about summary refs log tree commit diff
path: root/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs')
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs1639
1 files changed, 0 insertions, 1639 deletions
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs
deleted file mode 100644
index cca002ca6f..0000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs
+++ /dev/null
@@ -1,1639 +0,0 @@
-{-# LANGUAGE CPP, ExistentialQuantification, MultiParamTypeClasses, FlexibleInstances, Rank2Types, BangPatterns, KindSignatures, GADTs, ScopedTypeVariables #-}
-
--- |
--- Module      : Data.Vector.Fusion.Stream.Monadic
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Monadic stream combinators.
---
-
-module Data.Vector.Fusion.Stream.Monadic (
-  Stream(..), Step(..), SPEC(..),
-
-  -- * Length
-  length, null,
-
-  -- * Construction
-  empty, singleton, cons, snoc, replicate, replicateM, generate, generateM, (++),
-
-  -- * Accessing elements
-  head, last, (!!), (!?),
-
-  -- * Substreams
-  slice, init, tail, take, drop,
-
-  -- * Mapping
-  map, mapM, mapM_, trans, unbox, concatMap, flatten,
-
-  -- * Zipping
-  indexed, indexedR, zipWithM_,
-  zipWithM, zipWith3M, zipWith4M, zipWith5M, zipWith6M,
-  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
-  zip, zip3, zip4, zip5, zip6,
-
-  -- * Comparisons
-  eqBy, cmpBy,
-
-  -- * Filtering
-  filter, filterM, uniq, mapMaybe, takeWhile, takeWhileM, dropWhile, dropWhileM,
-
-  -- * Searching
-  elem, notElem, find, findM, findIndex, findIndexM,
-
-  -- * Folding
-  foldl, foldlM, foldl1, foldl1M, foldM, fold1M,
-  foldl', foldlM', foldl1', foldl1M', foldM', fold1M',
-  foldr, foldrM, foldr1, foldr1M,
-
-  -- * Specialised folds
-  and, or, concatMapM,
-
-  -- * Unfolding
-  unfoldr, unfoldrM,
-  unfoldrN, unfoldrNM,
-  iterateN, iterateNM,
-
-  -- * Scans
-  prescanl, prescanlM, prescanl', prescanlM',
-  postscanl, postscanlM, postscanl', postscanlM',
-  scanl, scanlM, scanl', scanlM',
-  scanl1, scanl1M, scanl1', scanl1M',
-
-  -- * Enumerations
-  enumFromStepN, enumFromTo, enumFromThenTo,
-
-  -- * Conversions
-  toList, fromList, fromListN
-) where
-
-import Data.Vector.Fusion.Util ( Box(..) )
-
-import Data.Char      ( ord )
-import GHC.Base       ( unsafeChr )
-import Control.Monad  ( liftM )
-import Prelude hiding ( length, null,
-                        replicate, (++),
-                        head, last, (!!),
-                        init, tail, take, drop,
-                        map, mapM, mapM_, concatMap,
-                        zipWith, zipWith3, zip, zip3,
-                        filter, takeWhile, dropWhile,
-                        elem, notElem,
-                        foldl, foldl1, foldr, foldr1,
-                        and, or,
-                        scanl, scanl1,
-                        enumFromTo, enumFromThenTo )
-
-import Data.Int  ( Int8, Int16, Int32 )
-import Data.Word ( Word8, Word16, Word32, Word64 )
-
-#if !MIN_VERSION_base(4,8,0)
-import Data.Word ( Word8, Word16, Word32, Word, Word64 )
-#endif
-
-#if __GLASGOW_HASKELL__ >= 708
-import GHC.Types ( SPEC(..) )
-#elif __GLASGOW_HASKELL__ >= 700
-import GHC.Exts ( SpecConstrAnnotation(..) )
-#endif
-
-#include "vector.h"
-#include "MachDeps.h"
-
-#if WORD_SIZE_IN_BITS > 32
-import Data.Int  ( Int64 )
-#endif
-
-#if __GLASGOW_HASKELL__ < 708
-data SPEC = SPEC | SPEC2
-#if __GLASGOW_HASKELL__ >= 700
-{-# ANN type SPEC ForceSpecConstr #-}
-#endif
-#endif
-
-emptyStream :: String
-{-# NOINLINE emptyStream #-}
-emptyStream = "empty stream"
-
-#define EMPTY_STREAM (\state -> ERROR state emptyStream)
-
--- | Result of taking a single step in a stream
-data Step s a where
-  Yield :: a -> s -> Step s a
-  Skip  :: s -> Step s a
-  Done  :: Step s a
-
-instance Functor (Step s) where
-  {-# INLINE fmap #-}
-  fmap f (Yield x s) = Yield (f x) s
-  fmap _ (Skip s) = Skip s
-  fmap _ Done = Done
-
--- | Monadic streams
-data Stream m a = forall s. Stream (s -> m (Step s a)) s
-
--- Length
--- ------
-
--- | Length of a 'Stream'
-length :: Monad m => Stream m a -> m Int
-{-# INLINE_FUSED length #-}
-length = foldl' (\n _ -> n+1) 0
-
--- | Check if a 'Stream' is empty
-null :: Monad m => Stream m a -> m Bool
-{-# INLINE_FUSED null #-}
-null (Stream step t) = null_loop t
-  where
-    null_loop s = do
-      r <- step s
-      case r of
-        Yield _ _ -> return False
-        Skip s'   -> null_loop s'
-        Done      -> return True
-
--- Construction
--- ------------
-
--- | Empty 'Stream'
-empty :: Monad m => Stream m a
-{-# INLINE_FUSED empty #-}
-empty = Stream (const (return Done)) ()
-
--- | Singleton 'Stream'
-singleton :: Monad m => a -> Stream m a
-{-# INLINE_FUSED singleton #-}
-singleton x = Stream (return . step) True
-  where
-    {-# INLINE_INNER step #-}
-    step True  = Yield x False
-    step False = Done
-
--- | Replicate a value to a given length
-replicate :: Monad m => Int -> a -> Stream m a
-{-# INLINE_FUSED replicate #-}
-replicate n x = replicateM n (return x)
-
--- | Yield a 'Stream' of values obtained by performing the monadic action the
--- given number of times
-replicateM :: Monad m => Int -> m a -> Stream m a
-{-# INLINE_FUSED replicateM #-}
-replicateM n p = Stream step n
-  where
-    {-# INLINE_INNER step #-}
-    step i | i <= 0    = return Done
-           | otherwise = do { x <- p; return $ Yield x (i-1) }
-
-generate :: Monad m => Int -> (Int -> a) -> Stream m a
-{-# INLINE generate #-}
-generate n f = generateM n (return . f)
-
--- | Generate a stream from its indices
-generateM :: Monad m => Int -> (Int -> m a) -> Stream m a
-{-# INLINE_FUSED generateM #-}
-generateM n f = n `seq` Stream step 0
-  where
-    {-# INLINE_INNER step #-}
-    step i | i < n     = do
-                           x <- f i
-                           return $ Yield x (i+1)
-           | otherwise = return Done
-
--- | Prepend an element
-cons :: Monad m => a -> Stream m a -> Stream m a
-{-# INLINE cons #-}
-cons x s = singleton x ++ s
-
--- | Append an element
-snoc :: Monad m => Stream m a -> a -> Stream m a
-{-# INLINE snoc #-}
-snoc s x = s ++ singleton x
-
-infixr 5 ++
--- | Concatenate two 'Stream's
-(++) :: Monad m => Stream m a -> Stream m a -> Stream m a
-{-# INLINE_FUSED (++) #-}
-Stream stepa ta ++ Stream stepb tb = Stream step (Left ta)
-  where
-    {-# INLINE_INNER step #-}
-    step (Left  sa) = do
-                        r <- stepa sa
-                        case r of
-                          Yield x sa' -> return $ Yield x (Left  sa')
-                          Skip    sa' -> return $ Skip    (Left  sa')
-                          Done        -> return $ Skip    (Right tb)
-    step (Right sb) = do
-                        r <- stepb sb
-                        case r of
-                          Yield x sb' -> return $ Yield x (Right sb')
-                          Skip    sb' -> return $ Skip    (Right sb')
-                          Done        -> return $ Done
-
--- Accessing elements
--- ------------------
-
--- | First element of the 'Stream' or error if empty
-head :: Monad m => Stream m a -> m a
-{-# INLINE_FUSED head #-}
-head (Stream step t) = head_loop SPEC t
-  where
-    head_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x _  -> return x
-            Skip    s' -> head_loop SPEC s'
-            Done       -> EMPTY_STREAM "head"
-
-
-
--- | Last element of the 'Stream' or error if empty
-last :: Monad m => Stream m a -> m a
-{-# INLINE_FUSED last #-}
-last (Stream step t) = last_loop0 SPEC t
-  where
-    last_loop0 !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> last_loop1 SPEC x s'
-            Skip    s' -> last_loop0 SPEC   s'
-            Done       -> EMPTY_STREAM "last"
-
-    last_loop1 !_ x s
-      = do
-          r <- step s
-          case r of
-            Yield y s' -> last_loop1 SPEC y s'
-            Skip    s' -> last_loop1 SPEC x s'
-            Done       -> return x
-
-infixl 9 !!
--- | Element at the given position
-(!!) :: Monad m => Stream m a -> Int -> m a
-{-# INLINE (!!) #-}
-Stream step t !! j | j < 0     = ERROR "!!" "negative index"
-                   | otherwise = index_loop SPEC t j
-  where
-    index_loop !_ s i
-      = i `seq`
-        do
-          r <- step s
-          case r of
-            Yield x s' | i == 0    -> return x
-                       | otherwise -> index_loop SPEC s' (i-1)
-            Skip    s'             -> index_loop SPEC s' i
-            Done                   -> EMPTY_STREAM "!!"
-
-infixl 9 !?
--- | Element at the given position or 'Nothing' if out of bounds
-(!?) :: Monad m => Stream m a -> Int -> m (Maybe a)
-{-# INLINE (!?) #-}
-Stream step t !? j = index_loop SPEC t j
-  where
-    index_loop !_ s i
-      = i `seq`
-        do
-          r <- step s
-          case r of
-            Yield x s' | i == 0    -> return (Just x)
-                       | otherwise -> index_loop SPEC s' (i-1)
-            Skip    s'             -> index_loop SPEC s' i
-            Done                   -> return Nothing
-
--- Substreams
--- ----------
-
--- | Extract a substream of the given length starting at the given position.
-slice :: Monad m => Int   -- ^ starting index
-                 -> Int   -- ^ length
-                 -> Stream m a
-                 -> Stream m a
-{-# INLINE slice #-}
-slice i n s = take n (drop i s)
-
--- | All but the last element
-init :: Monad m => Stream m a -> Stream m a
-{-# INLINE_FUSED init #-}
-init (Stream step t) = Stream step' (Nothing, t)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (Nothing, s) = liftM (\r ->
-                           case r of
-                             Yield x s' -> Skip (Just x,  s')
-                             Skip    s' -> Skip (Nothing, s')
-                             Done       -> EMPTY_STREAM "init"
-                         ) (step s)
-
-    step' (Just x,  s) = liftM (\r ->
-                           case r of
-                             Yield y s' -> Yield x (Just y, s')
-                             Skip    s' -> Skip    (Just x, s')
-                             Done       -> Done
-                         ) (step s)
-
--- | All but the first element
-tail :: Monad m => Stream m a -> Stream m a
-{-# INLINE_FUSED tail #-}
-tail (Stream step t) = Stream step' (Left t)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (Left  s) = liftM (\r ->
-                        case r of
-                          Yield _ s' -> Skip (Right s')
-                          Skip    s' -> Skip (Left  s')
-                          Done       -> EMPTY_STREAM "tail"
-                      ) (step s)
-
-    step' (Right s) = liftM (\r ->
-                        case r of
-                          Yield x s' -> Yield x (Right s')
-                          Skip    s' -> Skip    (Right s')
-                          Done       -> Done
-                      ) (step s)
-
--- | The first @n@ elements
-take :: Monad m => Int -> Stream m a -> Stream m a
-{-# INLINE_FUSED take #-}
-take n (Stream step t) = n `seq` Stream step' (t, 0)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s, i) | i < n = liftM (\r ->
-                             case r of
-                               Yield x s' -> Yield x (s', i+1)
-                               Skip    s' -> Skip    (s', i)
-                               Done       -> Done
-                           ) (step s)
-    step' (_, _) = return Done
-
--- | All but the first @n@ elements
-drop :: Monad m => Int -> Stream m a -> Stream m a
-{-# INLINE_FUSED drop #-}
-drop n (Stream step t) = Stream step' (t, Just n)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s, Just i) | i > 0 = liftM (\r ->
-                                case r of
-                                   Yield _ s' -> Skip (s', Just (i-1))
-                                   Skip    s' -> Skip (s', Just i)
-                                   Done       -> Done
-                                ) (step s)
-                      | otherwise = return $ Skip (s, Nothing)
-
-    step' (s, Nothing) = liftM (\r ->
-                           case r of
-                             Yield x s' -> Yield x (s', Nothing)
-                             Skip    s' -> Skip    (s', Nothing)
-                             Done       -> Done
-                           ) (step s)
-
--- Mapping
--- -------
-
-instance Monad m => Functor (Stream m) where
-  {-# INLINE fmap #-}
-  fmap = map
-
--- | Map a function over a 'Stream'
-map :: Monad m => (a -> b) -> Stream m a -> Stream m b
-{-# INLINE map #-}
-map f = mapM (return . f)
-
-
--- | Map a monadic function over a 'Stream'
-mapM :: Monad m => (a -> m b) -> Stream m a -> Stream m b
-{-# INLINE_FUSED mapM #-}
-mapM f (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield x s' -> liftM  (`Yield` s') (f x)
-                  Skip    s' -> return (Skip    s')
-                  Done       -> return Done
-
-consume :: Monad m => Stream m a -> m ()
-{-# INLINE_FUSED consume #-}
-consume (Stream step t) = consume_loop SPEC t
-  where
-    consume_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield _ s' -> consume_loop SPEC s'
-            Skip    s' -> consume_loop SPEC s'
-            Done       -> return ()
-
--- | Execute a monadic action for each element of the 'Stream'
-mapM_ :: Monad m => (a -> m b) -> Stream m a -> m ()
-{-# INLINE_FUSED mapM_ #-}
-mapM_ m = consume . mapM m
-
--- | Transform a 'Stream' to use a different monad
-trans :: (Monad m, Monad m')
-      => (forall z. m z -> m' z) -> Stream m a -> Stream m' a
-{-# INLINE_FUSED trans #-}
-trans f (Stream step s) = Stream (f . step) s
-
-unbox :: Monad m => Stream m (Box a) -> Stream m a
-{-# INLINE_FUSED unbox #-}
-unbox (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield (Box x) s' -> return $ Yield x s'
-                  Skip          s' -> return $ Skip    s'
-                  Done             -> return $ Done
-
--- Zipping
--- -------
-
--- | Pair each element in a 'Stream' with its index
-indexed :: Monad m => Stream m a -> Stream m (Int,a)
-{-# INLINE_FUSED indexed #-}
-indexed (Stream step t) = Stream step' (t,0)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,i) = i `seq`
-                  do
-                    r <- step s
-                    case r of
-                      Yield x s' -> return $ Yield (i,x) (s', i+1)
-                      Skip    s' -> return $ Skip        (s', i)
-                      Done       -> return Done
-
--- | Pair each element in a 'Stream' with its index, starting from the right
--- and counting down
-indexedR :: Monad m => Int -> Stream m a -> Stream m (Int,a)
-{-# INLINE_FUSED indexedR #-}
-indexedR m (Stream step t) = Stream step' (t,m)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,i) = i `seq`
-                  do
-                    r <- step s
-                    case r of
-                      Yield x s' -> let i' = i-1
-                                    in
-                                    return $ Yield (i',x) (s', i')
-                      Skip    s' -> return $ Skip         (s', i)
-                      Done       -> return Done
-
--- | Zip two 'Stream's with the given monadic function
-zipWithM :: Monad m => (a -> b -> m c) -> Stream m a -> Stream m b -> Stream m c
-{-# INLINE_FUSED zipWithM #-}
-zipWithM f (Stream stepa ta) (Stream stepb tb) = Stream step (ta, tb, Nothing)
-  where
-    {-# INLINE_INNER step #-}
-    step (sa, sb, Nothing) = liftM (\r ->
-                               case r of
-                                 Yield x sa' -> Skip (sa', sb, Just x)
-                                 Skip    sa' -> Skip (sa', sb, Nothing)
-                                 Done        -> Done
-                             ) (stepa sa)
-
-    step (sa, sb, Just x)  = do
-                               r <- stepb sb
-                               case r of
-                                 Yield y sb' ->
-                                   do
-                                     z <- f x y
-                                     return $ Yield z (sa, sb', Nothing)
-                                 Skip    sb' -> return $ Skip (sa, sb', Just x)
-                                 Done        -> return $ Done
-
--- FIXME: This might expose an opportunity for inplace execution.
-{-# RULES
-
-"zipWithM xs xs [Vector.Stream]" forall f xs.
-  zipWithM f xs xs = mapM (\x -> f x x) xs   #-}
-
-
-zipWithM_ :: Monad m => (a -> b -> m c) -> Stream m a -> Stream m b -> m ()
-{-# INLINE zipWithM_ #-}
-zipWithM_ f sa sb = consume (zipWithM f sa sb)
-
-zipWith3M :: Monad m => (a -> b -> c -> m d) -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-{-# INLINE_FUSED zipWith3M #-}
-zipWith3M f (Stream stepa ta)
-            (Stream stepb tb)
-            (Stream stepc tc) = Stream step (ta, tb, tc, Nothing)
-  where
-    {-# INLINE_INNER step #-}
-    step (sa, sb, sc, Nothing) = do
-        r <- stepa sa
-        return $ case r of
-            Yield x sa' -> Skip (sa', sb, sc, Just (x, Nothing))
-            Skip    sa' -> Skip (sa', sb, sc, Nothing)
-            Done        -> Done
-
-    step (sa, sb, sc, Just (x, Nothing)) = do
-        r <- stepb sb
-        return $ case r of
-            Yield y sb' -> Skip (sa, sb', sc, Just (x, Just y))
-            Skip    sb' -> Skip (sa, sb', sc, Just (x, Nothing))
-            Done        -> Done
-
-    step (sa, sb, sc, Just (x, Just y)) = do
-        r <- stepc sc
-        case r of
-            Yield z sc' -> f x y z >>= (\res -> return $ Yield res (sa, sb, sc', Nothing))
-            Skip    sc' -> return $ Skip (sa, sb, sc', Just (x, Just y))
-            Done        -> return $ Done
-
-zipWith4M :: Monad m => (a -> b -> c -> d -> m e)
-                     -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                     -> Stream m e
-{-# INLINE zipWith4M #-}
-zipWith4M f sa sb sc sd
-  = zipWithM (\(a,b) (c,d) -> f a b c d) (zip sa sb) (zip sc sd)
-
-zipWith5M :: Monad m => (a -> b -> c -> d -> e -> m f)
-                     -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                     -> Stream m e -> Stream m f
-{-# INLINE zipWith5M #-}
-zipWith5M f sa sb sc sd se
-  = zipWithM (\(a,b,c) (d,e) -> f a b c d e) (zip3 sa sb sc) (zip sd se)
-
-zipWith6M :: Monad m => (a -> b -> c -> d -> e -> f -> m g)
-                     -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                     -> Stream m e -> Stream m f -> Stream m g
-{-# INLINE zipWith6M #-}
-zipWith6M fn sa sb sc sd se sf
-  = zipWithM (\(a,b,c) (d,e,f) -> fn a b c d e f) (zip3 sa sb sc)
-                                                  (zip3 sd se sf)
-
-zipWith :: Monad m => (a -> b -> c) -> Stream m a -> Stream m b -> Stream m c
-{-# INLINE zipWith #-}
-zipWith f = zipWithM (\a b -> return (f a b))
-
-zipWith3 :: Monad m => (a -> b -> c -> d)
-                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-{-# INLINE zipWith3 #-}
-zipWith3 f = zipWith3M (\a b c -> return (f a b c))
-
-zipWith4 :: Monad m => (a -> b -> c -> d -> e)
-                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                    -> Stream m e
-{-# INLINE zipWith4 #-}
-zipWith4 f = zipWith4M (\a b c d -> return (f a b c d))
-
-zipWith5 :: Monad m => (a -> b -> c -> d -> e -> f)
-                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                    -> Stream m e -> Stream m f
-{-# INLINE zipWith5 #-}
-zipWith5 f = zipWith5M (\a b c d e -> return (f a b c d e))
-
-zipWith6 :: Monad m => (a -> b -> c -> d -> e -> f -> g)
-                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                    -> Stream m e -> Stream m f -> Stream m g
-{-# INLINE zipWith6 #-}
-zipWith6 fn = zipWith6M (\a b c d e f -> return (fn a b c d e f))
-
-zip :: Monad m => Stream m a -> Stream m b -> Stream m (a,b)
-{-# INLINE zip #-}
-zip = zipWith (,)
-
-zip3 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m (a,b,c)
-{-# INLINE zip3 #-}
-zip3 = zipWith3 (,,)
-
-zip4 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m d
-                -> Stream m (a,b,c,d)
-{-# INLINE zip4 #-}
-zip4 = zipWith4 (,,,)
-
-zip5 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m d
-                -> Stream m e -> Stream m (a,b,c,d,e)
-{-# INLINE zip5 #-}
-zip5 = zipWith5 (,,,,)
-
-zip6 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m d
-                -> Stream m e -> Stream m f -> Stream m (a,b,c,d,e,f)
-{-# INLINE zip6 #-}
-zip6 = zipWith6 (,,,,,)
-
--- Comparisons
--- -----------
-
--- | Check if two 'Stream's are equal
-eqBy :: (Monad m) => (a -> b -> Bool) -> Stream m a -> Stream m b -> m Bool
-{-# INLINE_FUSED eqBy #-}
-eqBy eq (Stream step1 t1) (Stream step2 t2) = eq_loop0 SPEC t1 t2
-  where
-    eq_loop0 !_ s1 s2 = do
-      r <- step1 s1
-      case r of
-        Yield x s1' -> eq_loop1 SPEC x s1' s2
-        Skip    s1' -> eq_loop0 SPEC   s1' s2
-        Done        -> eq_null s2
-
-    eq_loop1 !_ x s1 s2 = do
-      r <- step2 s2
-      case r of
-        Yield y s2'
-          | eq x y    -> eq_loop0 SPEC   s1 s2'
-          | otherwise -> return False
-        Skip    s2'   -> eq_loop1 SPEC x s1 s2'
-        Done          -> return False
-
-    eq_null s2 = do
-      r <- step2 s2
-      case r of
-        Yield _ _ -> return False
-        Skip s2'  -> eq_null s2'
-        Done      -> return True
-
--- | Lexicographically compare two 'Stream's
-cmpBy :: (Monad m) => (a -> b -> Ordering) -> Stream m a -> Stream m b -> m Ordering
-{-# INLINE_FUSED cmpBy #-}
-cmpBy cmp (Stream step1 t1) (Stream step2 t2) = cmp_loop0 SPEC t1 t2
-  where
-    cmp_loop0 !_ s1 s2 = do
-      r <- step1 s1
-      case r of
-        Yield x s1' -> cmp_loop1 SPEC x s1' s2
-        Skip    s1' -> cmp_loop0 SPEC   s1' s2
-        Done        -> cmp_null s2
-
-    cmp_loop1 !_ x s1 s2 = do
-      r <- step2 s2
-      case r of
-        Yield y s2' -> case x `cmp` y of
-                         EQ -> cmp_loop0 SPEC s1 s2'
-                         c  -> return c
-        Skip    s2' -> cmp_loop1 SPEC x s1 s2'
-        Done        -> return GT
-
-    cmp_null s2 = do
-      r <- step2 s2
-      case r of
-        Yield _ _ -> return LT
-        Skip s2'  -> cmp_null s2'
-        Done      -> return EQ
-
--- Filtering
--- ---------
-
--- | Drop elements which do not satisfy the predicate
-filter :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
-{-# INLINE filter #-}
-filter f = filterM (return . f)
-
-mapMaybe :: Monad m => (a -> Maybe b) -> Stream m a -> Stream m b
-{-# INLINE_FUSED mapMaybe #-}
-mapMaybe f (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield x s' -> do
-                                  return $ case f x of
-                                    Nothing -> Skip s'
-                                    Just b' -> Yield b' s'
-                  Skip    s' -> return $ Skip s'
-                  Done       -> return $ Done
-
--- | Drop elements which do not satisfy the monadic predicate
-filterM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
-{-# INLINE_FUSED filterM #-}
-filterM f (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield x s' -> do
-                                  b <- f x
-                                  return $ if b then Yield x s'
-                                                else Skip    s'
-                  Skip    s' -> return $ Skip s'
-                  Done       -> return $ Done
-
--- | Drop repeated adjacent elements.
-uniq :: (Eq a, Monad m) => Stream m a -> Stream m a
-{-# INLINE_FUSED uniq #-}
-uniq (Stream step st) = Stream step' (Nothing,st)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (Nothing, s) = do r <- step s
-                            case r of
-                              Yield x s' -> return $ Yield x (Just x , s')
-                              Skip  s'   -> return $ Skip  (Nothing, s')
-                              Done       -> return   Done
-    step' (Just x0, s) = do r <- step s
-                            case r of
-                              Yield x s' | x == x0   -> return $ Skip    (Just x0, s')
-                                         | otherwise -> return $ Yield x (Just x , s')
-                              Skip  s'   -> return $ Skip (Just x0, s')
-                              Done       -> return   Done
-
--- | Longest prefix of elements that satisfy the predicate
-takeWhile :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
-{-# INLINE takeWhile #-}
-takeWhile f = takeWhileM (return . f)
-
--- | Longest prefix of elements that satisfy the monadic predicate
-takeWhileM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
-{-# INLINE_FUSED takeWhileM #-}
-takeWhileM f (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield x s' -> do
-                                  b <- f x
-                                  return $ if b then Yield x s' else Done
-                  Skip    s' -> return $ Skip s'
-                  Done       -> return $ Done
-
--- | Drop the longest prefix of elements that satisfy the predicate
-dropWhile :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
-{-# INLINE dropWhile #-}
-dropWhile f = dropWhileM (return . f)
-
-data DropWhile s a = DropWhile_Drop s | DropWhile_Yield a s | DropWhile_Next s
-
--- | Drop the longest prefix of elements that satisfy the monadic predicate
-dropWhileM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
-{-# INLINE_FUSED dropWhileM #-}
-dropWhileM f (Stream step t) = Stream step' (DropWhile_Drop t)
-  where
-    -- NOTE: we jump through hoops here to have only one Yield; local data
-    -- declarations would be nice!
-
-    {-# INLINE_INNER step' #-}
-    step' (DropWhile_Drop s)
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> do
-                            b <- f x
-                            return $ if b then Skip (DropWhile_Drop    s')
-                                          else Skip (DropWhile_Yield x s')
-            Skip    s' -> return $ Skip (DropWhile_Drop    s')
-            Done       -> return $ Done
-
-    step' (DropWhile_Yield x s) = return $ Yield x (DropWhile_Next s)
-
-    step' (DropWhile_Next s)
-      = liftM (\r ->
-          case r of
-            Yield x s' -> Skip    (DropWhile_Yield x s')
-            Skip    s' -> Skip    (DropWhile_Next    s')
-            Done       -> Done
-        ) (step s)
-
--- Searching
--- ---------
-
-infix 4 `elem`
--- | Check whether the 'Stream' contains an element
-elem :: (Monad m, Eq a) => a -> Stream m a -> m Bool
-{-# INLINE_FUSED elem #-}
-elem x (Stream step t) = elem_loop SPEC t
-  where
-    elem_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield y s' | x == y    -> return True
-                       | otherwise -> elem_loop SPEC s'
-            Skip    s'             -> elem_loop SPEC s'
-            Done                   -> return False
-
-infix 4 `notElem`
--- | Inverse of `elem`
-notElem :: (Monad m, Eq a) => a -> Stream m a -> m Bool
-{-# INLINE notElem #-}
-notElem x s = liftM not (elem x s)
-
--- | Yield 'Just' the first element that satisfies the predicate or 'Nothing'
--- if no such element exists.
-find :: Monad m => (a -> Bool) -> Stream m a -> m (Maybe a)
-{-# INLINE find #-}
-find f = findM (return . f)
-
--- | Yield 'Just' the first element that satisfies the monadic predicate or
--- 'Nothing' if no such element exists.
-findM :: Monad m => (a -> m Bool) -> Stream m a -> m (Maybe a)
-{-# INLINE_FUSED findM #-}
-findM f (Stream step t) = find_loop SPEC t
-  where
-    find_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> do
-                            b <- f x
-                            if b then return $ Just x
-                                 else find_loop SPEC s'
-            Skip    s' -> find_loop SPEC s'
-            Done       -> return Nothing
-
--- | Yield 'Just' the index of the first element that satisfies the predicate
--- or 'Nothing' if no such element exists.
-findIndex :: Monad m => (a -> Bool) -> Stream m a -> m (Maybe Int)
-{-# INLINE_FUSED findIndex #-}
-findIndex f = findIndexM (return . f)
-
--- | Yield 'Just' the index of the first element that satisfies the monadic
--- predicate or 'Nothing' if no such element exists.
-findIndexM :: Monad m => (a -> m Bool) -> Stream m a -> m (Maybe Int)
-{-# INLINE_FUSED findIndexM #-}
-findIndexM f (Stream step t) = findIndex_loop SPEC t 0
-  where
-    findIndex_loop !_ s i
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> do
-                            b <- f x
-                            if b then return $ Just i
-                                 else findIndex_loop SPEC s' (i+1)
-            Skip    s' -> findIndex_loop SPEC s' i
-            Done       -> return Nothing
-
--- Folding
--- -------
-
--- | Left fold
-foldl :: Monad m => (a -> b -> a) -> a -> Stream m b -> m a
-{-# INLINE foldl #-}
-foldl f = foldlM (\a b -> return (f a b))
-
--- | Left fold with a monadic operator
-foldlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
-{-# INLINE_FUSED foldlM #-}
-foldlM m w (Stream step t) = foldlM_loop SPEC w t
-  where
-    foldlM_loop !_ z s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> do { z' <- m z x; foldlM_loop SPEC z' s' }
-            Skip    s' -> foldlM_loop SPEC z s'
-            Done       -> return z
-
--- | Same as 'foldlM'
-foldM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
-{-# INLINE foldM #-}
-foldM = foldlM
-
--- | Left fold over a non-empty 'Stream'
-foldl1 :: Monad m => (a -> a -> a) -> Stream m a -> m a
-{-# INLINE foldl1 #-}
-foldl1 f = foldl1M (\a b -> return (f a b))
-
--- | Left fold over a non-empty 'Stream' with a monadic operator
-foldl1M :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE_FUSED foldl1M #-}
-foldl1M f (Stream step t) = foldl1M_loop SPEC t
-  where
-    foldl1M_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> foldlM f x (Stream step s')
-            Skip    s' -> foldl1M_loop SPEC s'
-            Done       -> EMPTY_STREAM "foldl1M"
-
--- | Same as 'foldl1M'
-fold1M :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE fold1M #-}
-fold1M = foldl1M
-
--- | Left fold with a strict accumulator
-foldl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> m a
-{-# INLINE foldl' #-}
-foldl' f = foldlM' (\a b -> return (f a b))
-
--- | Left fold with a strict accumulator and a monadic operator
-foldlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
-{-# INLINE_FUSED foldlM' #-}
-foldlM' m w (Stream step t) = foldlM'_loop SPEC w t
-  where
-    foldlM'_loop !_ z s
-      = z `seq`
-        do
-          r <- step s
-          case r of
-            Yield x s' -> do { z' <- m z x; foldlM'_loop SPEC z' s' }
-            Skip    s' -> foldlM'_loop SPEC z s'
-            Done       -> return z
-
--- | Same as 'foldlM''
-foldM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
-{-# INLINE foldM' #-}
-foldM' = foldlM'
-
--- | Left fold over a non-empty 'Stream' with a strict accumulator
-foldl1' :: Monad m => (a -> a -> a) -> Stream m a -> m a
-{-# INLINE foldl1' #-}
-foldl1' f = foldl1M' (\a b -> return (f a b))
-
--- | Left fold over a non-empty 'Stream' with a strict accumulator and a
--- monadic operator
-foldl1M' :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE_FUSED foldl1M' #-}
-foldl1M' f (Stream step t) = foldl1M'_loop SPEC t
-  where
-    foldl1M'_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> foldlM' f x (Stream step s')
-            Skip    s' -> foldl1M'_loop SPEC s'
-            Done       -> EMPTY_STREAM "foldl1M'"
-
--- | Same as 'foldl1M''
-fold1M' :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE fold1M' #-}
-fold1M' = foldl1M'
-
--- | Right fold
-foldr :: Monad m => (a -> b -> b) -> b -> Stream m a -> m b
-{-# INLINE foldr #-}
-foldr f = foldrM (\a b -> return (f a b))
-
--- | Right fold with a monadic operator
-foldrM :: Monad m => (a -> b -> m b) -> b -> Stream m a -> m b
-{-# INLINE_FUSED foldrM #-}
-foldrM f z (Stream step t) = foldrM_loop SPEC t
-  where
-    foldrM_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> f x =<< foldrM_loop SPEC s'
-            Skip    s' -> foldrM_loop SPEC s'
-            Done       -> return z
-
--- | Right fold over a non-empty stream
-foldr1 :: Monad m => (a -> a -> a) -> Stream m a -> m a
-{-# INLINE foldr1 #-}
-foldr1 f = foldr1M (\a b -> return (f a b))
-
--- | Right fold over a non-empty stream with a monadic operator
-foldr1M :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE_FUSED foldr1M #-}
-foldr1M f (Stream step t) = foldr1M_loop0 SPEC t
-  where
-    foldr1M_loop0 !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> foldr1M_loop1 SPEC x s'
-            Skip    s' -> foldr1M_loop0 SPEC   s'
-            Done       -> EMPTY_STREAM "foldr1M"
-
-    foldr1M_loop1 !_ x s
-      = do
-          r <- step s
-          case r of
-            Yield y s' -> f x =<< foldr1M_loop1 SPEC y s'
-            Skip    s' -> foldr1M_loop1 SPEC x s'
-            Done       -> return x
-
--- Specialised folds
--- -----------------
-
-and :: Monad m => Stream m Bool -> m Bool
-{-# INLINE_FUSED and #-}
-and (Stream step t) = and_loop SPEC t
-  where
-    and_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield False _  -> return False
-            Yield True  s' -> and_loop SPEC s'
-            Skip        s' -> and_loop SPEC s'
-            Done           -> return True
-
-or :: Monad m => Stream m Bool -> m Bool
-{-# INLINE_FUSED or #-}
-or (Stream step t) = or_loop SPEC t
-  where
-    or_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield False s' -> or_loop SPEC s'
-            Yield True  _  -> return True
-            Skip        s' -> or_loop SPEC s'
-            Done           -> return False
-
-concatMap :: Monad m => (a -> Stream m b) -> Stream m a -> Stream m b
-{-# INLINE concatMap #-}
-concatMap f = concatMapM (return . f)
-
-concatMapM :: Monad m => (a -> m (Stream m b)) -> Stream m a -> Stream m b
-{-# INLINE_FUSED concatMapM #-}
-concatMapM f (Stream step t) = Stream concatMap_go (Left t)
-  where
-    concatMap_go (Left s) = do
-        r <- step s
-        case r of
-            Yield a s' -> do
-                b_stream <- f a
-                return $ Skip (Right (b_stream, s'))
-            Skip    s' -> return $ Skip (Left s')
-            Done       -> return Done
-    concatMap_go (Right (Stream inner_step inner_s, s)) = do
-        r <- inner_step inner_s
-        case r of
-            Yield b inner_s' -> return $ Yield b (Right (Stream inner_step inner_s', s))
-            Skip    inner_s' -> return $ Skip (Right (Stream inner_step inner_s', s))
-            Done             -> return $ Skip (Left s)
-
--- | Create a 'Stream' of values from a 'Stream' of streamable things
-flatten :: Monad m => (a -> m s) -> (s -> m (Step s b)) -> Stream m a -> Stream m b
-{-# INLINE_FUSED flatten #-}
-flatten mk istep (Stream ostep u) = Stream step (Left u)
-  where
-    {-# INLINE_INNER step #-}
-    step (Left t) = do
-                      r <- ostep t
-                      case r of
-                        Yield a t' -> do
-                                        s <- mk a
-                                        s `seq` return (Skip (Right (s,t')))
-                        Skip    t' -> return $ Skip (Left t')
-                        Done       -> return $ Done
-
-
-    step (Right (s,t)) = do
-                           r <- istep s
-                           case r of
-                             Yield x s' -> return $ Yield x (Right (s',t))
-                             Skip    s' -> return $ Skip    (Right (s',t))
-                             Done       -> return $ Skip    (Left t)
-
--- Unfolding
--- ---------
-
--- | Unfold
-unfoldr :: Monad m => (s -> Maybe (a, s)) -> s -> Stream m a
-{-# INLINE_FUSED unfoldr #-}
-unfoldr f = unfoldrM (return . f)
-
--- | Unfold with a monadic function
-unfoldrM :: Monad m => (s -> m (Maybe (a, s))) -> s -> Stream m a
-{-# INLINE_FUSED unfoldrM #-}
-unfoldrM f t = Stream step t
-  where
-    {-# INLINE_INNER step #-}
-    step s = liftM (\r ->
-               case r of
-                 Just (x, s') -> Yield x s'
-                 Nothing      -> Done
-             ) (f s)
-
-unfoldrN :: Monad m => Int -> (s -> Maybe (a, s)) -> s -> Stream m a
-{-# INLINE_FUSED unfoldrN #-}
-unfoldrN n f = unfoldrNM n (return . f)
-
--- | Unfold at most @n@ elements with a monadic functions
-unfoldrNM :: Monad m => Int -> (s -> m (Maybe (a, s))) -> s -> Stream m a
-{-# INLINE_FUSED unfoldrNM #-}
-unfoldrNM m f t = Stream step (t,m)
-  where
-    {-# INLINE_INNER step #-}
-    step (s,n) | n <= 0    = return Done
-               | otherwise = liftM (\r ->
-                               case r of
-                                 Just (x,s') -> Yield x (s',n-1)
-                                 Nothing     -> Done
-                             ) (f s)
-
--- | Apply monadic function n times to value. Zeroth element is original value.
-iterateNM :: Monad m => Int -> (a -> m a) -> a -> Stream m a
-{-# INLINE_FUSED iterateNM #-}
-iterateNM n f x0 = Stream step (x0,n)
-  where
-    {-# INLINE_INNER step #-}
-    step (x,i) | i <= 0    = return Done
-               | i == n    = return $ Yield x (x,i-1)
-               | otherwise = do a <- f x
-                                return $ Yield a (a,i-1)
-
--- | Apply function n times to value. Zeroth element is original value.
-iterateN :: Monad m => Int -> (a -> a) -> a -> Stream m a
-{-# INLINE_FUSED iterateN #-}
-iterateN n f x0 = iterateNM n (return . f) x0
-
--- Scans
--- -----
-
--- | Prefix scan
-prescanl :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE prescanl #-}
-prescanl f = prescanlM (\a b -> return (f a b))
-
--- | Prefix scan with a monadic operator
-prescanlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE_FUSED prescanlM #-}
-prescanlM f w (Stream step t) = Stream step' (t,w)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,x) = do
-                    r <- step s
-                    case r of
-                      Yield y s' -> do
-                                      z <- f x y
-                                      return $ Yield x (s', z)
-                      Skip    s' -> return $ Skip (s', x)
-                      Done       -> return Done
-
--- | Prefix scan with strict accumulator
-prescanl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE prescanl' #-}
-prescanl' f = prescanlM' (\a b -> return (f a b))
-
--- | Prefix scan with strict accumulator and a monadic operator
-prescanlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE_FUSED prescanlM' #-}
-prescanlM' f w (Stream step t) = Stream step' (t,w)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,x) = x `seq`
-                  do
-                    r <- step s
-                    case r of
-                      Yield y s' -> do
-                                      z <- f x y
-                                      return $ Yield x (s', z)
-                      Skip    s' -> return $ Skip (s', x)
-                      Done       -> return Done
-
--- | Suffix scan
-postscanl :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE postscanl #-}
-postscanl f = postscanlM (\a b -> return (f a b))
-
--- | Suffix scan with a monadic operator
-postscanlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE_FUSED postscanlM #-}
-postscanlM f w (Stream step t) = Stream step' (t,w)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,x) = do
-                    r <- step s
-                    case r of
-                      Yield y s' -> do
-                                      z <- f x y
-                                      return $ Yield z (s',z)
-                      Skip    s' -> return $ Skip (s',x)
-                      Done       -> return Done
-
--- | Suffix scan with strict accumulator
-postscanl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE postscanl' #-}
-postscanl' f = postscanlM' (\a b -> return (f a b))
-
--- | Suffix scan with strict acccumulator and a monadic operator
-postscanlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE_FUSED postscanlM' #-}
-postscanlM' f w (Stream step t) = w `seq` Stream step' (t,w)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,x) = x `seq`
-                  do
-                    r <- step s
-                    case r of
-                      Yield y s' -> do
-                                      z <- f x y
-                                      z `seq` return (Yield z (s',z))
-                      Skip    s' -> return $ Skip (s',x)
-                      Done       -> return Done
-
--- | Haskell-style scan
-scanl :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE scanl #-}
-scanl f = scanlM (\a b -> return (f a b))
-
--- | Haskell-style scan with a monadic operator
-scanlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE scanlM #-}
-scanlM f z s = z `cons` postscanlM f z s
-
--- | Haskell-style scan with strict accumulator
-scanl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE scanl' #-}
-scanl' f = scanlM' (\a b -> return (f a b))
-
--- | Haskell-style scan with strict accumulator and a monadic operator
-scanlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE scanlM' #-}
-scanlM' f z s = z `seq` (z `cons` postscanlM f z s)
-
--- | Scan over a non-empty 'Stream'
-scanl1 :: Monad m => (a -> a -> a) -> Stream m a -> Stream m a
-{-# INLINE scanl1 #-}
-scanl1 f = scanl1M (\x y -> return (f x y))
-
--- | Scan over a non-empty 'Stream' with a monadic operator
-scanl1M :: Monad m => (a -> a -> m a) -> Stream m a -> Stream m a
-{-# INLINE_FUSED scanl1M #-}
-scanl1M f (Stream step t) = Stream step' (t, Nothing)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s, Nothing) = do
-                           r <- step s
-                           case r of
-                             Yield x s' -> return $ Yield x (s', Just x)
-                             Skip    s' -> return $ Skip (s', Nothing)
-                             Done       -> EMPTY_STREAM "scanl1M"
-
-    step' (s, Just x) = do
-                          r <- step s
-                          case r of
-                            Yield y s' -> do
-                                            z <- f x y
-                                            return $ Yield z (s', Just z)
-                            Skip    s' -> return $ Skip (s', Just x)
-                            Done       -> return Done
-
--- | Scan over a non-empty 'Stream' with a strict accumulator
-scanl1' :: Monad m => (a -> a -> a) -> Stream m a -> Stream m a
-{-# INLINE scanl1' #-}
-scanl1' f = scanl1M' (\x y -> return (f x y))
-
--- | Scan over a non-empty 'Stream' with a strict accumulator and a monadic
--- operator
-scanl1M' :: Monad m => (a -> a -> m a) -> Stream m a -> Stream m a
-{-# INLINE_FUSED scanl1M' #-}
-scanl1M' f (Stream step t) = Stream step' (t, Nothing)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s, Nothing) = do
-                           r <- step s
-                           case r of
-                             Yield x s' -> x `seq` return (Yield x (s', Just x))
-                             Skip    s' -> return $ Skip (s', Nothing)
-                             Done       -> EMPTY_STREAM "scanl1M"
-
-    step' (s, Just x) = x `seq`
-                        do
-                          r <- step s
-                          case r of
-                            Yield y s' -> do
-                                            z <- f x y
-                                            z `seq` return (Yield z (s', Just z))
-                            Skip    s' -> return $ Skip (s', Just x)
-                            Done       -> return Done
-
--- Enumerations
--- ------------
-
--- The Enum class is broken for this, there just doesn't seem to be a
--- way to implement this generically. We have to specialise for as many types
--- as we can but this doesn't help in polymorphic loops.
-
--- | Yield a 'Stream' of the given length containing the values @x@, @x+y@,
--- @x+y+y@ etc.
-enumFromStepN :: (Num a, Monad m) => a -> a -> Int -> Stream m a
-{-# INLINE_FUSED enumFromStepN #-}
-enumFromStepN x y n = x `seq` y `seq` n `seq` Stream step (x,n)
-  where
-    {-# INLINE_INNER step #-}
-    step (w,m) | m > 0     = return $ Yield w (w+y,m-1)
-               | otherwise = return $ Done
-
--- | Enumerate values
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromTo :: (Enum a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo #-}
-enumFromTo x y = fromList [x .. y]
-
--- NOTE: We use (x+1) instead of (succ x) below because the latter checks for
--- overflow which can't happen here.
-
--- FIXME: add "too large" test for Int
-enumFromTo_small :: (Integral a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_small #-}
-enumFromTo_small x y = x `seq` y `seq` Stream step x
-  where
-    {-# INLINE_INNER step #-}
-    step w | w <= y    = return $ Yield w (w+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Int8> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Int8 -> Int8 -> Stream m Int8
-
-"enumFromTo<Int16> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Int16 -> Int16 -> Stream m Int16
-
-"enumFromTo<Word8> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Word8 -> Word8 -> Stream m Word8
-
-"enumFromTo<Word16> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Word16 -> Word16 -> Stream m Word16   #-}
-
-
-#if WORD_SIZE_IN_BITS > 32
-
-{-# RULES
-
-"enumFromTo<Int32> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Int32 -> Int32 -> Stream m Int32
-
-"enumFromTo<Word32> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Word32 -> Word32 -> Stream m Word32   #-}
-
-
-#endif
-
--- NOTE: We could implement a generic "too large" test:
---
--- len x y | x > y = 0
---         | n > 0 && n <= fromIntegral (maxBound :: Int) = fromIntegral n
---         | otherwise = error
---   where
---     n = y-x+1
---
--- Alas, GHC won't eliminate unnecessary comparisons (such as n >= 0 for
--- unsigned types). See http://hackage.haskell.org/trac/ghc/ticket/3744
---
-
-enumFromTo_int :: forall m. Monad m => Int -> Int -> Stream m Int
-{-# INLINE_FUSED enumFromTo_int #-}
-enumFromTo_int x y = x `seq` y `seq` Stream step x
-  where
-    -- {-# INLINE [0] len #-}
-    -- len :: Int -> Int -> Int
-    -- len u v | u > v     = 0
-    --         | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
-    --                       (n > 0)
-    --                     $ n
-    --   where
-    --     n = v-u+1
-
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-enumFromTo_intlike :: (Integral a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_intlike #-}
-enumFromTo_intlike x y = x `seq` y `seq` Stream step x
-  where
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Int> [Stream]"
-  enumFromTo = enumFromTo_int :: Monad m => Int -> Int -> Stream m Int
-
-#if WORD_SIZE_IN_BITS > 32
-
-"enumFromTo<Int64> [Stream]"
-  enumFromTo = enumFromTo_intlike :: Monad m => Int64 -> Int64 -> Stream m Int64 #-}
-
-#else
-
-"enumFromTo<Int32> [Stream]"
-  enumFromTo = enumFromTo_intlike :: Monad m => Int32 -> Int32 -> Stream m Int32 #-}
-
-#endif
-
-enumFromTo_big_word :: (Integral a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_big_word #-}
-enumFromTo_big_word x y = x `seq` y `seq` Stream step x
-  where
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Word> [Stream]"
-  enumFromTo = enumFromTo_big_word :: Monad m => Word -> Word -> Stream m Word
-
-"enumFromTo<Word64> [Stream]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Word64 -> Word64 -> Stream m Word64
-
-#if WORD_SIZE_IN_BITS == 32
-
-"enumFromTo<Word32> [Stream]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Word32 -> Word32 -> Stream m Word32
-
-#endif
-
-"enumFromTo<Integer> [Stream]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Integer -> Integer -> Stream m Integer   #-}
-
-
-
-#if WORD_SIZE_IN_BITS > 32
-
--- FIXME: the "too large" test is totally wrong
-enumFromTo_big_int :: (Integral a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_big_int #-}
-enumFromTo_big_int x y = x `seq` y `seq` Stream step x
-  where
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Int64> [Stream]"
-  enumFromTo = enumFromTo_big_int :: Monad m => Int64 -> Int64 -> Stream m Int64   #-}
-
-
-
-#endif
-
-enumFromTo_char :: Monad m => Char -> Char -> Stream m Char
-{-# INLINE_FUSED enumFromTo_char #-}
-enumFromTo_char x y = x `seq` y `seq` Stream step xn
-  where
-    xn = ord x
-    yn = ord y
-
-    {-# INLINE_INNER step #-}
-    step zn | zn <= yn  = return $ Yield (unsafeChr zn) (zn+1)
-            | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Char> [Stream]"
-  enumFromTo = enumFromTo_char   #-}
-
-
-
-------------------------------------------------------------------------
-
--- Specialise enumFromTo for Float and Double.
--- Also, try to do something about pairs?
-
-enumFromTo_double :: (Monad m, Ord a, RealFrac a) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_double #-}
-enumFromTo_double n m = n `seq` m `seq` Stream step n
-  where
-    lim = m + 1/2 -- important to float out
-
-    {-# INLINE_INNER step #-}
-    step x | x <= lim  = return $ Yield x (x+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Double> [Stream]"
-  enumFromTo = enumFromTo_double :: Monad m => Double -> Double -> Stream m Double
-
-"enumFromTo<Float> [Stream]"
-  enumFromTo = enumFromTo_double :: Monad m => Float -> Float -> Stream m Float   #-}
-
-
-
-------------------------------------------------------------------------
-
--- | Enumerate values with a given step.
---
--- /WARNING:/ This operation is very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromThenTo :: (Enum a, Monad m) => a -> a -> a -> Stream m a
-{-# INLINE_FUSED enumFromThenTo #-}
-enumFromThenTo x y z = fromList [x, y .. z]
-
--- FIXME: Specialise enumFromThenTo.
-
--- Conversions
--- -----------
-
--- | Convert a 'Stream' to a list
-toList :: Monad m => Stream m a -> m [a]
-{-# INLINE toList #-}
-toList = foldr (:) []
-
--- | Convert a list to a 'Stream'
-fromList :: Monad m => [a] -> Stream m a
-{-# INLINE fromList #-}
-fromList zs = Stream step zs
-  where
-    step (x:xs) = return (Yield x xs)
-    step []     = return Done
-
--- | Convert the first @n@ elements of a list to a 'Bundle'
-fromListN :: Monad m => Int -> [a] -> Stream m a
-{-# INLINE_FUSED fromListN #-}
-fromListN m zs = Stream step (zs,m)
-  where
-    {-# INLINE_INNER step #-}
-    step (_, n) | n <= 0 = return Done
-    step (x:xs,n)        = return (Yield x (xs,n-1))
-    step ([],_)          = return Done
-
-{-
-fromVector :: (Monad m, Vector v a) => v a -> Stream m a
-{-# INLINE_FUSED fromVector #-}
-fromVector v = v `seq` n `seq` Stream (Unf step 0)
-                                      (Unf vstep True)
-                                      (Just v)
-                                      (Exact n)
-  where
-    n = basicLength v
-
-    {-# INLINE step #-}
-    step i | i >= n = return Done
-           | otherwise = case basicUnsafeIndexM v i of
-                           Box x -> return $ Yield x (i+1)
-
-
-    {-# INLINE vstep #-}
-    vstep True  = return (Yield (Chunk (basicLength v) (\mv -> basicUnsafeCopy mv v)) False)
-    vstep False = return Done
-
-fromVectors :: forall m a. (Monad m, Vector v a) => [v a] -> Stream m a
-{-# INLINE_FUSED fromVectors #-}
-fromVectors vs = Stream (Unf pstep (Left vs))
-                        (Unf vstep vs)
-                        Nothing
-                        (Exact n)
-  where
-    n = List.foldl' (\k v -> k + basicLength v) 0 vs
-
-    pstep (Left []) = return Done
-    pstep (Left (v:vs)) = basicLength v `seq` return (Skip (Right (v,0,vs)))
-
-    pstep (Right (v,i,vs))
-      | i >= basicLength v = return $ Skip (Left vs)
-      | otherwise          = case basicUnsafeIndexM v i of
-                               Box x -> return $ Yield x (Right (v,i+1,vs))
-
-    -- FIXME: work around bug in GHC 7.6.1
-    vstep :: [v a] -> m (Step [v a] (Chunk v a))
-    vstep [] = return Done
-    vstep (v:vs) = return $ Yield (Chunk (basicLength v)
-                                         (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
-                                                                       (M.basicLength mv == basicLength v)
-                                                 $ basicUnsafeCopy mv v)) vs
-
-
-concatVectors :: (Monad m, Vector v a) => Stream m (v a) -> Stream m a
-{-# INLINE_FUSED concatVectors #-}
-concatVectors (Stream step s}
-  = Stream (Unf pstep (Left s))
-           (Unf vstep s)
-           Nothing
-           Unknown
-  where
-    pstep (Left s) = do
-      r <- step s
-      case r of
-        Yield v s' -> basicLength v `seq` return (Skip (Right (v,0,s')))
-        Skip    s' -> return (Skip (Left s'))
-        Done       -> return Done
-
-    pstep (Right (v,i,s))
-      | i >= basicLength v = return (Skip (Left s))
-      | otherwise          = case basicUnsafeIndexM v i of
-                               Box x -> return (Yield x (Right (v,i+1,s)))
-
-
-    vstep s = do
-      r <- step s
-      case r of
-        Yield v s' -> return (Yield (Chunk (basicLength v)
-                                           (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
-                                                                          (M.basicLength mv == basicLength v)
-                                                   $ basicUnsafeCopy mv v)) s')
-        Skip    s' -> return (Skip s')
-        Done       -> return Done
-
-reVector :: Monad m => Stream m a -> Stream m a
-{-# INLINE_FUSED reVector #-}
-reVector (Stream step s, sSize = n} = Stream step s n
-
-{-# RULES
-
-"reVector [Vector]"
-  reVector = id
-
-"reVector/reVector [Vector]" forall s.
-  reVector (reVector s) = s   #-}
-
-
--}
-