about summary refs log tree commit diff
path: root/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion')
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle.hs655
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs1106
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Size.hs121
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs1639
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Util.hs60
5 files changed, 3581 insertions, 0 deletions
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle.hs
new file mode 100644
index 0000000000..6b6b6236d7
--- /dev/null
+++ b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle.hs
@@ -0,0 +1,655 @@
+{-# LANGUAGE CPP, FlexibleInstances, Rank2Types, BangPatterns #-}
+
+-- |
+-- Module      : Data.Vector.Fusion.Bundle
+-- Copyright   : (c) Roman Leshchinskiy 2008-2010
+-- License     : BSD-style
+--
+-- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
+-- Stability   : experimental
+-- Portability : non-portable
+--
+-- Bundles for stream fusion
+--
+
+module Data.Vector.Fusion.Bundle (
+  -- * Types
+  Step(..), Chunk(..), Bundle, MBundle,
+
+  -- * In-place markers
+  inplace,
+
+  -- * Size hints
+  size, sized,
+
+  -- * Length information
+  length, null,
+
+  -- * Construction
+  empty, singleton, cons, snoc, replicate, generate, (++),
+
+  -- * Accessing individual elements
+  head, last, (!!), (!?),
+
+  -- * Substreams
+  slice, init, tail, take, drop,
+
+  -- * Mapping
+  map, concatMap, flatten, unbox,
+
+  -- * Zipping
+  indexed, indexedR,
+  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
+  zip, zip3, zip4, zip5, zip6,
+
+  -- * Filtering
+  filter, takeWhile, dropWhile,
+
+  -- * Searching
+  elem, notElem, find, findIndex,
+
+  -- * Folding
+  foldl, foldl1, foldl', foldl1', foldr, foldr1,
+
+  -- * Specialised folds
+  and, or,
+
+  -- * Unfolding
+  unfoldr, unfoldrN, iterateN,
+
+  -- * Scans
+  prescanl, prescanl',
+  postscanl, postscanl',
+  scanl, scanl',
+  scanl1, scanl1',
+
+  -- * Enumerations
+  enumFromStepN, enumFromTo, enumFromThenTo,
+
+  -- * Conversions
+  toList, fromList, fromListN, unsafeFromList, lift,
+  fromVector, reVector, fromVectors, concatVectors,
+
+  -- * Monadic combinators
+  mapM, mapM_, zipWithM, zipWithM_, filterM, foldM, fold1M, foldM', fold1M',
+
+  eq, cmp, eqBy, cmpBy
+) where
+
+import Data.Vector.Generic.Base ( Vector )
+import Data.Vector.Fusion.Bundle.Size
+import Data.Vector.Fusion.Util
+import Data.Vector.Fusion.Stream.Monadic ( Stream(..), Step(..) )
+import Data.Vector.Fusion.Bundle.Monadic ( Chunk(..) )
+import qualified Data.Vector.Fusion.Bundle.Monadic as M
+import qualified Data.Vector.Fusion.Stream.Monadic as S
+
+import Prelude hiding ( length, null,
+                        replicate, (++),
+                        head, last, (!!),
+                        init, tail, take, drop,
+                        map, concatMap,
+                        zipWith, zipWith3, zip, zip3,
+                        filter, takeWhile, dropWhile,
+                        elem, notElem,
+                        foldl, foldl1, foldr, foldr1,
+                        and, or,
+                        scanl, scanl1,
+                        enumFromTo, enumFromThenTo,
+                        mapM, mapM_ )
+
+#if MIN_VERSION_base(4,9,0)
+import Data.Functor.Classes (Eq1 (..), Ord1 (..))
+#endif
+
+import GHC.Base ( build )
+
+-- Data.Vector.Internal.Check is unused
+#define NOT_VECTOR_MODULE
+#include "vector.h"
+
+-- | The type of pure streams
+type Bundle = M.Bundle Id
+
+-- | Alternative name for monadic streams
+type MBundle = M.Bundle
+
+inplace :: (forall m. Monad m => S.Stream m a -> S.Stream m b)
+        -> (Size -> Size) -> Bundle v a -> Bundle v b
+{-# INLINE_FUSED inplace #-}
+inplace f g b = b `seq` M.fromStream (f (M.elements b)) (g (M.size b))
+
+{-# RULES
+
+"inplace/inplace [Vector]"
+  forall (f1 :: forall m. Monad m => S.Stream m a -> S.Stream m a)
+         (f2 :: forall m. Monad m => S.Stream m a -> S.Stream m a)
+         g1 g2 s.
+  inplace f1 g1 (inplace f2 g2 s) = inplace (f1 . f2) (g1 . g2) s   #-}
+
+
+
+-- | Convert a pure stream to a monadic stream
+lift :: Monad m => Bundle v a -> M.Bundle m v a
+{-# INLINE_FUSED lift #-}
+lift (M.Bundle (Stream step s) (Stream vstep t) v sz)
+    = M.Bundle (Stream (return . unId . step) s)
+               (Stream (return . unId . vstep) t) v sz
+
+-- | 'Size' hint of a 'Bundle'
+size :: Bundle v a -> Size
+{-# INLINE size #-}
+size = M.size
+
+-- | Attach a 'Size' hint to a 'Bundle'
+sized :: Bundle v a -> Size -> Bundle v a
+{-# INLINE sized #-}
+sized = M.sized
+
+-- Length
+-- ------
+
+-- | Length of a 'Bundle'
+length :: Bundle v a -> Int
+{-# INLINE length #-}
+length = unId . M.length
+
+-- | Check if a 'Bundle' is empty
+null :: Bundle v a -> Bool
+{-# INLINE null #-}
+null = unId . M.null
+
+-- Construction
+-- ------------
+
+-- | Empty 'Bundle'
+empty :: Bundle v a
+{-# INLINE empty #-}
+empty = M.empty
+
+-- | Singleton 'Bundle'
+singleton :: a -> Bundle v a
+{-# INLINE singleton #-}
+singleton = M.singleton
+
+-- | Replicate a value to a given length
+replicate :: Int -> a -> Bundle v a
+{-# INLINE replicate #-}
+replicate = M.replicate
+
+-- | Generate a stream from its indices
+generate :: Int -> (Int -> a) -> Bundle v a
+{-# INLINE generate #-}
+generate = M.generate
+
+-- | Prepend an element
+cons :: a -> Bundle v a -> Bundle v a
+{-# INLINE cons #-}
+cons = M.cons
+
+-- | Append an element
+snoc :: Bundle v a -> a -> Bundle v a
+{-# INLINE snoc #-}
+snoc = M.snoc
+
+infixr 5 ++
+-- | Concatenate two 'Bundle's
+(++) :: Bundle v a -> Bundle v a -> Bundle v a
+{-# INLINE (++) #-}
+(++) = (M.++)
+
+-- Accessing elements
+-- ------------------
+
+-- | First element of the 'Bundle' or error if empty
+head :: Bundle v a -> a
+{-# INLINE head #-}
+head = unId . M.head
+
+-- | Last element of the 'Bundle' or error if empty
+last :: Bundle v a -> a
+{-# INLINE last #-}
+last = unId . M.last
+
+infixl 9 !!
+-- | Element at the given position
+(!!) :: Bundle v a -> Int -> a
+{-# INLINE (!!) #-}
+s !! i = unId (s M.!! i)
+
+infixl 9 !?
+-- | Element at the given position or 'Nothing' if out of bounds
+(!?) :: Bundle v a -> Int -> Maybe a
+{-# INLINE (!?) #-}
+s !? i = unId (s M.!? i)
+
+-- Substreams
+-- ----------
+
+-- | Extract a substream of the given length starting at the given position.
+slice :: Int   -- ^ starting index
+      -> Int   -- ^ length
+      -> Bundle v a
+      -> Bundle v a
+{-# INLINE slice #-}
+slice = M.slice
+
+-- | All but the last element
+init :: Bundle v a -> Bundle v a
+{-# INLINE init #-}
+init = M.init
+
+-- | All but the first element
+tail :: Bundle v a -> Bundle v a
+{-# INLINE tail #-}
+tail = M.tail
+
+-- | The first @n@ elements
+take :: Int -> Bundle v a -> Bundle v a
+{-# INLINE take #-}
+take = M.take
+
+-- | All but the first @n@ elements
+drop :: Int -> Bundle v a -> Bundle v a
+{-# INLINE drop #-}
+drop = M.drop
+
+-- Mapping
+-- ---------------
+
+-- | Map a function over a 'Bundle'
+map :: (a -> b) -> Bundle v a -> Bundle v b
+{-# INLINE map #-}
+map = M.map
+
+unbox :: Bundle v (Box a) -> Bundle v a
+{-# INLINE unbox #-}
+unbox = M.unbox
+
+concatMap :: (a -> Bundle v b) -> Bundle v a -> Bundle v b
+{-# INLINE concatMap #-}
+concatMap = M.concatMap
+
+-- Zipping
+-- -------
+
+-- | Pair each element in a 'Bundle' with its index
+indexed :: Bundle v a -> Bundle v (Int,a)
+{-# INLINE indexed #-}
+indexed = M.indexed
+
+-- | Pair each element in a 'Bundle' with its index, starting from the right
+-- and counting down
+indexedR :: Int -> Bundle v a -> Bundle v (Int,a)
+{-# INLINE_FUSED indexedR #-}
+indexedR = M.indexedR
+
+-- | Zip two 'Bundle's with the given function
+zipWith :: (a -> b -> c) -> Bundle v a -> Bundle v b -> Bundle v c
+{-# INLINE zipWith #-}
+zipWith = M.zipWith
+
+-- | Zip three 'Bundle's with the given function
+zipWith3 :: (a -> b -> c -> d) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
+{-# INLINE zipWith3 #-}
+zipWith3 = M.zipWith3
+
+zipWith4 :: (a -> b -> c -> d -> e)
+                    -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
+                    -> Bundle v e
+{-# INLINE zipWith4 #-}
+zipWith4 = M.zipWith4
+
+zipWith5 :: (a -> b -> c -> d -> e -> f)
+                    -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
+                    -> Bundle v e -> Bundle v f
+{-# INLINE zipWith5 #-}
+zipWith5 = M.zipWith5
+
+zipWith6 :: (a -> b -> c -> d -> e -> f -> g)
+                    -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
+                    -> Bundle v e -> Bundle v f -> Bundle v g
+{-# INLINE zipWith6 #-}
+zipWith6 = M.zipWith6
+
+zip :: Bundle v a -> Bundle v b -> Bundle v (a,b)
+{-# INLINE zip #-}
+zip = M.zip
+
+zip3 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v (a,b,c)
+{-# INLINE zip3 #-}
+zip3 = M.zip3
+
+zip4 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
+                -> Bundle v (a,b,c,d)
+{-# INLINE zip4 #-}
+zip4 = M.zip4
+
+zip5 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
+                -> Bundle v e -> Bundle v (a,b,c,d,e)
+{-# INLINE zip5 #-}
+zip5 = M.zip5
+
+zip6 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
+                -> Bundle v e -> Bundle v f -> Bundle v (a,b,c,d,e,f)
+{-# INLINE zip6 #-}
+zip6 = M.zip6
+
+-- Filtering
+-- ---------
+
+-- | Drop elements which do not satisfy the predicate
+filter :: (a -> Bool) -> Bundle v a -> Bundle v a
+{-# INLINE filter #-}
+filter = M.filter
+
+-- | Longest prefix of elements that satisfy the predicate
+takeWhile :: (a -> Bool) -> Bundle v a -> Bundle v a
+{-# INLINE takeWhile #-}
+takeWhile = M.takeWhile
+
+-- | Drop the longest prefix of elements that satisfy the predicate
+dropWhile :: (a -> Bool) -> Bundle v a -> Bundle v a
+{-# INLINE dropWhile #-}
+dropWhile = M.dropWhile
+
+-- Searching
+-- ---------
+
+infix 4 `elem`
+-- | Check whether the 'Bundle' contains an element
+elem :: Eq a => a -> Bundle v a -> Bool
+{-# INLINE elem #-}
+elem x = unId . M.elem x
+
+infix 4 `notElem`
+-- | Inverse of `elem`
+notElem :: Eq a => a -> Bundle v a -> Bool
+{-# INLINE notElem #-}
+notElem x = unId . M.notElem x
+
+-- | Yield 'Just' the first element matching the predicate or 'Nothing' if no
+-- such element exists.
+find :: (a -> Bool) -> Bundle v a -> Maybe a
+{-# INLINE find #-}
+find f = unId . M.find f
+
+-- | Yield 'Just' the index of the first element matching the predicate or
+-- 'Nothing' if no such element exists.
+findIndex :: (a -> Bool) -> Bundle v a -> Maybe Int
+{-# INLINE findIndex #-}
+findIndex f = unId . M.findIndex f
+
+-- Folding
+-- -------
+
+-- | Left fold
+foldl :: (a -> b -> a) -> a -> Bundle v b -> a
+{-# INLINE foldl #-}
+foldl f z = unId . M.foldl f z
+
+-- | Left fold on non-empty 'Bundle's
+foldl1 :: (a -> a -> a) -> Bundle v a -> a
+{-# INLINE foldl1 #-}
+foldl1 f = unId . M.foldl1 f
+
+-- | Left fold with strict accumulator
+foldl' :: (a -> b -> a) -> a -> Bundle v b -> a
+{-# INLINE foldl' #-}
+foldl' f z = unId . M.foldl' f z
+
+-- | Left fold on non-empty 'Bundle's with strict accumulator
+foldl1' :: (a -> a -> a) -> Bundle v a -> a
+{-# INLINE foldl1' #-}
+foldl1' f = unId . M.foldl1' f
+
+-- | Right fold
+foldr :: (a -> b -> b) -> b -> Bundle v a -> b
+{-# INLINE foldr #-}
+foldr f z = unId . M.foldr f z
+
+-- | Right fold on non-empty 'Bundle's
+foldr1 :: (a -> a -> a) -> Bundle v a -> a
+{-# INLINE foldr1 #-}
+foldr1 f = unId . M.foldr1 f
+
+-- Specialised folds
+-- -----------------
+
+and :: Bundle v Bool -> Bool
+{-# INLINE and #-}
+and = unId . M.and
+
+or :: Bundle v Bool -> Bool
+{-# INLINE or #-}
+or = unId . M.or
+
+-- Unfolding
+-- ---------
+
+-- | Unfold
+unfoldr :: (s -> Maybe (a, s)) -> s -> Bundle v a
+{-# INLINE unfoldr #-}
+unfoldr = M.unfoldr
+
+-- | Unfold at most @n@ elements
+unfoldrN :: Int -> (s -> Maybe (a, s)) -> s -> Bundle v a
+{-# INLINE unfoldrN #-}
+unfoldrN = M.unfoldrN
+
+-- | Apply function n-1 times to value. Zeroth element is original value.
+iterateN :: Int -> (a -> a) -> a -> Bundle v a
+{-# INLINE iterateN #-}
+iterateN = M.iterateN
+
+-- Scans
+-- -----
+
+-- | Prefix scan
+prescanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
+{-# INLINE prescanl #-}
+prescanl = M.prescanl
+
+-- | Prefix scan with strict accumulator
+prescanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
+{-# INLINE prescanl' #-}
+prescanl' = M.prescanl'
+
+-- | Suffix scan
+postscanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
+{-# INLINE postscanl #-}
+postscanl = M.postscanl
+
+-- | Suffix scan with strict accumulator
+postscanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
+{-# INLINE postscanl' #-}
+postscanl' = M.postscanl'
+
+-- | Haskell-style scan
+scanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
+{-# INLINE scanl #-}
+scanl = M.scanl
+
+-- | Haskell-style scan with strict accumulator
+scanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
+{-# INLINE scanl' #-}
+scanl' = M.scanl'
+
+-- | Scan over a non-empty 'Bundle'
+scanl1 :: (a -> a -> a) -> Bundle v a -> Bundle v a
+{-# INLINE scanl1 #-}
+scanl1 = M.scanl1
+
+-- | Scan over a non-empty 'Bundle' with a strict accumulator
+scanl1' :: (a -> a -> a) -> Bundle v a -> Bundle v a
+{-# INLINE scanl1' #-}
+scanl1' = M.scanl1'
+
+
+-- Comparisons
+-- -----------
+
+-- | Check if two 'Bundle's are equal
+eq :: (Eq a) => Bundle v a -> Bundle v a -> Bool
+{-# INLINE eq #-}
+eq = eqBy (==)
+
+eqBy :: (a -> b -> Bool) -> Bundle v a -> Bundle v b -> Bool
+{-# INLINE eqBy #-}
+eqBy e x y = unId (M.eqBy e x y)
+
+-- | Lexicographically compare two 'Bundle's
+cmp :: (Ord a) => Bundle v a -> Bundle v a -> Ordering
+{-# INLINE cmp #-}
+cmp = cmpBy compare
+
+cmpBy :: (a ->  b -> Ordering) -> Bundle v a -> Bundle v b -> Ordering
+{-# INLINE cmpBy #-}
+cmpBy c x y = unId (M.cmpBy c x y)
+
+instance Eq a => Eq (M.Bundle Id v a) where
+  {-# INLINE (==) #-}
+  (==) = eq
+
+instance Ord a => Ord (M.Bundle Id v a) where
+  {-# INLINE compare #-}
+  compare = cmp
+
+#if MIN_VERSION_base(4,9,0)
+instance Eq1 (M.Bundle Id v) where
+  {-# INLINE liftEq #-}
+  liftEq = eqBy
+
+instance Ord1 (M.Bundle Id v) where
+  {-# INLINE liftCompare #-}
+  liftCompare = cmpBy
+#endif
+
+-- Monadic combinators
+-- -------------------
+
+-- | Apply a monadic action to each element of the stream, producing a monadic
+-- stream of results
+mapM :: Monad m => (a -> m b) -> Bundle v a -> M.Bundle m v b
+{-# INLINE mapM #-}
+mapM f = M.mapM f . lift
+
+-- | Apply a monadic action to each element of the stream
+mapM_ :: Monad m => (a -> m b) -> Bundle v a -> m ()
+{-# INLINE mapM_ #-}
+mapM_ f = M.mapM_ f . lift
+
+zipWithM :: Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> M.Bundle m v c
+{-# INLINE zipWithM #-}
+zipWithM f as bs = M.zipWithM f (lift as) (lift bs)
+
+zipWithM_ :: Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> m ()
+{-# INLINE zipWithM_ #-}
+zipWithM_ f as bs = M.zipWithM_ f (lift as) (lift bs)
+
+-- | Yield a monadic stream of elements that satisfy the monadic predicate
+filterM :: Monad m => (a -> m Bool) -> Bundle v a -> M.Bundle m v a
+{-# INLINE filterM #-}
+filterM f = M.filterM f . lift
+
+-- | Monadic fold
+foldM :: Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a
+{-# INLINE foldM #-}
+foldM m z = M.foldM m z . lift
+
+-- | Monadic fold over non-empty stream
+fold1M :: Monad m => (a -> a -> m a) -> Bundle v a -> m a
+{-# INLINE fold1M #-}
+fold1M m = M.fold1M m . lift
+
+-- | Monadic fold with strict accumulator
+foldM' :: Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a
+{-# INLINE foldM' #-}
+foldM' m z = M.foldM' m z . lift
+
+-- | Monad fold over non-empty stream with strict accumulator
+fold1M' :: Monad m => (a -> a -> m a) -> Bundle v a -> m a
+{-# INLINE fold1M' #-}
+fold1M' m = M.fold1M' m . lift
+
+-- Enumerations
+-- ------------
+
+-- | Yield a 'Bundle' of the given length containing the values @x@, @x+y@,
+-- @x+y+y@ etc.
+enumFromStepN :: Num a => a -> a -> Int -> Bundle v a
+{-# INLINE enumFromStepN #-}
+enumFromStepN = M.enumFromStepN
+
+-- | Enumerate values
+--
+-- /WARNING:/ This operations can be very inefficient. If at all possible, use
+-- 'enumFromStepN' instead.
+enumFromTo :: Enum a => a -> a -> Bundle v a
+{-# INLINE enumFromTo #-}
+enumFromTo = M.enumFromTo
+
+-- | Enumerate values with a given step.
+--
+-- /WARNING:/ This operations is very inefficient. If at all possible, use
+-- 'enumFromStepN' instead.
+enumFromThenTo :: Enum a => a -> a -> a -> Bundle v a
+{-# INLINE enumFromThenTo #-}
+enumFromThenTo = M.enumFromThenTo
+
+-- Conversions
+-- -----------
+
+-- | Convert a 'Bundle' to a list
+toList :: Bundle v a -> [a]
+{-# INLINE toList #-}
+-- toList s = unId (M.toList s)
+toList s = build (\c n -> toListFB c n s)
+
+-- This supports foldr/build list fusion that GHC implements
+toListFB :: (a -> b -> b) -> b -> Bundle v a -> b
+{-# INLINE [0] toListFB #-}
+toListFB c n M.Bundle{M.sElems = Stream step t} = go t
+  where
+    go s = case unId (step s) of
+             Yield x s' -> x `c` go s'
+             Skip    s' -> go s'
+             Done       -> n
+
+-- | Create a 'Bundle' from a list
+fromList :: [a] -> Bundle v a
+{-# INLINE fromList #-}
+fromList = M.fromList
+
+-- | Create a 'Bundle' from the first @n@ elements of a list
+--
+-- > fromListN n xs = fromList (take n xs)
+fromListN :: Int -> [a] -> Bundle v a
+{-# INLINE fromListN #-}
+fromListN = M.fromListN
+
+unsafeFromList :: Size -> [a] -> Bundle v a
+{-# INLINE unsafeFromList #-}
+unsafeFromList = M.unsafeFromList
+
+fromVector :: Vector v a => v a -> Bundle v a
+{-# INLINE fromVector #-}
+fromVector = M.fromVector
+
+reVector :: Bundle u a -> Bundle v a
+{-# INLINE reVector #-}
+reVector = M.reVector
+
+fromVectors :: Vector v a => [v a] -> Bundle v a
+{-# INLINE fromVectors #-}
+fromVectors = M.fromVectors
+
+concatVectors :: Vector v a => Bundle u (v a) -> Bundle v a
+{-# INLINE concatVectors #-}
+concatVectors = M.concatVectors
+
+-- | Create a 'Bundle' of values from a 'Bundle' of streamable things
+flatten :: (a -> s) -> (s -> Step s b) -> Size -> Bundle v a -> Bundle v b
+{-# INLINE_FUSED flatten #-}
+flatten mk istep sz = M.flatten (return . mk) (return . istep) sz . lift
+
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs
new file mode 100644
index 0000000000..46f4a165f8
--- /dev/null
+++ b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs
@@ -0,0 +1,1106 @@
+{-# LANGUAGE CPP, ExistentialQuantification, MultiParamTypeClasses, FlexibleInstances, Rank2Types, BangPatterns, KindSignatures, GADTs, ScopedTypeVariables #-}
+
+-- |
+-- Module      : Data.Vector.Fusion.Bundle.Monadic
+-- Copyright   : (c) Roman Leshchinskiy 2008-2010
+-- License     : BSD-style
+--
+-- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
+-- Stability   : experimental
+-- Portability : non-portable
+--
+-- Monadic bundles.
+--
+
+module Data.Vector.Fusion.Bundle.Monadic (
+  Bundle(..), Chunk(..),
+
+  -- * Size hints
+  size, sized,
+
+  -- * Length
+  length, null,
+
+  -- * Construction
+  empty, singleton, cons, snoc, replicate, replicateM, generate, generateM, (++),
+
+  -- * Accessing elements
+  head, last, (!!), (!?),
+
+  -- * Substreams
+  slice, init, tail, take, drop,
+
+  -- * Mapping
+  map, mapM, mapM_, trans, unbox, concatMap, flatten,
+
+  -- * Zipping
+  indexed, indexedR, zipWithM_,
+  zipWithM, zipWith3M, zipWith4M, zipWith5M, zipWith6M,
+  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
+  zip, zip3, zip4, zip5, zip6,
+
+  -- * Comparisons
+  eqBy, cmpBy,
+
+  -- * Filtering
+  filter, filterM, takeWhile, takeWhileM, dropWhile, dropWhileM,
+
+  -- * Searching
+  elem, notElem, find, findM, findIndex, findIndexM,
+
+  -- * Folding
+  foldl, foldlM, foldl1, foldl1M, foldM, fold1M,
+  foldl', foldlM', foldl1', foldl1M', foldM', fold1M',
+  foldr, foldrM, foldr1, foldr1M,
+
+  -- * Specialised folds
+  and, or, concatMapM,
+
+  -- * Unfolding
+  unfoldr, unfoldrM,
+  unfoldrN, unfoldrNM,
+  iterateN, iterateNM,
+
+  -- * Scans
+  prescanl, prescanlM, prescanl', prescanlM',
+  postscanl, postscanlM, postscanl', postscanlM',
+  scanl, scanlM, scanl', scanlM',
+  scanl1, scanl1M, scanl1', scanl1M',
+
+  -- * Enumerations
+  enumFromStepN, enumFromTo, enumFromThenTo,
+
+  -- * Conversions
+  toList, fromList, fromListN, unsafeFromList,
+  fromVector, reVector, fromVectors, concatVectors,
+  fromStream, chunks, elements
+) where
+
+import Data.Vector.Generic.Base
+import qualified Data.Vector.Generic.Mutable.Base as M
+import Data.Vector.Fusion.Bundle.Size
+import Data.Vector.Fusion.Util ( Box(..), delay_inline )
+import Data.Vector.Fusion.Stream.Monadic ( Stream(..), Step(..) )
+import qualified Data.Vector.Fusion.Stream.Monadic as S
+import Control.Monad.Primitive
+
+import qualified Data.List as List
+import Data.Char      ( ord )
+import GHC.Base       ( unsafeChr )
+import Control.Monad  ( liftM )
+import Prelude hiding ( length, null,
+                        replicate, (++),
+                        head, last, (!!),
+                        init, tail, take, drop,
+                        map, mapM, mapM_, concatMap,
+                        zipWith, zipWith3, zip, zip3,
+                        filter, takeWhile, dropWhile,
+                        elem, notElem,
+                        foldl, foldl1, foldr, foldr1,
+                        and, or,
+                        scanl, scanl1,
+                        enumFromTo, enumFromThenTo )
+
+import Data.Int  ( Int8, Int16, Int32 )
+import Data.Word ( Word8, Word16, Word32, Word64 )
+
+#if !MIN_VERSION_base(4,8,0)
+import Data.Word ( Word )
+#endif
+
+#include "vector.h"
+#include "MachDeps.h"
+
+#if WORD_SIZE_IN_BITS > 32
+import Data.Int  ( Int64 )
+#endif
+
+data Chunk v a = Chunk Int (forall m. (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> m ())
+
+-- | Monadic streams
+data Bundle m v a = Bundle { sElems  :: Stream m a
+                           , sChunks :: Stream m (Chunk v a)
+                           , sVector :: Maybe (v a)
+                           , sSize   :: Size
+                           }
+
+fromStream :: Monad m => Stream m a -> Size -> Bundle m v a
+{-# INLINE fromStream #-}
+fromStream (Stream step t) sz = Bundle (Stream step t) (Stream step' t) Nothing sz
+  where
+    step' s = do r <- step s
+                 return $ fmap (\x -> Chunk 1 (\v -> M.basicUnsafeWrite v 0 x)) r
+
+chunks :: Bundle m v a -> Stream m (Chunk v a)
+{-# INLINE chunks #-}
+chunks = sChunks
+
+elements :: Bundle m v a -> Stream m a
+{-# INLINE elements #-}
+elements = sElems
+
+-- | 'Size' hint of a 'Bundle'
+size :: Bundle m v a -> Size
+{-# INLINE size #-}
+size = sSize
+
+-- | Attach a 'Size' hint to a 'Bundle'
+sized :: Bundle m v a -> Size -> Bundle m v a
+{-# INLINE_FUSED sized #-}
+sized s sz = s { sSize = sz }
+
+-- Length
+-- ------
+
+-- | Length of a 'Bundle'
+length :: Monad m => Bundle m v a -> m Int
+{-# INLINE_FUSED length #-}
+length Bundle{sSize = Exact n}  = return n
+length Bundle{sChunks = s} = S.foldl' (\n (Chunk k _) -> n+k) 0 s
+
+-- | Check if a 'Bundle' is empty
+null :: Monad m => Bundle m v a -> m Bool
+{-# INLINE_FUSED null #-}
+null Bundle{sSize = Exact n} = return (n == 0)
+null Bundle{sChunks = s} = S.foldr (\(Chunk n _) z -> n == 0 && z) True s
+
+-- Construction
+-- ------------
+
+-- | Empty 'Bundle'
+empty :: Monad m => Bundle m v a
+{-# INLINE_FUSED empty #-}
+empty = fromStream S.empty (Exact 0)
+
+-- | Singleton 'Bundle'
+singleton :: Monad m => a -> Bundle m v a
+{-# INLINE_FUSED singleton #-}
+singleton x = fromStream (S.singleton x) (Exact 1)
+
+-- | Replicate a value to a given length
+replicate :: Monad m => Int -> a -> Bundle m v a
+{-# INLINE_FUSED replicate #-}
+replicate n x = Bundle (S.replicate n x)
+                       (S.singleton $ Chunk len (\v -> M.basicSet v x))
+                       Nothing
+                       (Exact len)
+  where
+    len = delay_inline max n 0
+
+-- | Yield a 'Bundle' of values obtained by performing the monadic action the
+-- given number of times
+replicateM :: Monad m => Int -> m a -> Bundle m v a
+{-# INLINE_FUSED replicateM #-}
+-- NOTE: We delay inlining max here because GHC will create a join point for
+-- the call to newArray# otherwise which is not really nice.
+replicateM n p = fromStream (S.replicateM n p) (Exact (delay_inline max n 0))
+
+generate :: Monad m => Int -> (Int -> a) -> Bundle m v a
+{-# INLINE generate #-}
+generate n f = generateM n (return . f)
+
+-- | Generate a stream from its indices
+generateM :: Monad m => Int -> (Int -> m a) -> Bundle m v a
+{-# INLINE_FUSED generateM #-}
+generateM n f = fromStream (S.generateM n f) (Exact (delay_inline max n 0))
+
+-- | Prepend an element
+cons :: Monad m => a -> Bundle m v a -> Bundle m v a
+{-# INLINE cons #-}
+cons x s = singleton x ++ s
+
+-- | Append an element
+snoc :: Monad m => Bundle m v a -> a -> Bundle m v a
+{-# INLINE snoc #-}
+snoc s x = s ++ singleton x
+
+infixr 5 ++
+-- | Concatenate two 'Bundle's
+(++) :: Monad m => Bundle m v a -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED (++) #-}
+Bundle sa ta _ na ++ Bundle sb tb _ nb = Bundle (sa S.++ sb) (ta S.++ tb) Nothing (na + nb)
+
+-- Accessing elements
+-- ------------------
+
+-- | First element of the 'Bundle' or error if empty
+head :: Monad m => Bundle m v a -> m a
+{-# INLINE_FUSED head #-}
+head = S.head . sElems
+
+-- | Last element of the 'Bundle' or error if empty
+last :: Monad m => Bundle m v a -> m a
+{-# INLINE_FUSED last #-}
+last = S.last . sElems
+
+infixl 9 !!
+-- | Element at the given position
+(!!) :: Monad m => Bundle m v a -> Int -> m a
+{-# INLINE (!!) #-}
+b !! i = sElems b S.!! i
+
+infixl 9 !?
+-- | Element at the given position or 'Nothing' if out of bounds
+(!?) :: Monad m => Bundle m v a -> Int -> m (Maybe a)
+{-# INLINE (!?) #-}
+b !? i = sElems b S.!? i
+
+-- Substreams
+-- ----------
+
+-- | Extract a substream of the given length starting at the given position.
+slice :: Monad m => Int   -- ^ starting index
+                 -> Int   -- ^ length
+                 -> Bundle m v a
+                 -> Bundle m v a
+{-# INLINE slice #-}
+slice i n s = take n (drop i s)
+
+-- | All but the last element
+init :: Monad m => Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED init #-}
+init Bundle{sElems = s, sSize = sz} = fromStream (S.init s) (sz-1)
+
+-- | All but the first element
+tail :: Monad m => Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED tail #-}
+tail Bundle{sElems = s, sSize = sz} = fromStream (S.tail s) (sz-1)
+
+-- | The first @n@ elements
+take :: Monad m => Int -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED take #-}
+take n Bundle{sElems = s, sSize = sz} = fromStream (S.take n s) (smaller (Exact n) sz)
+
+-- | All but the first @n@ elements
+drop :: Monad m => Int -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED drop #-}
+drop n Bundle{sElems = s, sSize = sz} =
+  fromStream (S.drop n s) (clampedSubtract sz (Exact n))
+
+-- Mapping
+-- -------
+
+instance Monad m => Functor (Bundle m v) where
+  {-# INLINE fmap #-}
+  fmap = map
+
+-- | Map a function over a 'Bundle'
+map :: Monad m => (a -> b) -> Bundle m v a -> Bundle m v b
+{-# INLINE map #-}
+map f = mapM (return . f)
+
+-- | Map a monadic function over a 'Bundle'
+mapM :: Monad m => (a -> m b) -> Bundle m v a -> Bundle m v b
+{-# INLINE_FUSED mapM #-}
+mapM f Bundle{sElems = s, sSize = n} = fromStream (S.mapM f s) n
+
+-- | Execute a monadic action for each element of the 'Bundle'
+mapM_ :: Monad m => (a -> m b) -> Bundle m v a -> m ()
+{-# INLINE_FUSED mapM_ #-}
+mapM_ m = S.mapM_ m . sElems
+
+-- | Transform a 'Bundle' to use a different monad
+trans :: (Monad m, Monad m') => (forall z. m z -> m' z)
+                             -> Bundle m v a -> Bundle m' v a
+{-# INLINE_FUSED trans #-}
+trans f Bundle{sElems = s, sChunks = cs, sVector = v, sSize = n}
+  = Bundle { sElems = S.trans f s, sChunks = S.trans f cs, sVector = v, sSize = n }
+
+unbox :: Monad m => Bundle m v (Box a) -> Bundle m v a
+{-# INLINE_FUSED unbox #-}
+unbox Bundle{sElems = s, sSize = n} = fromStream (S.unbox s) n
+
+-- Zipping
+-- -------
+
+-- | Pair each element in a 'Bundle' with its index
+indexed :: Monad m => Bundle m v a -> Bundle m v (Int,a)
+{-# INLINE_FUSED indexed #-}
+indexed Bundle{sElems = s, sSize = n} = fromStream (S.indexed s) n
+
+-- | Pair each element in a 'Bundle' with its index, starting from the right
+-- and counting down
+indexedR :: Monad m => Int -> Bundle m v a -> Bundle m v (Int,a)
+{-# INLINE_FUSED indexedR #-}
+indexedR m Bundle{sElems = s, sSize = n} = fromStream (S.indexedR m s) n
+
+-- | Zip two 'Bundle's with the given monadic function
+zipWithM :: Monad m => (a -> b -> m c) -> Bundle m v a -> Bundle m v b -> Bundle m v c
+{-# INLINE_FUSED zipWithM #-}
+zipWithM f Bundle{sElems = sa, sSize = na}
+           Bundle{sElems = sb, sSize = nb} = fromStream (S.zipWithM f sa sb) (smaller na nb)
+
+-- FIXME: This might expose an opportunity for inplace execution.
+{-# RULES
+
+"zipWithM xs xs [Vector.Bundle]" forall f xs.
+  zipWithM f xs xs = mapM (\x -> f x x) xs   #-}
+
+
+zipWithM_ :: Monad m => (a -> b -> m c) -> Bundle m v a -> Bundle m v b -> m ()
+{-# INLINE zipWithM_ #-}
+zipWithM_ f sa sb = S.zipWithM_ f (sElems sa) (sElems sb)
+
+zipWith3M :: Monad m => (a -> b -> c -> m d) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+{-# INLINE_FUSED zipWith3M #-}
+zipWith3M f Bundle{sElems = sa, sSize = na}
+            Bundle{sElems = sb, sSize = nb}
+            Bundle{sElems = sc, sSize = nc}
+  = fromStream (S.zipWith3M f sa sb sc) (smaller na (smaller nb nc))
+
+zipWith4M :: Monad m => (a -> b -> c -> d -> m e)
+                     -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                     -> Bundle m v e
+{-# INLINE zipWith4M #-}
+zipWith4M f sa sb sc sd
+  = zipWithM (\(a,b) (c,d) -> f a b c d) (zip sa sb) (zip sc sd)
+
+zipWith5M :: Monad m => (a -> b -> c -> d -> e -> m f)
+                     -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                     -> Bundle m v e -> Bundle m v f
+{-# INLINE zipWith5M #-}
+zipWith5M f sa sb sc sd se
+  = zipWithM (\(a,b,c) (d,e) -> f a b c d e) (zip3 sa sb sc) (zip sd se)
+
+zipWith6M :: Monad m => (a -> b -> c -> d -> e -> f -> m g)
+                     -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                     -> Bundle m v e -> Bundle m v f -> Bundle m v g
+{-# INLINE zipWith6M #-}
+zipWith6M fn sa sb sc sd se sf
+  = zipWithM (\(a,b,c) (d,e,f) -> fn a b c d e f) (zip3 sa sb sc)
+                                                  (zip3 sd se sf)
+
+zipWith :: Monad m => (a -> b -> c) -> Bundle m v a -> Bundle m v b -> Bundle m v c
+{-# INLINE zipWith #-}
+zipWith f = zipWithM (\a b -> return (f a b))
+
+zipWith3 :: Monad m => (a -> b -> c -> d)
+                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+{-# INLINE zipWith3 #-}
+zipWith3 f = zipWith3M (\a b c -> return (f a b c))
+
+zipWith4 :: Monad m => (a -> b -> c -> d -> e)
+                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                    -> Bundle m v e
+{-# INLINE zipWith4 #-}
+zipWith4 f = zipWith4M (\a b c d -> return (f a b c d))
+
+zipWith5 :: Monad m => (a -> b -> c -> d -> e -> f)
+                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                    -> Bundle m v e -> Bundle m v f
+{-# INLINE zipWith5 #-}
+zipWith5 f = zipWith5M (\a b c d e -> return (f a b c d e))
+
+zipWith6 :: Monad m => (a -> b -> c -> d -> e -> f -> g)
+                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                    -> Bundle m v e -> Bundle m v f -> Bundle m v g
+{-# INLINE zipWith6 #-}
+zipWith6 fn = zipWith6M (\a b c d e f -> return (fn a b c d e f))
+
+zip :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v (a,b)
+{-# INLINE zip #-}
+zip = zipWith (,)
+
+zip3 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v (a,b,c)
+{-# INLINE zip3 #-}
+zip3 = zipWith3 (,,)
+
+zip4 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                -> Bundle m v (a,b,c,d)
+{-# INLINE zip4 #-}
+zip4 = zipWith4 (,,,)
+
+zip5 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                -> Bundle m v e -> Bundle m v (a,b,c,d,e)
+{-# INLINE zip5 #-}
+zip5 = zipWith5 (,,,,)
+
+zip6 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                -> Bundle m v e -> Bundle m v f -> Bundle m v (a,b,c,d,e,f)
+{-# INLINE zip6 #-}
+zip6 = zipWith6 (,,,,,)
+
+-- Comparisons
+-- -----------
+
+-- | Check if two 'Bundle's are equal
+eqBy :: (Monad m) => (a -> b -> Bool) -> Bundle m v a -> Bundle m v b -> m Bool
+{-# INLINE_FUSED eqBy #-}
+eqBy eq x y = S.eqBy eq (sElems x) (sElems y)
+
+-- | Lexicographically compare two 'Bundle's
+cmpBy :: (Monad m) => (a -> b -> Ordering) -> Bundle m v a -> Bundle m v b -> m Ordering
+{-# INLINE_FUSED cmpBy #-}
+cmpBy cmp x y = S.cmpBy cmp (sElems x) (sElems y)
+
+-- Filtering
+-- ---------
+
+-- | Drop elements which do not satisfy the predicate
+filter :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
+{-# INLINE filter #-}
+filter f = filterM (return . f)
+
+-- | Drop elements which do not satisfy the monadic predicate
+filterM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED filterM #-}
+filterM f Bundle{sElems = s, sSize = n} = fromStream (S.filterM f s) (toMax n)
+
+-- | Longest prefix of elements that satisfy the predicate
+takeWhile :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
+{-# INLINE takeWhile #-}
+takeWhile f = takeWhileM (return . f)
+
+-- | Longest prefix of elements that satisfy the monadic predicate
+takeWhileM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED takeWhileM #-}
+takeWhileM f Bundle{sElems = s, sSize = n} = fromStream (S.takeWhileM f s) (toMax n)
+
+-- | Drop the longest prefix of elements that satisfy the predicate
+dropWhile :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
+{-# INLINE dropWhile #-}
+dropWhile f = dropWhileM (return . f)
+
+-- | Drop the longest prefix of elements that satisfy the monadic predicate
+dropWhileM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED dropWhileM #-}
+dropWhileM f Bundle{sElems = s, sSize = n} = fromStream (S.dropWhileM f s) (toMax n)
+
+-- Searching
+-- ---------
+
+infix 4 `elem`
+-- | Check whether the 'Bundle' contains an element
+elem :: (Monad m, Eq a) => a -> Bundle m v a -> m Bool
+{-# INLINE_FUSED elem #-}
+elem x = S.elem x . sElems
+
+infix 4 `notElem`
+-- | Inverse of `elem`
+notElem :: (Monad m, Eq a) => a -> Bundle m v a -> m Bool
+{-# INLINE notElem #-}
+notElem x = S.notElem x . sElems
+
+-- | Yield 'Just' the first element that satisfies the predicate or 'Nothing'
+-- if no such element exists.
+find :: Monad m => (a -> Bool) -> Bundle m v a -> m (Maybe a)
+{-# INLINE find #-}
+find f = findM (return . f)
+
+-- | Yield 'Just' the first element that satisfies the monadic predicate or
+-- 'Nothing' if no such element exists.
+findM :: Monad m => (a -> m Bool) -> Bundle m v a -> m (Maybe a)
+{-# INLINE_FUSED findM #-}
+findM f = S.findM f . sElems
+
+-- | Yield 'Just' the index of the first element that satisfies the predicate
+-- or 'Nothing' if no such element exists.
+findIndex :: Monad m => (a -> Bool) -> Bundle m v a -> m (Maybe Int)
+{-# INLINE_FUSED findIndex #-}
+findIndex f = findIndexM (return . f)
+
+-- | Yield 'Just' the index of the first element that satisfies the monadic
+-- predicate or 'Nothing' if no such element exists.
+findIndexM :: Monad m => (a -> m Bool) -> Bundle m v a -> m (Maybe Int)
+{-# INLINE_FUSED findIndexM #-}
+findIndexM f = S.findIndexM f . sElems
+
+-- Folding
+-- -------
+
+-- | Left fold
+foldl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> m a
+{-# INLINE foldl #-}
+foldl f = foldlM (\a b -> return (f a b))
+
+-- | Left fold with a monadic operator
+foldlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
+{-# INLINE_FUSED foldlM #-}
+foldlM m z = S.foldlM m z . sElems
+
+-- | Same as 'foldlM'
+foldM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
+{-# INLINE foldM #-}
+foldM = foldlM
+
+-- | Left fold over a non-empty 'Bundle'
+foldl1 :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
+{-# INLINE foldl1 #-}
+foldl1 f = foldl1M (\a b -> return (f a b))
+
+-- | Left fold over a non-empty 'Bundle' with a monadic operator
+foldl1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
+{-# INLINE_FUSED foldl1M #-}
+foldl1M f = S.foldl1M f . sElems
+
+-- | Same as 'foldl1M'
+fold1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
+{-# INLINE fold1M #-}
+fold1M = foldl1M
+
+-- | Left fold with a strict accumulator
+foldl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> m a
+{-# INLINE foldl' #-}
+foldl' f = foldlM' (\a b -> return (f a b))
+
+-- | Left fold with a strict accumulator and a monadic operator
+foldlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
+{-# INLINE_FUSED foldlM' #-}
+foldlM' m z = S.foldlM' m z . sElems
+
+-- | Same as 'foldlM''
+foldM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
+{-# INLINE foldM' #-}
+foldM' = foldlM'
+
+-- | Left fold over a non-empty 'Bundle' with a strict accumulator
+foldl1' :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
+{-# INLINE foldl1' #-}
+foldl1' f = foldl1M' (\a b -> return (f a b))
+
+-- | Left fold over a non-empty 'Bundle' with a strict accumulator and a
+-- monadic operator
+foldl1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
+{-# INLINE_FUSED foldl1M' #-}
+foldl1M' f = S.foldl1M' f . sElems
+
+-- | Same as 'foldl1M''
+fold1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
+{-# INLINE fold1M' #-}
+fold1M' = foldl1M'
+
+-- | Right fold
+foldr :: Monad m => (a -> b -> b) -> b -> Bundle m v a -> m b
+{-# INLINE foldr #-}
+foldr f = foldrM (\a b -> return (f a b))
+
+-- | Right fold with a monadic operator
+foldrM :: Monad m => (a -> b -> m b) -> b -> Bundle m v a -> m b
+{-# INLINE_FUSED foldrM #-}
+foldrM f z = S.foldrM f z . sElems
+
+-- | Right fold over a non-empty stream
+foldr1 :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
+{-# INLINE foldr1 #-}
+foldr1 f = foldr1M (\a b -> return (f a b))
+
+-- | Right fold over a non-empty stream with a monadic operator
+foldr1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
+{-# INLINE_FUSED foldr1M #-}
+foldr1M f = S.foldr1M f . sElems
+
+-- Specialised folds
+-- -----------------
+
+and :: Monad m => Bundle m v Bool -> m Bool
+{-# INLINE_FUSED and #-}
+and = S.and . sElems
+
+or :: Monad m => Bundle m v Bool -> m Bool
+{-# INLINE_FUSED or #-}
+or = S.or . sElems
+
+concatMap :: Monad m => (a -> Bundle m v b) -> Bundle m v a -> Bundle m v b
+{-# INLINE concatMap #-}
+concatMap f = concatMapM (return . f)
+
+concatMapM :: Monad m => (a -> m (Bundle m v b)) -> Bundle m v a -> Bundle m v b
+{-# INLINE_FUSED concatMapM #-}
+concatMapM f Bundle{sElems = s} = fromStream (S.concatMapM (liftM sElems . f) s) Unknown
+
+-- | Create a 'Bundle' of values from a 'Bundle' of streamable things
+flatten :: Monad m => (a -> m s) -> (s -> m (Step s b)) -> Size
+                   -> Bundle m v a -> Bundle m v b
+{-# INLINE_FUSED flatten #-}
+flatten mk istep sz Bundle{sElems = s} = fromStream (S.flatten mk istep s) sz
+
+-- Unfolding
+-- ---------
+
+-- | Unfold
+unfoldr :: Monad m => (s -> Maybe (a, s)) -> s -> Bundle m u a
+{-# INLINE_FUSED unfoldr #-}
+unfoldr f = unfoldrM (return . f)
+
+-- | Unfold with a monadic function
+unfoldrM :: Monad m => (s -> m (Maybe (a, s))) -> s -> Bundle m u a
+{-# INLINE_FUSED unfoldrM #-}
+unfoldrM f s = fromStream (S.unfoldrM f s) Unknown
+
+-- | Unfold at most @n@ elements
+unfoldrN :: Monad m => Int -> (s -> Maybe (a, s)) -> s -> Bundle m u a
+{-# INLINE_FUSED unfoldrN #-}
+unfoldrN n f = unfoldrNM n (return . f)
+
+-- | Unfold at most @n@ elements with a monadic functions
+unfoldrNM :: Monad m => Int -> (s -> m (Maybe (a, s))) -> s -> Bundle m u a
+{-# INLINE_FUSED unfoldrNM #-}
+unfoldrNM n f s = fromStream (S.unfoldrNM n f s) (Max (delay_inline max n 0))
+
+-- | Apply monadic function n times to value. Zeroth element is original value.
+iterateNM :: Monad m => Int -> (a -> m a) -> a -> Bundle m u a
+{-# INLINE_FUSED iterateNM #-}
+iterateNM n f x0 = fromStream (S.iterateNM n f x0) (Exact (delay_inline max n 0))
+
+-- | Apply function n times to value. Zeroth element is original value.
+iterateN :: Monad m => Int -> (a -> a) -> a -> Bundle m u a
+{-# INLINE_FUSED iterateN #-}
+iterateN n f x0 = iterateNM n (return . f) x0
+
+-- Scans
+-- -----
+
+-- | Prefix scan
+prescanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE prescanl #-}
+prescanl f = prescanlM (\a b -> return (f a b))
+
+-- | Prefix scan with a monadic operator
+prescanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE_FUSED prescanlM #-}
+prescanlM f z Bundle{sElems = s, sSize = sz} = fromStream (S.prescanlM f z s) sz
+
+-- | Prefix scan with strict accumulator
+prescanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE prescanl' #-}
+prescanl' f = prescanlM' (\a b -> return (f a b))
+
+-- | Prefix scan with strict accumulator and a monadic operator
+prescanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE_FUSED prescanlM' #-}
+prescanlM' f z Bundle{sElems = s, sSize = sz} = fromStream (S.prescanlM' f z s) sz
+
+-- | Suffix scan
+postscanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE postscanl #-}
+postscanl f = postscanlM (\a b -> return (f a b))
+
+-- | Suffix scan with a monadic operator
+postscanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE_FUSED postscanlM #-}
+postscanlM f z Bundle{sElems = s, sSize = sz} = fromStream (S.postscanlM f z s) sz
+
+-- | Suffix scan with strict accumulator
+postscanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE postscanl' #-}
+postscanl' f = postscanlM' (\a b -> return (f a b))
+
+-- | Suffix scan with strict acccumulator and a monadic operator
+postscanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE_FUSED postscanlM' #-}
+postscanlM' f z Bundle{sElems = s, sSize = sz} = fromStream (S.postscanlM' f z s) sz
+
+-- | Haskell-style scan
+scanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE scanl #-}
+scanl f = scanlM (\a b -> return (f a b))
+
+-- | Haskell-style scan with a monadic operator
+scanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE scanlM #-}
+scanlM f z s = z `cons` postscanlM f z s
+
+-- | Haskell-style scan with strict accumulator
+scanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE scanl' #-}
+scanl' f = scanlM' (\a b -> return (f a b))
+
+-- | Haskell-style scan with strict accumulator and a monadic operator
+scanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE scanlM' #-}
+scanlM' f z s = z `seq` (z `cons` postscanlM f z s)
+
+-- | Scan over a non-empty 'Bundle'
+scanl1 :: Monad m => (a -> a -> a) -> Bundle m v a -> Bundle m v a
+{-# INLINE scanl1 #-}
+scanl1 f = scanl1M (\x y -> return (f x y))
+
+-- | Scan over a non-empty 'Bundle' with a monadic operator
+scanl1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED scanl1M #-}
+scanl1M f Bundle{sElems = s, sSize = sz} = fromStream (S.scanl1M f s) sz
+
+-- | Scan over a non-empty 'Bundle' with a strict accumulator
+scanl1' :: Monad m => (a -> a -> a) -> Bundle m v a -> Bundle m v a
+{-# INLINE scanl1' #-}
+scanl1' f = scanl1M' (\x y -> return (f x y))
+
+-- | Scan over a non-empty 'Bundle' with a strict accumulator and a monadic
+-- operator
+scanl1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED scanl1M' #-}
+scanl1M' f Bundle{sElems = s, sSize = sz} = fromStream (S.scanl1M' f s) sz
+
+-- Enumerations
+-- ------------
+
+-- The Enum class is broken for this, there just doesn't seem to be a
+-- way to implement this generically. We have to specialise for as many types
+-- as we can but this doesn't help in polymorphic loops.
+
+-- | Yield a 'Bundle' of the given length containing the values @x@, @x+y@,
+-- @x+y+y@ etc.
+enumFromStepN :: (Num a, Monad m) => a -> a -> Int -> Bundle m v a
+{-# INLINE_FUSED enumFromStepN #-}
+enumFromStepN x y n = fromStream (S.enumFromStepN x y n) (Exact (delay_inline max n 0))
+
+-- | Enumerate values
+--
+-- /WARNING:/ This operation can be very inefficient. If at all possible, use
+-- 'enumFromStepN' instead.
+enumFromTo :: (Enum a, Monad m) => a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromTo #-}
+enumFromTo x y = fromList [x .. y]
+
+-- NOTE: We use (x+1) instead of (succ x) below because the latter checks for
+-- overflow which can't happen here.
+
+-- FIXME: add "too large" test for Int
+enumFromTo_small :: (Integral a, Monad m) => a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromTo_small #-}
+enumFromTo_small x y = x `seq` y `seq` fromStream (Stream step x) (Exact n)
+  where
+    n = delay_inline max (fromIntegral y - fromIntegral x + 1) 0
+
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Int8> [Bundle]"
+  enumFromTo = enumFromTo_small :: Monad m => Int8 -> Int8 -> Bundle m v Int8
+
+"enumFromTo<Int16> [Bundle]"
+  enumFromTo = enumFromTo_small :: Monad m => Int16 -> Int16 -> Bundle m v Int16
+
+"enumFromTo<Word8> [Bundle]"
+  enumFromTo = enumFromTo_small :: Monad m => Word8 -> Word8 -> Bundle m v Word8
+
+"enumFromTo<Word16> [Bundle]"
+  enumFromTo = enumFromTo_small :: Monad m => Word16 -> Word16 -> Bundle m v Word16   #-}
+
+
+
+#if WORD_SIZE_IN_BITS > 32
+
+{-# RULES
+
+"enumFromTo<Int32> [Bundle]"
+  enumFromTo = enumFromTo_small :: Monad m => Int32 -> Int32 -> Bundle m v Int32
+
+"enumFromTo<Word32> [Bundle]"
+  enumFromTo = enumFromTo_small :: Monad m => Word32 -> Word32 -> Bundle m v Word32   #-}
+
+#endif
+
+-- NOTE: We could implement a generic "too large" test:
+--
+-- len x y | x > y = 0
+--         | n > 0 && n <= fromIntegral (maxBound :: Int) = fromIntegral n
+--         | otherwise = error
+--   where
+--     n = y-x+1
+--
+-- Alas, GHC won't eliminate unnecessary comparisons (such as n >= 0 for
+-- unsigned types). See http://hackage.haskell.org/trac/ghc/ticket/3744
+--
+
+enumFromTo_int :: forall m v. Monad m => Int -> Int -> Bundle m v Int
+{-# INLINE_FUSED enumFromTo_int #-}
+enumFromTo_int x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
+  where
+    {-# INLINE [0] len #-}
+    len :: Int -> Int -> Int
+    len u v | u > v     = 0
+            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
+                          (n > 0)
+                        $ n
+      where
+        n = v-u+1
+
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+enumFromTo_intlike :: (Integral a, Monad m) => a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromTo_intlike #-}
+enumFromTo_intlike x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
+  where
+    {-# INLINE [0] len #-}
+    len u v | u > v     = 0
+            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
+                          (n > 0)
+                        $ fromIntegral n
+      where
+        n = v-u+1
+
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Int> [Bundle]"
+  enumFromTo = enumFromTo_int :: Monad m => Int -> Int -> Bundle m v Int
+
+#if WORD_SIZE_IN_BITS > 32
+
+"enumFromTo<Int64> [Bundle]"
+  enumFromTo = enumFromTo_intlike :: Monad m => Int64 -> Int64 -> Bundle m v Int64    #-}
+
+#else
+
+"enumFromTo<Int32> [Bundle]"
+  enumFromTo = enumFromTo_intlike :: Monad m => Int32 -> Int32 -> Bundle m v Int32    #-}
+
+#endif
+
+
+
+enumFromTo_big_word :: (Integral a, Monad m) => a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromTo_big_word #-}
+enumFromTo_big_word x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
+  where
+    {-# INLINE [0] len #-}
+    len u v | u > v     = 0
+            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
+                          (n < fromIntegral (maxBound :: Int))
+                        $ fromIntegral (n+1)
+      where
+        n = v-u
+
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Word> [Bundle]"
+  enumFromTo = enumFromTo_big_word :: Monad m => Word -> Word -> Bundle m v Word
+
+"enumFromTo<Word64> [Bundle]"
+  enumFromTo = enumFromTo_big_word
+                        :: Monad m => Word64 -> Word64 -> Bundle m v Word64
+
+#if WORD_SIZE_IN_BITS == 32
+
+"enumFromTo<Word32> [Bundle]"
+  enumFromTo = enumFromTo_big_word
+                        :: Monad m => Word32 -> Word32 -> Bundle m v Word32
+
+#endif
+
+"enumFromTo<Integer> [Bundle]"
+  enumFromTo = enumFromTo_big_word
+                        :: Monad m => Integer -> Integer -> Bundle m v Integer   #-}
+
+
+#if WORD_SIZE_IN_BITS > 32
+
+-- FIXME: the "too large" test is totally wrong
+enumFromTo_big_int :: (Integral a, Monad m) => a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromTo_big_int #-}
+enumFromTo_big_int x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
+  where
+    {-# INLINE [0] len #-}
+    len u v | u > v     = 0
+            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
+                          (n > 0 && n <= fromIntegral (maxBound :: Int))
+                        $ fromIntegral n
+      where
+        n = v-u+1
+
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+
+{-# RULES
+
+"enumFromTo<Int64> [Bundle]"
+  enumFromTo = enumFromTo_big_int :: Monad m => Int64 -> Int64 -> Bundle m v Int64   #-}
+
+
+
+#endif
+
+enumFromTo_char :: Monad m => Char -> Char -> Bundle m v Char
+{-# INLINE_FUSED enumFromTo_char #-}
+enumFromTo_char x y = x `seq` y `seq` fromStream (Stream step xn) (Exact n)
+  where
+    xn = ord x
+    yn = ord y
+
+    n = delay_inline max 0 (yn - xn + 1)
+
+    {-# INLINE_INNER step #-}
+    step zn | zn <= yn  = return $ Yield (unsafeChr zn) (zn+1)
+            | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Char> [Bundle]"
+  enumFromTo = enumFromTo_char   #-}
+
+
+
+------------------------------------------------------------------------
+
+-- Specialise enumFromTo for Float and Double.
+-- Also, try to do something about pairs?
+
+enumFromTo_double :: (Monad m, Ord a, RealFrac a) => a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromTo_double #-}
+enumFromTo_double n m = n `seq` m `seq` fromStream (Stream step n) (Max (len n lim))
+  where
+    lim = m + 1/2 -- important to float out
+
+    {-# INLINE [0] len #-}
+    len x y | x > y     = 0
+            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
+                          (l > 0)
+                        $ fromIntegral l
+      where
+        l :: Integer
+        l = truncate (y-x)+2
+
+    {-# INLINE_INNER step #-}
+    step x | x <= lim  = return $ Yield x (x+1)
+           | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Double> [Bundle]"
+  enumFromTo = enumFromTo_double :: Monad m => Double -> Double -> Bundle m v Double
+
+"enumFromTo<Float> [Bundle]"
+  enumFromTo = enumFromTo_double :: Monad m => Float -> Float -> Bundle m v Float   #-}
+
+
+
+------------------------------------------------------------------------
+
+-- | Enumerate values with a given step.
+--
+-- /WARNING:/ This operation is very inefficient. If at all possible, use
+-- 'enumFromStepN' instead.
+enumFromThenTo :: (Enum a, Monad m) => a -> a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromThenTo #-}
+enumFromThenTo x y z = fromList [x, y .. z]
+
+-- FIXME: Specialise enumFromThenTo.
+
+-- Conversions
+-- -----------
+
+-- | Convert a 'Bundle' to a list
+toList :: Monad m => Bundle m v a -> m [a]
+{-# INLINE toList #-}
+toList = foldr (:) []
+
+-- | Convert a list to a 'Bundle'
+fromList :: Monad m => [a] -> Bundle m v a
+{-# INLINE fromList #-}
+fromList xs = unsafeFromList Unknown xs
+
+-- | Convert the first @n@ elements of a list to a 'Bundle'
+fromListN :: Monad m => Int -> [a] -> Bundle m v a
+{-# INLINE_FUSED fromListN #-}
+fromListN n xs = fromStream (S.fromListN n xs) (Max (delay_inline max n 0))
+
+-- | Convert a list to a 'Bundle' with the given 'Size' hint.
+unsafeFromList :: Monad m => Size -> [a] -> Bundle m v a
+{-# INLINE_FUSED unsafeFromList #-}
+unsafeFromList sz xs = fromStream (S.fromList xs) sz
+
+fromVector :: (Monad m, Vector v a) => v a -> Bundle m v a
+{-# INLINE_FUSED fromVector #-}
+fromVector v = v `seq` n `seq` Bundle (Stream step 0)
+                                      (Stream vstep True)
+                                      (Just v)
+                                      (Exact n)
+  where
+    n = basicLength v
+
+    {-# INLINE step #-}
+    step i | i >= n = return Done
+           | otherwise = case basicUnsafeIndexM v i of
+                           Box x -> return $ Yield x (i+1)
+
+
+    {-# INLINE vstep #-}
+    vstep True  = return (Yield (Chunk (basicLength v) (\mv -> basicUnsafeCopy mv v)) False)
+    vstep False = return Done
+
+fromVectors :: forall m v a. (Monad m, Vector v a) => [v a] -> Bundle m v a
+{-# INLINE_FUSED fromVectors #-}
+fromVectors us = Bundle (Stream pstep (Left us))
+                        (Stream vstep us)
+                        Nothing
+                        (Exact n)
+  where
+    n = List.foldl' (\k v -> k + basicLength v) 0 us
+
+    pstep (Left []) = return Done
+    pstep (Left (v:vs)) = basicLength v `seq` return (Skip (Right (v,0,vs)))
+
+    pstep (Right (v,i,vs))
+      | i >= basicLength v = return $ Skip (Left vs)
+      | otherwise          = case basicUnsafeIndexM v i of
+                               Box x -> return $ Yield x (Right (v,i+1,vs))
+
+    -- FIXME: work around bug in GHC 7.6.1
+    vstep :: [v a] -> m (Step [v a] (Chunk v a))
+    vstep [] = return Done
+    vstep (v:vs) = return $ Yield (Chunk (basicLength v)
+                                         (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
+                                                                       (M.basicLength mv == basicLength v)
+                                                 $ basicUnsafeCopy mv v)) vs
+
+
+concatVectors :: (Monad m, Vector v a) => Bundle m u (v a) -> Bundle m v a
+{-# INLINE_FUSED concatVectors #-}
+concatVectors Bundle{sElems = Stream step t}
+  = Bundle (Stream pstep (Left t))
+           (Stream vstep t)
+           Nothing
+           Unknown
+  where
+    pstep (Left s) = do
+      r <- step s
+      case r of
+        Yield v s' -> basicLength v `seq` return (Skip (Right (v,0,s')))
+        Skip    s' -> return (Skip (Left s'))
+        Done       -> return Done
+
+    pstep (Right (v,i,s))
+      | i >= basicLength v = return (Skip (Left s))
+      | otherwise          = case basicUnsafeIndexM v i of
+                               Box x -> return (Yield x (Right (v,i+1,s)))
+
+
+    vstep s = do
+      r <- step s
+      case r of
+        Yield v s' -> return (Yield (Chunk (basicLength v)
+                                           (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
+                                                                          (M.basicLength mv == basicLength v)
+                                                   $ basicUnsafeCopy mv v)) s')
+        Skip    s' -> return (Skip s')
+        Done       -> return Done
+
+reVector :: Monad m => Bundle m u a -> Bundle m v a
+{-# INLINE_FUSED reVector #-}
+reVector Bundle{sElems = s, sSize = n} = fromStream s n
+
+{-# RULES
+
+"reVector [Vector]"
+  reVector = id
+
+"reVector/reVector [Vector]" forall s.
+  reVector (reVector s) = s   #-}
+
+
+
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Size.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Size.hs
new file mode 100644
index 0000000000..e90cf37320
--- /dev/null
+++ b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Size.hs
@@ -0,0 +1,121 @@
+-- |
+-- Module      : Data.Vector.Fusion.Bundle.Size
+-- Copyright   : (c) Roman Leshchinskiy 2008-2010
+-- License     : BSD-style
+--
+-- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
+-- Stability   : experimental
+-- Portability : portable
+--
+-- Size hints for streams.
+--
+
+module Data.Vector.Fusion.Bundle.Size (
+  Size(..), clampedSubtract, smaller, larger, toMax, upperBound, lowerBound
+) where
+
+import Data.Vector.Fusion.Util ( delay_inline )
+
+-- | Size hint
+data Size = Exact Int          -- ^ Exact size
+          | Max   Int          -- ^ Upper bound on the size
+          | Unknown            -- ^ Unknown size
+        deriving( Eq, Show )
+
+instance Num Size where
+  Exact m + Exact n = checkedAdd Exact m n
+  Exact m + Max   n = checkedAdd Max m n
+
+  Max   m + Exact n = checkedAdd Max m n
+  Max   m + Max   n = checkedAdd Max m n
+
+  _       + _       = Unknown
+
+
+  Exact m - Exact n = checkedSubtract Exact m n
+  Exact m - Max   _ = Max   m
+
+  Max   m - Exact n = checkedSubtract Max m n
+  Max   m - Max   _ = Max   m
+  Max   m - Unknown = Max   m
+
+  _       - _       = Unknown
+
+
+  fromInteger n     = Exact (fromInteger n)
+
+  (*)    = error "vector: internal error * for Bundle.size isn't defined"
+  abs    = error "vector: internal error abs for Bundle.size isn't defined"
+  signum = error "vector: internal error signum for Bundle.size isn't defined"
+
+{-# INLINE checkedAdd #-}
+checkedAdd :: (Int -> Size) -> Int -> Int -> Size
+checkedAdd con m n
+    -- Note: we assume m and n are >= 0.
+  | r < m || r < n =
+      error $ "Data.Vector.Fusion.Bundle.Size.checkedAdd: overflow: " ++ show r
+  | otherwise = con r
+  where
+    r = m + n
+
+{-# INLINE checkedSubtract #-}
+checkedSubtract :: (Int -> Size) -> Int -> Int -> Size
+checkedSubtract con m n
+  | r < 0 =
+      error $ "Data.Vector.Fusion.Bundle.Size.checkedSubtract: underflow: " ++ show r
+  | otherwise = con r
+  where
+    r = m - n
+
+-- | Subtract two sizes with clamping to 0, for drop-like things
+{-# INLINE clampedSubtract #-}
+clampedSubtract :: Size -> Size -> Size
+clampedSubtract (Exact m) (Exact n) = Exact (max 0 (m - n))
+clampedSubtract (Max   m) (Exact n)
+  | m <= n = Exact 0
+  | otherwise = Max (m - n)
+clampedSubtract (Exact m) (Max   _) = Max m
+clampedSubtract (Max   m) (Max   _) = Max m
+clampedSubtract _         _ = Unknown
+
+-- | Minimum of two size hints
+smaller :: Size -> Size -> Size
+{-# INLINE smaller #-}
+smaller (Exact m) (Exact n) = Exact (delay_inline min m n)
+smaller (Exact m) (Max   n) = Max   (delay_inline min m n)
+smaller (Exact m) Unknown   = Max   m
+smaller (Max   m) (Exact n) = Max   (delay_inline min m n)
+smaller (Max   m) (Max   n) = Max   (delay_inline min m n)
+smaller (Max   m) Unknown   = Max   m
+smaller Unknown   (Exact n) = Max   n
+smaller Unknown   (Max   n) = Max   n
+smaller Unknown   Unknown   = Unknown
+
+-- | Maximum of two size hints
+larger :: Size -> Size -> Size
+{-# INLINE larger #-}
+larger (Exact m) (Exact n)             = Exact (delay_inline max m n)
+larger (Exact m) (Max   n) | m >= n    = Exact m
+                           | otherwise = Max   n
+larger (Max   m) (Exact n) | n >= m    = Exact n
+                           | otherwise = Max   m
+larger (Max   m) (Max   n)             = Max   (delay_inline max m n)
+larger _         _                     = Unknown
+
+-- | Convert a size hint to an upper bound
+toMax :: Size -> Size
+toMax (Exact n) = Max n
+toMax (Max   n) = Max n
+toMax Unknown   = Unknown
+
+-- | Compute the minimum size from a size hint
+lowerBound :: Size -> Int
+lowerBound (Exact n) = n
+lowerBound _         = 0
+
+-- | Compute the maximum size from a size hint if possible
+upperBound :: Size -> Maybe Int
+upperBound (Exact n) = Just n
+upperBound (Max   n) = Just n
+upperBound Unknown   = Nothing
+
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs
new file mode 100644
index 0000000000..cca002ca6f
--- /dev/null
+++ b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs
@@ -0,0 +1,1639 @@
+{-# LANGUAGE CPP, ExistentialQuantification, MultiParamTypeClasses, FlexibleInstances, Rank2Types, BangPatterns, KindSignatures, GADTs, ScopedTypeVariables #-}
+
+-- |
+-- Module      : Data.Vector.Fusion.Stream.Monadic
+-- Copyright   : (c) Roman Leshchinskiy 2008-2010
+-- License     : BSD-style
+--
+-- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
+-- Stability   : experimental
+-- Portability : non-portable
+--
+-- Monadic stream combinators.
+--
+
+module Data.Vector.Fusion.Stream.Monadic (
+  Stream(..), Step(..), SPEC(..),
+
+  -- * Length
+  length, null,
+
+  -- * Construction
+  empty, singleton, cons, snoc, replicate, replicateM, generate, generateM, (++),
+
+  -- * Accessing elements
+  head, last, (!!), (!?),
+
+  -- * Substreams
+  slice, init, tail, take, drop,
+
+  -- * Mapping
+  map, mapM, mapM_, trans, unbox, concatMap, flatten,
+
+  -- * Zipping
+  indexed, indexedR, zipWithM_,
+  zipWithM, zipWith3M, zipWith4M, zipWith5M, zipWith6M,
+  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
+  zip, zip3, zip4, zip5, zip6,
+
+  -- * Comparisons
+  eqBy, cmpBy,
+
+  -- * Filtering
+  filter, filterM, uniq, mapMaybe, takeWhile, takeWhileM, dropWhile, dropWhileM,
+
+  -- * Searching
+  elem, notElem, find, findM, findIndex, findIndexM,
+
+  -- * Folding
+  foldl, foldlM, foldl1, foldl1M, foldM, fold1M,
+  foldl', foldlM', foldl1', foldl1M', foldM', fold1M',
+  foldr, foldrM, foldr1, foldr1M,
+
+  -- * Specialised folds
+  and, or, concatMapM,
+
+  -- * Unfolding
+  unfoldr, unfoldrM,
+  unfoldrN, unfoldrNM,
+  iterateN, iterateNM,
+
+  -- * Scans
+  prescanl, prescanlM, prescanl', prescanlM',
+  postscanl, postscanlM, postscanl', postscanlM',
+  scanl, scanlM, scanl', scanlM',
+  scanl1, scanl1M, scanl1', scanl1M',
+
+  -- * Enumerations
+  enumFromStepN, enumFromTo, enumFromThenTo,
+
+  -- * Conversions
+  toList, fromList, fromListN
+) where
+
+import Data.Vector.Fusion.Util ( Box(..) )
+
+import Data.Char      ( ord )
+import GHC.Base       ( unsafeChr )
+import Control.Monad  ( liftM )
+import Prelude hiding ( length, null,
+                        replicate, (++),
+                        head, last, (!!),
+                        init, tail, take, drop,
+                        map, mapM, mapM_, concatMap,
+                        zipWith, zipWith3, zip, zip3,
+                        filter, takeWhile, dropWhile,
+                        elem, notElem,
+                        foldl, foldl1, foldr, foldr1,
+                        and, or,
+                        scanl, scanl1,
+                        enumFromTo, enumFromThenTo )
+
+import Data.Int  ( Int8, Int16, Int32 )
+import Data.Word ( Word8, Word16, Word32, Word64 )
+
+#if !MIN_VERSION_base(4,8,0)
+import Data.Word ( Word8, Word16, Word32, Word, Word64 )
+#endif
+
+#if __GLASGOW_HASKELL__ >= 708
+import GHC.Types ( SPEC(..) )
+#elif __GLASGOW_HASKELL__ >= 700
+import GHC.Exts ( SpecConstrAnnotation(..) )
+#endif
+
+#include "vector.h"
+#include "MachDeps.h"
+
+#if WORD_SIZE_IN_BITS > 32
+import Data.Int  ( Int64 )
+#endif
+
+#if __GLASGOW_HASKELL__ < 708
+data SPEC = SPEC | SPEC2
+#if __GLASGOW_HASKELL__ >= 700
+{-# ANN type SPEC ForceSpecConstr #-}
+#endif
+#endif
+
+emptyStream :: String
+{-# NOINLINE emptyStream #-}
+emptyStream = "empty stream"
+
+#define EMPTY_STREAM (\state -> ERROR state emptyStream)
+
+-- | Result of taking a single step in a stream
+data Step s a where
+  Yield :: a -> s -> Step s a
+  Skip  :: s -> Step s a
+  Done  :: Step s a
+
+instance Functor (Step s) where
+  {-# INLINE fmap #-}
+  fmap f (Yield x s) = Yield (f x) s
+  fmap _ (Skip s) = Skip s
+  fmap _ Done = Done
+
+-- | Monadic streams
+data Stream m a = forall s. Stream (s -> m (Step s a)) s
+
+-- Length
+-- ------
+
+-- | Length of a 'Stream'
+length :: Monad m => Stream m a -> m Int
+{-# INLINE_FUSED length #-}
+length = foldl' (\n _ -> n+1) 0
+
+-- | Check if a 'Stream' is empty
+null :: Monad m => Stream m a -> m Bool
+{-# INLINE_FUSED null #-}
+null (Stream step t) = null_loop t
+  where
+    null_loop s = do
+      r <- step s
+      case r of
+        Yield _ _ -> return False
+        Skip s'   -> null_loop s'
+        Done      -> return True
+
+-- Construction
+-- ------------
+
+-- | Empty 'Stream'
+empty :: Monad m => Stream m a
+{-# INLINE_FUSED empty #-}
+empty = Stream (const (return Done)) ()
+
+-- | Singleton 'Stream'
+singleton :: Monad m => a -> Stream m a
+{-# INLINE_FUSED singleton #-}
+singleton x = Stream (return . step) True
+  where
+    {-# INLINE_INNER step #-}
+    step True  = Yield x False
+    step False = Done
+
+-- | Replicate a value to a given length
+replicate :: Monad m => Int -> a -> Stream m a
+{-# INLINE_FUSED replicate #-}
+replicate n x = replicateM n (return x)
+
+-- | Yield a 'Stream' of values obtained by performing the monadic action the
+-- given number of times
+replicateM :: Monad m => Int -> m a -> Stream m a
+{-# INLINE_FUSED replicateM #-}
+replicateM n p = Stream step n
+  where
+    {-# INLINE_INNER step #-}
+    step i | i <= 0    = return Done
+           | otherwise = do { x <- p; return $ Yield x (i-1) }
+
+generate :: Monad m => Int -> (Int -> a) -> Stream m a
+{-# INLINE generate #-}
+generate n f = generateM n (return . f)
+
+-- | Generate a stream from its indices
+generateM :: Monad m => Int -> (Int -> m a) -> Stream m a
+{-# INLINE_FUSED generateM #-}
+generateM n f = n `seq` Stream step 0
+  where
+    {-# INLINE_INNER step #-}
+    step i | i < n     = do
+                           x <- f i
+                           return $ Yield x (i+1)
+           | otherwise = return Done
+
+-- | Prepend an element
+cons :: Monad m => a -> Stream m a -> Stream m a
+{-# INLINE cons #-}
+cons x s = singleton x ++ s
+
+-- | Append an element
+snoc :: Monad m => Stream m a -> a -> Stream m a
+{-# INLINE snoc #-}
+snoc s x = s ++ singleton x
+
+infixr 5 ++
+-- | Concatenate two 'Stream's
+(++) :: Monad m => Stream m a -> Stream m a -> Stream m a
+{-# INLINE_FUSED (++) #-}
+Stream stepa ta ++ Stream stepb tb = Stream step (Left ta)
+  where
+    {-# INLINE_INNER step #-}
+    step (Left  sa) = do
+                        r <- stepa sa
+                        case r of
+                          Yield x sa' -> return $ Yield x (Left  sa')
+                          Skip    sa' -> return $ Skip    (Left  sa')
+                          Done        -> return $ Skip    (Right tb)
+    step (Right sb) = do
+                        r <- stepb sb
+                        case r of
+                          Yield x sb' -> return $ Yield x (Right sb')
+                          Skip    sb' -> return $ Skip    (Right sb')
+                          Done        -> return $ Done
+
+-- Accessing elements
+-- ------------------
+
+-- | First element of the 'Stream' or error if empty
+head :: Monad m => Stream m a -> m a
+{-# INLINE_FUSED head #-}
+head (Stream step t) = head_loop SPEC t
+  where
+    head_loop !_ s
+      = do
+          r <- step s
+          case r of
+            Yield x _  -> return x
+            Skip    s' -> head_loop SPEC s'
+            Done       -> EMPTY_STREAM "head"
+
+
+
+-- | Last element of the 'Stream' or error if empty
+last :: Monad m => Stream m a -> m a
+{-# INLINE_FUSED last #-}
+last (Stream step t) = last_loop0 SPEC t
+  where
+    last_loop0 !_ s
+      = do
+          r <- step s
+          case r of
+            Yield x s' -> last_loop1 SPEC x s'
+            Skip    s' -> last_loop0 SPEC   s'
+            Done       -> EMPTY_STREAM "last"
+
+    last_loop1 !_ x s
+      = do
+          r <- step s
+          case r of
+            Yield y s' -> last_loop1 SPEC y s'
+            Skip    s' -> last_loop1 SPEC x s'
+            Done       -> return x
+
+infixl 9 !!
+-- | Element at the given position
+(!!) :: Monad m => Stream m a -> Int -> m a
+{-# INLINE (!!) #-}
+Stream step t !! j | j < 0     = ERROR "!!" "negative index"
+                   | otherwise = index_loop SPEC t j
+  where
+    index_loop !_ s i
+      = i `seq`
+        do
+          r <- step s
+          case r of
+            Yield x s' | i == 0    -> return x
+                       | otherwise -> index_loop SPEC s' (i-1)
+            Skip    s'             -> index_loop SPEC s' i
+            Done                   -> EMPTY_STREAM "!!"
+
+infixl 9 !?
+-- | Element at the given position or 'Nothing' if out of bounds
+(!?) :: Monad m => Stream m a -> Int -> m (Maybe a)
+{-# INLINE (!?) #-}
+Stream step t !? j = index_loop SPEC t j
+  where
+    index_loop !_ s i
+      = i `seq`
+        do
+          r <- step s
+          case r of
+            Yield x s' | i == 0    -> return (Just x)
+                       | otherwise -> index_loop SPEC s' (i-1)
+            Skip    s'             -> index_loop SPEC s' i
+            Done                   -> return Nothing
+
+-- Substreams
+-- ----------
+
+-- | Extract a substream of the given length starting at the given position.
+slice :: Monad m => Int   -- ^ starting index
+                 -> Int   -- ^ length
+                 -> Stream m a
+                 -> Stream m a
+{-# INLINE slice #-}
+slice i n s = take n (drop i s)
+
+-- | All but the last element
+init :: Monad m => Stream m a -> Stream m a
+{-# INLINE_FUSED init #-}
+init (Stream step t) = Stream step' (Nothing, t)
+  where
+    {-# INLINE_INNER step' #-}
+    step' (Nothing, s) = liftM (\r ->
+                           case r of
+                             Yield x s' -> Skip (Just x,  s')
+                             Skip    s' -> Skip (Nothing, s')
+                             Done       -> EMPTY_STREAM "init"
+                         ) (step s)
+
+    step' (Just x,  s) = liftM (\r ->
+                           case r of
+                             Yield y s' -> Yield x (Just y, s')
+                             Skip    s' -> Skip    (Just x, s')
+                             Done       -> Done
+                         ) (step s)
+
+-- | All but the first element
+tail :: Monad m => Stream m a -> Stream m a
+{-# INLINE_FUSED tail #-}
+tail (Stream step t) = Stream step' (Left t)
+  where
+    {-# INLINE_INNER step' #-}
+    step' (Left  s) = liftM (\r ->
+                        case r of
+                          Yield _ s' -> Skip (Right s')
+                          Skip    s' -> Skip (Left  s')
+                          Done       -> EMPTY_STREAM "tail"
+                      ) (step s)
+
+    step' (Right s) = liftM (\r ->
+                        case r of
+                          Yield x s' -> Yield x (Right s')
+                          Skip    s' -> Skip    (Right s')
+                          Done       -> Done
+                      ) (step s)
+
+-- | The first @n@ elements
+take :: Monad m => Int -> Stream m a -> Stream m a
+{-# INLINE_FUSED take #-}
+take n (Stream step t) = n `seq` Stream step' (t, 0)
+  where
+    {-# INLINE_INNER step' #-}
+    step' (s, i) | i < n = liftM (\r ->
+                             case r of
+                               Yield x s' -> Yield x (s', i+1)
+                               Skip    s' -> Skip    (s', i)
+                               Done       -> Done
+                           ) (step s)
+    step' (_, _) = return Done
+
+-- | All but the first @n@ elements
+drop :: Monad m => Int -> Stream m a -> Stream m a
+{-# INLINE_FUSED drop #-}
+drop n (Stream step t) = Stream step' (t, Just n)
+  where
+    {-# INLINE_INNER step' #-}
+    step' (s, Just i) | i > 0 = liftM (\r ->
+                                case r of
+                                   Yield _ s' -> Skip (s', Just (i-1))
+                                   Skip    s' -> Skip (s', Just i)
+                                   Done       -> Done
+                                ) (step s)
+                      | otherwise = return $ Skip (s, Nothing)
+
+    step' (s, Nothing) = liftM (\r ->
+                           case r of
+                             Yield x s' -> Yield x (s', Nothing)
+                             Skip    s' -> Skip    (s', Nothing)
+                             Done       -> Done
+                           ) (step s)
+
+-- Mapping
+-- -------
+
+instance Monad m => Functor (Stream m) where
+  {-# INLINE fmap #-}
+  fmap = map
+
+-- | Map a function over a 'Stream'
+map :: Monad m => (a -> b) -> Stream m a -> Stream m b
+{-# INLINE map #-}
+map f = mapM (return . f)
+
+
+-- | Map a monadic function over a 'Stream'
+mapM :: Monad m => (a -> m b) -> Stream m a -> Stream m b
+{-# INLINE_FUSED mapM #-}
+mapM f (Stream step t) = Stream step' t
+  where
+    {-# INLINE_INNER step' #-}
+    step' s = do
+                r <- step s
+                case r of
+                  Yield x s' -> liftM  (`Yield` s') (f x)
+                  Skip    s' -> return (Skip    s')
+                  Done       -> return Done
+
+consume :: Monad m => Stream m a -> m ()
+{-# INLINE_FUSED consume #-}
+consume (Stream step t) = consume_loop SPEC t
+  where
+    consume_loop !_ s
+      = do
+          r <- step s
+          case r of
+            Yield _ s' -> consume_loop SPEC s'
+            Skip    s' -> consume_loop SPEC s'
+            Done       -> return ()
+
+-- | Execute a monadic action for each element of the 'Stream'
+mapM_ :: Monad m => (a -> m b) -> Stream m a -> m ()
+{-# INLINE_FUSED mapM_ #-}
+mapM_ m = consume . mapM m
+
+-- | Transform a 'Stream' to use a different monad
+trans :: (Monad m, Monad m')
+      => (forall z. m z -> m' z) -> Stream m a -> Stream m' a
+{-# INLINE_FUSED trans #-}
+trans f (Stream step s) = Stream (f . step) s
+
+unbox :: Monad m => Stream m (Box a) -> Stream m a
+{-# INLINE_FUSED unbox #-}
+unbox (Stream step t) = Stream step' t
+  where
+    {-# INLINE_INNER step' #-}
+    step' s = do
+                r <- step s
+                case r of
+                  Yield (Box x) s' -> return $ Yield x s'
+                  Skip          s' -> return $ Skip    s'
+                  Done             -> return $ Done
+
+-- Zipping
+-- -------
+
+-- | Pair each element in a 'Stream' with its index
+indexed :: Monad m => Stream m a -> Stream m (Int,a)
+{-# INLINE_FUSED indexed #-}
+indexed (Stream step t) = Stream step' (t,0)
+  where
+    {-# INLINE_INNER step' #-}
+    step' (s,i) = i `seq`
+                  do
+                    r <- step s
+                    case r of
+                      Yield x s' -> return $ Yield (i,x) (s', i+1)
+                      Skip    s' -> return $ Skip        (s', i)
+                      Done       -> return Done
+
+-- | Pair each element in a 'Stream' with its index, starting from the right
+-- and counting down
+indexedR :: Monad m => Int -> Stream m a -> Stream m (Int,a)
+{-# INLINE_FUSED indexedR #-}
+indexedR m (Stream step t) = Stream step' (t,m)
+  where
+    {-# INLINE_INNER step' #-}
+    step' (s,i) = i `seq`
+                  do
+                    r <- step s
+                    case r of
+                      Yield x s' -> let i' = i-1
+                                    in
+                                    return $ Yield (i',x) (s', i')
+                      Skip    s' -> return $ Skip         (s', i)
+                      Done       -> return Done
+
+-- | Zip two 'Stream's with the given monadic function
+zipWithM :: Monad m => (a -> b -> m c) -> Stream m a -> Stream m b -> Stream m c
+{-# INLINE_FUSED zipWithM #-}
+zipWithM f (Stream stepa ta) (Stream stepb tb) = Stream step (ta, tb, Nothing)
+  where
+    {-# INLINE_INNER step #-}
+    step (sa, sb, Nothing) = liftM (\r ->
+                               case r of
+                                 Yield x sa' -> Skip (sa', sb, Just x)
+                                 Skip    sa' -> Skip (sa', sb, Nothing)
+                                 Done        -> Done
+                             ) (stepa sa)
+
+    step (sa, sb, Just x)  = do
+                               r <- stepb sb
+                               case r of
+                                 Yield y sb' ->
+                                   do
+                                     z <- f x y
+                                     return $ Yield z (sa, sb', Nothing)
+                                 Skip    sb' -> return $ Skip (sa, sb', Just x)
+                                 Done        -> return $ Done
+
+-- FIXME: This might expose an opportunity for inplace execution.
+{-# RULES
+
+"zipWithM xs xs [Vector.Stream]" forall f xs.
+  zipWithM f xs xs = mapM (\x -> f x x) xs   #-}
+
+
+zipWithM_ :: Monad m => (a -> b -> m c) -> Stream m a -> Stream m b -> m ()
+{-# INLINE zipWithM_ #-}
+zipWithM_ f sa sb = consume (zipWithM f sa sb)
+
+zipWith3M :: Monad m => (a -> b -> c -> m d) -> Stream m a -> Stream m b -> Stream m c -> Stream m d
+{-# INLINE_FUSED zipWith3M #-}
+zipWith3M f (Stream stepa ta)
+            (Stream stepb tb)
+            (Stream stepc tc) = Stream step (ta, tb, tc, Nothing)
+  where
+    {-# INLINE_INNER step #-}
+    step (sa, sb, sc, Nothing) = do
+        r <- stepa sa
+        return $ case r of
+            Yield x sa' -> Skip (sa', sb, sc, Just (x, Nothing))
+            Skip    sa' -> Skip (sa', sb, sc, Nothing)
+            Done        -> Done
+
+    step (sa, sb, sc, Just (x, Nothing)) = do
+        r <- stepb sb
+        return $ case r of
+            Yield y sb' -> Skip (sa, sb', sc, Just (x, Just y))
+            Skip    sb' -> Skip (sa, sb', sc, Just (x, Nothing))
+            Done        -> Done
+
+    step (sa, sb, sc, Just (x, Just y)) = do
+        r <- stepc sc
+        case r of
+            Yield z sc' -> f x y z >>= (\res -> return $ Yield res (sa, sb, sc', Nothing))
+            Skip    sc' -> return $ Skip (sa, sb, sc', Just (x, Just y))
+            Done        -> return $ Done
+
+zipWith4M :: Monad m => (a -> b -> c -> d -> m e)
+                     -> Stream m a -> Stream m b -> Stream m c -> Stream m d
+                     -> Stream m e
+{-# INLINE zipWith4M #-}
+zipWith4M f sa sb sc sd
+  = zipWithM (\(a,b) (c,d) -> f a b c d) (zip sa sb) (zip sc sd)
+
+zipWith5M :: Monad m => (a -> b -> c -> d -> e -> m f)
+                     -> Stream m a -> Stream m b -> Stream m c -> Stream m d
+                     -> Stream m e -> Stream m f
+{-# INLINE zipWith5M #-}
+zipWith5M f sa sb sc sd se
+  = zipWithM (\(a,b,c) (d,e) -> f a b c d e) (zip3 sa sb sc) (zip sd se)
+
+zipWith6M :: Monad m => (a -> b -> c -> d -> e -> f -> m g)
+                     -> Stream m a -> Stream m b -> Stream m c -> Stream m d
+                     -> Stream m e -> Stream m f -> Stream m g
+{-# INLINE zipWith6M #-}
+zipWith6M fn sa sb sc sd se sf
+  = zipWithM (\(a,b,c) (d,e,f) -> fn a b c d e f) (zip3 sa sb sc)
+                                                  (zip3 sd se sf)
+
+zipWith :: Monad m => (a -> b -> c) -> Stream m a -> Stream m b -> Stream m c
+{-# INLINE zipWith #-}
+zipWith f = zipWithM (\a b -> return (f a b))
+
+zipWith3 :: Monad m => (a -> b -> c -> d)
+                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
+{-# INLINE zipWith3 #-}
+zipWith3 f = zipWith3M (\a b c -> return (f a b c))
+
+zipWith4 :: Monad m => (a -> b -> c -> d -> e)
+                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
+                    -> Stream m e
+{-# INLINE zipWith4 #-}
+zipWith4 f = zipWith4M (\a b c d -> return (f a b c d))
+
+zipWith5 :: Monad m => (a -> b -> c -> d -> e -> f)
+                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
+                    -> Stream m e -> Stream m f
+{-# INLINE zipWith5 #-}
+zipWith5 f = zipWith5M (\a b c d e -> return (f a b c d e))
+
+zipWith6 :: Monad m => (a -> b -> c -> d -> e -> f -> g)
+                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
+                    -> Stream m e -> Stream m f -> Stream m g
+{-# INLINE zipWith6 #-}
+zipWith6 fn = zipWith6M (\a b c d e f -> return (fn a b c d e f))
+
+zip :: Monad m => Stream m a -> Stream m b -> Stream m (a,b)
+{-# INLINE zip #-}
+zip = zipWith (,)
+
+zip3 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m (a,b,c)
+{-# INLINE zip3 #-}
+zip3 = zipWith3 (,,)
+
+zip4 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m d
+                -> Stream m (a,b,c,d)
+{-# INLINE zip4 #-}
+zip4 = zipWith4 (,,,)
+
+zip5 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m d
+                -> Stream m e -> Stream m (a,b,c,d,e)
+{-# INLINE zip5 #-}
+zip5 = zipWith5 (,,,,)
+
+zip6 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m d
+                -> Stream m e -> Stream m f -> Stream m (a,b,c,d,e,f)
+{-# INLINE zip6 #-}
+zip6 = zipWith6 (,,,,,)
+
+-- Comparisons
+-- -----------
+
+-- | Check if two 'Stream's are equal
+eqBy :: (Monad m) => (a -> b -> Bool) -> Stream m a -> Stream m b -> m Bool
+{-# INLINE_FUSED eqBy #-}
+eqBy eq (Stream step1 t1) (Stream step2 t2) = eq_loop0 SPEC t1 t2
+  where
+    eq_loop0 !_ s1 s2 = do
+      r <- step1 s1
+      case r of
+        Yield x s1' -> eq_loop1 SPEC x s1' s2
+        Skip    s1' -> eq_loop0 SPEC   s1' s2
+        Done        -> eq_null s2
+
+    eq_loop1 !_ x s1 s2 = do
+      r <- step2 s2
+      case r of
+        Yield y s2'
+          | eq x y    -> eq_loop0 SPEC   s1 s2'
+          | otherwise -> return False
+        Skip    s2'   -> eq_loop1 SPEC x s1 s2'
+        Done          -> return False
+
+    eq_null s2 = do
+      r <- step2 s2
+      case r of
+        Yield _ _ -> return False
+        Skip s2'  -> eq_null s2'
+        Done      -> return True
+
+-- | Lexicographically compare two 'Stream's
+cmpBy :: (Monad m) => (a -> b -> Ordering) -> Stream m a -> Stream m b -> m Ordering
+{-# INLINE_FUSED cmpBy #-}
+cmpBy cmp (Stream step1 t1) (Stream step2 t2) = cmp_loop0 SPEC t1 t2
+  where
+    cmp_loop0 !_ s1 s2 = do
+      r <- step1 s1
+      case r of
+        Yield x s1' -> cmp_loop1 SPEC x s1' s2
+        Skip    s1' -> cmp_loop0 SPEC   s1' s2
+        Done        -> cmp_null s2
+
+    cmp_loop1 !_ x s1 s2 = do
+      r <- step2 s2
+      case r of
+        Yield y s2' -> case x `cmp` y of
+                         EQ -> cmp_loop0 SPEC s1 s2'
+                         c  -> return c
+        Skip    s2' -> cmp_loop1 SPEC x s1 s2'
+        Done        -> return GT
+
+    cmp_null s2 = do
+      r <- step2 s2
+      case r of
+        Yield _ _ -> return LT
+        Skip s2'  -> cmp_null s2'
+        Done      -> return EQ
+
+-- Filtering
+-- ---------
+
+-- | Drop elements which do not satisfy the predicate
+filter :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
+{-# INLINE filter #-}
+filter f = filterM (return . f)
+
+mapMaybe :: Monad m => (a -> Maybe b) -> Stream m a -> Stream m b
+{-# INLINE_FUSED mapMaybe #-}
+mapMaybe f (Stream step t) = Stream step' t
+  where
+    {-# INLINE_INNER step' #-}
+    step' s = do
+                r <- step s
+                case r of
+                  Yield x s' -> do
+                                  return $ case f x of
+                                    Nothing -> Skip s'
+                                    Just b' -> Yield b' s'
+                  Skip    s' -> return $ Skip s'
+                  Done       -> return $ Done
+
+-- | Drop elements which do not satisfy the monadic predicate
+filterM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
+{-# INLINE_FUSED filterM #-}
+filterM f (Stream step t) = Stream step' t
+  where
+    {-# INLINE_INNER step' #-}
+    step' s = do
+                r <- step s
+                case r of
+                  Yield x s' -> do
+                                  b <- f x
+                                  return $ if b then Yield x s'
+                                                else Skip    s'
+                  Skip    s' -> return $ Skip s'
+                  Done       -> return $ Done
+
+-- | Drop repeated adjacent elements.
+uniq :: (Eq a, Monad m) => Stream m a -> Stream m a
+{-# INLINE_FUSED uniq #-}
+uniq (Stream step st) = Stream step' (Nothing,st)
+  where
+    {-# INLINE_INNER step' #-}
+    step' (Nothing, s) = do r <- step s
+                            case r of
+                              Yield x s' -> return $ Yield x (Just x , s')
+                              Skip  s'   -> return $ Skip  (Nothing, s')
+                              Done       -> return   Done
+    step' (Just x0, s) = do r <- step s
+                            case r of
+                              Yield x s' | x == x0   -> return $ Skip    (Just x0, s')
+                                         | otherwise -> return $ Yield x (Just x , s')
+                              Skip  s'   -> return $ Skip (Just x0, s')
+                              Done       -> return   Done
+
+-- | Longest prefix of elements that satisfy the predicate
+takeWhile :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
+{-# INLINE takeWhile #-}
+takeWhile f = takeWhileM (return . f)
+
+-- | Longest prefix of elements that satisfy the monadic predicate
+takeWhileM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
+{-# INLINE_FUSED takeWhileM #-}
+takeWhileM f (Stream step t) = Stream step' t
+  where
+    {-# INLINE_INNER step' #-}
+    step' s = do
+                r <- step s
+                case r of
+                  Yield x s' -> do
+                                  b <- f x
+                                  return $ if b then Yield x s' else Done
+                  Skip    s' -> return $ Skip s'
+                  Done       -> return $ Done
+
+-- | Drop the longest prefix of elements that satisfy the predicate
+dropWhile :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
+{-# INLINE dropWhile #-}
+dropWhile f = dropWhileM (return . f)
+
+data DropWhile s a = DropWhile_Drop s | DropWhile_Yield a s | DropWhile_Next s
+
+-- | Drop the longest prefix of elements that satisfy the monadic predicate
+dropWhileM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
+{-# INLINE_FUSED dropWhileM #-}
+dropWhileM f (Stream step t) = Stream step' (DropWhile_Drop t)
+  where
+    -- NOTE: we jump through hoops here to have only one Yield; local data
+    -- declarations would be nice!
+
+    {-# INLINE_INNER step' #-}
+    step' (DropWhile_Drop s)
+      = do
+          r <- step s
+          case r of
+            Yield x s' -> do
+                            b <- f x
+                            return $ if b then Skip (DropWhile_Drop    s')
+                                          else Skip (DropWhile_Yield x s')
+            Skip    s' -> return $ Skip (DropWhile_Drop    s')
+            Done       -> return $ Done
+
+    step' (DropWhile_Yield x s) = return $ Yield x (DropWhile_Next s)
+
+    step' (DropWhile_Next s)
+      = liftM (\r ->
+          case r of
+            Yield x s' -> Skip    (DropWhile_Yield x s')
+            Skip    s' -> Skip    (DropWhile_Next    s')
+            Done       -> Done
+        ) (step s)
+
+-- Searching
+-- ---------
+
+infix 4 `elem`
+-- | Check whether the 'Stream' contains an element
+elem :: (Monad m, Eq a) => a -> Stream m a -> m Bool
+{-# INLINE_FUSED elem #-}
+elem x (Stream step t) = elem_loop SPEC t
+  where
+    elem_loop !_ s
+      = do
+          r <- step s
+          case r of
+            Yield y s' | x == y    -> return True
+                       | otherwise -> elem_loop SPEC s'
+            Skip    s'             -> elem_loop SPEC s'
+            Done                   -> return False
+
+infix 4 `notElem`
+-- | Inverse of `elem`
+notElem :: (Monad m, Eq a) => a -> Stream m a -> m Bool
+{-# INLINE notElem #-}
+notElem x s = liftM not (elem x s)
+
+-- | Yield 'Just' the first element that satisfies the predicate or 'Nothing'
+-- if no such element exists.
+find :: Monad m => (a -> Bool) -> Stream m a -> m (Maybe a)
+{-# INLINE find #-}
+find f = findM (return . f)
+
+-- | Yield 'Just' the first element that satisfies the monadic predicate or
+-- 'Nothing' if no such element exists.
+findM :: Monad m => (a -> m Bool) -> Stream m a -> m (Maybe a)
+{-# INLINE_FUSED findM #-}
+findM f (Stream step t) = find_loop SPEC t
+  where
+    find_loop !_ s
+      = do
+          r <- step s
+          case r of
+            Yield x s' -> do
+                            b <- f x
+                            if b then return $ Just x
+                                 else find_loop SPEC s'
+            Skip    s' -> find_loop SPEC s'
+            Done       -> return Nothing
+
+-- | Yield 'Just' the index of the first element that satisfies the predicate
+-- or 'Nothing' if no such element exists.
+findIndex :: Monad m => (a -> Bool) -> Stream m a -> m (Maybe Int)
+{-# INLINE_FUSED findIndex #-}
+findIndex f = findIndexM (return . f)
+
+-- | Yield 'Just' the index of the first element that satisfies the monadic
+-- predicate or 'Nothing' if no such element exists.
+findIndexM :: Monad m => (a -> m Bool) -> Stream m a -> m (Maybe Int)
+{-# INLINE_FUSED findIndexM #-}
+findIndexM f (Stream step t) = findIndex_loop SPEC t 0
+  where
+    findIndex_loop !_ s i
+      = do
+          r <- step s
+          case r of
+            Yield x s' -> do
+                            b <- f x
+                            if b then return $ Just i
+                                 else findIndex_loop SPEC s' (i+1)
+            Skip    s' -> findIndex_loop SPEC s' i
+            Done       -> return Nothing
+
+-- Folding
+-- -------
+
+-- | Left fold
+foldl :: Monad m => (a -> b -> a) -> a -> Stream m b -> m a
+{-# INLINE foldl #-}
+foldl f = foldlM (\a b -> return (f a b))
+
+-- | Left fold with a monadic operator
+foldlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
+{-# INLINE_FUSED foldlM #-}
+foldlM m w (Stream step t) = foldlM_loop SPEC w t
+  where
+    foldlM_loop !_ z s
+      = do
+          r <- step s
+          case r of
+            Yield x s' -> do { z' <- m z x; foldlM_loop SPEC z' s' }
+            Skip    s' -> foldlM_loop SPEC z s'
+            Done       -> return z
+
+-- | Same as 'foldlM'
+foldM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
+{-# INLINE foldM #-}
+foldM = foldlM
+
+-- | Left fold over a non-empty 'Stream'
+foldl1 :: Monad m => (a -> a -> a) -> Stream m a -> m a
+{-# INLINE foldl1 #-}
+foldl1 f = foldl1M (\a b -> return (f a b))
+
+-- | Left fold over a non-empty 'Stream' with a monadic operator
+foldl1M :: Monad m => (a -> a -> m a) -> Stream m a -> m a
+{-# INLINE_FUSED foldl1M #-}
+foldl1M f (Stream step t) = foldl1M_loop SPEC t
+  where
+    foldl1M_loop !_ s
+      = do
+          r <- step s
+          case r of
+            Yield x s' -> foldlM f x (Stream step s')
+            Skip    s' -> foldl1M_loop SPEC s'
+            Done       -> EMPTY_STREAM "foldl1M"
+
+-- | Same as 'foldl1M'
+fold1M :: Monad m => (a -> a -> m a) -> Stream m a -> m a
+{-# INLINE fold1M #-}
+fold1M = foldl1M
+
+-- | Left fold with a strict accumulator
+foldl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> m a
+{-# INLINE foldl' #-}
+foldl' f = foldlM' (\a b -> return (f a b))
+
+-- | Left fold with a strict accumulator and a monadic operator
+foldlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
+{-# INLINE_FUSED foldlM' #-}
+foldlM' m w (Stream step t) = foldlM'_loop SPEC w t
+  where
+    foldlM'_loop !_ z s
+      = z `seq`
+        do
+          r <- step s
+          case r of
+            Yield x s' -> do { z' <- m z x; foldlM'_loop SPEC z' s' }
+            Skip    s' -> foldlM'_loop SPEC z s'
+            Done       -> return z
+
+-- | Same as 'foldlM''
+foldM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
+{-# INLINE foldM' #-}
+foldM' = foldlM'
+
+-- | Left fold over a non-empty 'Stream' with a strict accumulator
+foldl1' :: Monad m => (a -> a -> a) -> Stream m a -> m a
+{-# INLINE foldl1' #-}
+foldl1' f = foldl1M' (\a b -> return (f a b))
+
+-- | Left fold over a non-empty 'Stream' with a strict accumulator and a
+-- monadic operator
+foldl1M' :: Monad m => (a -> a -> m a) -> Stream m a -> m a
+{-# INLINE_FUSED foldl1M' #-}
+foldl1M' f (Stream step t) = foldl1M'_loop SPEC t
+  where
+    foldl1M'_loop !_ s
+      = do
+          r <- step s
+          case r of
+            Yield x s' -> foldlM' f x (Stream step s')
+            Skip    s' -> foldl1M'_loop SPEC s'
+            Done       -> EMPTY_STREAM "foldl1M'"
+
+-- | Same as 'foldl1M''
+fold1M' :: Monad m => (a -> a -> m a) -> Stream m a -> m a
+{-# INLINE fold1M' #-}
+fold1M' = foldl1M'
+
+-- | Right fold
+foldr :: Monad m => (a -> b -> b) -> b -> Stream m a -> m b
+{-# INLINE foldr #-}
+foldr f = foldrM (\a b -> return (f a b))
+
+-- | Right fold with a monadic operator
+foldrM :: Monad m => (a -> b -> m b) -> b -> Stream m a -> m b
+{-# INLINE_FUSED foldrM #-}
+foldrM f z (Stream step t) = foldrM_loop SPEC t
+  where
+    foldrM_loop !_ s
+      = do
+          r <- step s
+          case r of
+            Yield x s' -> f x =<< foldrM_loop SPEC s'
+            Skip    s' -> foldrM_loop SPEC s'
+            Done       -> return z
+
+-- | Right fold over a non-empty stream
+foldr1 :: Monad m => (a -> a -> a) -> Stream m a -> m a
+{-# INLINE foldr1 #-}
+foldr1 f = foldr1M (\a b -> return (f a b))
+
+-- | Right fold over a non-empty stream with a monadic operator
+foldr1M :: Monad m => (a -> a -> m a) -> Stream m a -> m a
+{-# INLINE_FUSED foldr1M #-}
+foldr1M f (Stream step t) = foldr1M_loop0 SPEC t
+  where
+    foldr1M_loop0 !_ s
+      = do
+          r <- step s
+          case r of
+            Yield x s' -> foldr1M_loop1 SPEC x s'
+            Skip    s' -> foldr1M_loop0 SPEC   s'
+            Done       -> EMPTY_STREAM "foldr1M"
+
+    foldr1M_loop1 !_ x s
+      = do
+          r <- step s
+          case r of
+            Yield y s' -> f x =<< foldr1M_loop1 SPEC y s'
+            Skip    s' -> foldr1M_loop1 SPEC x s'
+            Done       -> return x
+
+-- Specialised folds
+-- -----------------
+
+and :: Monad m => Stream m Bool -> m Bool
+{-# INLINE_FUSED and #-}
+and (Stream step t) = and_loop SPEC t
+  where
+    and_loop !_ s
+      = do
+          r <- step s
+          case r of
+            Yield False _  -> return False
+            Yield True  s' -> and_loop SPEC s'
+            Skip        s' -> and_loop SPEC s'
+            Done           -> return True
+
+or :: Monad m => Stream m Bool -> m Bool
+{-# INLINE_FUSED or #-}
+or (Stream step t) = or_loop SPEC t
+  where
+    or_loop !_ s
+      = do
+          r <- step s
+          case r of
+            Yield False s' -> or_loop SPEC s'
+            Yield True  _  -> return True
+            Skip        s' -> or_loop SPEC s'
+            Done           -> return False
+
+concatMap :: Monad m => (a -> Stream m b) -> Stream m a -> Stream m b
+{-# INLINE concatMap #-}
+concatMap f = concatMapM (return . f)
+
+concatMapM :: Monad m => (a -> m (Stream m b)) -> Stream m a -> Stream m b
+{-# INLINE_FUSED concatMapM #-}
+concatMapM f (Stream step t) = Stream concatMap_go (Left t)
+  where
+    concatMap_go (Left s) = do
+        r <- step s
+        case r of
+            Yield a s' -> do
+                b_stream <- f a
+                return $ Skip (Right (b_stream, s'))
+            Skip    s' -> return $ Skip (Left s')
+            Done       -> return Done
+    concatMap_go (Right (Stream inner_step inner_s, s)) = do
+        r <- inner_step inner_s
+        case r of
+            Yield b inner_s' -> return $ Yield b (Right (Stream inner_step inner_s', s))
+            Skip    inner_s' -> return $ Skip (Right (Stream inner_step inner_s', s))
+            Done             -> return $ Skip (Left s)
+
+-- | Create a 'Stream' of values from a 'Stream' of streamable things
+flatten :: Monad m => (a -> m s) -> (s -> m (Step s b)) -> Stream m a -> Stream m b
+{-# INLINE_FUSED flatten #-}
+flatten mk istep (Stream ostep u) = Stream step (Left u)
+  where
+    {-# INLINE_INNER step #-}
+    step (Left t) = do
+                      r <- ostep t
+                      case r of
+                        Yield a t' -> do
+                                        s <- mk a
+                                        s `seq` return (Skip (Right (s,t')))
+                        Skip    t' -> return $ Skip (Left t')
+                        Done       -> return $ Done
+
+
+    step (Right (s,t)) = do
+                           r <- istep s
+                           case r of
+                             Yield x s' -> return $ Yield x (Right (s',t))
+                             Skip    s' -> return $ Skip    (Right (s',t))
+                             Done       -> return $ Skip    (Left t)
+
+-- Unfolding
+-- ---------
+
+-- | Unfold
+unfoldr :: Monad m => (s -> Maybe (a, s)) -> s -> Stream m a
+{-# INLINE_FUSED unfoldr #-}
+unfoldr f = unfoldrM (return . f)
+
+-- | Unfold with a monadic function
+unfoldrM :: Monad m => (s -> m (Maybe (a, s))) -> s -> Stream m a
+{-# INLINE_FUSED unfoldrM #-}
+unfoldrM f t = Stream step t
+  where
+    {-# INLINE_INNER step #-}
+    step s = liftM (\r ->
+               case r of
+                 Just (x, s') -> Yield x s'
+                 Nothing      -> Done
+             ) (f s)
+
+unfoldrN :: Monad m => Int -> (s -> Maybe (a, s)) -> s -> Stream m a
+{-# INLINE_FUSED unfoldrN #-}
+unfoldrN n f = unfoldrNM n (return . f)
+
+-- | Unfold at most @n@ elements with a monadic functions
+unfoldrNM :: Monad m => Int -> (s -> m (Maybe (a, s))) -> s -> Stream m a
+{-# INLINE_FUSED unfoldrNM #-}
+unfoldrNM m f t = Stream step (t,m)
+  where
+    {-# INLINE_INNER step #-}
+    step (s,n) | n <= 0    = return Done
+               | otherwise = liftM (\r ->
+                               case r of
+                                 Just (x,s') -> Yield x (s',n-1)
+                                 Nothing     -> Done
+                             ) (f s)
+
+-- | Apply monadic function n times to value. Zeroth element is original value.
+iterateNM :: Monad m => Int -> (a -> m a) -> a -> Stream m a
+{-# INLINE_FUSED iterateNM #-}
+iterateNM n f x0 = Stream step (x0,n)
+  where
+    {-# INLINE_INNER step #-}
+    step (x,i) | i <= 0    = return Done
+               | i == n    = return $ Yield x (x,i-1)
+               | otherwise = do a <- f x
+                                return $ Yield a (a,i-1)
+
+-- | Apply function n times to value. Zeroth element is original value.
+iterateN :: Monad m => Int -> (a -> a) -> a -> Stream m a
+{-# INLINE_FUSED iterateN #-}
+iterateN n f x0 = iterateNM n (return . f) x0
+
+-- Scans
+-- -----
+
+-- | Prefix scan
+prescanl :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
+{-# INLINE prescanl #-}
+prescanl f = prescanlM (\a b -> return (f a b))
+
+-- | Prefix scan with a monadic operator
+prescanlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
+{-# INLINE_FUSED prescanlM #-}
+prescanlM f w (Stream step t) = Stream step' (t,w)
+  where
+    {-# INLINE_INNER step' #-}
+    step' (s,x) = do
+                    r <- step s
+                    case r of
+                      Yield y s' -> do
+                                      z <- f x y
+                                      return $ Yield x (s', z)
+                      Skip    s' -> return $ Skip (s', x)
+                      Done       -> return Done
+
+-- | Prefix scan with strict accumulator
+prescanl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
+{-# INLINE prescanl' #-}
+prescanl' f = prescanlM' (\a b -> return (f a b))
+
+-- | Prefix scan with strict accumulator and a monadic operator
+prescanlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
+{-# INLINE_FUSED prescanlM' #-}
+prescanlM' f w (Stream step t) = Stream step' (t,w)
+  where
+    {-# INLINE_INNER step' #-}
+    step' (s,x) = x `seq`
+                  do
+                    r <- step s
+                    case r of
+                      Yield y s' -> do
+                                      z <- f x y
+                                      return $ Yield x (s', z)
+                      Skip    s' -> return $ Skip (s', x)
+                      Done       -> return Done
+
+-- | Suffix scan
+postscanl :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
+{-# INLINE postscanl #-}
+postscanl f = postscanlM (\a b -> return (f a b))
+
+-- | Suffix scan with a monadic operator
+postscanlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
+{-# INLINE_FUSED postscanlM #-}
+postscanlM f w (Stream step t) = Stream step' (t,w)
+  where
+    {-# INLINE_INNER step' #-}
+    step' (s,x) = do
+                    r <- step s
+                    case r of
+                      Yield y s' -> do
+                                      z <- f x y
+                                      return $ Yield z (s',z)
+                      Skip    s' -> return $ Skip (s',x)
+                      Done       -> return Done
+
+-- | Suffix scan with strict accumulator
+postscanl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
+{-# INLINE postscanl' #-}
+postscanl' f = postscanlM' (\a b -> return (f a b))
+
+-- | Suffix scan with strict acccumulator and a monadic operator
+postscanlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
+{-# INLINE_FUSED postscanlM' #-}
+postscanlM' f w (Stream step t) = w `seq` Stream step' (t,w)
+  where
+    {-# INLINE_INNER step' #-}
+    step' (s,x) = x `seq`
+                  do
+                    r <- step s
+                    case r of
+                      Yield y s' -> do
+                                      z <- f x y
+                                      z `seq` return (Yield z (s',z))
+                      Skip    s' -> return $ Skip (s',x)
+                      Done       -> return Done
+
+-- | Haskell-style scan
+scanl :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
+{-# INLINE scanl #-}
+scanl f = scanlM (\a b -> return (f a b))
+
+-- | Haskell-style scan with a monadic operator
+scanlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
+{-# INLINE scanlM #-}
+scanlM f z s = z `cons` postscanlM f z s
+
+-- | Haskell-style scan with strict accumulator
+scanl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
+{-# INLINE scanl' #-}
+scanl' f = scanlM' (\a b -> return (f a b))
+
+-- | Haskell-style scan with strict accumulator and a monadic operator
+scanlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
+{-# INLINE scanlM' #-}
+scanlM' f z s = z `seq` (z `cons` postscanlM f z s)
+
+-- | Scan over a non-empty 'Stream'
+scanl1 :: Monad m => (a -> a -> a) -> Stream m a -> Stream m a
+{-# INLINE scanl1 #-}
+scanl1 f = scanl1M (\x y -> return (f x y))
+
+-- | Scan over a non-empty 'Stream' with a monadic operator
+scanl1M :: Monad m => (a -> a -> m a) -> Stream m a -> Stream m a
+{-# INLINE_FUSED scanl1M #-}
+scanl1M f (Stream step t) = Stream step' (t, Nothing)
+  where
+    {-# INLINE_INNER step' #-}
+    step' (s, Nothing) = do
+                           r <- step s
+                           case r of
+                             Yield x s' -> return $ Yield x (s', Just x)
+                             Skip    s' -> return $ Skip (s', Nothing)
+                             Done       -> EMPTY_STREAM "scanl1M"
+
+    step' (s, Just x) = do
+                          r <- step s
+                          case r of
+                            Yield y s' -> do
+                                            z <- f x y
+                                            return $ Yield z (s', Just z)
+                            Skip    s' -> return $ Skip (s', Just x)
+                            Done       -> return Done
+
+-- | Scan over a non-empty 'Stream' with a strict accumulator
+scanl1' :: Monad m => (a -> a -> a) -> Stream m a -> Stream m a
+{-# INLINE scanl1' #-}
+scanl1' f = scanl1M' (\x y -> return (f x y))
+
+-- | Scan over a non-empty 'Stream' with a strict accumulator and a monadic
+-- operator
+scanl1M' :: Monad m => (a -> a -> m a) -> Stream m a -> Stream m a
+{-# INLINE_FUSED scanl1M' #-}
+scanl1M' f (Stream step t) = Stream step' (t, Nothing)
+  where
+    {-# INLINE_INNER step' #-}
+    step' (s, Nothing) = do
+                           r <- step s
+                           case r of
+                             Yield x s' -> x `seq` return (Yield x (s', Just x))
+                             Skip    s' -> return $ Skip (s', Nothing)
+                             Done       -> EMPTY_STREAM "scanl1M"
+
+    step' (s, Just x) = x `seq`
+                        do
+                          r <- step s
+                          case r of
+                            Yield y s' -> do
+                                            z <- f x y
+                                            z `seq` return (Yield z (s', Just z))
+                            Skip    s' -> return $ Skip (s', Just x)
+                            Done       -> return Done
+
+-- Enumerations
+-- ------------
+
+-- The Enum class is broken for this, there just doesn't seem to be a
+-- way to implement this generically. We have to specialise for as many types
+-- as we can but this doesn't help in polymorphic loops.
+
+-- | Yield a 'Stream' of the given length containing the values @x@, @x+y@,
+-- @x+y+y@ etc.
+enumFromStepN :: (Num a, Monad m) => a -> a -> Int -> Stream m a
+{-# INLINE_FUSED enumFromStepN #-}
+enumFromStepN x y n = x `seq` y `seq` n `seq` Stream step (x,n)
+  where
+    {-# INLINE_INNER step #-}
+    step (w,m) | m > 0     = return $ Yield w (w+y,m-1)
+               | otherwise = return $ Done
+
+-- | Enumerate values
+--
+-- /WARNING:/ This operation can be very inefficient. If at all possible, use
+-- 'enumFromStepN' instead.
+enumFromTo :: (Enum a, Monad m) => a -> a -> Stream m a
+{-# INLINE_FUSED enumFromTo #-}
+enumFromTo x y = fromList [x .. y]
+
+-- NOTE: We use (x+1) instead of (succ x) below because the latter checks for
+-- overflow which can't happen here.
+
+-- FIXME: add "too large" test for Int
+enumFromTo_small :: (Integral a, Monad m) => a -> a -> Stream m a
+{-# INLINE_FUSED enumFromTo_small #-}
+enumFromTo_small x y = x `seq` y `seq` Stream step x
+  where
+    {-# INLINE_INNER step #-}
+    step w | w <= y    = return $ Yield w (w+1)
+           | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Int8> [Stream]"
+  enumFromTo = enumFromTo_small :: Monad m => Int8 -> Int8 -> Stream m Int8
+
+"enumFromTo<Int16> [Stream]"
+  enumFromTo = enumFromTo_small :: Monad m => Int16 -> Int16 -> Stream m Int16
+
+"enumFromTo<Word8> [Stream]"
+  enumFromTo = enumFromTo_small :: Monad m => Word8 -> Word8 -> Stream m Word8
+
+"enumFromTo<Word16> [Stream]"
+  enumFromTo = enumFromTo_small :: Monad m => Word16 -> Word16 -> Stream m Word16   #-}
+
+
+#if WORD_SIZE_IN_BITS > 32
+
+{-# RULES
+
+"enumFromTo<Int32> [Stream]"
+  enumFromTo = enumFromTo_small :: Monad m => Int32 -> Int32 -> Stream m Int32
+
+"enumFromTo<Word32> [Stream]"
+  enumFromTo = enumFromTo_small :: Monad m => Word32 -> Word32 -> Stream m Word32   #-}
+
+
+#endif
+
+-- NOTE: We could implement a generic "too large" test:
+--
+-- len x y | x > y = 0
+--         | n > 0 && n <= fromIntegral (maxBound :: Int) = fromIntegral n
+--         | otherwise = error
+--   where
+--     n = y-x+1
+--
+-- Alas, GHC won't eliminate unnecessary comparisons (such as n >= 0 for
+-- unsigned types). See http://hackage.haskell.org/trac/ghc/ticket/3744
+--
+
+enumFromTo_int :: forall m. Monad m => Int -> Int -> Stream m Int
+{-# INLINE_FUSED enumFromTo_int #-}
+enumFromTo_int x y = x `seq` y `seq` Stream step x
+  where
+    -- {-# INLINE [0] len #-}
+    -- len :: Int -> Int -> Int
+    -- len u v | u > v     = 0
+    --         | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
+    --                       (n > 0)
+    --                     $ n
+    --   where
+    --     n = v-u+1
+
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+enumFromTo_intlike :: (Integral a, Monad m) => a -> a -> Stream m a
+{-# INLINE_FUSED enumFromTo_intlike #-}
+enumFromTo_intlike x y = x `seq` y `seq` Stream step x
+  where
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Int> [Stream]"
+  enumFromTo = enumFromTo_int :: Monad m => Int -> Int -> Stream m Int
+
+#if WORD_SIZE_IN_BITS > 32
+
+"enumFromTo<Int64> [Stream]"
+  enumFromTo = enumFromTo_intlike :: Monad m => Int64 -> Int64 -> Stream m Int64 #-}
+
+#else
+
+"enumFromTo<Int32> [Stream]"
+  enumFromTo = enumFromTo_intlike :: Monad m => Int32 -> Int32 -> Stream m Int32 #-}
+
+#endif
+
+enumFromTo_big_word :: (Integral a, Monad m) => a -> a -> Stream m a
+{-# INLINE_FUSED enumFromTo_big_word #-}
+enumFromTo_big_word x y = x `seq` y `seq` Stream step x
+  where
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Word> [Stream]"
+  enumFromTo = enumFromTo_big_word :: Monad m => Word -> Word -> Stream m Word
+
+"enumFromTo<Word64> [Stream]"
+  enumFromTo = enumFromTo_big_word
+                        :: Monad m => Word64 -> Word64 -> Stream m Word64
+
+#if WORD_SIZE_IN_BITS == 32
+
+"enumFromTo<Word32> [Stream]"
+  enumFromTo = enumFromTo_big_word
+                        :: Monad m => Word32 -> Word32 -> Stream m Word32
+
+#endif
+
+"enumFromTo<Integer> [Stream]"
+  enumFromTo = enumFromTo_big_word
+                        :: Monad m => Integer -> Integer -> Stream m Integer   #-}
+
+
+
+#if WORD_SIZE_IN_BITS > 32
+
+-- FIXME: the "too large" test is totally wrong
+enumFromTo_big_int :: (Integral a, Monad m) => a -> a -> Stream m a
+{-# INLINE_FUSED enumFromTo_big_int #-}
+enumFromTo_big_int x y = x `seq` y `seq` Stream step x
+  where
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Int64> [Stream]"
+  enumFromTo = enumFromTo_big_int :: Monad m => Int64 -> Int64 -> Stream m Int64   #-}
+
+
+
+#endif
+
+enumFromTo_char :: Monad m => Char -> Char -> Stream m Char
+{-# INLINE_FUSED enumFromTo_char #-}
+enumFromTo_char x y = x `seq` y `seq` Stream step xn
+  where
+    xn = ord x
+    yn = ord y
+
+    {-# INLINE_INNER step #-}
+    step zn | zn <= yn  = return $ Yield (unsafeChr zn) (zn+1)
+            | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Char> [Stream]"
+  enumFromTo = enumFromTo_char   #-}
+
+
+
+------------------------------------------------------------------------
+
+-- Specialise enumFromTo for Float and Double.
+-- Also, try to do something about pairs?
+
+enumFromTo_double :: (Monad m, Ord a, RealFrac a) => a -> a -> Stream m a
+{-# INLINE_FUSED enumFromTo_double #-}
+enumFromTo_double n m = n `seq` m `seq` Stream step n
+  where
+    lim = m + 1/2 -- important to float out
+
+    {-# INLINE_INNER step #-}
+    step x | x <= lim  = return $ Yield x (x+1)
+           | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Double> [Stream]"
+  enumFromTo = enumFromTo_double :: Monad m => Double -> Double -> Stream m Double
+
+"enumFromTo<Float> [Stream]"
+  enumFromTo = enumFromTo_double :: Monad m => Float -> Float -> Stream m Float   #-}
+
+
+
+------------------------------------------------------------------------
+
+-- | Enumerate values with a given step.
+--
+-- /WARNING:/ This operation is very inefficient. If at all possible, use
+-- 'enumFromStepN' instead.
+enumFromThenTo :: (Enum a, Monad m) => a -> a -> a -> Stream m a
+{-# INLINE_FUSED enumFromThenTo #-}
+enumFromThenTo x y z = fromList [x, y .. z]
+
+-- FIXME: Specialise enumFromThenTo.
+
+-- Conversions
+-- -----------
+
+-- | Convert a 'Stream' to a list
+toList :: Monad m => Stream m a -> m [a]
+{-# INLINE toList #-}
+toList = foldr (:) []
+
+-- | Convert a list to a 'Stream'
+fromList :: Monad m => [a] -> Stream m a
+{-# INLINE fromList #-}
+fromList zs = Stream step zs
+  where
+    step (x:xs) = return (Yield x xs)
+    step []     = return Done
+
+-- | Convert the first @n@ elements of a list to a 'Bundle'
+fromListN :: Monad m => Int -> [a] -> Stream m a
+{-# INLINE_FUSED fromListN #-}
+fromListN m zs = Stream step (zs,m)
+  where
+    {-# INLINE_INNER step #-}
+    step (_, n) | n <= 0 = return Done
+    step (x:xs,n)        = return (Yield x (xs,n-1))
+    step ([],_)          = return Done
+
+{-
+fromVector :: (Monad m, Vector v a) => v a -> Stream m a
+{-# INLINE_FUSED fromVector #-}
+fromVector v = v `seq` n `seq` Stream (Unf step 0)
+                                      (Unf vstep True)
+                                      (Just v)
+                                      (Exact n)
+  where
+    n = basicLength v
+
+    {-# INLINE step #-}
+    step i | i >= n = return Done
+           | otherwise = case basicUnsafeIndexM v i of
+                           Box x -> return $ Yield x (i+1)
+
+
+    {-# INLINE vstep #-}
+    vstep True  = return (Yield (Chunk (basicLength v) (\mv -> basicUnsafeCopy mv v)) False)
+    vstep False = return Done
+
+fromVectors :: forall m a. (Monad m, Vector v a) => [v a] -> Stream m a
+{-# INLINE_FUSED fromVectors #-}
+fromVectors vs = Stream (Unf pstep (Left vs))
+                        (Unf vstep vs)
+                        Nothing
+                        (Exact n)
+  where
+    n = List.foldl' (\k v -> k + basicLength v) 0 vs
+
+    pstep (Left []) = return Done
+    pstep (Left (v:vs)) = basicLength v `seq` return (Skip (Right (v,0,vs)))
+
+    pstep (Right (v,i,vs))
+      | i >= basicLength v = return $ Skip (Left vs)
+      | otherwise          = case basicUnsafeIndexM v i of
+                               Box x -> return $ Yield x (Right (v,i+1,vs))
+
+    -- FIXME: work around bug in GHC 7.6.1
+    vstep :: [v a] -> m (Step [v a] (Chunk v a))
+    vstep [] = return Done
+    vstep (v:vs) = return $ Yield (Chunk (basicLength v)
+                                         (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
+                                                                       (M.basicLength mv == basicLength v)
+                                                 $ basicUnsafeCopy mv v)) vs
+
+
+concatVectors :: (Monad m, Vector v a) => Stream m (v a) -> Stream m a
+{-# INLINE_FUSED concatVectors #-}
+concatVectors (Stream step s}
+  = Stream (Unf pstep (Left s))
+           (Unf vstep s)
+           Nothing
+           Unknown
+  where
+    pstep (Left s) = do
+      r <- step s
+      case r of
+        Yield v s' -> basicLength v `seq` return (Skip (Right (v,0,s')))
+        Skip    s' -> return (Skip (Left s'))
+        Done       -> return Done
+
+    pstep (Right (v,i,s))
+      | i >= basicLength v = return (Skip (Left s))
+      | otherwise          = case basicUnsafeIndexM v i of
+                               Box x -> return (Yield x (Right (v,i+1,s)))
+
+
+    vstep s = do
+      r <- step s
+      case r of
+        Yield v s' -> return (Yield (Chunk (basicLength v)
+                                           (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
+                                                                          (M.basicLength mv == basicLength v)
+                                                   $ basicUnsafeCopy mv v)) s')
+        Skip    s' -> return (Skip s')
+        Done       -> return Done
+
+reVector :: Monad m => Stream m a -> Stream m a
+{-# INLINE_FUSED reVector #-}
+reVector (Stream step s, sSize = n} = Stream step s n
+
+{-# RULES
+
+"reVector [Vector]"
+  reVector = id
+
+"reVector/reVector [Vector]" forall s.
+  reVector (reVector s) = s   #-}
+
+
+-}
+
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Util.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Util.hs
new file mode 100644
index 0000000000..855bf5ddd4
--- /dev/null
+++ b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Util.hs
@@ -0,0 +1,60 @@
+{-# LANGUAGE CPP #-}
+-- |
+-- Module      : Data.Vector.Fusion.Util
+-- Copyright   : (c) Roman Leshchinskiy 2009
+-- License     : BSD-style
+--
+-- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
+-- Stability   : experimental
+-- Portability : portable
+--
+-- Fusion-related utility types
+--
+
+module Data.Vector.Fusion.Util (
+  Id(..), Box(..),
+
+  delay_inline, delayed_min
+) where
+
+#if !MIN_VERSION_base(4,8,0)
+import Control.Applicative (Applicative(..))
+#endif
+
+-- | Identity monad
+newtype Id a = Id { unId :: a }
+
+instance Functor Id where
+  fmap f (Id x) = Id (f x)
+
+instance Applicative Id where
+  pure = Id
+  Id f <*> Id x = Id (f x)
+
+instance Monad Id where
+  return = pure
+  Id x >>= f = f x
+
+-- | Box monad
+data Box a = Box { unBox :: a }
+
+instance Functor Box where
+  fmap f (Box x) = Box (f x)
+
+instance Applicative Box where
+  pure = Box
+  Box f <*> Box x = Box (f x)
+
+instance Monad Box where
+  return = pure
+  Box x >>= f = f x
+
+-- | Delay inlining a function until late in the game (simplifier phase 0).
+delay_inline :: (a -> b) -> a -> b
+{-# INLINE [0] delay_inline #-}
+delay_inline f = f
+
+-- | `min` inlined in phase 0
+delayed_min :: Int -> Int -> Int
+{-# INLINE [0] delayed_min #-}
+delayed_min m n = min m n