about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/synchronization/mutex_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil_cpp/absl/synchronization/mutex_test.cc')
-rw-r--r--third_party/abseil_cpp/absl/synchronization/mutex_test.cc1675
1 files changed, 1675 insertions, 0 deletions
diff --git a/third_party/abseil_cpp/absl/synchronization/mutex_test.cc b/third_party/abseil_cpp/absl/synchronization/mutex_test.cc
new file mode 100644
index 000000000000..afb363af6127
--- /dev/null
+++ b/third_party/abseil_cpp/absl/synchronization/mutex_test.cc
@@ -0,0 +1,1675 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/synchronization/mutex.h"
+
+#ifdef _WIN32
+#include <windows.h>
+#endif
+
+#include <algorithm>
+#include <atomic>
+#include <cstdlib>
+#include <functional>
+#include <memory>
+#include <random>
+#include <string>
+#include <thread>  // NOLINT(build/c++11)
+#include <vector>
+
+#include "gtest/gtest.h"
+#include "absl/base/attributes.h"
+#include "absl/base/internal/raw_logging.h"
+#include "absl/base/internal/sysinfo.h"
+#include "absl/memory/memory.h"
+#include "absl/synchronization/internal/thread_pool.h"
+#include "absl/time/clock.h"
+#include "absl/time/time.h"
+
+namespace {
+
+// TODO(dmauro): Replace with a commandline flag.
+static constexpr bool kExtendedTest = false;
+
+std::unique_ptr<absl::synchronization_internal::ThreadPool> CreatePool(
+    int threads) {
+  return absl::make_unique<absl::synchronization_internal::ThreadPool>(threads);
+}
+
+std::unique_ptr<absl::synchronization_internal::ThreadPool>
+CreateDefaultPool() {
+  return CreatePool(kExtendedTest ? 32 : 10);
+}
+
+// Hack to schedule a function to run on a thread pool thread after a
+// duration has elapsed.
+static void ScheduleAfter(absl::synchronization_internal::ThreadPool *tp,
+                          absl::Duration after,
+                          const std::function<void()> &func) {
+  tp->Schedule([func, after] {
+    absl::SleepFor(after);
+    func();
+  });
+}
+
+struct TestContext {
+  int iterations;
+  int threads;
+  int g0;  // global 0
+  int g1;  // global 1
+  absl::Mutex mu;
+  absl::CondVar cv;
+};
+
+// To test whether the invariant check call occurs
+static std::atomic<bool> invariant_checked;
+
+static bool GetInvariantChecked() {
+  return invariant_checked.load(std::memory_order_relaxed);
+}
+
+static void SetInvariantChecked(bool new_value) {
+  invariant_checked.store(new_value, std::memory_order_relaxed);
+}
+
+static void CheckSumG0G1(void *v) {
+  TestContext *cxt = static_cast<TestContext *>(v);
+  ABSL_RAW_CHECK(cxt->g0 == -cxt->g1, "Error in CheckSumG0G1");
+  SetInvariantChecked(true);
+}
+
+static void TestMu(TestContext *cxt, int c) {
+  for (int i = 0; i != cxt->iterations; i++) {
+    absl::MutexLock l(&cxt->mu);
+    int a = cxt->g0 + 1;
+    cxt->g0 = a;
+    cxt->g1--;
+  }
+}
+
+static void TestTry(TestContext *cxt, int c) {
+  for (int i = 0; i != cxt->iterations; i++) {
+    do {
+      std::this_thread::yield();
+    } while (!cxt->mu.TryLock());
+    int a = cxt->g0 + 1;
+    cxt->g0 = a;
+    cxt->g1--;
+    cxt->mu.Unlock();
+  }
+}
+
+static void TestR20ms(TestContext *cxt, int c) {
+  for (int i = 0; i != cxt->iterations; i++) {
+    absl::ReaderMutexLock l(&cxt->mu);
+    absl::SleepFor(absl::Milliseconds(20));
+    cxt->mu.AssertReaderHeld();
+  }
+}
+
+static void TestRW(TestContext *cxt, int c) {
+  if ((c & 1) == 0) {
+    for (int i = 0; i != cxt->iterations; i++) {
+      absl::WriterMutexLock l(&cxt->mu);
+      cxt->g0++;
+      cxt->g1--;
+      cxt->mu.AssertHeld();
+      cxt->mu.AssertReaderHeld();
+    }
+  } else {
+    for (int i = 0; i != cxt->iterations; i++) {
+      absl::ReaderMutexLock l(&cxt->mu);
+      ABSL_RAW_CHECK(cxt->g0 == -cxt->g1, "Error in TestRW");
+      cxt->mu.AssertReaderHeld();
+    }
+  }
+}
+
+struct MyContext {
+  int target;
+  TestContext *cxt;
+  bool MyTurn();
+};
+
+bool MyContext::MyTurn() {
+  TestContext *cxt = this->cxt;
+  return cxt->g0 == this->target || cxt->g0 == cxt->iterations;
+}
+
+static void TestAwait(TestContext *cxt, int c) {
+  MyContext mc;
+  mc.target = c;
+  mc.cxt = cxt;
+  absl::MutexLock l(&cxt->mu);
+  cxt->mu.AssertHeld();
+  while (cxt->g0 < cxt->iterations) {
+    cxt->mu.Await(absl::Condition(&mc, &MyContext::MyTurn));
+    ABSL_RAW_CHECK(mc.MyTurn(), "Error in TestAwait");
+    cxt->mu.AssertHeld();
+    if (cxt->g0 < cxt->iterations) {
+      int a = cxt->g0 + 1;
+      cxt->g0 = a;
+      mc.target += cxt->threads;
+    }
+  }
+}
+
+static void TestSignalAll(TestContext *cxt, int c) {
+  int target = c;
+  absl::MutexLock l(&cxt->mu);
+  cxt->mu.AssertHeld();
+  while (cxt->g0 < cxt->iterations) {
+    while (cxt->g0 != target && cxt->g0 != cxt->iterations) {
+      cxt->cv.Wait(&cxt->mu);
+    }
+    if (cxt->g0 < cxt->iterations) {
+      int a = cxt->g0 + 1;
+      cxt->g0 = a;
+      cxt->cv.SignalAll();
+      target += cxt->threads;
+    }
+  }
+}
+
+static void TestSignal(TestContext *cxt, int c) {
+  ABSL_RAW_CHECK(cxt->threads == 2, "TestSignal should use 2 threads");
+  int target = c;
+  absl::MutexLock l(&cxt->mu);
+  cxt->mu.AssertHeld();
+  while (cxt->g0 < cxt->iterations) {
+    while (cxt->g0 != target && cxt->g0 != cxt->iterations) {
+      cxt->cv.Wait(&cxt->mu);
+    }
+    if (cxt->g0 < cxt->iterations) {
+      int a = cxt->g0 + 1;
+      cxt->g0 = a;
+      cxt->cv.Signal();
+      target += cxt->threads;
+    }
+  }
+}
+
+static void TestCVTimeout(TestContext *cxt, int c) {
+  int target = c;
+  absl::MutexLock l(&cxt->mu);
+  cxt->mu.AssertHeld();
+  while (cxt->g0 < cxt->iterations) {
+    while (cxt->g0 != target && cxt->g0 != cxt->iterations) {
+      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(100));
+    }
+    if (cxt->g0 < cxt->iterations) {
+      int a = cxt->g0 + 1;
+      cxt->g0 = a;
+      cxt->cv.SignalAll();
+      target += cxt->threads;
+    }
+  }
+}
+
+static bool G0GE2(TestContext *cxt) { return cxt->g0 >= 2; }
+
+static void TestTime(TestContext *cxt, int c, bool use_cv) {
+  ABSL_RAW_CHECK(cxt->iterations == 1, "TestTime should only use 1 iteration");
+  ABSL_RAW_CHECK(cxt->threads > 2, "TestTime should use more than 2 threads");
+  const bool kFalse = false;
+  absl::Condition false_cond(&kFalse);
+  absl::Condition g0ge2(G0GE2, cxt);
+  if (c == 0) {
+    absl::MutexLock l(&cxt->mu);
+
+    absl::Time start = absl::Now();
+    if (use_cv) {
+      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
+    } else {
+      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
+                     "TestTime failed");
+    }
+    absl::Duration elapsed = absl::Now() - start;
+    ABSL_RAW_CHECK(
+        absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0),
+        "TestTime failed");
+    ABSL_RAW_CHECK(cxt->g0 == 1, "TestTime failed");
+
+    start = absl::Now();
+    if (use_cv) {
+      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
+    } else {
+      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
+                     "TestTime failed");
+    }
+    elapsed = absl::Now() - start;
+    ABSL_RAW_CHECK(
+        absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0),
+        "TestTime failed");
+    cxt->g0++;
+    if (use_cv) {
+      cxt->cv.Signal();
+    }
+
+    start = absl::Now();
+    if (use_cv) {
+      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(4));
+    } else {
+      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(4)),
+                     "TestTime failed");
+    }
+    elapsed = absl::Now() - start;
+    ABSL_RAW_CHECK(
+        absl::Seconds(3.9) <= elapsed && elapsed <= absl::Seconds(6.0),
+        "TestTime failed");
+    ABSL_RAW_CHECK(cxt->g0 >= 3, "TestTime failed");
+
+    start = absl::Now();
+    if (use_cv) {
+      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
+    } else {
+      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
+                     "TestTime failed");
+    }
+    elapsed = absl::Now() - start;
+    ABSL_RAW_CHECK(
+        absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0),
+        "TestTime failed");
+    if (use_cv) {
+      cxt->cv.SignalAll();
+    }
+
+    start = absl::Now();
+    if (use_cv) {
+      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
+    } else {
+      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
+                     "TestTime failed");
+    }
+    elapsed = absl::Now() - start;
+    ABSL_RAW_CHECK(absl::Seconds(0.9) <= elapsed &&
+                   elapsed <= absl::Seconds(2.0), "TestTime failed");
+    ABSL_RAW_CHECK(cxt->g0 == cxt->threads, "TestTime failed");
+
+  } else if (c == 1) {
+    absl::MutexLock l(&cxt->mu);
+    const absl::Time start = absl::Now();
+    if (use_cv) {
+      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Milliseconds(500));
+    } else {
+      ABSL_RAW_CHECK(
+          !cxt->mu.AwaitWithTimeout(false_cond, absl::Milliseconds(500)),
+          "TestTime failed");
+    }
+    const absl::Duration elapsed = absl::Now() - start;
+    ABSL_RAW_CHECK(
+        absl::Seconds(0.4) <= elapsed && elapsed <= absl::Seconds(0.9),
+        "TestTime failed");
+    cxt->g0++;
+  } else if (c == 2) {
+    absl::MutexLock l(&cxt->mu);
+    if (use_cv) {
+      while (cxt->g0 < 2) {
+        cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(100));
+      }
+    } else {
+      ABSL_RAW_CHECK(cxt->mu.AwaitWithTimeout(g0ge2, absl::Seconds(100)),
+                     "TestTime failed");
+    }
+    cxt->g0++;
+  } else {
+    absl::MutexLock l(&cxt->mu);
+    if (use_cv) {
+      while (cxt->g0 < 2) {
+        cxt->cv.Wait(&cxt->mu);
+      }
+    } else {
+      cxt->mu.Await(g0ge2);
+    }
+    cxt->g0++;
+  }
+}
+
+static void TestMuTime(TestContext *cxt, int c) { TestTime(cxt, c, false); }
+
+static void TestCVTime(TestContext *cxt, int c) { TestTime(cxt, c, true); }
+
+static void EndTest(int *c0, int *c1, absl::Mutex *mu, absl::CondVar *cv,
+                    const std::function<void(int)>& cb) {
+  mu->Lock();
+  int c = (*c0)++;
+  mu->Unlock();
+  cb(c);
+  absl::MutexLock l(mu);
+  (*c1)++;
+  cv->Signal();
+}
+
+// Code common to RunTest() and RunTestWithInvariantDebugging().
+static int RunTestCommon(TestContext *cxt, void (*test)(TestContext *cxt, int),
+                         int threads, int iterations, int operations) {
+  absl::Mutex mu2;
+  absl::CondVar cv2;
+  int c0 = 0;
+  int c1 = 0;
+  cxt->g0 = 0;
+  cxt->g1 = 0;
+  cxt->iterations = iterations;
+  cxt->threads = threads;
+  absl::synchronization_internal::ThreadPool tp(threads);
+  for (int i = 0; i != threads; i++) {
+    tp.Schedule(std::bind(&EndTest, &c0, &c1, &mu2, &cv2,
+                          std::function<void(int)>(
+                              std::bind(test, cxt, std::placeholders::_1))));
+  }
+  mu2.Lock();
+  while (c1 != threads) {
+    cv2.Wait(&mu2);
+  }
+  mu2.Unlock();
+  return cxt->g0;
+}
+
+// Basis for the parameterized tests configured below.
+static int RunTest(void (*test)(TestContext *cxt, int), int threads,
+                   int iterations, int operations) {
+  TestContext cxt;
+  return RunTestCommon(&cxt, test, threads, iterations, operations);
+}
+
+// Like RunTest(), but sets an invariant on the tested Mutex and
+// verifies that the invariant check happened. The invariant function
+// will be passed the TestContext* as its arg and must call
+// SetInvariantChecked(true);
+#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
+static int RunTestWithInvariantDebugging(void (*test)(TestContext *cxt, int),
+                                         int threads, int iterations,
+                                         int operations,
+                                         void (*invariant)(void *)) {
+  absl::EnableMutexInvariantDebugging(true);
+  SetInvariantChecked(false);
+  TestContext cxt;
+  cxt.mu.EnableInvariantDebugging(invariant, &cxt);
+  int ret = RunTestCommon(&cxt, test, threads, iterations, operations);
+  ABSL_RAW_CHECK(GetInvariantChecked(), "Invariant not checked");
+  absl::EnableMutexInvariantDebugging(false);  // Restore.
+  return ret;
+}
+#endif
+
+// --------------------------------------------------------
+// Test for fix of bug in TryRemove()
+struct TimeoutBugStruct {
+  absl::Mutex mu;
+  bool a;
+  int a_waiter_count;
+};
+
+static void WaitForA(TimeoutBugStruct *x) {
+  x->mu.LockWhen(absl::Condition(&x->a));
+  x->a_waiter_count--;
+  x->mu.Unlock();
+}
+
+static bool NoAWaiters(TimeoutBugStruct *x) { return x->a_waiter_count == 0; }
+
+// Test that a CondVar.Wait(&mutex) can un-block a call to mutex.Await() in
+// another thread.
+TEST(Mutex, CondVarWaitSignalsAwait) {
+  // Use a struct so the lock annotations apply.
+  struct {
+    absl::Mutex barrier_mu;
+    bool barrier ABSL_GUARDED_BY(barrier_mu) = false;
+
+    absl::Mutex release_mu;
+    bool release ABSL_GUARDED_BY(release_mu) = false;
+    absl::CondVar released_cv;
+  } state;
+
+  auto pool = CreateDefaultPool();
+
+  // Thread A.  Sets barrier, waits for release using Mutex::Await, then
+  // signals released_cv.
+  pool->Schedule([&state] {
+    state.release_mu.Lock();
+
+    state.barrier_mu.Lock();
+    state.barrier = true;
+    state.barrier_mu.Unlock();
+
+    state.release_mu.Await(absl::Condition(&state.release));
+    state.released_cv.Signal();
+    state.release_mu.Unlock();
+  });
+
+  state.barrier_mu.LockWhen(absl::Condition(&state.barrier));
+  state.barrier_mu.Unlock();
+  state.release_mu.Lock();
+  // Thread A is now blocked on release by way of Mutex::Await().
+
+  // Set release.  Calling released_cv.Wait() should un-block thread A,
+  // which will signal released_cv.  If not, the test will hang.
+  state.release = true;
+  state.released_cv.Wait(&state.release_mu);
+  state.release_mu.Unlock();
+}
+
+// Test that a CondVar.WaitWithTimeout(&mutex) can un-block a call to
+// mutex.Await() in another thread.
+TEST(Mutex, CondVarWaitWithTimeoutSignalsAwait) {
+  // Use a struct so the lock annotations apply.
+  struct {
+    absl::Mutex barrier_mu;
+    bool barrier ABSL_GUARDED_BY(barrier_mu) = false;
+
+    absl::Mutex release_mu;
+    bool release ABSL_GUARDED_BY(release_mu) = false;
+    absl::CondVar released_cv;
+  } state;
+
+  auto pool = CreateDefaultPool();
+
+  // Thread A.  Sets barrier, waits for release using Mutex::Await, then
+  // signals released_cv.
+  pool->Schedule([&state] {
+    state.release_mu.Lock();
+
+    state.barrier_mu.Lock();
+    state.barrier = true;
+    state.barrier_mu.Unlock();
+
+    state.release_mu.Await(absl::Condition(&state.release));
+    state.released_cv.Signal();
+    state.release_mu.Unlock();
+  });
+
+  state.barrier_mu.LockWhen(absl::Condition(&state.barrier));
+  state.barrier_mu.Unlock();
+  state.release_mu.Lock();
+  // Thread A is now blocked on release by way of Mutex::Await().
+
+  // Set release.  Calling released_cv.Wait() should un-block thread A,
+  // which will signal released_cv.  If not, the test will hang.
+  state.release = true;
+  EXPECT_TRUE(
+      !state.released_cv.WaitWithTimeout(&state.release_mu, absl::Seconds(10)))
+      << "; Unrecoverable test failure: CondVar::WaitWithTimeout did not "
+         "unblock the absl::Mutex::Await call in another thread.";
+
+  state.release_mu.Unlock();
+}
+
+// Test for regression of a bug in loop of TryRemove()
+TEST(Mutex, MutexTimeoutBug) {
+  auto tp = CreateDefaultPool();
+
+  TimeoutBugStruct x;
+  x.a = false;
+  x.a_waiter_count = 2;
+  tp->Schedule(std::bind(&WaitForA, &x));
+  tp->Schedule(std::bind(&WaitForA, &x));
+  absl::SleepFor(absl::Seconds(1));  // Allow first two threads to hang.
+  // The skip field of the second will point to the first because there are
+  // only two.
+
+  // Now cause a thread waiting on an always-false to time out
+  // This would deadlock when the bug was present.
+  bool always_false = false;
+  x.mu.LockWhenWithTimeout(absl::Condition(&always_false),
+                           absl::Milliseconds(500));
+
+  // if we get here, the bug is not present.   Cleanup the state.
+
+  x.a = true;                                    // wakeup the two waiters on A
+  x.mu.Await(absl::Condition(&NoAWaiters, &x));  // wait for them to exit
+  x.mu.Unlock();
+}
+
+struct CondVarWaitDeadlock : testing::TestWithParam<int> {
+  absl::Mutex mu;
+  absl::CondVar cv;
+  bool cond1 = false;
+  bool cond2 = false;
+  bool read_lock1;
+  bool read_lock2;
+  bool signal_unlocked;
+
+  CondVarWaitDeadlock() {
+    read_lock1 = GetParam() & (1 << 0);
+    read_lock2 = GetParam() & (1 << 1);
+    signal_unlocked = GetParam() & (1 << 2);
+  }
+
+  void Waiter1() {
+    if (read_lock1) {
+      mu.ReaderLock();
+      while (!cond1) {
+        cv.Wait(&mu);
+      }
+      mu.ReaderUnlock();
+    } else {
+      mu.Lock();
+      while (!cond1) {
+        cv.Wait(&mu);
+      }
+      mu.Unlock();
+    }
+  }
+
+  void Waiter2() {
+    if (read_lock2) {
+      mu.ReaderLockWhen(absl::Condition(&cond2));
+      mu.ReaderUnlock();
+    } else {
+      mu.LockWhen(absl::Condition(&cond2));
+      mu.Unlock();
+    }
+  }
+};
+
+// Test for a deadlock bug in Mutex::Fer().
+// The sequence of events that lead to the deadlock is:
+// 1. waiter1 blocks on cv in read mode (mu bits = 0).
+// 2. waiter2 blocks on mu in either mode (mu bits = kMuWait).
+// 3. main thread locks mu, sets cond1, unlocks mu (mu bits = kMuWait).
+// 4. main thread signals on cv and this eventually calls Mutex::Fer().
+// Currently Fer wakes waiter1 since mu bits = kMuWait (mutex is unlocked).
+// Before the bug fix Fer neither woke waiter1 nor queued it on mutex,
+// which resulted in deadlock.
+TEST_P(CondVarWaitDeadlock, Test) {
+  auto waiter1 = CreatePool(1);
+  auto waiter2 = CreatePool(1);
+  waiter1->Schedule([this] { this->Waiter1(); });
+  waiter2->Schedule([this] { this->Waiter2(); });
+
+  // Wait while threads block (best-effort is fine).
+  absl::SleepFor(absl::Milliseconds(100));
+
+  // Wake condwaiter.
+  mu.Lock();
+  cond1 = true;
+  if (signal_unlocked) {
+    mu.Unlock();
+    cv.Signal();
+  } else {
+    cv.Signal();
+    mu.Unlock();
+  }
+  waiter1.reset();  // "join" waiter1
+
+  // Wake waiter.
+  mu.Lock();
+  cond2 = true;
+  mu.Unlock();
+  waiter2.reset();  // "join" waiter2
+}
+
+INSTANTIATE_TEST_SUITE_P(CondVarWaitDeadlockTest, CondVarWaitDeadlock,
+                         ::testing::Range(0, 8),
+                         ::testing::PrintToStringParamName());
+
+// --------------------------------------------------------
+// Test for fix of bug in DequeueAllWakeable()
+// Bug was that if there was more than one waiting reader
+// and all should be woken, the most recently blocked one
+// would not be.
+
+struct DequeueAllWakeableBugStruct {
+  absl::Mutex mu;
+  absl::Mutex mu2;       // protects all fields below
+  int unfinished_count;  // count of unfinished readers; under mu2
+  bool done1;            // unfinished_count == 0; under mu2
+  int finished_count;    // count of finished readers, under mu2
+  bool done2;            // finished_count == 0; under mu2
+};
+
+// Test for regression of a bug in loop of DequeueAllWakeable()
+static void AcquireAsReader(DequeueAllWakeableBugStruct *x) {
+  x->mu.ReaderLock();
+  x->mu2.Lock();
+  x->unfinished_count--;
+  x->done1 = (x->unfinished_count == 0);
+  x->mu2.Unlock();
+  // make sure that both readers acquired mu before we release it.
+  absl::SleepFor(absl::Seconds(2));
+  x->mu.ReaderUnlock();
+
+  x->mu2.Lock();
+  x->finished_count--;
+  x->done2 = (x->finished_count == 0);
+  x->mu2.Unlock();
+}
+
+// Test for regression of a bug in loop of DequeueAllWakeable()
+TEST(Mutex, MutexReaderWakeupBug) {
+  auto tp = CreateDefaultPool();
+
+  DequeueAllWakeableBugStruct x;
+  x.unfinished_count = 2;
+  x.done1 = false;
+  x.finished_count = 2;
+  x.done2 = false;
+  x.mu.Lock();  // acquire mu exclusively
+  // queue two thread that will block on reader locks on x.mu
+  tp->Schedule(std::bind(&AcquireAsReader, &x));
+  tp->Schedule(std::bind(&AcquireAsReader, &x));
+  absl::SleepFor(absl::Seconds(1));  // give time for reader threads to block
+  x.mu.Unlock();                     // wake them up
+
+  // both readers should finish promptly
+  EXPECT_TRUE(
+      x.mu2.LockWhenWithTimeout(absl::Condition(&x.done1), absl::Seconds(10)));
+  x.mu2.Unlock();
+
+  EXPECT_TRUE(
+      x.mu2.LockWhenWithTimeout(absl::Condition(&x.done2), absl::Seconds(10)));
+  x.mu2.Unlock();
+}
+
+struct LockWhenTestStruct {
+  absl::Mutex mu1;
+  bool cond = false;
+
+  absl::Mutex mu2;
+  bool waiting = false;
+};
+
+static bool LockWhenTestIsCond(LockWhenTestStruct* s) {
+  s->mu2.Lock();
+  s->waiting = true;
+  s->mu2.Unlock();
+  return s->cond;
+}
+
+static void LockWhenTestWaitForIsCond(LockWhenTestStruct* s) {
+  s->mu1.LockWhen(absl::Condition(&LockWhenTestIsCond, s));
+  s->mu1.Unlock();
+}
+
+TEST(Mutex, LockWhen) {
+  LockWhenTestStruct s;
+
+  std::thread t(LockWhenTestWaitForIsCond, &s);
+  s.mu2.LockWhen(absl::Condition(&s.waiting));
+  s.mu2.Unlock();
+
+  s.mu1.Lock();
+  s.cond = true;
+  s.mu1.Unlock();
+
+  t.join();
+}
+
+// --------------------------------------------------------
+// The following test requires Mutex::ReaderLock to be a real shared
+// lock, which is not the case in all builds.
+#if !defined(ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE)
+
+// Test for fix of bug in UnlockSlow() that incorrectly decremented the reader
+// count when putting a thread to sleep waiting for a false condition when the
+// lock was not held.
+
+// For this bug to strike, we make a thread wait on a free mutex with no
+// waiters by causing its wakeup condition to be false.   Then the
+// next two acquirers must be readers.   The bug causes the lock
+// to be released when one reader unlocks, rather than both.
+
+struct ReaderDecrementBugStruct {
+  bool cond;  // to delay first thread (under mu)
+  int done;   // reference count (under mu)
+  absl::Mutex mu;
+
+  bool waiting_on_cond;   // under mu2
+  bool have_reader_lock;  // under mu2
+  bool complete;          // under mu2
+  absl::Mutex mu2;        // > mu
+};
+
+// L >= mu, L < mu_waiting_on_cond
+static bool IsCond(void *v) {
+  ReaderDecrementBugStruct *x = reinterpret_cast<ReaderDecrementBugStruct *>(v);
+  x->mu2.Lock();
+  x->waiting_on_cond = true;
+  x->mu2.Unlock();
+  return x->cond;
+}
+
+// L >= mu
+static bool AllDone(void *v) {
+  ReaderDecrementBugStruct *x = reinterpret_cast<ReaderDecrementBugStruct *>(v);
+  return x->done == 0;
+}
+
+// L={}
+static void WaitForCond(ReaderDecrementBugStruct *x) {
+  absl::Mutex dummy;
+  absl::MutexLock l(&dummy);
+  x->mu.LockWhen(absl::Condition(&IsCond, x));
+  x->done--;
+  x->mu.Unlock();
+}
+
+// L={}
+static void GetReadLock(ReaderDecrementBugStruct *x) {
+  x->mu.ReaderLock();
+  x->mu2.Lock();
+  x->have_reader_lock = true;
+  x->mu2.Await(absl::Condition(&x->complete));
+  x->mu2.Unlock();
+  x->mu.ReaderUnlock();
+  x->mu.Lock();
+  x->done--;
+  x->mu.Unlock();
+}
+
+// Test for reader counter being decremented incorrectly by waiter
+// with false condition.
+TEST(Mutex, MutexReaderDecrementBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
+  ReaderDecrementBugStruct x;
+  x.cond = false;
+  x.waiting_on_cond = false;
+  x.have_reader_lock = false;
+  x.complete = false;
+  x.done = 2;  // initial ref count
+
+  // Run WaitForCond() and wait for it to sleep
+  std::thread thread1(WaitForCond, &x);
+  x.mu2.LockWhen(absl::Condition(&x.waiting_on_cond));
+  x.mu2.Unlock();
+
+  // Run GetReadLock(), and wait for it to get the read lock
+  std::thread thread2(GetReadLock, &x);
+  x.mu2.LockWhen(absl::Condition(&x.have_reader_lock));
+  x.mu2.Unlock();
+
+  // Get the reader lock ourselves, and release it.
+  x.mu.ReaderLock();
+  x.mu.ReaderUnlock();
+
+  // The lock should be held in read mode by GetReadLock().
+  // If we have the bug, the lock will be free.
+  x.mu.AssertReaderHeld();
+
+  // Wake up all the threads.
+  x.mu2.Lock();
+  x.complete = true;
+  x.mu2.Unlock();
+
+  // TODO(delesley): turn on analysis once lock upgrading is supported.
+  // (This call upgrades the lock from shared to exclusive.)
+  x.mu.Lock();
+  x.cond = true;
+  x.mu.Await(absl::Condition(&AllDone, &x));
+  x.mu.Unlock();
+
+  thread1.join();
+  thread2.join();
+}
+#endif  // !ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE
+
+// Test that we correctly handle the situation when a lock is
+// held and then destroyed (w/o unlocking).
+#ifdef THREAD_SANITIZER
+// TSAN reports errors when locked Mutexes are destroyed.
+TEST(Mutex, DISABLED_LockedMutexDestructionBug) NO_THREAD_SAFETY_ANALYSIS {
+#else
+TEST(Mutex, LockedMutexDestructionBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
+#endif
+  for (int i = 0; i != 10; i++) {
+    // Create, lock and destroy 10 locks.
+    const int kNumLocks = 10;
+    auto mu = absl::make_unique<absl::Mutex[]>(kNumLocks);
+    for (int j = 0; j != kNumLocks; j++) {
+      if ((j % 2) == 0) {
+        mu[j].WriterLock();
+      } else {
+        mu[j].ReaderLock();
+      }
+    }
+  }
+}
+
+// --------------------------------------------------------
+// Test for bug with pattern of readers using a condvar.  The bug was that if a
+// reader went to sleep on a condition variable while one or more other readers
+// held the lock, but there were no waiters, the reader count (held in the
+// mutex word) would be lost.  (This is because Enqueue() had at one time
+// always placed the thread on the Mutex queue.  Later (CL 4075610), to
+// tolerate re-entry into Mutex from a Condition predicate, Enqueue() was
+// changed so that it could also place a thread on a condition-variable.  This
+// introduced the case where Enqueue() returned with an empty queue, and this
+// case was handled incorrectly in one place.)
+
+static void ReaderForReaderOnCondVar(absl::Mutex *mu, absl::CondVar *cv,
+                                     int *running) {
+  std::random_device dev;
+  std::mt19937 gen(dev());
+  std::uniform_int_distribution<int> random_millis(0, 15);
+  mu->ReaderLock();
+  while (*running == 3) {
+    absl::SleepFor(absl::Milliseconds(random_millis(gen)));
+    cv->WaitWithTimeout(mu, absl::Milliseconds(random_millis(gen)));
+  }
+  mu->ReaderUnlock();
+  mu->Lock();
+  (*running)--;
+  mu->Unlock();
+}
+
+struct True {
+  template <class... Args>
+  bool operator()(Args...) const {
+    return true;
+  }
+};
+
+struct DerivedTrue : True {};
+
+TEST(Mutex, FunctorCondition) {
+  {  // Variadic
+    True f;
+    EXPECT_TRUE(absl::Condition(&f).Eval());
+  }
+
+  {  // Inherited
+    DerivedTrue g;
+    EXPECT_TRUE(absl::Condition(&g).Eval());
+  }
+
+  {  // lambda
+    int value = 3;
+    auto is_zero = [&value] { return value == 0; };
+    absl::Condition c(&is_zero);
+    EXPECT_FALSE(c.Eval());
+    value = 0;
+    EXPECT_TRUE(c.Eval());
+  }
+
+  {  // bind
+    int value = 0;
+    auto is_positive = std::bind(std::less<int>(), 0, std::cref(value));
+    absl::Condition c(&is_positive);
+    EXPECT_FALSE(c.Eval());
+    value = 1;
+    EXPECT_TRUE(c.Eval());
+  }
+
+  {  // std::function
+    int value = 3;
+    std::function<bool()> is_zero = [&value] { return value == 0; };
+    absl::Condition c(&is_zero);
+    EXPECT_FALSE(c.Eval());
+    value = 0;
+    EXPECT_TRUE(c.Eval());
+  }
+}
+
+static bool IntIsZero(int *x) { return *x == 0; }
+
+// Test for reader waiting condition variable when there are other readers
+// but no waiters.
+TEST(Mutex, TestReaderOnCondVar) {
+  auto tp = CreateDefaultPool();
+  absl::Mutex mu;
+  absl::CondVar cv;
+  int running = 3;
+  tp->Schedule(std::bind(&ReaderForReaderOnCondVar, &mu, &cv, &running));
+  tp->Schedule(std::bind(&ReaderForReaderOnCondVar, &mu, &cv, &running));
+  absl::SleepFor(absl::Seconds(2));
+  mu.Lock();
+  running--;
+  mu.Await(absl::Condition(&IntIsZero, &running));
+  mu.Unlock();
+}
+
+// --------------------------------------------------------
+struct AcquireFromConditionStruct {
+  absl::Mutex mu0;   // protects value, done
+  int value;         // times condition function is called; under mu0,
+  bool done;         // done with test?  under mu0
+  absl::Mutex mu1;   // used to attempt to mess up state of mu0
+  absl::CondVar cv;  // so the condition function can be invoked from
+                     // CondVar::Wait().
+};
+
+static bool ConditionWithAcquire(AcquireFromConditionStruct *x) {
+  x->value++;  // count times this function is called
+
+  if (x->value == 2 || x->value == 3) {
+    // On the second and third invocation of this function, sleep for 100ms,
+    // but with the side-effect of altering the state of a Mutex other than
+    // than one for which this is a condition.  The spec now explicitly allows
+    // this side effect; previously it did not.  it was illegal.
+    bool always_false = false;
+    x->mu1.LockWhenWithTimeout(absl::Condition(&always_false),
+                               absl::Milliseconds(100));
+    x->mu1.Unlock();
+  }
+  ABSL_RAW_CHECK(x->value < 4, "should not be invoked a fourth time");
+
+  // We arrange for the condition to return true on only the 2nd and 3rd calls.
+  return x->value == 2 || x->value == 3;
+}
+
+static void WaitForCond2(AcquireFromConditionStruct *x) {
+  // wait for cond0 to become true
+  x->mu0.LockWhen(absl::Condition(&ConditionWithAcquire, x));
+  x->done = true;
+  x->mu0.Unlock();
+}
+
+// Test for Condition whose function acquires other Mutexes
+TEST(Mutex, AcquireFromCondition) {
+  auto tp = CreateDefaultPool();
+
+  AcquireFromConditionStruct x;
+  x.value = 0;
+  x.done = false;
+  tp->Schedule(
+      std::bind(&WaitForCond2, &x));  // run WaitForCond2() in a thread T
+  // T will hang because the first invocation of ConditionWithAcquire() will
+  // return false.
+  absl::SleepFor(absl::Milliseconds(500));  // allow T time to hang
+
+  x.mu0.Lock();
+  x.cv.WaitWithTimeout(&x.mu0, absl::Milliseconds(500));  // wake T
+  // T will be woken because the Wait() will call ConditionWithAcquire()
+  // for the second time, and it will return true.
+
+  x.mu0.Unlock();
+
+  // T will then acquire the lock and recheck its own condition.
+  // It will find the condition true, as this is the third invocation,
+  // but the use of another Mutex by the calling function will
+  // cause the old mutex implementation to think that the outer
+  // LockWhen() has timed out because the inner LockWhenWithTimeout() did.
+  // T will then check the condition a fourth time because it finds a
+  // timeout occurred.  This should not happen in the new
+  // implementation that allows the Condition function to use Mutexes.
+
+  // It should also succeed, even though the Condition function
+  // is being invoked from CondVar::Wait, and thus this thread
+  // is conceptually waiting both on the condition variable, and on mu2.
+
+  x.mu0.LockWhen(absl::Condition(&x.done));
+  x.mu0.Unlock();
+}
+
+// The deadlock detector is not part of non-prod builds, so do not test it.
+#if !defined(ABSL_INTERNAL_USE_NONPROD_MUTEX)
+
+TEST(Mutex, DeadlockDetector) {
+  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
+
+  // check that we can call ForgetDeadlockInfo() on a lock with the lock held
+  absl::Mutex m1;
+  absl::Mutex m2;
+  absl::Mutex m3;
+  absl::Mutex m4;
+
+  m1.Lock();  // m1 gets ID1
+  m2.Lock();  // m2 gets ID2
+  m3.Lock();  // m3 gets ID3
+  m3.Unlock();
+  m2.Unlock();
+  // m1 still held
+  m1.ForgetDeadlockInfo();  // m1 loses ID
+  m2.Lock();                // m2 gets ID2
+  m3.Lock();                // m3 gets ID3
+  m4.Lock();                // m4 gets ID4
+  m3.Unlock();
+  m2.Unlock();
+  m4.Unlock();
+  m1.Unlock();
+}
+
+// Bazel has a test "warning" file that programs can write to if the
+// test should pass with a warning.  This class disables the warning
+// file until it goes out of scope.
+class ScopedDisableBazelTestWarnings {
+ public:
+  ScopedDisableBazelTestWarnings() {
+#ifdef _WIN32
+    char file[MAX_PATH];
+    if (GetEnvironmentVariableA(kVarName, file, sizeof(file)) < sizeof(file)) {
+      warnings_output_file_ = file;
+      SetEnvironmentVariableA(kVarName, nullptr);
+    }
+#else
+    const char *file = getenv(kVarName);
+    if (file != nullptr) {
+      warnings_output_file_ = file;
+      unsetenv(kVarName);
+    }
+#endif
+  }
+
+  ~ScopedDisableBazelTestWarnings() {
+    if (!warnings_output_file_.empty()) {
+#ifdef _WIN32
+      SetEnvironmentVariableA(kVarName, warnings_output_file_.c_str());
+#else
+      setenv(kVarName, warnings_output_file_.c_str(), 0);
+#endif
+    }
+  }
+
+ private:
+  static const char kVarName[];
+  std::string warnings_output_file_;
+};
+const char ScopedDisableBazelTestWarnings::kVarName[] =
+    "TEST_WARNINGS_OUTPUT_FILE";
+
+#ifdef THREAD_SANITIZER
+// This test intentionally creates deadlocks to test the deadlock detector.
+TEST(Mutex, DISABLED_DeadlockDetectorBazelWarning) {
+#else
+TEST(Mutex, DeadlockDetectorBazelWarning) {
+#endif
+  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kReport);
+
+  // Cause deadlock detection to detect something, if it's
+  // compiled in and enabled.  But turn off the bazel warning.
+  ScopedDisableBazelTestWarnings disable_bazel_test_warnings;
+
+  absl::Mutex mu0;
+  absl::Mutex mu1;
+  bool got_mu0 = mu0.TryLock();
+  mu1.Lock();  // acquire mu1 while holding mu0
+  if (got_mu0) {
+    mu0.Unlock();
+  }
+  if (mu0.TryLock()) {  // try lock shouldn't cause deadlock detector to fire
+    mu0.Unlock();
+  }
+  mu0.Lock();  // acquire mu0 while holding mu1; should get one deadlock
+               // report here
+  mu0.Unlock();
+  mu1.Unlock();
+
+  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
+}
+
+// This test is tagged with NO_THREAD_SAFETY_ANALYSIS because the
+// annotation-based static thread-safety analysis is not currently
+// predicate-aware and cannot tell if the two for-loops that acquire and
+// release the locks have the same predicates.
+TEST(Mutex, DeadlockDetectorStessTest) ABSL_NO_THREAD_SAFETY_ANALYSIS {
+  // Stress test: Here we create a large number of locks and use all of them.
+  // If a deadlock detector keeps a full graph of lock acquisition order,
+  // it will likely be too slow for this test to pass.
+  const int n_locks = 1 << 17;
+  auto array_of_locks = absl::make_unique<absl::Mutex[]>(n_locks);
+  for (int i = 0; i < n_locks; i++) {
+    int end = std::min(n_locks, i + 5);
+    // acquire and then release locks i, i+1, ..., i+4
+    for (int j = i; j < end; j++) {
+      array_of_locks[j].Lock();
+    }
+    for (int j = i; j < end; j++) {
+      array_of_locks[j].Unlock();
+    }
+  }
+}
+
+#ifdef THREAD_SANITIZER
+// TSAN reports errors when locked Mutexes are destroyed.
+TEST(Mutex, DISABLED_DeadlockIdBug) NO_THREAD_SAFETY_ANALYSIS {
+#else
+TEST(Mutex, DeadlockIdBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
+#endif
+  // Test a scenario where a cached deadlock graph node id in the
+  // list of held locks is not invalidated when the corresponding
+  // mutex is deleted.
+  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
+  // Mutex that will be destroyed while being held
+  absl::Mutex *a = new absl::Mutex;
+  // Other mutexes needed by test
+  absl::Mutex b, c;
+
+  // Hold mutex.
+  a->Lock();
+
+  // Force deadlock id assignment by acquiring another lock.
+  b.Lock();
+  b.Unlock();
+
+  // Delete the mutex. The Mutex destructor tries to remove held locks,
+  // but the attempt isn't foolproof.  It can fail if:
+  //   (a) Deadlock detection is currently disabled.
+  //   (b) The destruction is from another thread.
+  // We exploit (a) by temporarily disabling deadlock detection.
+  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kIgnore);
+  delete a;
+  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
+
+  // Now acquire another lock which will force a deadlock id assignment.
+  // We should end up getting assigned the same deadlock id that was
+  // freed up when "a" was deleted, which will cause a spurious deadlock
+  // report if the held lock entry for "a" was not invalidated.
+  c.Lock();
+  c.Unlock();
+}
+#endif  // !defined(ABSL_INTERNAL_USE_NONPROD_MUTEX)
+
+// --------------------------------------------------------
+// Test for timeouts/deadlines on condition waits that are specified using
+// absl::Duration and absl::Time.  For each waiting function we test with
+// a timeout/deadline that has already expired/passed, one that is infinite
+// and so never expires/passes, and one that will expire/pass in the near
+// future.
+
+static absl::Duration TimeoutTestAllowedSchedulingDelay() {
+  // Note: we use a function here because Microsoft Visual Studio fails to
+  // properly initialize constexpr static absl::Duration variables.
+  return absl::Milliseconds(150);
+}
+
+// Returns true if `actual_delay` is close enough to `expected_delay` to pass
+// the timeouts/deadlines test.  Otherwise, logs warnings and returns false.
+ABSL_MUST_USE_RESULT
+static bool DelayIsWithinBounds(absl::Duration expected_delay,
+                                absl::Duration actual_delay) {
+  bool pass = true;
+  // Do not allow the observed delay to be less than expected.  This may occur
+  // in practice due to clock skew or when the synchronization primitives use a
+  // different clock than absl::Now(), but these cases should be handled by the
+  // the retry mechanism in each TimeoutTest.
+  if (actual_delay < expected_delay) {
+    ABSL_RAW_LOG(WARNING,
+                 "Actual delay %s was too short, expected %s (difference %s)",
+                 absl::FormatDuration(actual_delay).c_str(),
+                 absl::FormatDuration(expected_delay).c_str(),
+                 absl::FormatDuration(actual_delay - expected_delay).c_str());
+    pass = false;
+  }
+  // If the expected delay is <= zero then allow a small error tolerance, since
+  // we do not expect context switches to occur during test execution.
+  // Otherwise, thread scheduling delays may be substantial in rare cases, so
+  // tolerate up to kTimeoutTestAllowedSchedulingDelay of error.
+  absl::Duration tolerance = expected_delay <= absl::ZeroDuration()
+                                 ? absl::Milliseconds(10)
+                                 : TimeoutTestAllowedSchedulingDelay();
+  if (actual_delay > expected_delay + tolerance) {
+    ABSL_RAW_LOG(WARNING,
+                 "Actual delay %s was too long, expected %s (difference %s)",
+                 absl::FormatDuration(actual_delay).c_str(),
+                 absl::FormatDuration(expected_delay).c_str(),
+                 absl::FormatDuration(actual_delay - expected_delay).c_str());
+    pass = false;
+  }
+  return pass;
+}
+
+// Parameters for TimeoutTest, below.
+struct TimeoutTestParam {
+  // The file and line number (used for logging purposes only).
+  const char *from_file;
+  int from_line;
+
+  // Should the absolute deadline API based on absl::Time be tested?  If false,
+  // the relative deadline API based on absl::Duration is tested.
+  bool use_absolute_deadline;
+
+  // The deadline/timeout used when calling the API being tested
+  // (e.g. Mutex::LockWhenWithDeadline).
+  absl::Duration wait_timeout;
+
+  // The delay before the condition will be set true by the test code.  If zero
+  // or negative, the condition is set true immediately (before calling the API
+  // being tested).  Otherwise, if infinite, the condition is never set true.
+  // Otherwise a closure is scheduled for the future that sets the condition
+  // true.
+  absl::Duration satisfy_condition_delay;
+
+  // The expected result of the condition after the call to the API being
+  // tested. Generally `true` means the condition was true when the API returns,
+  // `false` indicates an expected timeout.
+  bool expected_result;
+
+  // The expected delay before the API under test returns.  This is inherently
+  // flaky, so some slop is allowed (see `DelayIsWithinBounds` above), and the
+  // test keeps trying indefinitely until this constraint passes.
+  absl::Duration expected_delay;
+};
+
+// Print a `TimeoutTestParam` to a debug log.
+std::ostream &operator<<(std::ostream &os, const TimeoutTestParam &param) {
+  return os << "from: " << param.from_file << ":" << param.from_line
+            << " use_absolute_deadline: "
+            << (param.use_absolute_deadline ? "true" : "false")
+            << " wait_timeout: " << param.wait_timeout
+            << " satisfy_condition_delay: " << param.satisfy_condition_delay
+            << " expected_result: "
+            << (param.expected_result ? "true" : "false")
+            << " expected_delay: " << param.expected_delay;
+}
+
+std::string FormatString(const TimeoutTestParam &param) {
+  std::ostringstream os;
+  os << param;
+  return os.str();
+}
+
+// Like `thread::Executor::ScheduleAt` except:
+// a) Delays zero or negative are executed immediately in the current thread.
+// b) Infinite delays are never scheduled.
+// c) Calls this test's `ScheduleAt` helper instead of using `pool` directly.
+static void RunAfterDelay(absl::Duration delay,
+                          absl::synchronization_internal::ThreadPool *pool,
+                          const std::function<void()> &callback) {
+  if (delay <= absl::ZeroDuration()) {
+    callback();  // immediate
+  } else if (delay != absl::InfiniteDuration()) {
+    ScheduleAfter(pool, delay, callback);
+  }
+}
+
+class TimeoutTest : public ::testing::Test,
+                    public ::testing::WithParamInterface<TimeoutTestParam> {};
+
+std::vector<TimeoutTestParam> MakeTimeoutTestParamValues() {
+  // The `finite` delay is a finite, relatively short, delay.  We make it larger
+  // than our allowed scheduling delay (slop factor) to avoid confusion when
+  // diagnosing test failures.  The other constants here have clear meanings.
+  const absl::Duration finite = 3 * TimeoutTestAllowedSchedulingDelay();
+  const absl::Duration never = absl::InfiniteDuration();
+  const absl::Duration negative = -absl::InfiniteDuration();
+  const absl::Duration immediate = absl::ZeroDuration();
+
+  // Every test case is run twice; once using the absolute deadline API and once
+  // using the relative timeout API.
+  std::vector<TimeoutTestParam> values;
+  for (bool use_absolute_deadline : {false, true}) {
+    // Tests with a negative timeout (deadline in the past), which should
+    // immediately return current state of the condition.
+
+    // The condition is already true:
+    values.push_back(TimeoutTestParam{
+        __FILE__, __LINE__, use_absolute_deadline,
+        negative,   // wait_timeout
+        immediate,  // satisfy_condition_delay
+        true,       // expected_result
+        immediate,  // expected_delay
+    });
+
+    // The condition becomes true, but the timeout has already expired:
+    values.push_back(TimeoutTestParam{
+        __FILE__, __LINE__, use_absolute_deadline,
+        negative,  // wait_timeout
+        finite,    // satisfy_condition_delay
+        false,     // expected_result
+        immediate  // expected_delay
+    });
+
+    // The condition never becomes true:
+    values.push_back(TimeoutTestParam{
+        __FILE__, __LINE__, use_absolute_deadline,
+        negative,  // wait_timeout
+        never,     // satisfy_condition_delay
+        false,     // expected_result
+        immediate  // expected_delay
+    });
+
+    // Tests with an infinite timeout (deadline in the infinite future), which
+    // should only return when the condition becomes true.
+
+    // The condition is already true:
+    values.push_back(TimeoutTestParam{
+        __FILE__, __LINE__, use_absolute_deadline,
+        never,      // wait_timeout
+        immediate,  // satisfy_condition_delay
+        true,       // expected_result
+        immediate   // expected_delay
+    });
+
+    // The condition becomes true before the (infinite) expiry:
+    values.push_back(TimeoutTestParam{
+        __FILE__, __LINE__, use_absolute_deadline,
+        never,   // wait_timeout
+        finite,  // satisfy_condition_delay
+        true,    // expected_result
+        finite,  // expected_delay
+    });
+
+    // Tests with a (small) finite timeout (deadline soon), with the condition
+    // becoming true both before and after its expiry.
+
+    // The condition is already true:
+    values.push_back(TimeoutTestParam{
+        __FILE__, __LINE__, use_absolute_deadline,
+        never,      // wait_timeout
+        immediate,  // satisfy_condition_delay
+        true,       // expected_result
+        immediate   // expected_delay
+    });
+
+    // The condition becomes true before the expiry:
+    values.push_back(TimeoutTestParam{
+        __FILE__, __LINE__, use_absolute_deadline,
+        finite * 2,  // wait_timeout
+        finite,      // satisfy_condition_delay
+        true,        // expected_result
+        finite       // expected_delay
+    });
+
+    // The condition becomes true, but the timeout has already expired:
+    values.push_back(TimeoutTestParam{
+        __FILE__, __LINE__, use_absolute_deadline,
+        finite,      // wait_timeout
+        finite * 2,  // satisfy_condition_delay
+        false,       // expected_result
+        finite       // expected_delay
+    });
+
+    // The condition never becomes true:
+    values.push_back(TimeoutTestParam{
+        __FILE__, __LINE__, use_absolute_deadline,
+        finite,  // wait_timeout
+        never,   // satisfy_condition_delay
+        false,   // expected_result
+        finite   // expected_delay
+    });
+  }
+  return values;
+}
+
+// Instantiate `TimeoutTest` with `MakeTimeoutTestParamValues()`.
+INSTANTIATE_TEST_SUITE_P(All, TimeoutTest,
+                         testing::ValuesIn(MakeTimeoutTestParamValues()));
+
+TEST_P(TimeoutTest, Await) {
+  const TimeoutTestParam params = GetParam();
+  ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());
+
+  // Because this test asserts bounds on scheduling delays it is flaky.  To
+  // compensate it loops forever until it passes.  Failures express as test
+  // timeouts, in which case the test log can be used to diagnose the issue.
+  for (int attempt = 1;; ++attempt) {
+    ABSL_RAW_LOG(INFO, "Attempt %d", attempt);
+
+    absl::Mutex mu;
+    bool value = false;  // condition value (under mu)
+
+    std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
+        CreateDefaultPool();
+    RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
+      absl::MutexLock l(&mu);
+      value = true;
+    });
+
+    absl::MutexLock lock(&mu);
+    absl::Time start_time = absl::Now();
+    absl::Condition cond(&value);
+    bool result =
+        params.use_absolute_deadline
+            ? mu.AwaitWithDeadline(cond, start_time + params.wait_timeout)
+            : mu.AwaitWithTimeout(cond, params.wait_timeout);
+    if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
+      EXPECT_EQ(params.expected_result, result);
+      break;
+    }
+  }
+}
+
+TEST_P(TimeoutTest, LockWhen) {
+  const TimeoutTestParam params = GetParam();
+  ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());
+
+  // Because this test asserts bounds on scheduling delays it is flaky.  To
+  // compensate it loops forever until it passes.  Failures express as test
+  // timeouts, in which case the test log can be used to diagnose the issue.
+  for (int attempt = 1;; ++attempt) {
+    ABSL_RAW_LOG(INFO, "Attempt %d", attempt);
+
+    absl::Mutex mu;
+    bool value = false;  // condition value (under mu)
+
+    std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
+        CreateDefaultPool();
+    RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
+      absl::MutexLock l(&mu);
+      value = true;
+    });
+
+    absl::Time start_time = absl::Now();
+    absl::Condition cond(&value);
+    bool result =
+        params.use_absolute_deadline
+            ? mu.LockWhenWithDeadline(cond, start_time + params.wait_timeout)
+            : mu.LockWhenWithTimeout(cond, params.wait_timeout);
+    mu.Unlock();
+
+    if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
+      EXPECT_EQ(params.expected_result, result);
+      break;
+    }
+  }
+}
+
+TEST_P(TimeoutTest, ReaderLockWhen) {
+  const TimeoutTestParam params = GetParam();
+  ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());
+
+  // Because this test asserts bounds on scheduling delays it is flaky.  To
+  // compensate it loops forever until it passes.  Failures express as test
+  // timeouts, in which case the test log can be used to diagnose the issue.
+  for (int attempt = 0;; ++attempt) {
+    ABSL_RAW_LOG(INFO, "Attempt %d", attempt);
+
+    absl::Mutex mu;
+    bool value = false;  // condition value (under mu)
+
+    std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
+        CreateDefaultPool();
+    RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
+      absl::MutexLock l(&mu);
+      value = true;
+    });
+
+    absl::Time start_time = absl::Now();
+    bool result =
+        params.use_absolute_deadline
+            ? mu.ReaderLockWhenWithDeadline(absl::Condition(&value),
+                                            start_time + params.wait_timeout)
+            : mu.ReaderLockWhenWithTimeout(absl::Condition(&value),
+                                           params.wait_timeout);
+    mu.ReaderUnlock();
+
+    if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
+      EXPECT_EQ(params.expected_result, result);
+      break;
+    }
+  }
+}
+
+TEST_P(TimeoutTest, Wait) {
+  const TimeoutTestParam params = GetParam();
+  ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());
+
+  // Because this test asserts bounds on scheduling delays it is flaky.  To
+  // compensate it loops forever until it passes.  Failures express as test
+  // timeouts, in which case the test log can be used to diagnose the issue.
+  for (int attempt = 0;; ++attempt) {
+    ABSL_RAW_LOG(INFO, "Attempt %d", attempt);
+
+    absl::Mutex mu;
+    bool value = false;  // condition value (under mu)
+    absl::CondVar cv;    // signals a change of `value`
+
+    std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
+        CreateDefaultPool();
+    RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
+      absl::MutexLock l(&mu);
+      value = true;
+      cv.Signal();
+    });
+
+    absl::MutexLock lock(&mu);
+    absl::Time start_time = absl::Now();
+    absl::Duration timeout = params.wait_timeout;
+    absl::Time deadline = start_time + timeout;
+    while (!value) {
+      if (params.use_absolute_deadline ? cv.WaitWithDeadline(&mu, deadline)
+                                       : cv.WaitWithTimeout(&mu, timeout)) {
+        break;  // deadline/timeout exceeded
+      }
+      timeout = deadline - absl::Now();  // recompute
+    }
+    bool result = value;  // note: `mu` is still held
+
+    if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
+      EXPECT_EQ(params.expected_result, result);
+      break;
+    }
+  }
+}
+
+TEST(Mutex, Logging) {
+  // Allow user to look at logging output
+  absl::Mutex logged_mutex;
+  logged_mutex.EnableDebugLog("fido_mutex");
+  absl::CondVar logged_cv;
+  logged_cv.EnableDebugLog("rover_cv");
+  logged_mutex.Lock();
+  logged_cv.WaitWithTimeout(&logged_mutex, absl::Milliseconds(20));
+  logged_mutex.Unlock();
+  logged_mutex.ReaderLock();
+  logged_mutex.ReaderUnlock();
+  logged_mutex.Lock();
+  logged_mutex.Unlock();
+  logged_cv.Signal();
+  logged_cv.SignalAll();
+}
+
+// --------------------------------------------------------
+
+// Generate the vector of thread counts for tests parameterized on thread count.
+static std::vector<int> AllThreadCountValues() {
+  if (kExtendedTest) {
+    return {2, 4, 8, 10, 16, 20, 24, 30, 32};
+  }
+  return {2, 4, 10};
+}
+
+// A test fixture parameterized by thread count.
+class MutexVariableThreadCountTest : public ::testing::TestWithParam<int> {};
+
+// Instantiate the above with AllThreadCountOptions().
+INSTANTIATE_TEST_SUITE_P(ThreadCounts, MutexVariableThreadCountTest,
+                         ::testing::ValuesIn(AllThreadCountValues()),
+                         ::testing::PrintToStringParamName());
+
+// Reduces iterations by some factor for slow platforms
+// (determined empirically).
+static int ScaleIterations(int x) {
+  // ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE is set in the implementation
+  // of Mutex that uses either std::mutex or pthread_mutex_t. Use
+  // these as keys to determine the slow implementation.
+#if defined(ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE)
+  return x / 10;
+#else
+  return x;
+#endif
+}
+
+TEST_P(MutexVariableThreadCountTest, Mutex) {
+  int threads = GetParam();
+  int iterations = ScaleIterations(10000000) / threads;
+  int operations = threads * iterations;
+  EXPECT_EQ(RunTest(&TestMu, threads, iterations, operations), operations);
+#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
+  iterations = std::min(iterations, 10);
+  operations = threads * iterations;
+  EXPECT_EQ(RunTestWithInvariantDebugging(&TestMu, threads, iterations,
+                                          operations, CheckSumG0G1),
+            operations);
+#endif
+}
+
+TEST_P(MutexVariableThreadCountTest, Try) {
+  int threads = GetParam();
+  int iterations = 1000000 / threads;
+  int operations = iterations * threads;
+  EXPECT_EQ(RunTest(&TestTry, threads, iterations, operations), operations);
+#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
+  iterations = std::min(iterations, 10);
+  operations = threads * iterations;
+  EXPECT_EQ(RunTestWithInvariantDebugging(&TestTry, threads, iterations,
+                                          operations, CheckSumG0G1),
+            operations);
+#endif
+}
+
+TEST_P(MutexVariableThreadCountTest, R20ms) {
+  int threads = GetParam();
+  int iterations = 100;
+  int operations = iterations * threads;
+  EXPECT_EQ(RunTest(&TestR20ms, threads, iterations, operations), 0);
+}
+
+TEST_P(MutexVariableThreadCountTest, RW) {
+  int threads = GetParam();
+  int iterations = ScaleIterations(20000000) / threads;
+  int operations = iterations * threads;
+  EXPECT_EQ(RunTest(&TestRW, threads, iterations, operations), operations / 2);
+#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
+  iterations = std::min(iterations, 10);
+  operations = threads * iterations;
+  EXPECT_EQ(RunTestWithInvariantDebugging(&TestRW, threads, iterations,
+                                          operations, CheckSumG0G1),
+            operations / 2);
+#endif
+}
+
+TEST_P(MutexVariableThreadCountTest, Await) {
+  int threads = GetParam();
+  int iterations = ScaleIterations(500000);
+  int operations = iterations;
+  EXPECT_EQ(RunTest(&TestAwait, threads, iterations, operations), operations);
+}
+
+TEST_P(MutexVariableThreadCountTest, SignalAll) {
+  int threads = GetParam();
+  int iterations = 200000 / threads;
+  int operations = iterations;
+  EXPECT_EQ(RunTest(&TestSignalAll, threads, iterations, operations),
+            operations);
+}
+
+TEST(Mutex, Signal) {
+  int threads = 2;  // TestSignal must use two threads
+  int iterations = 200000;
+  int operations = iterations;
+  EXPECT_EQ(RunTest(&TestSignal, threads, iterations, operations), operations);
+}
+
+TEST(Mutex, Timed) {
+  int threads = 10;  // Use a fixed thread count of 10
+  int iterations = 1000;
+  int operations = iterations;
+  EXPECT_EQ(RunTest(&TestCVTimeout, threads, iterations, operations),
+            operations);
+}
+
+TEST(Mutex, CVTime) {
+  int threads = 10;  // Use a fixed thread count of 10
+  int iterations = 1;
+  EXPECT_EQ(RunTest(&TestCVTime, threads, iterations, 1),
+            threads * iterations);
+}
+
+TEST(Mutex, MuTime) {
+  int threads = 10;  // Use a fixed thread count of 10
+  int iterations = 1;
+  EXPECT_EQ(RunTest(&TestMuTime, threads, iterations, 1), threads * iterations);
+}
+
+}  // namespace