about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/time/duration.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil_cpp/absl/time/duration.cc')
-rw-r--r--third_party/abseil_cpp/absl/time/duration.cc954
1 files changed, 0 insertions, 954 deletions
diff --git a/third_party/abseil_cpp/absl/time/duration.cc b/third_party/abseil_cpp/absl/time/duration.cc
deleted file mode 100644
index 4443109a5121..000000000000
--- a/third_party/abseil_cpp/absl/time/duration.cc
+++ /dev/null
@@ -1,954 +0,0 @@
-// Copyright 2017 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-//      https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-// The implementation of the absl::Duration class, which is declared in
-// //absl/time.h.  This class behaves like a numeric type; it has no public
-// methods and is used only through the operators defined here.
-//
-// Implementation notes:
-//
-// An absl::Duration is represented as
-//
-//   rep_hi_ : (int64_t)  Whole seconds
-//   rep_lo_ : (uint32_t) Fractions of a second
-//
-// The seconds value (rep_hi_) may be positive or negative as appropriate.
-// The fractional seconds (rep_lo_) is always a positive offset from rep_hi_.
-// The API for Duration guarantees at least nanosecond resolution, which
-// means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds.
-// However, to utilize more of the available 32 bits of space in rep_lo_,
-// we instead store quarters of a nanosecond in rep_lo_ resulting in a max
-// value of 4B - 1.  This allows us to correctly handle calculations like
-// 0.5 nanos + 0.5 nanos = 1 nano.  The following example shows the actual
-// Duration rep using quarters of a nanosecond.
-//
-//    2.5 sec = {rep_hi_=2,  rep_lo_=2000000000}  // lo = 4 * 500000000
-//   -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000}
-//
-// Infinite durations are represented as Durations with the rep_lo_ field set
-// to all 1s.
-//
-//   +InfiniteDuration:
-//     rep_hi_ : kint64max
-//     rep_lo_ : ~0U
-//
-//   -InfiniteDuration:
-//     rep_hi_ : kint64min
-//     rep_lo_ : ~0U
-//
-// Arithmetic overflows/underflows to +/- infinity and saturates.
-
-#if defined(_MSC_VER)
-#include <winsock2.h>  // for timeval
-#endif
-
-#include <algorithm>
-#include <cassert>
-#include <cctype>
-#include <cerrno>
-#include <cmath>
-#include <cstdint>
-#include <cstdlib>
-#include <cstring>
-#include <ctime>
-#include <functional>
-#include <limits>
-#include <string>
-
-#include "absl/base/casts.h"
-#include "absl/base/macros.h"
-#include "absl/numeric/int128.h"
-#include "absl/strings/string_view.h"
-#include "absl/strings/strip.h"
-#include "absl/time/time.h"
-
-namespace absl {
-ABSL_NAMESPACE_BEGIN
-
-namespace {
-
-using time_internal::kTicksPerNanosecond;
-using time_internal::kTicksPerSecond;
-
-constexpr int64_t kint64max = std::numeric_limits<int64_t>::max();
-constexpr int64_t kint64min = std::numeric_limits<int64_t>::min();
-
-// Can't use std::isinfinite() because it doesn't exist on windows.
-inline bool IsFinite(double d) {
-  if (std::isnan(d)) return false;
-  return d != std::numeric_limits<double>::infinity() &&
-         d != -std::numeric_limits<double>::infinity();
-}
-
-inline bool IsValidDivisor(double d) {
-  if (std::isnan(d)) return false;
-  return d != 0.0;
-}
-
-// Can't use std::round() because it is only available in C++11.
-// Note that we ignore the possibility of floating-point over/underflow.
-template <typename Double>
-inline double Round(Double d) {
-  return d < 0 ? std::ceil(d - 0.5) : std::floor(d + 0.5);
-}
-
-// *sec may be positive or negative.  *ticks must be in the range
-// -kTicksPerSecond < *ticks < kTicksPerSecond.  If *ticks is negative it
-// will be normalized to a positive value by adjusting *sec accordingly.
-inline void NormalizeTicks(int64_t* sec, int64_t* ticks) {
-  if (*ticks < 0) {
-    --*sec;
-    *ticks += kTicksPerSecond;
-  }
-}
-
-// Makes a uint128 from the absolute value of the given scalar.
-inline uint128 MakeU128(int64_t a) {
-  uint128 u128 = 0;
-  if (a < 0) {
-    ++u128;
-    ++a;  // Makes it safe to negate 'a'
-    a = -a;
-  }
-  u128 += static_cast<uint64_t>(a);
-  return u128;
-}
-
-// Makes a uint128 count of ticks out of the absolute value of the Duration.
-inline uint128 MakeU128Ticks(Duration d) {
-  int64_t rep_hi = time_internal::GetRepHi(d);
-  uint32_t rep_lo = time_internal::GetRepLo(d);
-  if (rep_hi < 0) {
-    ++rep_hi;
-    rep_hi = -rep_hi;
-    rep_lo = kTicksPerSecond - rep_lo;
-  }
-  uint128 u128 = static_cast<uint64_t>(rep_hi);
-  u128 *= static_cast<uint64_t>(kTicksPerSecond);
-  u128 += rep_lo;
-  return u128;
-}
-
-// Breaks a uint128 of ticks into a Duration.
-inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) {
-  int64_t rep_hi;
-  uint32_t rep_lo;
-  const uint64_t h64 = Uint128High64(u128);
-  const uint64_t l64 = Uint128Low64(u128);
-  if (h64 == 0) {  // fastpath
-    const uint64_t hi = l64 / kTicksPerSecond;
-    rep_hi = static_cast<int64_t>(hi);
-    rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond);
-  } else {
-    // kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond).
-    // Any positive tick count whose high 64 bits are >= kMaxRepHi64
-    // is not representable as a Duration.  A negative tick count can
-    // have its high 64 bits == kMaxRepHi64 but only when the low 64
-    // bits are all zero, otherwise it is not representable either.
-    const uint64_t kMaxRepHi64 = 0x77359400UL;
-    if (h64 >= kMaxRepHi64) {
-      if (is_neg && h64 == kMaxRepHi64 && l64 == 0) {
-        // Avoid trying to represent -kint64min below.
-        return time_internal::MakeDuration(kint64min);
-      }
-      return is_neg ? -InfiniteDuration() : InfiniteDuration();
-    }
-    const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond);
-    const uint128 hi = u128 / kTicksPerSecond128;
-    rep_hi = static_cast<int64_t>(Uint128Low64(hi));
-    rep_lo =
-        static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128));
-  }
-  if (is_neg) {
-    rep_hi = -rep_hi;
-    if (rep_lo != 0) {
-      --rep_hi;
-      rep_lo = kTicksPerSecond - rep_lo;
-    }
-  }
-  return time_internal::MakeDuration(rep_hi, rep_lo);
-}
-
-// Convert between int64_t and uint64_t, preserving representation. This
-// allows us to do arithmetic in the unsigned domain, where overflow has
-// well-defined behavior. See operator+=() and operator-=().
-//
-// C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef
-// name intN_t designates a signed integer type with width N, no padding
-// bits, and a two's complement representation." So, we can convert to
-// and from the corresponding uint64_t value using a bit cast.
-inline uint64_t EncodeTwosComp(int64_t v) {
-  return absl::bit_cast<uint64_t>(v);
-}
-inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); }
-
-// Note: The overflow detection in this function is done using greater/less *or
-// equal* because kint64max/min is too large to be represented exactly in a
-// double (which only has 53 bits of precision). In order to avoid assigning to
-// rep->hi a double value that is too large for an int64_t (and therefore is
-// undefined), we must consider computations that equal kint64max/min as a
-// double as overflow cases.
-inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) {
-  double c = a_hi + b_hi;
-  if (c >= static_cast<double>(kint64max)) {
-    *d = InfiniteDuration();
-    return false;
-  }
-  if (c <= static_cast<double>(kint64min)) {
-    *d = -InfiniteDuration();
-    return false;
-  }
-  *d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d));
-  return true;
-}
-
-// A functor that's similar to std::multiplies<T>, except this returns the max
-// T value instead of overflowing. This is only defined for uint128.
-template <typename Ignored>
-struct SafeMultiply {
-  uint128 operator()(uint128 a, uint128 b) const {
-    // b hi is always zero because it originated as an int64_t.
-    assert(Uint128High64(b) == 0);
-    // Fastpath to avoid the expensive overflow check with division.
-    if (Uint128High64(a) == 0) {
-      return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0)
-                 ? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b))
-                 : a * b;
-    }
-    return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b;
-  }
-};
-
-// Scales (i.e., multiplies or divides, depending on the Operation template)
-// the Duration d by the int64_t r.
-template <template <typename> class Operation>
-inline Duration ScaleFixed(Duration d, int64_t r) {
-  const uint128 a = MakeU128Ticks(d);
-  const uint128 b = MakeU128(r);
-  const uint128 q = Operation<uint128>()(a, b);
-  const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0);
-  return MakeDurationFromU128(q, is_neg);
-}
-
-// Scales (i.e., multiplies or divides, depending on the Operation template)
-// the Duration d by the double r.
-template <template <typename> class Operation>
-inline Duration ScaleDouble(Duration d, double r) {
-  Operation<double> op;
-  double hi_doub = op(time_internal::GetRepHi(d), r);
-  double lo_doub = op(time_internal::GetRepLo(d), r);
-
-  double hi_int = 0;
-  double hi_frac = std::modf(hi_doub, &hi_int);
-
-  // Moves hi's fractional bits to lo.
-  lo_doub /= kTicksPerSecond;
-  lo_doub += hi_frac;
-
-  double lo_int = 0;
-  double lo_frac = std::modf(lo_doub, &lo_int);
-
-  // Rolls lo into hi if necessary.
-  int64_t lo64 = Round(lo_frac * kTicksPerSecond);
-
-  Duration ans;
-  if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans;
-  int64_t hi64 = time_internal::GetRepHi(ans);
-  if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans;
-  hi64 = time_internal::GetRepHi(ans);
-  lo64 %= kTicksPerSecond;
-  NormalizeTicks(&hi64, &lo64);
-  return time_internal::MakeDuration(hi64, lo64);
-}
-
-// Tries to divide num by den as fast as possible by looking for common, easy
-// cases. If the division was done, the quotient is in *q and the remainder is
-// in *rem and true will be returned.
-inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q,
-                         Duration* rem) {
-  // Bail if num or den is an infinity.
-  if (time_internal::IsInfiniteDuration(num) ||
-      time_internal::IsInfiniteDuration(den))
-    return false;
-
-  int64_t num_hi = time_internal::GetRepHi(num);
-  uint32_t num_lo = time_internal::GetRepLo(num);
-  int64_t den_hi = time_internal::GetRepHi(den);
-  uint32_t den_lo = time_internal::GetRepLo(den);
-
-  if (den_hi == 0 && den_lo == kTicksPerNanosecond) {
-    // Dividing by 1ns
-    if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) {
-      *q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond;
-      *rem = time_internal::MakeDuration(0, num_lo % den_lo);
-      return true;
-    }
-  } else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) {
-    // Dividing by 100ns (common when converting to Universal time)
-    if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) {
-      *q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond);
-      *rem = time_internal::MakeDuration(0, num_lo % den_lo);
-      return true;
-    }
-  } else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) {
-    // Dividing by 1us
-    if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) {
-      *q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond);
-      *rem = time_internal::MakeDuration(0, num_lo % den_lo);
-      return true;
-    }
-  } else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) {
-    // Dividing by 1ms
-    if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) {
-      *q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond);
-      *rem = time_internal::MakeDuration(0, num_lo % den_lo);
-      return true;
-    }
-  } else if (den_hi > 0 && den_lo == 0) {
-    // Dividing by positive multiple of 1s
-    if (num_hi >= 0) {
-      if (den_hi == 1) {
-        *q = num_hi;
-        *rem = time_internal::MakeDuration(0, num_lo);
-        return true;
-      }
-      *q = num_hi / den_hi;
-      *rem = time_internal::MakeDuration(num_hi % den_hi, num_lo);
-      return true;
-    }
-    if (num_lo != 0) {
-      num_hi += 1;
-    }
-    int64_t quotient = num_hi / den_hi;
-    int64_t rem_sec = num_hi % den_hi;
-    if (rem_sec > 0) {
-      rem_sec -= den_hi;
-      quotient += 1;
-    }
-    if (num_lo != 0) {
-      rem_sec -= 1;
-    }
-    *q = quotient;
-    *rem = time_internal::MakeDuration(rem_sec, num_lo);
-    return true;
-  }
-
-  return false;
-}
-
-}  // namespace
-
-namespace time_internal {
-
-// The 'satq' argument indicates whether the quotient should saturate at the
-// bounds of int64_t.  If it does saturate, the difference will spill over to
-// the remainder.  If it does not saturate, the remainder remain accurate,
-// but the returned quotient will over/underflow int64_t and should not be used.
-int64_t IDivDuration(bool satq, const Duration num, const Duration den,
-                     Duration* rem) {
-  int64_t q = 0;
-  if (IDivFastPath(num, den, &q, rem)) {
-    return q;
-  }
-
-  const bool num_neg = num < ZeroDuration();
-  const bool den_neg = den < ZeroDuration();
-  const bool quotient_neg = num_neg != den_neg;
-
-  if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
-    *rem = num_neg ? -InfiniteDuration() : InfiniteDuration();
-    return quotient_neg ? kint64min : kint64max;
-  }
-  if (time_internal::IsInfiniteDuration(den)) {
-    *rem = num;
-    return 0;
-  }
-
-  const uint128 a = MakeU128Ticks(num);
-  const uint128 b = MakeU128Ticks(den);
-  uint128 quotient128 = a / b;
-
-  if (satq) {
-    // Limits the quotient to the range of int64_t.
-    if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) {
-      quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min))
-                                 : uint128(static_cast<uint64_t>(kint64max));
-    }
-  }
-
-  const uint128 remainder128 = a - quotient128 * b;
-  *rem = MakeDurationFromU128(remainder128, num_neg);
-
-  if (!quotient_neg || quotient128 == 0) {
-    return Uint128Low64(quotient128) & kint64max;
-  }
-  // The quotient needs to be negated, but we need to carefully handle
-  // quotient128s with the top bit on.
-  return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1;
-}
-
-}  // namespace time_internal
-
-//
-// Additive operators.
-//
-
-Duration& Duration::operator+=(Duration rhs) {
-  if (time_internal::IsInfiniteDuration(*this)) return *this;
-  if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs;
-  const int64_t orig_rep_hi = rep_hi_;
-  rep_hi_ =
-      DecodeTwosComp(EncodeTwosComp(rep_hi_) + EncodeTwosComp(rhs.rep_hi_));
-  if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) {
-    rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + 1);
-    rep_lo_ -= kTicksPerSecond;
-  }
-  rep_lo_ += rhs.rep_lo_;
-  if (rhs.rep_hi_ < 0 ? rep_hi_ > orig_rep_hi : rep_hi_ < orig_rep_hi) {
-    return *this = rhs.rep_hi_ < 0 ? -InfiniteDuration() : InfiniteDuration();
-  }
-  return *this;
-}
-
-Duration& Duration::operator-=(Duration rhs) {
-  if (time_internal::IsInfiniteDuration(*this)) return *this;
-  if (time_internal::IsInfiniteDuration(rhs)) {
-    return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
-  }
-  const int64_t orig_rep_hi = rep_hi_;
-  rep_hi_ =
-      DecodeTwosComp(EncodeTwosComp(rep_hi_) - EncodeTwosComp(rhs.rep_hi_));
-  if (rep_lo_ < rhs.rep_lo_) {
-    rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - 1);
-    rep_lo_ += kTicksPerSecond;
-  }
-  rep_lo_ -= rhs.rep_lo_;
-  if (rhs.rep_hi_ < 0 ? rep_hi_ < orig_rep_hi : rep_hi_ > orig_rep_hi) {
-    return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
-  }
-  return *this;
-}
-
-//
-// Multiplicative operators.
-//
-
-Duration& Duration::operator*=(int64_t r) {
-  if (time_internal::IsInfiniteDuration(*this)) {
-    const bool is_neg = (r < 0) != (rep_hi_ < 0);
-    return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
-  }
-  return *this = ScaleFixed<SafeMultiply>(*this, r);
-}
-
-Duration& Duration::operator*=(double r) {
-  if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) {
-    const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
-    return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
-  }
-  return *this = ScaleDouble<std::multiplies>(*this, r);
-}
-
-Duration& Duration::operator/=(int64_t r) {
-  if (time_internal::IsInfiniteDuration(*this) || r == 0) {
-    const bool is_neg = (r < 0) != (rep_hi_ < 0);
-    return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
-  }
-  return *this = ScaleFixed<std::divides>(*this, r);
-}
-
-Duration& Duration::operator/=(double r) {
-  if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) {
-    const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
-    return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
-  }
-  return *this = ScaleDouble<std::divides>(*this, r);
-}
-
-Duration& Duration::operator%=(Duration rhs) {
-  time_internal::IDivDuration(false, *this, rhs, this);
-  return *this;
-}
-
-double FDivDuration(Duration num, Duration den) {
-  // Arithmetic with infinity is sticky.
-  if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
-    return (num < ZeroDuration()) == (den < ZeroDuration())
-               ? std::numeric_limits<double>::infinity()
-               : -std::numeric_limits<double>::infinity();
-  }
-  if (time_internal::IsInfiniteDuration(den)) return 0.0;
-
-  double a =
-      static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond +
-      time_internal::GetRepLo(num);
-  double b =
-      static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond +
-      time_internal::GetRepLo(den);
-  return a / b;
-}
-
-//
-// Trunc/Floor/Ceil.
-//
-
-Duration Trunc(Duration d, Duration unit) {
-  return d - (d % unit);
-}
-
-Duration Floor(const Duration d, const Duration unit) {
-  const absl::Duration td = Trunc(d, unit);
-  return td <= d ? td : td - AbsDuration(unit);
-}
-
-Duration Ceil(const Duration d, const Duration unit) {
-  const absl::Duration td = Trunc(d, unit);
-  return td >= d ? td : td + AbsDuration(unit);
-}
-
-//
-// Factory functions.
-//
-
-Duration DurationFromTimespec(timespec ts) {
-  if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) {
-    int64_t ticks = ts.tv_nsec * kTicksPerNanosecond;
-    return time_internal::MakeDuration(ts.tv_sec, ticks);
-  }
-  return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec);
-}
-
-Duration DurationFromTimeval(timeval tv) {
-  if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) {
-    int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond;
-    return time_internal::MakeDuration(tv.tv_sec, ticks);
-  }
-  return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec);
-}
-
-//
-// Conversion to other duration types.
-//
-
-int64_t ToInt64Nanoseconds(Duration d) {
-  if (time_internal::GetRepHi(d) >= 0 &&
-      time_internal::GetRepHi(d) >> 33 == 0) {
-    return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) +
-           (time_internal::GetRepLo(d) / kTicksPerNanosecond);
-  }
-  return d / Nanoseconds(1);
-}
-int64_t ToInt64Microseconds(Duration d) {
-  if (time_internal::GetRepHi(d) >= 0 &&
-      time_internal::GetRepHi(d) >> 43 == 0) {
-    return (time_internal::GetRepHi(d) * 1000 * 1000) +
-           (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000));
-  }
-  return d / Microseconds(1);
-}
-int64_t ToInt64Milliseconds(Duration d) {
-  if (time_internal::GetRepHi(d) >= 0 &&
-      time_internal::GetRepHi(d) >> 53 == 0) {
-    return (time_internal::GetRepHi(d) * 1000) +
-           (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000));
-  }
-  return d / Milliseconds(1);
-}
-int64_t ToInt64Seconds(Duration d) {
-  int64_t hi = time_internal::GetRepHi(d);
-  if (time_internal::IsInfiniteDuration(d)) return hi;
-  if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
-  return hi;
-}
-int64_t ToInt64Minutes(Duration d) {
-  int64_t hi = time_internal::GetRepHi(d);
-  if (time_internal::IsInfiniteDuration(d)) return hi;
-  if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
-  return hi / 60;
-}
-int64_t ToInt64Hours(Duration d) {
-  int64_t hi = time_internal::GetRepHi(d);
-  if (time_internal::IsInfiniteDuration(d)) return hi;
-  if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
-  return hi / (60 * 60);
-}
-
-double ToDoubleNanoseconds(Duration d) {
-  return FDivDuration(d, Nanoseconds(1));
-}
-double ToDoubleMicroseconds(Duration d) {
-  return FDivDuration(d, Microseconds(1));
-}
-double ToDoubleMilliseconds(Duration d) {
-  return FDivDuration(d, Milliseconds(1));
-}
-double ToDoubleSeconds(Duration d) {
-  return FDivDuration(d, Seconds(1));
-}
-double ToDoubleMinutes(Duration d) {
-  return FDivDuration(d, Minutes(1));
-}
-double ToDoubleHours(Duration d) {
-  return FDivDuration(d, Hours(1));
-}
-
-timespec ToTimespec(Duration d) {
-  timespec ts;
-  if (!time_internal::IsInfiniteDuration(d)) {
-    int64_t rep_hi = time_internal::GetRepHi(d);
-    uint32_t rep_lo = time_internal::GetRepLo(d);
-    if (rep_hi < 0) {
-      // Tweak the fields so that unsigned division of rep_lo
-      // maps to truncation (towards zero) for the timespec.
-      rep_lo += kTicksPerNanosecond - 1;
-      if (rep_lo >= kTicksPerSecond) {
-        rep_hi += 1;
-        rep_lo -= kTicksPerSecond;
-      }
-    }
-    ts.tv_sec = rep_hi;
-    if (ts.tv_sec == rep_hi) {  // no time_t narrowing
-      ts.tv_nsec = rep_lo / kTicksPerNanosecond;
-      return ts;
-    }
-  }
-  if (d >= ZeroDuration()) {
-    ts.tv_sec = std::numeric_limits<time_t>::max();
-    ts.tv_nsec = 1000 * 1000 * 1000 - 1;
-  } else {
-    ts.tv_sec = std::numeric_limits<time_t>::min();
-    ts.tv_nsec = 0;
-  }
-  return ts;
-}
-
-timeval ToTimeval(Duration d) {
-  timeval tv;
-  timespec ts = ToTimespec(d);
-  if (ts.tv_sec < 0) {
-    // Tweak the fields so that positive division of tv_nsec
-    // maps to truncation (towards zero) for the timeval.
-    ts.tv_nsec += 1000 - 1;
-    if (ts.tv_nsec >= 1000 * 1000 * 1000) {
-      ts.tv_sec += 1;
-      ts.tv_nsec -= 1000 * 1000 * 1000;
-    }
-  }
-  tv.tv_sec = ts.tv_sec;
-  if (tv.tv_sec != ts.tv_sec) {  // narrowing
-    if (ts.tv_sec < 0) {
-      tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min();
-      tv.tv_usec = 0;
-    } else {
-      tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max();
-      tv.tv_usec = 1000 * 1000 - 1;
-    }
-    return tv;
-  }
-  tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000);  // suseconds_t
-  return tv;
-}
-
-std::chrono::nanoseconds ToChronoNanoseconds(Duration d) {
-  return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d);
-}
-std::chrono::microseconds ToChronoMicroseconds(Duration d) {
-  return time_internal::ToChronoDuration<std::chrono::microseconds>(d);
-}
-std::chrono::milliseconds ToChronoMilliseconds(Duration d) {
-  return time_internal::ToChronoDuration<std::chrono::milliseconds>(d);
-}
-std::chrono::seconds ToChronoSeconds(Duration d) {
-  return time_internal::ToChronoDuration<std::chrono::seconds>(d);
-}
-std::chrono::minutes ToChronoMinutes(Duration d) {
-  return time_internal::ToChronoDuration<std::chrono::minutes>(d);
-}
-std::chrono::hours ToChronoHours(Duration d) {
-  return time_internal::ToChronoDuration<std::chrono::hours>(d);
-}
-
-//
-// To/From string formatting.
-//
-
-namespace {
-
-// Formats a positive 64-bit integer in the given field width.  Note that
-// it is up to the caller of Format64() to ensure that there is sufficient
-// space before ep to hold the conversion.
-char* Format64(char* ep, int width, int64_t v) {
-  do {
-    --width;
-    *--ep = '0' + (v % 10);  // contiguous digits
-  } while (v /= 10);
-  while (--width >= 0) *--ep = '0';  // zero pad
-  return ep;
-}
-
-// Helpers for FormatDuration() that format 'n' and append it to 'out'
-// followed by the given 'unit'.  If 'n' formats to "0", nothing is
-// appended (not even the unit).
-
-// A type that encapsulates how to display a value of a particular unit. For
-// values that are displayed with fractional parts, the precision indicates
-// where to round the value. The precision varies with the display unit because
-// a Duration can hold only quarters of a nanosecond, so displaying information
-// beyond that is just noise.
-//
-// For example, a microsecond value of 42.00025xxxxx should not display beyond 5
-// fractional digits, because it is in the noise of what a Duration can
-// represent.
-struct DisplayUnit {
-  absl::string_view abbr;
-  int prec;
-  double pow10;
-};
-ABSL_CONST_INIT const DisplayUnit kDisplayNano = {"ns", 2, 1e2};
-ABSL_CONST_INIT const DisplayUnit kDisplayMicro = {"us", 5, 1e5};
-ABSL_CONST_INIT const DisplayUnit kDisplayMilli = {"ms", 8, 1e8};
-ABSL_CONST_INIT const DisplayUnit kDisplaySec = {"s", 11, 1e11};
-ABSL_CONST_INIT const DisplayUnit kDisplayMin = {"m", -1, 0.0};  // prec ignored
-ABSL_CONST_INIT const DisplayUnit kDisplayHour = {"h", -1,
-                                                  0.0};  // prec ignored
-
-void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) {
-  char buf[sizeof("2562047788015216")];  // hours in max duration
-  char* const ep = buf + sizeof(buf);
-  char* bp = Format64(ep, 0, n);
-  if (*bp != '0' || bp + 1 != ep) {
-    out->append(bp, ep - bp);
-    out->append(unit.abbr.data(), unit.abbr.size());
-  }
-}
-
-// Note: unit.prec is limited to double's digits10 value (typically 15) so it
-// always fits in buf[].
-void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) {
-  constexpr int kBufferSize = std::numeric_limits<double>::digits10;
-  const int prec = std::min(kBufferSize, unit.prec);
-  char buf[kBufferSize];  // also large enough to hold integer part
-  char* ep = buf + sizeof(buf);
-  double d = 0;
-  int64_t frac_part = Round(std::modf(n, &d) * unit.pow10);
-  int64_t int_part = d;
-  if (int_part != 0 || frac_part != 0) {
-    char* bp = Format64(ep, 0, int_part);  // always < 1000
-    out->append(bp, ep - bp);
-    if (frac_part != 0) {
-      out->push_back('.');
-      bp = Format64(ep, prec, frac_part);
-      while (ep[-1] == '0') --ep;
-      out->append(bp, ep - bp);
-    }
-    out->append(unit.abbr.data(), unit.abbr.size());
-  }
-}
-
-}  // namespace
-
-// From Go's doc at https://golang.org/pkg/time/#Duration.String
-//   [FormatDuration] returns a string representing the duration in the
-//   form "72h3m0.5s". Leading zero units are omitted.  As a special
-//   case, durations less than one second format use a smaller unit
-//   (milli-, micro-, or nanoseconds) to ensure that the leading digit
-//   is non-zero.
-// Unlike Go, we format the zero duration as 0, with no unit.
-std::string FormatDuration(Duration d) {
-  const Duration min_duration = Seconds(kint64min);
-  if (d == min_duration) {
-    // Avoid needing to negate kint64min by directly returning what the
-    // following code should produce in that case.
-    return "-2562047788015215h30m8s";
-  }
-  std::string s;
-  if (d < ZeroDuration()) {
-    s.append("-");
-    d = -d;
-  }
-  if (d == InfiniteDuration()) {
-    s.append("inf");
-  } else if (d < Seconds(1)) {
-    // Special case for durations with a magnitude < 1 second.  The duration
-    // is printed as a fraction of a single unit, e.g., "1.2ms".
-    if (d < Microseconds(1)) {
-      AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano);
-    } else if (d < Milliseconds(1)) {
-      AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro);
-    } else {
-      AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli);
-    }
-  } else {
-    AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour);
-    AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin);
-    AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec);
-  }
-  if (s.empty() || s == "-") {
-    s = "0";
-  }
-  return s;
-}
-
-namespace {
-
-// A helper for ParseDuration() that parses a leading number from the given
-// string and stores the result in *int_part/*frac_part/*frac_scale.  The
-// given string pointer is modified to point to the first unconsumed char.
-bool ConsumeDurationNumber(const char** dpp, const char* ep, int64_t* int_part,
-                           int64_t* frac_part, int64_t* frac_scale) {
-  *int_part = 0;
-  *frac_part = 0;
-  *frac_scale = 1;  // invariant: *frac_part < *frac_scale
-  const char* start = *dpp;
-  for (; *dpp != ep; *dpp += 1) {
-    const int d = **dpp - '0';  // contiguous digits
-    if (d < 0 || 10 <= d) break;
-
-    if (*int_part > kint64max / 10) return false;
-    *int_part *= 10;
-    if (*int_part > kint64max - d) return false;
-    *int_part += d;
-  }
-  const bool int_part_empty = (*dpp == start);
-  if (*dpp == ep || **dpp != '.') return !int_part_empty;
-
-  for (*dpp += 1; *dpp != ep; *dpp += 1) {
-    const int d = **dpp - '0';  // contiguous digits
-    if (d < 0 || 10 <= d) break;
-    if (*frac_scale <= kint64max / 10) {
-      *frac_part *= 10;
-      *frac_part += d;
-      *frac_scale *= 10;
-    }
-  }
-  return !int_part_empty || *frac_scale != 1;
-}
-
-// A helper for ParseDuration() that parses a leading unit designator (e.g.,
-// ns, us, ms, s, m, h) from the given string and stores the resulting unit
-// in "*unit".  The given string pointer is modified to point to the first
-// unconsumed char.
-bool ConsumeDurationUnit(const char** start, const char* end, Duration* unit) {
-  size_t size = end - *start;
-  switch (size) {
-    case 0:
-      return false;
-    default:
-      switch (**start) {
-        case 'n':
-          if (*(*start + 1) == 's') {
-            *start += 2;
-            *unit = Nanoseconds(1);
-            return true;
-          }
-          break;
-        case 'u':
-          if (*(*start + 1) == 's') {
-            *start += 2;
-            *unit = Microseconds(1);
-            return true;
-          }
-          break;
-        case 'm':
-          if (*(*start + 1) == 's') {
-            *start += 2;
-            *unit = Milliseconds(1);
-            return true;
-          }
-          break;
-        default:
-          break;
-      }
-      ABSL_FALLTHROUGH_INTENDED;
-    case 1:
-      switch (**start) {
-        case 's':
-          *unit = Seconds(1);
-          *start += 1;
-          return true;
-        case 'm':
-          *unit = Minutes(1);
-          *start += 1;
-          return true;
-        case 'h':
-          *unit = Hours(1);
-          *start += 1;
-          return true;
-        default:
-          return false;
-      }
-  }
-}
-
-}  // namespace
-
-// From Go's doc at https://golang.org/pkg/time/#ParseDuration
-//   [ParseDuration] parses a duration string. A duration string is
-//   a possibly signed sequence of decimal numbers, each with optional
-//   fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m".
-//   Valid time units are "ns", "us" "ms", "s", "m", "h".
-bool ParseDuration(absl::string_view dur_sv, Duration* d) {
-  int sign = 1;
-  if (absl::ConsumePrefix(&dur_sv, "-")) {
-    sign = -1;
-  } else {
-    absl::ConsumePrefix(&dur_sv, "+");
-  }
-  if (dur_sv.empty()) return false;
-
-  // Special case for a string of "0".
-  if (dur_sv == "0") {
-    *d = ZeroDuration();
-    return true;
-  }
-
-  if (dur_sv == "inf") {
-    *d = sign * InfiniteDuration();
-    return true;
-  }
-
-  const char* start = dur_sv.data();
-  const char* end = start + dur_sv.size();
-
-  Duration dur;
-  while (start != end) {
-    int64_t int_part;
-    int64_t frac_part;
-    int64_t frac_scale;
-    Duration unit;
-    if (!ConsumeDurationNumber(&start, end, &int_part, &frac_part,
-                               &frac_scale) ||
-        !ConsumeDurationUnit(&start, end, &unit)) {
-      return false;
-    }
-    if (int_part != 0) dur += sign * int_part * unit;
-    if (frac_part != 0) dur += sign * frac_part * unit / frac_scale;
-  }
-  *d = dur;
-  return true;
-}
-
-bool AbslParseFlag(absl::string_view text, Duration* dst, std::string*) {
-  return ParseDuration(text, dst);
-}
-
-std::string AbslUnparseFlag(Duration d) { return FormatDuration(d); }
-bool ParseFlag(const std::string& text, Duration* dst, std::string* ) {
-  return ParseDuration(text, dst);
-}
-
-std::string UnparseFlag(Duration d) { return FormatDuration(d); }
-
-ABSL_NAMESPACE_END
-}  // namespace absl