafeLastM v = unsafeIndexM v (length v - 1)
-
-{-# RULES
-
-"indexM/unstream [Vector]" forall s i.
-  indexM (new (New.unstream s)) i = lift s MBundle.!! i
-
-"headM/unstream [Vector]" forall s.
-  headM (new (New.unstream s)) = MBundle.head (lift s)
-
-"lastM/unstream [Vector]" forall s.
-  lastM (new (New.unstream s)) = MBundle.last (lift s)
-
-"unsafeIndexM/unstream [Vector]" forall s i.
-  unsafeIndexM (new (New.unstream s)) i = lift s MBundle.!! i
-
-"unsafeHeadM/unstream [Vector]" forall s.
-  unsafeHeadM (new (New.unstream s)) = MBundle.head (lift s)
-
-"unsafeLastM/unstream [Vector]" forall s.
-  unsafeLastM (new (New.unstream s)) = MBundle.last (lift s)   #-}
-
-
-
--- Extracting subvectors (slicing)
--- -------------------------------
-
--- | /O(1)/ Yield a slice of the vector without copying it. The vector must
--- contain at least @i+n@ elements.
-slice :: Vector v a => Int   -- ^ @i@ starting index
-                    -> Int   -- ^ @n@ length
-                    -> v a
-                    -> v a
-{-# INLINE_FUSED slice #-}
-slice i n v = BOUNDS_CHECK(checkSlice) "slice" i n (length v)
-            $ basicUnsafeSlice i n v
-
--- | /O(1)/ Yield all but the last element without copying. The vector may not
--- be empty.
-init :: Vector v a => v a -> v a
-{-# INLINE_FUSED init #-}
-init v = slice 0 (length v - 1) v
-
--- | /O(1)/ Yield all but the first element without copying. The vector may not
--- be empty.
-tail :: Vector v a => v a -> v a
-{-# INLINE_FUSED tail #-}
-tail v = slice 1 (length v - 1) v
-
--- | /O(1)/ Yield the first @n@ elements without copying. The vector may
--- contain less than @n@ elements in which case it is returned unchanged.
-take :: Vector v a => Int -> v a -> v a
-{-# INLINE_FUSED take #-}
-take n v = unsafeSlice 0 (delay_inline min n' (length v)) v
-  where n' = max n 0
-
--- | /O(1)/ Yield all but the first @n@ elements without copying. The vector may
--- contain less than @n@ elements in which case an empty vector is returned.
-drop :: Vector v a => Int -> v a -> v a
-{-# INLINE_FUSED drop #-}
-drop n v = unsafeSlice (delay_inline min n' len)
-                       (delay_inline max 0 (len - n')) v
-  where n' = max n 0
-        len = length v
-
--- | /O(1)/ Yield the first @n@ elements paired with the remainder without copying.
---
--- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@
--- but slightly more efficient.
-{-# INLINE_FUSED splitAt #-}
-splitAt :: Vector v a => Int -> v a -> (v a, v a)
-splitAt n v = ( unsafeSlice 0 m v
-              , unsafeSlice m (delay_inline max 0 (len - n')) v
-              )
-    where
-      m   = delay_inline min n' len
-      n'  = max n 0
-      len = length v
-
--- | /O(1)/ Yield a slice of the vector without copying. The vector must
--- contain at least @i+n@ elements but this is not checked.
-unsafeSlice :: Vector v a => Int   -- ^ @i@ starting index
-                          -> Int   -- ^ @n@ length
-                          -> v a
-                          -> v a
-{-# INLINE_FUSED unsafeSlice #-}
-unsafeSlice i n v = UNSAFE_CHECK(checkSlice) "unsafeSlice" i n (length v)
-                  $ basicUnsafeSlice i n v
-
--- | /O(1)/ Yield all but the last element without copying. The vector may not
--- be empty but this is not checked.
-unsafeInit :: Vector v a => v a -> v a
-{-# INLINE_FUSED unsafeInit #-}
-unsafeInit v = unsafeSlice 0 (length v - 1) v
-
--- | /O(1)/ Yield all but the first element without copying. The vector may not
--- be empty but this is not checked.
-unsafeTail :: Vector v a => v a -> v a
-{-# INLINE_FUSED unsafeTail #-}
-unsafeTail v = unsafeSlice 1 (length v - 1) v
-
--- | /O(1)/ Yield the first @n@ elements without copying. The vector must
--- contain at least @n@ elements but this is not checked.
-unsafeTake :: Vector v a => Int -> v a -> v a
-{-# INLINE unsafeTake #-}
-unsafeTake n v = unsafeSlice 0 n v
-
--- | /O(1)/ Yield all but the first @n@ elements without copying. The vector
--- must contain at least @n@ elements but this is not checked.
-unsafeDrop :: Vector v a => Int -> v a -> v a
-{-# INLINE unsafeDrop #-}
-unsafeDrop n v = unsafeSlice n (length v - n) v
-
-{-# RULES
-
-"slice/new [Vector]" forall i n p.
-  slice i n (new p) = new (New.slice i n p)
-
-"init/new [Vector]" forall p.
-  init (new p) = new (New.init p)
-
-"tail/new [Vector]" forall p.
-  tail (new p) = new (New.tail p)
-
-"take/new [Vector]" forall n p.
-  take n (new p) = new (New.take n p)
-
-"drop/new [Vector]" forall n p.
-  drop n (new p) = new (New.drop n p)
-
-"unsafeSlice/new [Vector]" forall i n p.
-  unsafeSlice i n (new p) = new (New.unsafeSlice i n p)
-
-"unsafeInit/new [Vector]" forall p.
-  unsafeInit (new p) = new (New.unsafeInit p)
-
-"unsafeTail/new [Vector]" forall p.
-  unsafeTail (new p) = new (New.unsafeTail p)   #-}
-
-
-
--- Initialisation
--- --------------
-
--- | /O(1)/ Empty vector
-empty :: Vector v a => v a
-{-# INLINE empty #-}
-empty = unstream Bundle.empty
-
--- | /O(1)/ Vector with exactly one element
-singleton :: forall v a. Vector v a => a -> v a
-{-# INLINE singleton #-}
-singleton x = elemseq (undefined :: v a) x
-            $ unstream (Bundle.singleton x)
-
--- | /O(n)/ Vector of the given length with the same value in each position
-replicate :: forall v a. Vector v a => Int -> a -> v a
-{-# INLINE replicate #-}
-replicate n x = elemseq (undefined :: v a) x
-              $ unstream
-              $ Bundle.replicate n x
-
--- | /O(n)/ Construct a vector of the given length by applying the function to
--- each index
-generate :: Vector v a => Int -> (Int -> a) -> v a
-{-# INLINE generate #-}
-generate n f = unstream (Bundle.generate n f)
-
--- | /O(n)/ Apply function n times to value. Zeroth element is original value.
-iterateN :: Vector v a => Int -> (a -> a) -> a -> v a
-{-# INLINE iterateN #-}
-iterateN n f x = unstream (Bundle.iterateN n f x)
-
--- Unfolding
--- ---------
-
--- | /O(n)/ Construct a vector by repeatedly applying the generator function
--- to a seed. The generator function yields 'Just' the next element and the
--- new seed or 'Nothing' if there are no more elements.
---
--- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10
--- >  = <10,9,8,7,6,5,4,3,2,1>
-unfoldr :: Vector v a => (b -> Maybe (a, b)) -> b -> v a
-{-# INLINE unfoldr #-}
-unfoldr f = unstream . Bundle.unfoldr f
-
--- | /O(n)/ Construct a vector with at most @n@ elements by repeatedly applying
--- the generator function to a seed. The generator function yields 'Just' the
--- next element and the new seed or 'Nothing' if there are no more elements.
---
--- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8>
-unfoldrN  :: Vector v a => Int -> (b -> Maybe (a, b)) -> b -> v a
-{-# INLINE unfoldrN #-}
-unfoldrN n f = unstream . Bundle.unfoldrN n f
-
--- | /O(n)/ Construct a vector by repeatedly applying the monadic
--- generator function to a seed. The generator function yields 'Just'
--- the next element and the new seed or 'Nothing' if there are no more
--- elements.
-unfoldrM :: (Monad m, Vector v a) => (b -> m (Maybe (a, b))) -> b -> m (v a)
-{-# INLINE unfoldrM #-}
-unfoldrM f = unstreamM . MBundle.unfoldrM f
-
--- | /O(n)/ Construct a vector by repeatedly applying the monadic
--- generator function to a seed. The generator function yields 'Just'
--- the next element and the new seed or 'Nothing' if there are no more
--- elements.
-unfoldrNM :: (Monad m, Vector v a) => Int -> (b -> m (Maybe (a, b))) -> b -> m (v a)
-{-# INLINE unfoldrNM #-}
-unfoldrNM n f = unstreamM . MBundle.unfoldrNM n f
-
--- | /O(n)/ Construct a vector with @n@ elements by repeatedly applying the
--- generator function to the already constructed part of the vector.
---
--- > constructN 3 f = let a = f <> ; b = f <a> ; c = f <a,b> in f <a,b,c>
---
-constructN :: forall v a. Vector v a => Int -> (v a -> a) -> v a
-{-# INLINE constructN #-}
--- NOTE: We *CANNOT* wrap this in New and then fuse because the elements
--- might contain references to the immutable vector!
-constructN !n f = runST (
-  do
-    v  <- M.new n
-    v' <- unsafeFreeze v
-    fill v' 0
-  )
-  where
-    fill :: forall s. v a -> Int -> ST s (v a)
-    fill !v i | i < n = let x = f (unsafeTake i v)
-                        in
-                        elemseq v x $
-                        do
-                          v'  <- unsafeThaw v
-                          M.unsafeWrite v' i x
-                          v'' <- unsafeFreeze v'
-                          fill v'' (i+1)
-
-    fill v _ = return v
-
--- | /O(n)/ Construct a vector with @n@ elements from right to left by
--- repeatedly applying the generator function to the already constructed part
--- of the vector.
---
--- > constructrN 3 f = let a = f <> ; b = f<a> ; c = f <b,a> in f <c,b,a>
---
-constructrN :: forall v a. Vector v a => Int -> (v a -> a) -> v a
-{-# INLINE constructrN #-}
--- NOTE: We *CANNOT* wrap this in New and then fuse because the elements
--- might contain references to the immutable vector!
-constructrN !n f = runST (
-  do
-    v  <- n `seq` M.new n
-    v' <- unsafeFreeze v
-    fill v' 0
-  )
-  where
-    fill :: forall s. v a -> Int -> ST s (v a)
-    fill !v i | i < n = let x = f (unsafeSlice (n-i) i v)
-                        in
-                        elemseq v x $
-                        do
-                          v'  <- unsafeThaw v
-                          M.unsafeWrite v' (n-i-1) x
-                          v'' <- unsafeFreeze v'
-                          fill v'' (i+1)
-
-    fill v _ = return v
-
-
--- Enumeration
--- -----------
-
--- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+1@
--- etc. This operation is usually more efficient than 'enumFromTo'.
---
--- > enumFromN 5 3 = <5,6,7>
-enumFromN :: (Vector v a, Num a) => a -> Int -> v a
-{-# INLINE enumFromN #-}
-enumFromN x n = enumFromStepN x 1 n
-
--- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@,
--- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'.
---
--- > enumFromStepN 1 0.1 5 = <1,1.1,1.2,1.3,1.4>
-enumFromStepN :: forall v a. (Vector v a, Num a) => a -> a -> Int -> v a
-{-# INLINE enumFromStepN #-}
-enumFromStepN x y n = elemseq (undefined :: v a) x
-                    $ elemseq (undefined :: v a) y
-                    $ unstream
-                    $ Bundle.enumFromStepN  x y n
-
--- | /O(n)/ Enumerate values from @x@ to @y@.
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromN' instead.
-enumFromTo :: (Vector v a, Enum a) => a -> a -> v a
-{-# INLINE enumFromTo #-}
-enumFromTo x y = unstream (Bundle.enumFromTo x y)
-
--- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@.
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromThenTo :: (Vector v a, Enum a) => a -> a -> a -> v a
-{-# INLINE enumFromThenTo #-}
-enumFromThenTo x y z = unstream (Bundle.enumFromThenTo x y z)
-
--- Concatenation
--- -------------
-
--- | /O(n)/ Prepend an element
-cons :: forall v a. Vector v a => a -> v a -> v a
-{-# INLINE cons #-}
-cons x v = elemseq (undefined :: v a) x
-         $ unstream
-         $ Bundle.cons x
-         $ stream v
-
--- | /O(n)/ Append an element
-snoc :: forall v a. Vector v a => v a -> a -> v a
-{-# INLINE snoc #-}
-snoc v x = elemseq (undefined :: v a) x
-         $ unstream
-         $ Bundle.snoc (stream v) x
-
-infixr 5 ++
--- | /O(m+n)/ Concatenate two vectors
-(++) :: Vector v a => v a -> v a -> v a
-{-# INLINE (++) #-}
-v ++ w = unstream (stream v Bundle.++ stream w)
-
--- | /O(n)/ Concatenate all vectors in the list
-concat :: Vector v a => [v a] -> v a
-{-# INLINE concat #-}
-concat = unstream . Bundle.fromVectors
-{-
-concat vs = unstream (Bundle.flatten mk step (Exact n) (Bundle.fromList vs))
-  where
-    n = List.foldl' (\k v -> k + length v) 0 vs
-
-    {-# INLINE_INNER step #-}
-    step (v,i,k)
-      | i < k = case unsafeIndexM v i of
-                  Box x -> Bundle.Yield x (v,i+1,k)
-      | otherwise = Bundle.Done
-
-    {-# INLINE mk #-}
-    mk v = let k = length v
-           in
-           k `seq` (v,0,k)
--}
-
--- | /O(n)/ Concatenate all vectors in the non-empty list
-concatNE :: Vector v a => NonEmpty.NonEmpty (v a) -> v a
-concatNE = concat . NonEmpty.toList
-
--- Monadic initialisation
--- ----------------------
-
--- | /O(n)/ Execute the monadic action the given number of times and store the
--- results in a vector.
-replicateM :: (Monad m, Vector v a) => Int -> m a -> m (v a)
-{-# INLINE replicateM #-}
-replicateM n m = unstreamM (MBundle.replicateM n m)
-
--- | /O(n)/ Construct a vector of the given length by applying the monadic
--- action to each index
-generateM :: (Monad m, Vector v a) => Int -> (Int -> m a) -> m (v a)
-{-# INLINE generateM #-}
-generateM n f = unstreamM (MBundle.generateM n f)
-
--- | /O(n)/ Apply monadic function n times to value. Zeroth element is original value.
-iterateNM :: (Monad m, Vector v a) => Int -> (a -> m a) -> a -> m (v a)
-{-# INLINE iterateNM #-}
-iterateNM n f x = unstreamM (MBundle.iterateNM n f x)
-
--- | Execute the monadic action and freeze the resulting vector.
---
--- @
--- create (do { v \<- 'M.new' 2; 'M.write' v 0 \'a\'; 'M.write' v 1 \'b\'; return v }) = \<'a','b'\>
--- @
-create :: Vector v a => (forall s. ST s (Mutable v s a)) -> v a
-{-# INLINE create #-}
-create p = new (New.create p)
-
--- | Execute the monadic action and freeze the resulting vectors.
-createT
-  :: (T.Traversable f, Vector v a)
-  => (forall s. ST s (f (Mutable v s a))) -> f (v a)
-{-# INLINE createT #-}
-createT p = runST (p >>= T.mapM unsafeFreeze)
-
--- Restricting memory usage
--- ------------------------
-
--- | /O(n)/ Yield the argument but force it not to retain any extra memory,
--- possibly by copying it.
---
--- This is especially useful when dealing with slices. For example:
---
--- > force (slice 0 2 <huge vector>)
---
--- Here, the slice retains a reference to the huge vector. Forcing it creates
--- a copy of just the elements that belong to the slice and allows the huge
--- vector to be garbage collected.
-force :: Vector v a => v a -> v a
--- FIXME: we probably ought to inline this later as the rules still might fire
--- otherwise
-{-# INLINE_FUSED force #-}
-force v = new (clone v)
-
--- Bulk updates
--- ------------
-
--- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector
--- element at position @i@ by @a@.
---
--- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7>
---
-(//) :: Vector v a => v a        -- ^ initial vector (of length @m@)
-                   -> [(Int, a)] -- ^ list of index/value pairs (of length @n@)
-                   -> v a
-{-# INLINE (//) #-}
-v // us = update_stream v (Bundle.fromList us)
-
--- | /O(m+n)/ For each pair @(i,a)@ from the vector of index/value pairs,
--- replace the vector element at position @i@ by @a@.
---
--- > update <5,9,2,7> <(2,1),(0,3),(2,8)> = <3,9,8,7>
---
-update :: (Vector v a, Vector v (Int, a))
-        => v a        -- ^ initial vector (of length @m@)
-        -> v (Int, a) -- ^ vector of index/value pairs (of length @n@)
-        -> v a
-{-# INLINE update #-}
-update v w = update_stream v (stream w)
-
--- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
--- corresponding value @a@ from the value vector, replace the element of the
--- initial vector at position @i@ by @a@.
---
--- > update_ <5,9,2,7>  <2,0,2> <1,3,8> = <3,9,8,7>
---
--- This function is useful for instances of 'Vector' that cannot store pairs.
--- Otherwise, 'update' is probably more convenient.
---
--- @
--- update_ xs is ys = 'update' xs ('zip' is ys)
--- @
-update_ :: (Vector v a, Vector v Int)
-        => v a   -- ^ initial vector (of length @m@)
-        -> v Int -- ^ index vector (of length @n1@)
-        -> v a   -- ^ value vector (of length @n2@)
-        -> v a
-{-# INLINE update_ #-}
-update_ v is w = update_stream v (Bundle.zipWith (,) (stream is) (stream w))
-
-update_stream :: Vector v a => v a -> Bundle u (Int,a) -> v a
-{-# INLINE update_stream #-}
-update_stream = modifyWithBundle M.update
-
--- | Same as ('//') but without bounds checking.
-unsafeUpd :: Vector v a => v a -> [(Int, a)] -> v a
-{-# INLINE unsafeUpd #-}
-unsafeUpd v us = unsafeUpdate_stream v (Bundle.fromList us)
-
--- | Same as 'update' but without bounds checking.
-unsafeUpdate :: (Vector v a, Vector v (Int, a)) => v a -> v (Int, a) -> v a
-{-# INLINE unsafeUpdate #-}
-unsafeUpdate v w = unsafeUpdate_stream v (stream w)
-
--- | Same as 'update_' but without bounds checking.
-unsafeUpdate_ :: (Vector v a, Vector v Int) => v a -> v Int -> v a -> v a
-{-# INLINE unsafeUpdate_ #-}
-unsafeUpdate_ v is w
-  = unsafeUpdate_stream v (Bundle.zipWith (,) (stream is) (stream w))
-
-unsafeUpdate_stream :: Vector v a => v a -> Bundle u (Int,a) -> v a
-{-# INLINE unsafeUpdate_stream #-}
-unsafeUpdate_stream = modifyWithBundle M.unsafeUpdate
-
--- Accumulations
--- -------------
-
--- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element
--- @a@ at position @i@ by @f a b@.
---
--- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4>
-accum :: Vector v a
-      => (a -> b -> a) -- ^ accumulating function @f@
-      -> v a           -- ^ initial vector (of length @m@)
-      -> [(Int,b)]     -- ^ list of index/value pairs (of length @n@)
-      -> v a
-{-# INLINE accum #-}
-accum f v us = accum_stream f v (Bundle.fromList us)
-
--- | /O(m+n)/ For each pair @(i,b)@ from the vector of pairs, replace the vector
--- element @a@ at position @i@ by @f a b@.
---
--- > accumulate (+) <5,9,2> <(2,4),(1,6),(0,3),(1,7)> = <5+3, 9+6+7, 2+4>
-accumulate :: (Vector v a, Vector v (Int, b))
-           => (a -> b -> a) -- ^ accumulating function @f@
-           -> v a           -- ^ initial vector (of length @m@)
-           -> v (Int,b)     -- ^ vector of index/value pairs (of length @n@)
-           -> v a
-{-# INLINE accumulate #-}
-accumulate f v us = accum_stream f v (stream us)
-
--- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
--- corresponding value @b@ from the the value vector,
--- replace the element of the initial vector at
--- position @i@ by @f a b@.
---
--- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4>
---
--- This function is useful for instances of 'Vector' that cannot store pairs.
--- Otherwise, 'accumulate' is probably more convenient:
---
--- @
--- accumulate_ f as is bs = 'accumulate' f as ('zip' is bs)
--- @
-accumulate_ :: (Vector v a, Vector v Int, Vector v b)
-                => (a -> b -> a) -- ^ accumulating function @f@
-                -> v a           -- ^ initial vector (of length @m@)
-                -> v Int         -- ^ index vector (of length @n1@)
-                -> v b           -- ^ value vector (of length @n2@)
-                -> v a
-{-# INLINE accumulate_ #-}
-accumulate_ f v is xs = accum_stream f v (Bundle.zipWith (,) (stream is)
-                                                             (stream xs))
-
-
-accum_stream :: Vector v a => (a -> b -> a) -> v a -> Bundle u (Int,b) -> v a
-{-# INLINE accum_stream #-}
-accum_stream f = modifyWithBundle (M.accum f)
-
--- | Same as 'accum' but without bounds checking.
-unsafeAccum :: Vector v a => (a -> b -> a) -> v a -> [(Int,b)] -> v a
-{-# INLINE unsafeAccum #-}
-unsafeAccum f v us = unsafeAccum_stream f v (Bundle.fromList us)
-
--- | Same as 'accumulate' but without bounds checking.
-unsafeAccumulate :: (Vector v a, Vector v (Int, b))
-                => (a -> b -> a) -> v a -> v (Int,b) -> v a
-{-# INLINE unsafeAccumulate #-}
-unsafeAccumulate f v us = unsafeAccum_stream f v (stream us)
-
--- | Same as 'accumulate_' but without bounds checking.
-unsafeAccumulate_ :: (Vector v a, Vector v Int, Vector v b)
-                => (a -> b -> a) -> v a -> v Int -> v b -> v a
-{-# INLINE unsafeAccumulate_ #-}
-unsafeAccumulate_ f v is xs
-  = unsafeAccum_stream f v (Bundle.zipWith (,) (stream is) (stream xs))
-
-unsafeAccum_stream
-  :: Vector v a => (a -> b -> a) -> v a -> Bundle u (Int,b) -> v a
-{-# INLINE unsafeAccum_stream #-}
-unsafeAccum_stream f = modifyWithBundle (M.unsafeAccum f)
-
--- Permutations
--- ------------
-
--- | /O(n)/ Reverse a vector
-reverse :: (Vector v a) => v a -> v a
-{-# INLINE reverse #-}
--- FIXME: make this fuse better, add support for recycling
-reverse = unstream . streamR
-
--- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the
--- index vector by @xs'!'i@. This is equivalent to @'map' (xs'!') is@ but is
--- often much more efficient.
---
--- > backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a>
-backpermute :: (Vector v a, Vector v Int)
-            => v a   -- ^ @xs@ value vector
-            -> v Int -- ^ @is@ index vector (of length @n@)
-            -> v a
-{-# INLINE backpermute #-}
--- This somewhat non-intuitive definition ensures that the resulting vector
--- does not retain references to the original one even if it is lazy in its
--- elements. This would not be the case if we simply used map (v!)
-backpermute v is = seq v
-                 $ seq n
-                 $ unstream
-                 $ Bundle.unbox
-                 $ Bundle.map index
-                 $ stream is
-  where
-    n = length v
-
-    {-# INLINE index #-}
-    -- NOTE: we do it this way to avoid triggering LiberateCase on n in
-    -- polymorphic code
-    index i = BOUNDS_CHECK(checkIndex) "backpermute" i n
-            $ basicUnsafeIndexM v i
-
--- | Same as 'backpermute' but without bounds checking.
-unsafeBackpermute :: (Vector v a, Vector v Int) => v a -> v Int -> v a
-{-# INLINE unsafeBackpermute #-}
-unsafeBackpermute v is = seq v
-                       $ seq n
-                       $ unstream
-                       $ Bundle.unbox
-                       $ Bundle.map index
-                       $ stream is
-  where
-    n = length v
-
-    {-# INLINE index #-}
-    -- NOTE: we do it this way to avoid triggering LiberateCase on n in
-    -- polymorphic code
-    index i = UNSAFE_CHECK(checkIndex) "unsafeBackpermute" i n
-            $ basicUnsafeIndexM v i
-
--- Safe destructive updates
--- ------------------------
-
--- | Apply a destructive operation to a vector. The operation will be
--- performed in place if it is safe to do so and will modify a copy of the
--- vector otherwise.
---
--- @
--- modify (\\v -> 'M.write' v 0 \'x\') ('replicate' 3 \'a\') = \<\'x\',\'a\',\'a\'\>
--- @
-modify :: Vector v a => (forall s. Mutable v s a -> ST s ()) -> v a -> v a
-{-# INLINE modify #-}
-modify p = new . New.modify p . clone
-
--- We have to make sure that this is strict in the stream but we can't seq on
--- it while fusion is happening. Hence this ugliness.
-modifyWithBundle :: Vector v a
-                 => (forall s. Mutable v s a -> Bundle u b -> ST s ())
-                 -> v a -> Bundle u b -> v a
-{-# INLINE modifyWithBundle #-}
-modifyWithBundle p v s = new (New.modifyWithBundle p (clone v) s)
-
--- Indexing
--- --------
-
--- | /O(n)/ Pair each element in a vector with its index
-indexed :: (Vector v a, Vector v (Int,a)) => v a -> v (Int,a)
-{-# INLINE indexed #-}
-indexed = unstream . Bundle.indexed . stream
-
--- Mapping
--- -------
-
--- | /O(n)/ Map a function over a vector
-map :: (Vector v a, Vector v b) => (a -> b) -> v a -> v b
-{-# INLINE map #-}
-map f = unstream . inplace (S.map f) id . stream
-
--- | /O(n)/ Apply a function to every element of a vector and its index
-imap :: (Vector v a, Vector v b) => (Int -> a -> b) -> v a -> v b
-{-# INLINE imap #-}
-imap f = unstream . inplace (S.map (uncurry f) . S.indexed) id
-                  . stream
-
--- | Map a function over a vector and concatenate the results.
-concatMap :: (Vector v a, Vector v b) => (a -> v b) -> v a -> v b
-{-# INLINE concatMap #-}
--- NOTE: We can't fuse concatMap anyway so don't pretend we do.
--- This seems to be slightly slower
--- concatMap f = concat . Bundle.toList . Bundle.map f . stream
-
--- Slowest
--- concatMap f = unstream . Bundle.concatMap (stream . f) . stream
-
--- Used to be fastest
-{-
-concatMap f = unstream
-            . Bundle.flatten mk step Unknown
-            . stream
-  where
-    {-# INLINE_INNER step #-}
-    step (v,i,k)
-      | i < k = case unsafeIndexM v i of
-                  Box x -> Bundle.Yield x (v,i+1,k)
-      | otherwise = Bundle.Done
-
-    {-# INLINE mk #-}
-    mk x = let v = f x
-               k = length v
-           in
-           k `seq` (v,0,k)
--}
-
--- This seems to be fastest now
-concatMap f = unstream
-            . Bundle.concatVectors
-            . Bundle.map f
-            . stream
-
--- Monadic mapping
--- ---------------
-
--- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
--- vector of results
-mapM :: (Monad m, Vector v a, Vector v b) => (a -> m b) -> v a -> m (v b)
-{-# INLINE mapM #-}
-mapM f = unstreamM . Bundle.mapM f . stream
-
--- | /O(n)/ Apply the monadic action to every element of a vector and its
--- index, yielding a vector of results
-imapM :: (Monad m, Vector v a, Vector v b)
-      => (Int -> a -> m b) -> v a -> m (v b)
-imapM f = unstreamM . Bundle.mapM (uncurry f) . Bundle.indexed . stream
-
--- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
--- results
-mapM_ :: (Monad m, Vector v a) => (a -> m b) -> v a -> m ()
-{-# INLINE mapM_ #-}
-mapM_ f = Bundle.mapM_ f . stream
-
--- | /O(n)/ Apply the monadic action to every element of a vector and its
--- index, ignoring the results
-imapM_ :: (Monad m, Vector v a) => (Int -> a -> m b) -> v a -> m ()
-{-# INLINE imapM_ #-}
-imapM_ f = Bundle.mapM_ (uncurry f) . Bundle.indexed . stream
-
--- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
--- vector of results. Equivalent to @flip 'mapM'@.
-forM :: (Monad m, Vector v a, Vector v b) => v a -> (a -> m b) -> m (v b)
-{-# INLINE forM #-}
-forM as f = mapM f as
-
--- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
--- results. Equivalent to @flip 'mapM_'@.
-forM_ :: (Monad m, Vector v a) => v a -> (a -> m b) -> m ()
-{-# INLINE forM_ #-}
-forM_ as f = mapM_ f as
-
--- Zipping
--- -------
-
--- | /O(min(m,n))/ Zip two vectors with the given function.
-zipWith :: (Vector v a, Vector v b, Vector v c)
-        => (a -> b -> c) -> v a -> v b -> v c
-{-# INLINE zipWith #-}
-zipWith f = \xs ys -> unstream (Bundle.zipWith f (stream xs) (stream ys))
-
--- | Zip three vectors with the given function.
-zipWith3 :: (Vector v a, Vector v b, Vector v c, Vector v d)
-         => (a -> b -> c -> d) -> v a -> v b -> v c -> v d
-{-# INLINE zipWith3 #-}
-zipWith3 f = \as bs cs -> unstream (Bundle.zipWith3 f (stream as)
-                                                  (stream bs)
-                                                  (stream cs))
-
-zipWith4 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e)
-         => (a -> b -> c -> d -> e) -> v a -> v b -> v c -> v d -> v e
-{-# INLINE zipWith4 #-}
-zipWith4 f = \as bs cs ds ->
-    unstream (Bundle.zipWith4 f (stream as)
-                                (stream bs)
-                                (stream cs)
-                                (stream ds))
-
-zipWith5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-             Vector v f)
-         => (a -> b -> c -> d -> e -> f) -> v a -> v b -> v c -> v d -> v e
-                                         -> v f
-{-# INLINE zipWith5 #-}
-zipWith5 f = \as bs cs ds es ->
-    unstream (Bundle.zipWith5 f (stream as)
-                                (stream bs)
-                                (stream cs)
-                                (stream ds)
-                                (stream es))
-
-zipWith6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-             Vector v f, Vector v g)
-         => (a -> b -> c -> d -> e -> f -> g)
-         -> v a -> v b -> v c -> v d -> v e -> v f -> v g
-{-# INLINE zipWith6 #-}
-zipWith6 f = \as bs cs ds es fs ->
-    unstream (Bundle.zipWith6 f (stream as)
-                                (stream bs)
-                                (stream cs)
-                                (stream ds)
-                                (stream es)
-                                (stream fs))
-
--- | /O(min(m,n))/ Zip two vectors with a function that also takes the
--- elements' indices.
-izipWith :: (Vector v a, Vector v b, Vector v c)
-        => (Int -> a -> b -> c) -> v a -> v b -> v c
-{-# INLINE izipWith #-}
-izipWith f = \xs ys ->
-    unstream (Bundle.zipWith (uncurry f) (Bundle.indexed (stream xs))
-                                                         (stream ys))
-
-izipWith3 :: (Vector v a, Vector v b, Vector v c, Vector v d)
-         => (Int -> a -> b -> c -> d) -> v a -> v b -> v c -> v d
-{-# INLINE izipWith3 #-}
-izipWith3 f = \as bs cs ->
-    unstream (Bundle.zipWith3 (uncurry f) (Bundle.indexed (stream as))
-                                                          (stream bs)
-                                                          (stream cs))
-
-izipWith4 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e)
-         => (Int -> a -> b -> c -> d -> e) -> v a -> v b -> v c -> v d -> v e
-{-# INLINE izipWith4 #-}
-izipWith4 f = \as bs cs ds ->
-    unstream (Bundle.zipWith4 (uncurry f) (Bundle.indexed (stream as))
-                                                          (stream bs)
-                                                          (stream cs)
-                                                          (stream ds))
-
-izipWith5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-             Vector v f)
-         => (Int -> a -> b -> c -> d -> e -> f) -> v a -> v b -> v c -> v d
-                                                -> v e -> v f
-{-# INLINE izipWith5 #-}
-izipWith5 f = \as bs cs ds es ->
-    unstream (Bundle.zipWith5 (uncurry f) (Bundle.indexed (stream as))
-                                                          (stream bs)
-                                                          (stream cs)
-                                                          (stream ds)
-                                                          (stream es))
-
-izipWith6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-             Vector v f, Vector v g)
-         => (Int -> a -> b -> c -> d -> e -> f -> g)
-         -> v a -> v b -> v c -> v d -> v e -> v f -> v g
-{-# INLINE izipWith6 #-}
-izipWith6 f = \as bs cs ds es fs ->
-    unstream (Bundle.zipWith6 (uncurry f) (Bundle.indexed (stream as))
-                                                          (stream bs)
-                                                          (stream cs)
-                                                          (stream ds)
-                                                          (stream es)
-                                                          (stream fs))
-
--- | /O(min(m,n))/ Zip two vectors
-zip :: (Vector v a, Vector v b, Vector v (a,b)) => v a -> v b -> v (a, b)
-{-# INLINE zip #-}
-zip = zipWith (,)
-
-zip3 :: (Vector v a, Vector v b, Vector v c, Vector v (a, b, c))
-     => v a -> v b -> v c -> v (a, b, c)
-{-# INLINE zip3 #-}
-zip3 = zipWith3 (,,)
-
-zip4 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v (a, b, c, d))
-     => v a -> v b -> v c -> v d -> v (a, b, c, d)
-{-# INLINE zip4 #-}
-zip4 = zipWith4 (,,,)
-
-zip5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-         Vector v (a, b, c, d, e))
-     => v a -> v b -> v c -> v d -> v e -> v (a, b, c, d, e)
-{-# INLINE zip5 #-}
-zip5 = zipWith5 (,,,,)
-
-zip6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-         Vector v f, Vector v (a, b, c, d, e, f))
-     => v a -> v b -> v c -> v d -> v e -> v f -> v (a, b, c, d, e, f)
-{-# INLINE zip6 #-}
-zip6 = zipWith6 (,,,,,)
-
--- Monadic zipping
--- ---------------
-
--- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a
--- vector of results
-zipWithM :: (Monad m, Vector v a, Vector v b, Vector v c)
-         => (a -> b -> m c) -> v a -> v b -> m (v c)
--- FIXME: specialise for ST and IO?
-{-# INLINE zipWithM #-}
-zipWithM f = \as bs -> unstreamM $ Bundle.zipWithM f (stream as) (stream bs)
-
--- | /O(min(m,n))/ Zip the two vectors with a monadic action that also takes
--- the element index and yield a vector of results
-izipWithM :: (Monad m, Vector v a, Vector v b, Vector v c)
-         => (Int -> a -> b -> m c) -> v a -> v b -> m (v c)
-{-# INLINE izipWithM #-}
-izipWithM m as bs = unstreamM . Bundle.zipWithM (uncurry m)
-                                (Bundle.indexed (stream as))
-                                $ stream bs
-
--- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the
--- results
-zipWithM_ :: (Monad m, Vector v a, Vector v b)
-          => (a -> b -> m c) -> v a -> v b -> m ()
-{-# INLINE zipWithM_ #-}
-zipWithM_ f = \as bs -> Bundle.zipWithM_ f (stream as) (stream bs)
-
--- | /O(min(m,n))/ Zip the two vectors with a monadic action that also takes
--- the element index and ignore the results
-izipWithM_ :: (Monad m, Vector v a, Vector v b)
-          => (Int -> a -> b -> m c) -> v a -> v b -> m ()
-{-# INLINE izipWithM_ #-}
-izipWithM_ m as bs = Bundle.zipWithM_ (uncurry m)
-                      (Bundle.indexed (stream as))
-                      $ stream bs
-
--- Unzipping
--- ---------
-
--- | /O(min(m,n))/ Unzip a vector of pairs.
-unzip :: (Vector v a, Vector v b, Vector v (a,b)) => v (a, b) -> (v a, v b)
-{-# INLINE unzip #-}
-unzip xs = (map fst xs, map snd xs)
-
-unzip3 :: (Vector v a, Vector v b, Vector v c, Vector v (a, b, c))
-       => v (a, b, c) -> (v a, v b, v c)
-{-# INLINE unzip3 #-}
-unzip3 xs = (map (\(a, _, _) -> a) xs,
-             map (\(_, b, _) -> b) xs,
-             map (\(_, _, c) -> c) xs)
-
-unzip4 :: (Vector v a, Vector v b, Vector v c, Vector v d,
-           Vector v (a, b, c, d))
-       => v (a, b, c, d) -> (v a, v b, v c, v d)
-{-# INLINE unzip4 #-}
-unzip4 xs = (map (\(a, _, _, _) -> a) xs,
-             map (\(_, b, _, _) -> b) xs,
-             map (\(_, _, c, _) -> c) xs,
-             map (\(_, _, _, d) -> d) xs)
-
-unzip5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-           Vector v (a, b, c, d, e))
-       => v (a, b, c, d, e) -> (v a, v b, v c, v d, v e)
-{-# INLINE unzip5 #-}
-unzip5 xs = (map (\(a, _, _, _, _) -> a) xs,
-             map (\(_, b, _, _, _) -> b) xs,
-             map (\(_, _, c, _, _) -> c) xs,
-             map (\(_, _, _, d, _) -> d) xs,
-             map (\(_, _, _, _, e) -> e) xs)
-
-unzip6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
-           Vector v f, Vector v (a, b, c, d, e, f))
-       => v (a, b, c, d, e, f) -> (v a, v b, v c, v d, v e, v f)
-{-# INLINE unzip6 #-}
-unzip6 xs = (map (\(a, _, _, _, _, _) -> a) xs,
-             map (\(_, b, _, _, _, _) -> b) xs,
-             map (\(_, _, c, _, _, _) -> c) xs,
-             map (\(_, _, _, d, _, _) -> d) xs,
-             map (\(_, _, _, _, e, _) -> e) xs,
-             map (\(_, _, _, _, _, f) -> f) xs)
-
--- Filtering
--- ---------
-
--- | /O(n)/ Drop elements that do not satisfy the predicate
-filter :: Vector v a => (a -> Bool) -> v a -> v a
-{-# INLINE filter #-}
-filter f = unstream . inplace (S.filter f) toMax . stream
-
--- | /O(n)/ Drop elements that do not satisfy the predicate which is applied to
--- values and their indices
-ifilter :: Vector v a => (Int -> a -> Bool) -> v a -> v a
-{-# INLINE ifilter #-}
-ifilter f = unstream
-          . inplace (S.map snd . S.filter (uncurry f) . S.indexed) toMax
-          . stream
-
--- | /O(n)/ Drop repeated adjacent elements.
-uniq :: (Vector v a, Eq a) => v a -> v a
-{-# INLINE uniq #-}
-uniq = unstream . inplace S.uniq toMax . stream
-
--- | /O(n)/ Drop elements when predicate returns Nothing
-mapMaybe :: (Vector v a, Vector v b) => (a -> Maybe b) -> v a -> v b
-{-# INLINE mapMaybe #-}
-mapMaybe f = unstream . inplace (S.mapMaybe f) toMax . stream
-
--- | /O(n)/ Drop elements when predicate, applied to index and value, returns Nothing
-imapMaybe :: (Vector v a, Vector v b) => (Int -> a -> Maybe b) -> v a -> v b
-{-# INLINE imapMaybe #-}
-imapMaybe f = unstream
-          . inplace (S.mapMaybe (uncurry f) . S.indexed) toMax
-          . stream
-
-
--- | /O(n)/ Drop elements that do not satisfy the monadic predicate
-filterM :: (Monad m, Vector v a) => (a -> m Bool) -> v a -> m (v a)
-{-# INLINE filterM #-}
-filterM f = unstreamM . Bundle.filterM f . stream
-
--- | /O(n)/ Yield the longest prefix of elements satisfying the predicate
--- without copying.
-takeWhile :: Vector v a => (a -> Bool) -> v a -> v a
-{-# INLINE takeWhile #-}
-takeWhile f = unstream . Bundle.takeWhile f . stream
-
--- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate
--- without copying.
-dropWhile :: Vector v a => (a -> Bool) -> v a -> v a
-{-# INLINE dropWhile #-}
-dropWhile f = unstream . Bundle.dropWhile f . stream
-
--- Parititioning
--- -------------
-
--- | /O(n)/ Split the vector in two parts, the first one containing those
--- elements that satisfy the predicate and the second one those that don't. The
--- relative order of the elements is preserved at the cost of a sometimes
--- reduced performance compared to 'unstablePartition'.
-partition :: Vector v a => (a -> Bool) -> v a -> (v a, v a)
-{-# INLINE partition #-}
-partition f = partition_stream f . stream
-
--- FIXME: Make this inplace-fusible (look at how stable_partition is
--- implemented in C++)
-
-partition_stream :: Vector v a => (a -> Bool) -> Bundle u a -> (v a, v a)
-{-# INLINE_FUSED partition_stream #-}
-partition_stream f s = s `seq` runST (
-  do
-    (mv1,mv2) <- M.partitionBundle f s
-    v1 <- unsafeFreeze mv1
-    v2 <- unsafeFreeze mv2
-    return (v1,v2))
-
--- | /O(n)/ Split the vector in two parts, the first one containing those
--- elements that satisfy the predicate and the second one those that don't.
--- The order of the elements is not preserved but the operation is often
--- faster than 'partition'.
-unstablePartition :: Vector v a => (a -> Bool) -> v a -> (v a, v a)
-{-# INLINE unstablePartition #-}
-unstablePartition f = unstablePartition_stream f . stream
-
-unstablePartition_stream
-  :: Vector v a => (a -> Bool) -> Bundle u a -> (v a, v a)
-{-# INLINE_FUSED unstablePartition_stream #-}
-unstablePartition_stream f s = s `seq` runST (
-  do
-    (mv1,mv2) <- M.unstablePartitionBundle f s
-    v1 <- unsafeFreeze mv1
-    v2 <- unsafeFreeze mv2
-    return (v1,v2))
-
-unstablePartition_new :: Vector v a => (a -> Bool) -> New v a -> (v a, v a)
-{-# INLINE_FUSED unstablePartition_new #-}
-unstablePartition_new f (New.New p) = runST (
-  do
-    mv <- p
-    i <- M.unstablePartition f mv
-    v <- unsafeFreeze mv
-    return (unsafeTake i v, unsafeDrop i v))
-
-{-# RULES
-
-"unstablePartition" forall f p.
-  unstablePartition_stream f (stream (new p))
-    = unstablePartition_new f p   #-}
-
-
-
-
--- FIXME: make span and break fusible
-
--- | /O(n)/ Split the vector into the longest prefix of elements that satisfy
--- the predicate and the rest without copying.
-span :: Vector v a => (a -> Bool) -> v a -> (v a, v a)
-{-# INLINE span #-}
-span f = break (not . f)
-
--- | /O(n)/ Split the vector into the longest prefix of elements that do not
--- satisfy the predicate and the rest without copying.
-break :: Vector v a => (a -> Bool) -> v a -> (v a, v a)
-{-# INLINE break #-}
-break f xs = case findIndex f xs of
-               Just i  -> (unsafeSlice 0 i xs, unsafeSlice i (length xs - i) xs)
-               Nothing -> (xs, empty)
-
-
--- Searching
--- ---------
-
-infix 4 `elem`
--- | /O(n)/ Check if the vector contains an element
-elem :: (Vector v a, Eq a) => a -> v a -> Bool
-{-# INLINE elem #-}
-elem x = Bundle.elem x . stream
-
-infix 4 `notElem`
--- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem')
-notElem :: (Vector v a, Eq a) => a -> v a -> Bool
-{-# INLINE notElem #-}
-notElem x = Bundle.notElem x . stream
-
--- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing'
--- if no such element exists.
-find :: Vector v a => (a -> Bool) -> v a -> Maybe a
-{-# INLINE find #-}
-find f = Bundle.find f . stream
-
--- | /O(n)/ Yield 'Just' the index of the first element matching the predicate
--- or 'Nothing' if no such element exists.
-findIndex :: Vector v a => (a -> Bool) -> v a -> Maybe Int
-{-# INLINE findIndex #-}
-findIndex f = Bundle.findIndex f . stream
-
--- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending
--- order.
-findIndices :: (Vector v a, Vector v Int) => (a -> Bool) -> v a -> v Int
-{-# INLINE findIndices #-}
-findIndices f = unstream
-              . inplace (S.map fst . S.filter (f . snd) . S.indexed) toMax
-              . stream
-
--- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or
--- 'Nothing' if the vector does not contain the element. This is a specialised
--- version of 'findIndex'.
-elemIndex :: (Vector v a, Eq a) => a -> v a -> Maybe Int
-{-# INLINE elemIndex #-}
-elemIndex x = findIndex (x==)
-
--- | /O(n)/ Yield the indices of all occurences of the given element in
--- ascending order. This is a specialised version of 'findIndices'.
-elemIndices :: (Vector v a, Vector v Int, Eq a) => a -> v a -> v Int
-{-# INLINE elemIndices #-}
-elemIndices x = findIndices (x==)
-
--- Folding
--- -------
-
--- | /O(n)/ Left fold
-foldl :: Vector v b => (a -> b -> a) -> a -> v b -> a
-{-# INLINE foldl #-}
-foldl f z = Bundle.foldl f z . stream
-
--- | /O(n)/ Left fold on non-empty vectors
-foldl1 :: Vector v a => (a -> a -> a) -> v a -> a
-{-# INLINE foldl1 #-}
-foldl1 f = Bundle.foldl1 f . stream
-
--- | /O(n)/ Left fold with strict accumulator
-foldl' :: Vector v b => (a -> b -> a) -> a -> v b -> a
-{-# INLINE foldl' #-}
-foldl' f z = Bundle.foldl' f z . stream
-
--- | /O(n)/ Left fold on non-empty vectors with strict accumulator
-foldl1' :: Vector v a => (a -> a -> a) -> v a -> a
-{-# INLINE foldl1' #-}
-foldl1' f = Bundle.foldl1' f . stream
-
--- | /O(n)/ Right fold
-foldr :: Vector v a => (a -> b -> b) -> b -> v a -> b
-{-# INLINE foldr #-}
-foldr f z = Bundle.foldr f z . stream
-
--- | /O(n)/ Right fold on non-empty vectors
-foldr1 :: Vector v a => (a -> a -> a) -> v a -> a
-{-# INLINE foldr1 #-}
-foldr1 f = Bundle.foldr1 f . stream
-
--- | /O(n)/ Right fold with a strict accumulator
-foldr' :: Vector v a => (a -> b -> b) -> b -> v a -> b
-{-# INLINE foldr' #-}
-foldr' f z = Bundle.foldl' (flip f) z . streamR
-
--- | /O(n)/ Right fold on non-empty vectors with strict accumulator
-foldr1' :: Vector v a => (a -> a -> a) -> v a -> a
-{-# INLINE foldr1' #-}
-foldr1' f = Bundle.foldl1' (flip f) . streamR
-
--- | /O(n)/ Left fold (function applied to each element and its index)
-ifoldl :: Vector v b => (a -> Int -> b -> a) -> a -> v b -> a
-{-# INLINE ifoldl #-}
-ifoldl f z = Bundle.foldl (uncurry . f) z . Bundle.indexed . stream
-
--- | /O(n)/ Left fold with strict accumulator (function applied to each element
--- and its index)
-ifoldl' :: Vector v b => (a -> Int -> b -> a) -> a -> v b -> a
-{-# INLINE ifoldl' #-}
-ifoldl' f z = Bundle.foldl' (uncurry . f) z . Bundle.indexed . stream
-
--- | /O(n)/ Right fold (function applied to each element and its index)
-ifoldr :: Vector v a => (Int -> a -> b -> b) -> b -> v a -> b
-{-# INLINE ifoldr #-}
-ifoldr f z = Bundle.foldr (uncurry f) z . Bundle.indexed . stream
-
--- | /O(n)/ Right fold with strict accumulator (function applied to each
--- element and its index)
-ifoldr' :: Vector v a => (Int -> a -> b -> b) -> b -> v a -> b
-{-# INLINE ifoldr' #-}
-ifoldr' f z xs = Bundle.foldl' (flip (uncurry f)) z
-               $ Bundle.indexedR (length xs) $ streamR xs
-
--- Specialised folds
--- -----------------
-
--- | /O(n)/ Check if all elements satisfy the predicate.
-all :: Vector v a => (a -> Bool) -> v a -> Bool
-{-# INLINE all #-}
-all f = Bundle.and . Bundle.map f . stream
-
--- | /O(n)/ Check if any element satisfies the predicate.
-any :: Vector v a => (a -> Bool) -> v a -> Bool
-{-# INLINE any #-}
-any f = Bundle.or . Bundle.map f . stream
-
--- | /O(n)/ Check if all elements are 'True'
-and :: Vector v Bool => v Bool -> Bool
-{-# INLINE and #-}
-and = Bundle.and . stream
-
--- | /O(n)/ Check if any element is 'True'
-or :: Vector v Bool => v Bool -> Bool
-{-# INLINE or #-}
-or = Bundle.or . stream
-
--- | /O(n)/ Compute the sum of the elements
-sum :: (Vector v a, Num a) => v a -> a
-{-# INLINE sum #-}
-sum = Bundle.foldl' (+) 0 . stream
-
--- | /O(n)/ Compute the produce of the elements
-product :: (Vector v a, Num a) => v a -> a
-{-# INLINE product #-}
-product = Bundle.foldl' (*) 1 . stream
-
--- | /O(n)/ Yield the maximum element of the vector. The vector may not be
--- empty.
-maximum :: (Vector v a, Ord a) => v a -> a
-{-# INLINE maximum #-}
-maximum = Bundle.foldl1' max . stream
-
--- | /O(n)/ Yield the maximum element of the vector according to the given
--- comparison function. The vector may not be empty.
-maximumBy :: Vector v a => (a -> a -> Ordering) -> v a -> a
-{-# INLINE maximumBy #-}
-maximumBy cmpr = Bundle.foldl1' maxBy . stream
-  where
-    {-# INLINE maxBy #-}
-    maxBy x y = case cmpr x y of
-                  LT -> y
-                  _  -> x
-
--- | /O(n)/ Yield the minimum element of the vector. The vector may not be
--- empty.
-minimum :: (Vector v a, Ord a) => v a -> a
-{-# INLINE minimum #-}
-minimum = Bundle.foldl1' min . stream
-
--- | /O(n)/ Yield the minimum element of the vector according to the given
--- comparison function. The vector may not be empty.
-minimumBy :: Vector v a => (a -> a -> Ordering) -> v a -> a
-{-# INLINE minimumBy #-}
-minimumBy cmpr = Bundle.foldl1' minBy . stream
-  where
-    {-# INLINE minBy #-}
-    minBy x y = case cmpr x y of
-                  GT -> y
-                  _  -> x
-
--- | /O(n)/ Yield the index of the maximum element of the vector. The vector
--- may not be empty.
-maxIndex :: (Vector v a, Ord a) => v a -> Int
-{-# INLINE maxIndex #-}
-maxIndex = maxIndexBy compare
-
--- | /O(n)/ Yield the index of the maximum element of the vector according to
--- the given comparison function. The vector may not be empty.
-maxIndexBy :: Vector v a => (a -> a -> Ordering) -> v a -> Int
-{-# INLINE maxIndexBy #-}
-maxIndexBy cmpr = fst . Bundle.foldl1' imax . Bundle.indexed . stream
-  where
-    imax (i,x) (j,y) = i `seq` j `seq`
-                       case cmpr x y of
-                         LT -> (j,y)
-                         _  -> (i,x)
-
--- | /O(n)/ Yield the index of the minimum element of the vector. The vector
--- may not be empty.
-minIndex :: (Vector v a, Ord a) => v a -> Int
-{-# INLINE minIndex #-}
-minIndex = minIndexBy compare
-
--- | /O(n)/ Yield the index of the minimum element of the vector according to
--- the given comparison function. The vector may not be empty.
-minIndexBy :: Vector v a => (a -> a -> Ordering) -> v a -> Int
-{-# INLINE minIndexBy #-}
-minIndexBy cmpr = fst . Bundle.foldl1' imin . Bundle.indexed . stream
-  where
-    imin (i,x) (j,y) = i `seq` j `seq`
-                       case cmpr x y of
-                         GT -> (j,y)
-                         _  -> (i,x)
-
--- Monadic folds
--- -------------
-
--- | /O(n)/ Monadic fold
-foldM :: (Monad m, Vector v b) => (a -> b -> m a) -> a -> v b -> m a
-{-# INLINE foldM #-}
-foldM m z = Bundle.foldM m z . stream
-
--- | /O(n)/ Monadic fold (action applied to each element and its index)
-ifoldM :: (Monad m, Vector v b) => (a -> Int -> b -> m a) -> a -> v b -> m a
-{-# INLINE ifoldM #-}
-ifoldM m z = Bundle.foldM (uncurry . m) z . Bundle.indexed . stream
-
--- | /O(n)/ Monadic fold over non-empty vectors
-fold1M :: (Monad m, Vector v a) => (a -> a -> m a) -> v a -> m a
-{-# INLINE fold1M #-}
-fold1M m = Bundle.fold1M m . stream
-
--- | /O(n)/ Monadic fold with strict accumulator
-foldM' :: (Monad m, Vector v b) => (a -> b -> m a) -> a -> v b -> m a
-{-# INLINE foldM' #-}
-foldM' m z = Bundle.foldM' m z . stream
-
--- | /O(n)/ Monadic fold with strict accumulator (action applied to each
--- element and its index)
-ifoldM' :: (Monad m, Vector v b) => (a -> Int -> b -> m a) -> a -> v b -> m a
-{-# INLINE ifoldM' #-}
-ifoldM' m z = Bundle.foldM' (uncurry . m) z . Bundle.indexed . stream
-
--- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator
-fold1M' :: (Monad m, Vector v a) => (a -> a -> m a) -> v a -> m a
-{-# INLINE fold1M' #-}
-fold1M' m = Bundle.fold1M' m . stream
-
-discard :: Monad m => m a -> m ()
-{-# INLINE discard #-}
-discard m = m >> return ()
-
--- | /O(n)/ Monadic fold that discards the result
-foldM_ :: (Monad m, Vector v b) => (a -> b -> m a) -> a -> v b -> m ()
-{-# INLINE foldM_ #-}
-foldM_ m z = discard . Bundle.foldM m z . stream
-
--- | /O(n)/ Monadic fold that discards the result (action applied to
--- each element and its index)
-ifoldM_ :: (Monad m, Vector v b) => (a -> Int -> b -> m a) -> a -> v b -> m ()
-{-# INLINE ifoldM_ #-}
-ifoldM_ m z = discard . Bundle.foldM (uncurry . m) z . Bundle.indexed . stream
-
--- | /O(n)/ Monadic fold over non-empty vectors that discards the result
-fold1M_ :: (Monad m, Vector v a) => (a -> a -> m a) -> v a -> m ()
-{-# INLINE fold1M_ #-}
-fold1M_ m = discard . Bundle.fold1M m . stream
-
--- | /O(n)/ Monadic fold with strict accumulator that discards the result
-foldM'_ :: (Monad m, Vector v b) => (a -> b -> m a) -> a -> v b -> m ()
-{-# INLINE foldM'_ #-}
-foldM'_ m z = discard . Bundle.foldM' m z . stream
-
--- | /O(n)/ Monadic fold with strict accumulator that discards the result
--- (action applied to each element and its index)
-ifoldM'_ :: (Monad m, Vector v b) => (a -> Int -> b -> m a) -> a -> v b -> m ()
-{-# INLINE ifoldM'_ #-}
-ifoldM'_ m z = discard . Bundle.foldM' (uncurry . m) z . Bundle.indexed . stream
-
--- | /O(n)/ Monad fold over non-empty vectors with strict accumulator
--- that discards the result
-fold1M'_ :: (Monad m, Vector v a) => (a -> a -> m a) -> v a -> m ()
-{-# INLINE fold1M'_ #-}
-fold1M'_ m = discard . Bundle.fold1M' m . stream
-
--- Monadic sequencing
--- ------------------
-
--- | Evaluate each action and collect the results
-sequence :: (Monad m, Vector v a, Vector v (m a)) => v (m a) -> m (v a)
-{-# INLINE sequence #-}
-sequence = mapM id
-
--- | Evaluate each action and discard the results
-sequence_ :: (Monad m, Vector v (m a)) => v (m a) -> m ()
-{-# INLINE sequence_ #-}
-sequence_ = mapM_ id
-
--- Prefix sums (scans)
--- -------------------
-
--- | /O(n)/ Prescan
---
--- @
--- prescanl f z = 'init' . 'scanl' f z
--- @
---
--- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@
---
-prescanl :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
-{-# INLINE prescanl #-}
-prescanl f z = unstream . inplace (S.prescanl f z) id . stream
-
--- | /O(n)/ Prescan with strict accumulator
-prescanl' :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
-{-# INLINE prescanl' #-}
-prescanl' f z = unstream . inplace (S.prescanl' f z) id . stream
-
--- | /O(n)/ Scan
---
--- @
--- postscanl f z = 'tail' . 'scanl' f z
--- @
---
--- Example: @postscanl (+) 0 \<1,2,3,4\> = \<1,3,6,10\>@
---
-postscanl :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
-{-# INLINE postscanl #-}
-postscanl f z = unstream . inplace (S.postscanl f z) id . stream
-
--- | /O(n)/ Scan with strict accumulator
-postscanl' :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
-{-# INLINE postscanl' #-}
-postscanl' f z = unstream . inplace (S.postscanl' f z) id . stream
-
--- | /O(n)/ Haskell-style scan
---
--- > scanl f z <x1,...,xn> = <y1,...,y(n+1)>
--- >   where y1 = z
--- >         yi = f y(i-1) x(i-1)
---
--- Example: @scanl (+) 0 \<1,2,3,4\> = \<0,1,3,6,10\>@
---
-scanl :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
-{-# INLINE scanl #-}
-scanl f z = unstream . Bundle.scanl f z . stream
-
--- | /O(n)/ Haskell-style scan with strict accumulator
-scanl' :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
-{-# INLINE scanl' #-}
-scanl' f z = unstream . Bundle.scanl' f z . stream
-
--- | /O(n)/ Scan over a vector with its index
-iscanl :: (Vector v a, Vector v b) => (Int -> a -> b -> a) -> a -> v b -> v a
-{-# INLINE iscanl #-}
-iscanl f z =
-    unstream
-  . inplace (S.scanl (\a (i, b) -> f i a b) z . S.indexed) (+1)
-  . stream
-
--- | /O(n)/ Scan over a vector (strictly) with its index
-iscanl' :: (Vector v a, Vector v b) => (Int -> a -> b -> a) -> a -> v b -> v a
-{-# INLINE iscanl' #-}
-iscanl' f z =
-    unstream
-  . inplace (S.scanl' (\a (i, b) -> f i a b) z . S.indexed) (+1)
-  . stream
-
-
--- | /O(n)/ Scan over a non-empty vector
---
--- > scanl f <x1,...,xn> = <y1,...,yn>
--- >   where y1 = x1
--- >         yi = f y(i-1) xi
---
-scanl1 :: Vector v a => (a -> a -> a) -> v a -> v a
-{-# INLINE scanl1 #-}
-scanl1 f = unstream . inplace (S.scanl1 f) id . stream
-
--- | /O(n)/ Scan over a non-empty vector with a strict accumulator
-scanl1' :: Vector v a => (a -> a -> a) -> v a -> v a
-{-# INLINE scanl1' #-}
-scanl1' f = unstream . inplace (S.scanl1' f) id . stream
-
--- | /O(n)/ Right-to-left prescan
---
--- @
--- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse'
--- @
---
-prescanr :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
-{-# INLINE prescanr #-}
-prescanr f z = unstreamR . inplace (S.prescanl (flip f) z) id . streamR
-
--- | /O(n)/ Right-to-left prescan with strict accumulator
-prescanr' :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
-{-# INLINE prescanr' #-}
-prescanr' f z = unstreamR . inplace (S.prescanl' (flip f) z) id . streamR
-
--- | /O(n)/ Right-to-left scan
-postscanr :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
-{-# INLINE postscanr #-}
-postscanr f z = unstreamR . inplace (S.postscanl (flip f) z) id . streamR
-
--- | /O(n)/ Right-to-left scan with strict accumulator
-postscanr' :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
-{-# INLINE postscanr' #-}
-postscanr' f z = unstreamR . inplace (S.postscanl' (flip f) z) id . streamR
-
--- | /O(n)/ Right-to-left Haskell-style scan
-scanr :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
-{-# INLINE scanr #-}
-scanr f z = unstreamR . Bundle.scanl (flip f) z . streamR
-
--- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator
-scanr' :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
-{-# INLINE scanr' #-}
-scanr' f z = unstreamR . Bundle.scanl' (flip f) z . streamR
-
--- | /O(n)/ Right-to-left scan over a vector with its index
-iscanr :: (Vector v a, Vector v b) => (Int -> a -> b -> b) -> b -> v a -> v b
-{-# INLINE iscanr #-}
-iscanr f z v =
-    unstreamR
-  . inplace (S.scanl (flip $ uncurry f) z . S.indexedR n) (+1)
-  . streamR
-  $ v
- where n = length v
-
--- | /O(n)/ Right-to-left scan over a vector (strictly) with its index
-iscanr' :: (Vector v a, Vector v b) => (Int -> a -> b -> b) -> b -> v a -> v b
-{-# INLINE iscanr' #-}
-iscanr' f z v =
-    unstreamR
-  . inplace (S.scanl' (flip $ uncurry f) z . S.indexedR n) (+1)
-  . streamR
-  $ v
- where n = length v
-
--- | /O(n)/ Right-to-left scan over a non-empty vector
-scanr1 :: Vector v a => (a -> a -> a) -> v a -> v a
-{-# INLINE scanr1 #-}
-scanr1 f = unstreamR . inplace (S.scanl1 (flip f)) id . streamR
-
--- | /O(n)/ Right-to-left scan over a non-empty vector with a strict
--- accumulator
-scanr1' :: Vector v a => (a -> a -> a) -> v a -> v a
-{-# INLINE scanr1' #-}
-scanr1' f = unstreamR . inplace (S.scanl1' (flip f)) id . streamR
-
--- Conversions - Lists
--- ------------------------
-
--- | /O(n)/ Convert a vector to a list
-toList :: Vector v a => v a -> [a]
-{-# INLINE toList #-}
-toList = Bundle.toList . stream
-
--- | /O(n)/ Convert a list to a vector
-fromList :: Vector v a => [a] -> v a
-{-# INLINE fromList #-}
-fromList = unstream . Bundle.fromList
-
--- | /O(n)/ Convert the first @n@ elements of a list to a vector
---
--- @
--- fromListN n xs = 'fromList' ('take' n xs)
--- @
-fromListN :: Vector v a => Int -> [a] -> v a
-{-# INLINE fromListN #-}
-fromListN n = unstream . Bundle.fromListN n
-
--- Conversions - Immutable vectors
--- -------------------------------
-
--- | /O(n)/ Convert different vector types
-convert :: (Vector v a, Vector w a) => v a -> w a
-{-# INLINE convert #-}
-convert = unstream . Bundle.reVector . stream
-
--- Conversions - Mutable vectors
--- -----------------------------
-
--- | /O(1)/ Unsafe convert a mutable vector to an immutable one without
--- copying. The mutable vector may not be used after this operation.
-unsafeFreeze
-  :: (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> m (v a)
-{-# INLINE unsafeFreeze #-}
-unsafeFreeze = basicUnsafeFreeze
-
--- | /O(n)/ Yield an immutable copy of the mutable vector.
-freeze :: (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> m (v a)
-{-# INLINE freeze #-}
-freeze mv = unsafeFreeze =<< M.clone mv
-
--- | /O(1)/ Unsafely convert an immutable vector to a mutable one without
--- copying. The immutable vector may not be used after this operation.
-unsafeThaw :: (PrimMonad m, Vector v a) => v a -> m (Mutable v (PrimState m) a)
-{-# INLINE_FUSED unsafeThaw #-}
-unsafeThaw = basicUnsafeThaw
-
--- | /O(n)/ Yield a mutable copy of the immutable vector.
-thaw :: (PrimMonad m, Vector v a) => v a -> m (Mutable v (PrimState m) a)
-{-# INLINE_FUSED thaw #-}
-thaw v = do
-           mv <- M.unsafeNew (length v)
-           unsafeCopy mv v
-           return mv
-
-{-# RULES
-
-"unsafeThaw/new [Vector]" forall p.
-  unsafeThaw (new p) = New.runPrim p
-
-"thaw/new [Vector]" forall p.
-  thaw (new p) = New.runPrim p   #-}
-
-
-
-{-
--- | /O(n)/ Yield a mutable vector containing copies of each vector in the
--- list.
-thawMany :: (PrimMonad m, Vector v a) => [v a] -> m (Mutable v (PrimState m) a)
-{-# INLINE_FUSED thawMany #-}
--- FIXME: add rule for (stream (new (New.create (thawMany vs))))
--- NOTE: We don't try to consume the list lazily as this wouldn't significantly
--- change the space requirements anyway.
-thawMany vs = do
-                mv <- M.new n
-                thaw_loop mv vs
-                return mv
-  where
-    n = List.foldl' (\k v -> k + length v) 0 vs
-
-    thaw_loop mv [] = mv `seq` return ()
-    thaw_loop mv (v:vs)
-      = do
-          let n = length v
-          unsafeCopy (M.unsafeTake n mv) v
-          thaw_loop (M.unsafeDrop n mv) vs
--}
-
--- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
--- have the same length.
-copy
-  :: (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> v a -> m ()
-{-# INLINE copy #-}
-copy dst src = BOUNDS_CHECK(check) "copy" "length mismatch"
-                                          (M.length dst == length src)
-             $ unsafeCopy dst src
-
--- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
--- have the same length. This is not checked.
-unsafeCopy
-  :: (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> v a -> m ()
-{-# INLINE unsafeCopy #-}
-unsafeCopy dst src = UNSAFE_CHECK(check) "unsafeCopy" "length mismatch"
-                                         (M.length dst == length src)
-                   $ (dst `seq` src `seq` basicUnsafeCopy dst src)
-
--- Conversions to/from Bundles
--- ---------------------------
-
--- | /O(1)/ Convert a vector to a 'Bundle'
-stream :: Vector v a => v a -> Bundle v a
-{-# INLINE_FUSED stream #-}
-stream v = stream' v
-
--- Same as 'stream', but can be used to avoid having a cycle in the dependency
--- graph of functions, which forces GHC to create a loop breaker.
-stream' :: Vector v a => v a -> Bundle v a
-{-# INLINE stream' #-}
-stream' v = Bundle.fromVector v
-
-{-
-stream v = v `seq` n `seq` (Bundle.unfoldr get 0 `Bundle.sized` Exact n)
-  where
-    n = length v
-
-    -- NOTE: the False case comes first in Core so making it the recursive one
-    -- makes the code easier to read
-    {-# INLINE get #-}
-    get i | i >= n    = Nothing
-          | otherwise = case basicUnsafeIndexM v i of Box x -> Just (x, i+1)
--}
-
--- | /O(n)/ Construct a vector from a 'Bundle'
-unstream :: Vector v a => Bundle v a -> v a
-{-# INLINE unstream #-}
-unstream s = new (New.unstream s)
-
-{-# RULES
-
-"stream/unstream [Vector]" forall s.
-  stream (new (New.unstream s)) = s
-
-"New.unstream/stream [Vector]" forall v.
-  New.unstream (stream v) = clone v
-
-"clone/new [Vector]" forall p.
-  clone (new p) = p
-
-"inplace [Vector]"
-  forall (f :: forall m. Monad m => Stream m a -> Stream m a) g m.
-  New.unstream (inplace f g (stream (new m))) = New.transform f g m
-
-"uninplace [Vector]"
-  forall (f :: forall m. Monad m => Stream m a -> Stream m a) g m.
-  stream (new (New.transform f g m)) = inplace f g (stream (new m))  #-}
-
-
-
--- | /O(1)/ Convert a vector to a 'Bundle', proceeding from right to left
-streamR :: Vector v a => v a -> Bundle u a
-{-# INLINE_FUSED streamR #-}
-streamR v = v `seq` n `seq` (Bundle.unfoldr get n `Bundle.sized` Exact n)
-  where
-    n = length v
-
-    {-# INLINE get #-}
-    get 0 = Nothing
-    get i = let i' = i-1
-            in
-            case basicUnsafeIndexM v i' of Box x -> Just (x, i')
-
--- | /O(n)/ Construct a vector from a 'Bundle', proceeding from right to left
-unstreamR :: Vector v a => Bundle v a -> v a
-{-# INLINE unstreamR #-}
-unstreamR s = new (New.unstreamR s)
-
-{-# RULES
-
-"streamR/unstreamR [Vector]" forall s.
-  streamR (new (New.unstreamR s)) = s
-
-"New.unstreamR/streamR/new [Vector]" forall p.
-  New.unstreamR (streamR (new p)) = p
-
-"New.unstream/streamR/new [Vector]" forall p.
-  New.unstream (streamR (new p)) = New.modify M.reverse p
-
-"New.unstreamR/stream/new [Vector]" forall p.
-  New.unstreamR (stream (new p)) = New.modify M.reverse p
-
-"inplace right [Vector]"
-  forall (f :: forall m. Monad m => Stream m a -> Stream m a) g m.
-  New.unstreamR (inplace f g (streamR (new m))) = New.transformR f g m
-
-"uninplace right [Vector]"
-  forall (f :: forall m. Monad m => Stream m a -> Stream m a) g m.
-  streamR (new (New.transformR f g m)) = inplace f g (streamR (new m))  #-}
-
-
-
-unstreamM :: (Monad m, Vector v a) => MBundle m u a -> m (v a)
-{-# INLINE_FUSED unstreamM #-}
-unstreamM s = do
-                xs <- MBundle.toList s
-                return $ unstream $ Bundle.unsafeFromList (MBundle.size s) xs
-
-unstreamPrimM :: (PrimMonad m, Vector v a) => MBundle m u a -> m (v a)
-{-# INLINE_FUSED unstreamPrimM #-}
-unstreamPrimM s = M.munstream s >>= unsafeFreeze
-
--- FIXME: the next two functions are only necessary for the specialisations
-unstreamPrimM_IO :: Vector v a => MBundle IO u a -> IO (v a)
-{-# INLINE unstreamPrimM_IO #-}
-unstreamPrimM_IO = unstreamPrimM
-
-unstreamPrimM_ST :: Vector v a => MBundle (ST s) u a -> ST s (v a)
-{-# INLINE unstreamPrimM_ST #-}
-unstreamPrimM_ST = unstreamPrimM
-
-{-# RULES
-
-"unstreamM[IO]" unstreamM = unstreamPrimM_IO
-"unstreamM[ST]" unstreamM = unstreamPrimM_ST  #-}
-
-
-
-
--- Recycling support
--- -----------------
-
--- | Construct a vector from a monadic initialiser.
-new :: Vector v a => New v a -> v a
-{-# INLINE_FUSED new #-}
-new m = m `seq` runST (unsafeFreeze =<< New.run m)
-
--- | Convert a vector to an initialiser which, when run, produces a copy of
--- the vector.
-clone :: Vector v a => v a -> New v a
-{-# INLINE_FUSED clone #-}
-clone v = v `seq` New.create (
-  do
-    mv <- M.new (length v)
-    unsafeCopy mv v
-    return mv)
-
--- Comparisons
--- -----------
-
--- | /O(n)/ Check if two vectors are equal. All 'Vector' instances are also
--- instances of 'Eq' and it is usually more appropriate to use those. This
--- function is primarily intended for implementing 'Eq' instances for new
--- vector types.
-eq :: (Vector v a, Eq a) => v a -> v a -> Bool
-{-# INLINE eq #-}
-xs `eq` ys = stream xs == stream ys
-
--- | /O(n)/
-eqBy :: (Vector v a, Vector v b) => (a -> b -> Bool) -> v a -> v b -> Bool
-{-# INLINE eqBy #-}
-eqBy e xs ys = Bundle.eqBy e (stream xs) (stream ys)
-
--- | /O(n)/ Compare two vectors lexicographically. All 'Vector' instances are
--- also instances of 'Ord' and it is usually more appropriate to use those. This
--- function is primarily intended for implementing 'Ord' instances for new
--- vector types.
-cmp :: (Vector v a, Ord a) => v a -> v a -> Ordering
-{-# INLINE cmp #-}
-cmp xs ys = compare (stream xs) (stream ys)
-
--- | /O(n)/
-cmpBy :: (Vector v a, Vector v b) => (a -> b -> Ordering) -> v a -> v b -> Ordering
-cmpBy c xs ys = Bundle.cmpBy c (stream xs) (stream ys)
-
--- Show
--- ----
-
--- | Generic definition of 'Prelude.showsPrec'
-showsPrec :: (Vector v a, Show a) => Int -> v a -> ShowS
-{-# INLINE showsPrec #-}
-showsPrec _ = shows . toList
-
-liftShowsPrec :: (Vector v a) => (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> v a -> ShowS
-{-# INLINE liftShowsPrec #-}
-liftShowsPrec _ s _ = s . toList
-
--- | Generic definition of 'Text.Read.readPrec'
-readPrec :: (Vector v a, Read a) => Read.ReadPrec (v a)
-{-# INLINE readPrec #-}
-readPrec = do
-  xs <- Read.readPrec
-  return (fromList xs)
-
--- | /Note:/ uses 'ReadS'
-liftReadsPrec :: (Vector v a) => (Int -> Read.ReadS a) -> ReadS [a] -> Int -> Read.ReadS (v a)
-liftReadsPrec _ r _ s = [ (fromList v, s') | (v, s') <- r s ]
-
--- Data and Typeable
--- -----------------
-
--- | Generic definion of 'Data.Data.gfoldl' that views a 'Vector' as a
--- list.
-gfoldl :: (Vector v a, Data a)
-       => (forall d b. Data d => c (d -> b) -> d -> c b)
-       -> (forall g. g -> c g)
-       -> v a
-       -> c (v a)
-{-# INLINE gfoldl #-}
-gfoldl f z v = z fromList `f` toList v
-
-mkType :: String -> DataType
-{-# INLINE mkType #-}
-mkType = mkNoRepType
-
-#if __GLASGOW_HASKELL__ >= 707
-dataCast :: (Vector v a, Data a, Typeable v, Typeable t)
-#else
-dataCast :: (Vector v a, Data a, Typeable1 v, Typeable1 t)
-#endif
-         => (forall d. Data  d => c (t d)) -> Maybe  (c (v a))
-{-# INLINE dataCast #-}
-dataCast f = gcast1 f