about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/synchronization/mutex.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil_cpp/absl/synchronization/mutex.h')
-rw-r--r--third_party/abseil_cpp/absl/synchronization/mutex.h1060
1 files changed, 1060 insertions, 0 deletions
diff --git a/third_party/abseil_cpp/absl/synchronization/mutex.h b/third_party/abseil_cpp/absl/synchronization/mutex.h
new file mode 100644
index 000000000000..876698ca5f62
--- /dev/null
+++ b/third_party/abseil_cpp/absl/synchronization/mutex.h
@@ -0,0 +1,1060 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// mutex.h
+// -----------------------------------------------------------------------------
+//
+// This header file defines a `Mutex` -- a mutually exclusive lock -- and the
+// most common type of synchronization primitive for facilitating locks on
+// shared resources. A mutex is used to prevent multiple threads from accessing
+// and/or writing to a shared resource concurrently.
+//
+// Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
+// features:
+//   * Conditional predicates intrinsic to the `Mutex` object
+//   * Shared/reader locks, in addition to standard exclusive/writer locks
+//   * Deadlock detection and debug support.
+//
+// The following helper classes are also defined within this file:
+//
+//  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
+//              write access within the current scope.
+//  ReaderMutexLock
+//            - An RAII wrapper to acquire and release a `Mutex` for shared/read
+//              access within the current scope.
+//
+//  WriterMutexLock
+//            - Alias for `MutexLock` above, designed for use in distinguishing
+//              reader and writer locks within code.
+//
+// In addition to simple mutex locks, this file also defines ways to perform
+// locking under certain conditions.
+//
+//  Condition   - (Preferred) Used to wait for a particular predicate that
+//                depends on state protected by the `Mutex` to become true.
+//  CondVar     - A lower-level variant of `Condition` that relies on
+//                application code to explicitly signal the `CondVar` when
+//                a condition has been met.
+//
+// See below for more information on using `Condition` or `CondVar`.
+//
+// Mutexes and mutex behavior can be quite complicated. The information within
+// this header file is limited, as a result. Please consult the Mutex guide for
+// more complete information and examples.
+
+#ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
+#define ABSL_SYNCHRONIZATION_MUTEX_H_
+
+#include <atomic>
+#include <cstdint>
+#include <string>
+
+#include "absl/base/const_init.h"
+#include "absl/base/internal/identity.h"
+#include "absl/base/internal/low_level_alloc.h"
+#include "absl/base/internal/thread_identity.h"
+#include "absl/base/internal/tsan_mutex_interface.h"
+#include "absl/base/port.h"
+#include "absl/base/thread_annotations.h"
+#include "absl/synchronization/internal/kernel_timeout.h"
+#include "absl/synchronization/internal/per_thread_sem.h"
+#include "absl/time/time.h"
+
+// Decide if we should use the non-production implementation because
+// the production implementation hasn't been fully ported yet.
+#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
+#error ABSL_INTERNAL_USE_NONPROD_MUTEX cannot be directly set
+#elif defined(ABSL_LOW_LEVEL_ALLOC_MISSING)
+#define ABSL_INTERNAL_USE_NONPROD_MUTEX 1
+#include "absl/synchronization/internal/mutex_nonprod.inc"
+#endif
+
+namespace absl {
+ABSL_NAMESPACE_BEGIN
+
+class Condition;
+struct SynchWaitParams;
+
+// -----------------------------------------------------------------------------
+// Mutex
+// -----------------------------------------------------------------------------
+//
+// A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
+// on some resource, typically a variable or data structure with associated
+// invariants. Proper usage of mutexes prevents concurrent access by different
+// threads to the same resource.
+//
+// A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
+// The `Lock()` operation *acquires* a `Mutex` (in a state known as an
+// *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
+// Mutex. During the span of time between the Lock() and Unlock() operations,
+// a mutex is said to be *held*. By design all mutexes support exclusive/write
+// locks, as this is the most common way to use a mutex.
+//
+// The `Mutex` state machine for basic lock/unlock operations is quite simple:
+//
+// |                | Lock()     | Unlock() |
+// |----------------+------------+----------|
+// | Free           | Exclusive  | invalid  |
+// | Exclusive      | blocks     | Free     |
+//
+// Attempts to `Unlock()` must originate from the thread that performed the
+// corresponding `Lock()` operation.
+//
+// An "invalid" operation is disallowed by the API. The `Mutex` implementation
+// is allowed to do anything on an invalid call, including but not limited to
+// crashing with a useful error message, silently succeeding, or corrupting
+// data structures. In debug mode, the implementation attempts to crash with a
+// useful error message.
+//
+// `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
+// is, however, approximately fair over long periods, and starvation-free for
+// threads at the same priority.
+//
+// The lock/unlock primitives are now annotated with lock annotations
+// defined in (base/thread_annotations.h). When writing multi-threaded code,
+// you should use lock annotations whenever possible to document your lock
+// synchronization policy. Besides acting as documentation, these annotations
+// also help compilers or static analysis tools to identify and warn about
+// issues that could potentially result in race conditions and deadlocks.
+//
+// For more information about the lock annotations, please see
+// [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
+// in the Clang documentation.
+//
+// See also `MutexLock`, below, for scoped `Mutex` acquisition.
+
+class ABSL_LOCKABLE Mutex {
+ public:
+  // Creates a `Mutex` that is not held by anyone. This constructor is
+  // typically used for Mutexes allocated on the heap or the stack.
+  //
+  // To create `Mutex` instances with static storage duration
+  // (e.g. a namespace-scoped or global variable), see
+  // `Mutex::Mutex(absl::kConstInit)` below instead.
+  Mutex();
+
+  // Creates a mutex with static storage duration.  A global variable
+  // constructed this way avoids the lifetime issues that can occur on program
+  // startup and shutdown.  (See absl/base/const_init.h.)
+  //
+  // For Mutexes allocated on the heap and stack, instead use the default
+  // constructor, which can interact more fully with the thread sanitizer.
+  //
+  // Example usage:
+  //   namespace foo {
+  //   ABSL_CONST_INIT Mutex mu(absl::kConstInit);
+  //   }
+  explicit constexpr Mutex(absl::ConstInitType);
+
+  ~Mutex();
+
+  // Mutex::Lock()
+  //
+  // Blocks the calling thread, if necessary, until this `Mutex` is free, and
+  // then acquires it exclusively. (This lock is also known as a "write lock.")
+  void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
+
+  // Mutex::Unlock()
+  //
+  // Releases this `Mutex` and returns it from the exclusive/write state to the
+  // free state. Caller must hold the `Mutex` exclusively.
+  void Unlock() ABSL_UNLOCK_FUNCTION();
+
+  // Mutex::TryLock()
+  //
+  // If the mutex can be acquired without blocking, does so exclusively and
+  // returns `true`. Otherwise, returns `false`. Returns `true` with high
+  // probability if the `Mutex` was free.
+  bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
+
+  // Mutex::AssertHeld()
+  //
+  // Return immediately if this thread holds the `Mutex` exclusively (in write
+  // mode). Otherwise, may report an error (typically by crashing with a
+  // diagnostic), or may return immediately.
+  void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
+
+  // ---------------------------------------------------------------------------
+  // Reader-Writer Locking
+  // ---------------------------------------------------------------------------
+
+  // A Mutex can also be used as a starvation-free reader-writer lock.
+  // Neither read-locks nor write-locks are reentrant/recursive to avoid
+  // potential client programming errors.
+  //
+  // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
+  // `Unlock()` and `TryLock()` methods for use within applications mixing
+  // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
+  // manner can make locking behavior clearer when mixing read and write modes.
+  //
+  // Introducing reader locks necessarily complicates the `Mutex` state
+  // machine somewhat. The table below illustrates the allowed state transitions
+  // of a mutex in such cases. Note that ReaderLock() may block even if the lock
+  // is held in shared mode; this occurs when another thread is blocked on a
+  // call to WriterLock().
+  //
+  // ---------------------------------------------------------------------------
+  //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
+  // ---------------------------------------------------------------------------
+  // State
+  // ---------------------------------------------------------------------------
+  // Free           Exclusive    invalid   Shared(1)              invalid
+  // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
+  // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
+  // Exclusive      blocks       Free      blocks                 invalid
+  // ---------------------------------------------------------------------------
+  //
+  // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
+
+  // Mutex::ReaderLock()
+  //
+  // Blocks the calling thread, if necessary, until this `Mutex` is either free,
+  // or in shared mode, and then acquires a share of it. Note that
+  // `ReaderLock()` will block if some other thread has an exclusive/writer lock
+  // on the mutex.
+
+  void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
+
+  // Mutex::ReaderUnlock()
+  //
+  // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
+  // the free state if this thread holds the last reader lock on the mutex. Note
+  // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
+  void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
+
+  // Mutex::ReaderTryLock()
+  //
+  // If the mutex can be acquired without blocking, acquires this mutex for
+  // shared access and returns `true`. Otherwise, returns `false`. Returns
+  // `true` with high probability if the `Mutex` was free or shared.
+  bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
+
+  // Mutex::AssertReaderHeld()
+  //
+  // Returns immediately if this thread holds the `Mutex` in at least shared
+  // mode (read mode). Otherwise, may report an error (typically by
+  // crashing with a diagnostic), or may return immediately.
+  void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
+
+  // Mutex::WriterLock()
+  // Mutex::WriterUnlock()
+  // Mutex::WriterTryLock()
+  //
+  // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
+  //
+  // These methods may be used (along with the complementary `Reader*()`
+  // methods) to distingish simple exclusive `Mutex` usage (`Lock()`,
+  // etc.) from reader/writer lock usage.
+  void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
+
+  void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
+
+  bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
+    return this->TryLock();
+  }
+
+  // ---------------------------------------------------------------------------
+  // Conditional Critical Regions
+  // ---------------------------------------------------------------------------
+
+  // Conditional usage of a `Mutex` can occur using two distinct paradigms:
+  //
+  //   * Use of `Mutex` member functions with `Condition` objects.
+  //   * Use of the separate `CondVar` abstraction.
+  //
+  // In general, prefer use of `Condition` and the `Mutex` member functions
+  // listed below over `CondVar`. When there are multiple threads waiting on
+  // distinctly different conditions, however, a battery of `CondVar`s may be
+  // more efficient. This section discusses use of `Condition` objects.
+  //
+  // `Mutex` contains member functions for performing lock operations only under
+  // certain conditions, of class `Condition`. For correctness, the `Condition`
+  // must return a boolean that is a pure function, only of state protected by
+  // the `Mutex`. The condition must be invariant w.r.t. environmental state
+  // such as thread, cpu id, or time, and must be `noexcept`. The condition will
+  // always be invoked with the mutex held in at least read mode, so you should
+  // not block it for long periods or sleep it on a timer.
+  //
+  // Since a condition must not depend directly on the current time, use
+  // `*WithTimeout()` member function variants to make your condition
+  // effectively true after a given duration, or `*WithDeadline()` variants to
+  // make your condition effectively true after a given time.
+  //
+  // The condition function should have no side-effects aside from debug
+  // logging; as a special exception, the function may acquire other mutexes
+  // provided it releases all those that it acquires.  (This exception was
+  // required to allow logging.)
+
+  // Mutex::Await()
+  //
+  // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
+  // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
+  // same mode in which it was previously held. If the condition is initially
+  // `true`, `Await()` *may* skip the release/re-acquire step.
+  //
+  // `Await()` requires that this thread holds this `Mutex` in some mode.
+  void Await(const Condition &cond);
+
+  // Mutex::LockWhen()
+  // Mutex::ReaderLockWhen()
+  // Mutex::WriterLockWhen()
+  //
+  // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
+  // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
+  // logically equivalent to `*Lock(); Await();` though they may have different
+  // performance characteristics.
+  void LockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION();
+
+  void ReaderLockWhen(const Condition &cond) ABSL_SHARED_LOCK_FUNCTION();
+
+  void WriterLockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
+    this->LockWhen(cond);
+  }
+
+  // ---------------------------------------------------------------------------
+  // Mutex Variants with Timeouts/Deadlines
+  // ---------------------------------------------------------------------------
+
+  // Mutex::AwaitWithTimeout()
+  // Mutex::AwaitWithDeadline()
+  //
+  // Unlocks this `Mutex` and blocks until simultaneously:
+  //   - either `cond` is true or the {timeout has expired, deadline has passed}
+  //     and
+  //   - this `Mutex` can be reacquired,
+  // then reacquire this `Mutex` in the same mode in which it was previously
+  // held, returning `true` iff `cond` is `true` on return.
+  //
+  // If the condition is initially `true`, the implementation *may* skip the
+  // release/re-acquire step and return immediately.
+  //
+  // Deadlines in the past are equivalent to an immediate deadline.
+  // Negative timeouts are equivalent to a zero timeout.
+  //
+  // This method requires that this thread holds this `Mutex` in some mode.
+  bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
+
+  bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
+
+  // Mutex::LockWhenWithTimeout()
+  // Mutex::ReaderLockWhenWithTimeout()
+  // Mutex::WriterLockWhenWithTimeout()
+  //
+  // Blocks until simultaneously both:
+  //   - either `cond` is `true` or the timeout has expired, and
+  //   - this `Mutex` can be acquired,
+  // then atomically acquires this `Mutex`, returning `true` iff `cond` is
+  // `true` on return.
+  //
+  // Negative timeouts are equivalent to a zero timeout.
+  bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
+      ABSL_EXCLUSIVE_LOCK_FUNCTION();
+  bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
+      ABSL_SHARED_LOCK_FUNCTION();
+  bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
+      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
+    return this->LockWhenWithTimeout(cond, timeout);
+  }
+
+  // Mutex::LockWhenWithDeadline()
+  // Mutex::ReaderLockWhenWithDeadline()
+  // Mutex::WriterLockWhenWithDeadline()
+  //
+  // Blocks until simultaneously both:
+  //   - either `cond` is `true` or the deadline has been passed, and
+  //   - this `Mutex` can be acquired,
+  // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
+  // on return.
+  //
+  // Deadlines in the past are equivalent to an immediate deadline.
+  bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
+      ABSL_EXCLUSIVE_LOCK_FUNCTION();
+  bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
+      ABSL_SHARED_LOCK_FUNCTION();
+  bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
+      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
+    return this->LockWhenWithDeadline(cond, deadline);
+  }
+
+  // ---------------------------------------------------------------------------
+  // Debug Support: Invariant Checking, Deadlock Detection, Logging.
+  // ---------------------------------------------------------------------------
+
+  // Mutex::EnableInvariantDebugging()
+  //
+  // If `invariant`!=null and if invariant debugging has been enabled globally,
+  // cause `(*invariant)(arg)` to be called at moments when the invariant for
+  // this `Mutex` should hold (for example: just after acquire, just before
+  // release).
+  //
+  // The routine `invariant` should have no side-effects since it is not
+  // guaranteed how many times it will be called; it should check the invariant
+  // and crash if it does not hold. Enabling global invariant debugging may
+  // substantially reduce `Mutex` performance; it should be set only for
+  // non-production runs.  Optimization options may also disable invariant
+  // checks.
+  void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
+
+  // Mutex::EnableDebugLog()
+  //
+  // Cause all subsequent uses of this `Mutex` to be logged via
+  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
+  // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
+  //
+  // Note: This method substantially reduces `Mutex` performance.
+  void EnableDebugLog(const char *name);
+
+  // Deadlock detection
+
+  // Mutex::ForgetDeadlockInfo()
+  //
+  // Forget any deadlock-detection information previously gathered
+  // about this `Mutex`. Call this method in debug mode when the lock ordering
+  // of a `Mutex` changes.
+  void ForgetDeadlockInfo();
+
+  // Mutex::AssertNotHeld()
+  //
+  // Return immediately if this thread does not hold this `Mutex` in any
+  // mode; otherwise, may report an error (typically by crashing with a
+  // diagnostic), or may return immediately.
+  //
+  // Currently this check is performed only if all of:
+  //    - in debug mode
+  //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
+  //    - number of locks concurrently held by this thread is not large.
+  // are true.
+  void AssertNotHeld() const;
+
+  // Special cases.
+
+  // A `MuHow` is a constant that indicates how a lock should be acquired.
+  // Internal implementation detail.  Clients should ignore.
+  typedef const struct MuHowS *MuHow;
+
+  // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
+  //
+  // Causes the `Mutex` implementation to prepare itself for re-entry caused by
+  // future use of `Mutex` within a fatal signal handler. This method is
+  // intended for use only for last-ditch attempts to log crash information.
+  // It does not guarantee that attempts to use Mutexes within the handler will
+  // not deadlock; it merely makes other faults less likely.
+  //
+  // WARNING:  This routine must be invoked from a signal handler, and the
+  // signal handler must either loop forever or terminate the process.
+  // Attempts to return from (or `longjmp` out of) the signal handler once this
+  // call has been made may cause arbitrary program behaviour including
+  // crashes and deadlocks.
+  static void InternalAttemptToUseMutexInFatalSignalHandler();
+
+ private:
+#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
+  friend class CondVar;
+
+  synchronization_internal::MutexImpl *impl() { return impl_.get(); }
+
+  synchronization_internal::SynchronizationStorage<
+      synchronization_internal::MutexImpl>
+      impl_;
+#else
+  std::atomic<intptr_t> mu_;  // The Mutex state.
+
+  // Post()/Wait() versus associated PerThreadSem; in class for required
+  // friendship with PerThreadSem.
+  static inline void IncrementSynchSem(Mutex *mu,
+                                       base_internal::PerThreadSynch *w);
+  static inline bool DecrementSynchSem(
+      Mutex *mu, base_internal::PerThreadSynch *w,
+      synchronization_internal::KernelTimeout t);
+
+  // slow path acquire
+  void LockSlowLoop(SynchWaitParams *waitp, int flags);
+  // wrappers around LockSlowLoop()
+  bool LockSlowWithDeadline(MuHow how, const Condition *cond,
+                            synchronization_internal::KernelTimeout t,
+                            int flags);
+  void LockSlow(MuHow how, const Condition *cond,
+                int flags) ABSL_ATTRIBUTE_COLD;
+  // slow path release
+  void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
+  // Common code between Await() and AwaitWithTimeout/Deadline()
+  bool AwaitCommon(const Condition &cond,
+                   synchronization_internal::KernelTimeout t);
+  // Attempt to remove thread s from queue.
+  void TryRemove(base_internal::PerThreadSynch *s);
+  // Block a thread on mutex.
+  void Block(base_internal::PerThreadSynch *s);
+  // Wake a thread; return successor.
+  base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w);
+
+  friend class CondVar;   // for access to Trans()/Fer().
+  void Trans(MuHow how);  // used for CondVar->Mutex transfer
+  void Fer(
+      base_internal::PerThreadSynch *w);  // used for CondVar->Mutex transfer
+#endif
+
+  // Catch the error of writing Mutex when intending MutexLock.
+  Mutex(const volatile Mutex * /*ignored*/) {}  // NOLINT(runtime/explicit)
+
+  Mutex(const Mutex&) = delete;
+  Mutex& operator=(const Mutex&) = delete;
+};
+
+// -----------------------------------------------------------------------------
+// Mutex RAII Wrappers
+// -----------------------------------------------------------------------------
+
+// MutexLock
+//
+// `MutexLock` is a helper class, which acquires and releases a `Mutex` via
+// RAII.
+//
+// Example:
+//
+// Class Foo {
+//
+//   Foo::Bar* Baz() {
+//     MutexLock l(&lock_);
+//     ...
+//     return bar;
+//   }
+//
+// private:
+//   Mutex lock_;
+// };
+class ABSL_SCOPED_LOCKABLE MutexLock {
+ public:
+  explicit MutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
+    this->mu_->Lock();
+  }
+
+  MutexLock(const MutexLock &) = delete;  // NOLINT(runtime/mutex)
+  MutexLock(MutexLock&&) = delete;  // NOLINT(runtime/mutex)
+  MutexLock& operator=(const MutexLock&) = delete;
+  MutexLock& operator=(MutexLock&&) = delete;
+
+  ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
+
+ private:
+  Mutex *const mu_;
+};
+
+// ReaderMutexLock
+//
+// The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
+// releases a shared lock on a `Mutex` via RAII.
+class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
+ public:
+  explicit ReaderMutexLock(Mutex *mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
+    mu->ReaderLock();
+  }
+
+  ReaderMutexLock(const ReaderMutexLock&) = delete;
+  ReaderMutexLock(ReaderMutexLock&&) = delete;
+  ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
+  ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
+
+  ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
+
+ private:
+  Mutex *const mu_;
+};
+
+// WriterMutexLock
+//
+// The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
+// releases a write (exclusive) lock on a `Mutex` via RAII.
+class ABSL_SCOPED_LOCKABLE WriterMutexLock {
+ public:
+  explicit WriterMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
+      : mu_(mu) {
+    mu->WriterLock();
+  }
+
+  WriterMutexLock(const WriterMutexLock&) = delete;
+  WriterMutexLock(WriterMutexLock&&) = delete;
+  WriterMutexLock& operator=(const WriterMutexLock&) = delete;
+  WriterMutexLock& operator=(WriterMutexLock&&) = delete;
+
+  ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
+
+ private:
+  Mutex *const mu_;
+};
+
+// -----------------------------------------------------------------------------
+// Condition
+// -----------------------------------------------------------------------------
+//
+// As noted above, `Mutex` contains a number of member functions which take a
+// `Condition` as an argument; clients can wait for conditions to become `true`
+// before attempting to acquire the mutex. These sections are known as
+// "condition critical" sections. To use a `Condition`, you simply need to
+// construct it, and use within an appropriate `Mutex` member function;
+// everything else in the `Condition` class is an implementation detail.
+//
+// A `Condition` is specified as a function pointer which returns a boolean.
+// `Condition` functions should be pure functions -- their results should depend
+// only on passed arguments, should not consult any external state (such as
+// clocks), and should have no side-effects, aside from debug logging. Any
+// objects that the function may access should be limited to those which are
+// constant while the mutex is blocked on the condition (e.g. a stack variable),
+// or objects of state protected explicitly by the mutex.
+//
+// No matter which construction is used for `Condition`, the underlying
+// function pointer / functor / callable must not throw any
+// exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
+// the face of a throwing `Condition`. (When Abseil is allowed to depend
+// on C++17, these function pointers will be explicitly marked
+// `noexcept`; until then this requirement cannot be enforced in the
+// type system.)
+//
+// Note: to use a `Condition`, you need only construct it and pass it within the
+// appropriate `Mutex' member function, such as `Mutex::Await()`.
+//
+// Example:
+//
+//   // assume count_ is not internal reference count
+//   int count_ ABSL_GUARDED_BY(mu_);
+//
+//   mu_.LockWhen(Condition(+[](int* count) { return *count == 0; },
+//         &count_));
+//
+// When multiple threads are waiting on exactly the same condition, make sure
+// that they are constructed with the same parameters (same pointer to function
+// + arg, or same pointer to object + method), so that the mutex implementation
+// can avoid redundantly evaluating the same condition for each thread.
+class Condition {
+ public:
+  // A Condition that returns the result of "(*func)(arg)"
+  Condition(bool (*func)(void *), void *arg);
+
+  // Templated version for people who are averse to casts.
+  //
+  // To use a lambda, prepend it with unary plus, which converts the lambda
+  // into a function pointer:
+  //     Condition(+[](T* t) { return ...; }, arg).
+  //
+  // Note: lambdas in this case must contain no bound variables.
+  //
+  // See class comment for performance advice.
+  template<typename T>
+  Condition(bool (*func)(T *), T *arg);
+
+  // Templated version for invoking a method that returns a `bool`.
+  //
+  // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
+  // `object->Method()`.
+  //
+  // Implementation Note: `absl::internal::identity` is used to allow methods to
+  // come from base classes. A simpler signature like
+  // `Condition(T*, bool (T::*)())` does not suffice.
+  template<typename T>
+  Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
+
+  // Same as above, for const members
+  template<typename T>
+  Condition(const T *object,
+            bool (absl::internal::identity<T>::type::* method)() const);
+
+  // A Condition that returns the value of `*cond`
+  explicit Condition(const bool *cond);
+
+  // Templated version for invoking a functor that returns a `bool`.
+  // This approach accepts pointers to non-mutable lambdas, `std::function`,
+  // the result of` std::bind` and user-defined functors that define
+  // `bool F::operator()() const`.
+  //
+  // Example:
+  //
+  //   auto reached = [this, current]() {
+  //     mu_.AssertReaderHeld();                // For annotalysis.
+  //     return processed_ >= current;
+  //   };
+  //   mu_.Await(Condition(&reached));
+
+  // See class comment for performance advice. In particular, if there
+  // might be more than one waiter for the same condition, make sure
+  // that all waiters construct the condition with the same pointers.
+
+  // Implementation note: The second template parameter ensures that this
+  // constructor doesn't participate in overload resolution if T doesn't have
+  // `bool operator() const`.
+  template <typename T, typename E = decltype(
+      static_cast<bool (T::*)() const>(&T::operator()))>
+  explicit Condition(const T *obj)
+      : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
+
+  // A Condition that always returns `true`.
+  static const Condition kTrue;
+
+  // Evaluates the condition.
+  bool Eval() const;
+
+  // Returns `true` if the two conditions are guaranteed to return the same
+  // value if evaluated at the same time, `false` if the evaluation *may* return
+  // different results.
+  //
+  // Two `Condition` values are guaranteed equal if both their `func` and `arg`
+  // components are the same. A null pointer is equivalent to a `true`
+  // condition.
+  static bool GuaranteedEqual(const Condition *a, const Condition *b);
+
+ private:
+  typedef bool (*InternalFunctionType)(void * arg);
+  typedef bool (Condition::*InternalMethodType)();
+  typedef bool (*InternalMethodCallerType)(void * arg,
+                                           InternalMethodType internal_method);
+
+  bool (*eval_)(const Condition*);  // Actual evaluator
+  InternalFunctionType function_;   // function taking pointer returning bool
+  InternalMethodType method_;       // method returning bool
+  void *arg_;                       // arg of function_ or object of method_
+
+  Condition();        // null constructor used only to create kTrue
+
+  // Various functions eval_ can point to:
+  static bool CallVoidPtrFunction(const Condition*);
+  template <typename T> static bool CastAndCallFunction(const Condition* c);
+  template <typename T> static bool CastAndCallMethod(const Condition* c);
+};
+
+// -----------------------------------------------------------------------------
+// CondVar
+// -----------------------------------------------------------------------------
+//
+// A condition variable, reflecting state evaluated separately outside of the
+// `Mutex` object, which can be signaled to wake callers.
+// This class is not normally needed; use `Mutex` member functions such as
+// `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
+// with many threads and many conditions, `CondVar` may be faster.
+//
+// The implementation may deliver signals to any condition variable at
+// any time, even when no call to `Signal()` or `SignalAll()` is made; as a
+// result, upon being awoken, you must check the logical condition you have
+// been waiting upon.
+//
+// Examples:
+//
+// Usage for a thread waiting for some condition C protected by mutex mu:
+//       mu.Lock();
+//       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
+//       //  C holds; process data
+//       mu.Unlock();
+//
+// Usage to wake T is:
+//       mu.Lock();
+//      // process data, possibly establishing C
+//      if (C) { cv->Signal(); }
+//      mu.Unlock();
+//
+// If C may be useful to more than one waiter, use `SignalAll()` instead of
+// `Signal()`.
+//
+// With this implementation it is efficient to use `Signal()/SignalAll()` inside
+// the locked region; this usage can make reasoning about your program easier.
+//
+class CondVar {
+ public:
+  // A `CondVar` allocated on the heap or on the stack can use the this
+  // constructor.
+  CondVar();
+  ~CondVar();
+
+  // CondVar::Wait()
+  //
+  // Atomically releases a `Mutex` and blocks on this condition variable.
+  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
+  // spurious wakeup), then reacquires the `Mutex` and returns.
+  //
+  // Requires and ensures that the current thread holds the `Mutex`.
+  void Wait(Mutex *mu);
+
+  // CondVar::WaitWithTimeout()
+  //
+  // Atomically releases a `Mutex` and blocks on this condition variable.
+  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
+  // spurious wakeup), or until the timeout has expired, then reacquires
+  // the `Mutex` and returns.
+  //
+  // Returns true if the timeout has expired without this `CondVar`
+  // being signalled in any manner. If both the timeout has expired
+  // and this `CondVar` has been signalled, the implementation is free
+  // to return `true` or `false`.
+  //
+  // Requires and ensures that the current thread holds the `Mutex`.
+  bool WaitWithTimeout(Mutex *mu, absl::Duration timeout);
+
+  // CondVar::WaitWithDeadline()
+  //
+  // Atomically releases a `Mutex` and blocks on this condition variable.
+  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
+  // spurious wakeup), or until the deadline has passed, then reacquires
+  // the `Mutex` and returns.
+  //
+  // Deadlines in the past are equivalent to an immediate deadline.
+  //
+  // Returns true if the deadline has passed without this `CondVar`
+  // being signalled in any manner. If both the deadline has passed
+  // and this `CondVar` has been signalled, the implementation is free
+  // to return `true` or `false`.
+  //
+  // Requires and ensures that the current thread holds the `Mutex`.
+  bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
+
+  // CondVar::Signal()
+  //
+  // Signal this `CondVar`; wake at least one waiter if one exists.
+  void Signal();
+
+  // CondVar::SignalAll()
+  //
+  // Signal this `CondVar`; wake all waiters.
+  void SignalAll();
+
+  // CondVar::EnableDebugLog()
+  //
+  // Causes all subsequent uses of this `CondVar` to be logged via
+  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
+  // Note: this method substantially reduces `CondVar` performance.
+  void EnableDebugLog(const char *name);
+
+ private:
+#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
+  synchronization_internal::CondVarImpl *impl() { return impl_.get(); }
+  synchronization_internal::SynchronizationStorage<
+      synchronization_internal::CondVarImpl>
+      impl_;
+#else
+  bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t);
+  void Remove(base_internal::PerThreadSynch *s);
+  void Wakeup(base_internal::PerThreadSynch *w);
+  std::atomic<intptr_t> cv_;  // Condition variable state.
+#endif
+  CondVar(const CondVar&) = delete;
+  CondVar& operator=(const CondVar&) = delete;
+};
+
+
+// Variants of MutexLock.
+//
+// If you find yourself using one of these, consider instead using
+// Mutex::Unlock() and/or if-statements for clarity.
+
+// MutexLockMaybe
+//
+// MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
+class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
+ public:
+  explicit MutexLockMaybe(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
+      : mu_(mu) {
+    if (this->mu_ != nullptr) {
+      this->mu_->Lock();
+    }
+  }
+  ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
+    if (this->mu_ != nullptr) { this->mu_->Unlock(); }
+  }
+
+ private:
+  Mutex *const mu_;
+  MutexLockMaybe(const MutexLockMaybe&) = delete;
+  MutexLockMaybe(MutexLockMaybe&&) = delete;
+  MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
+  MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
+};
+
+// ReleasableMutexLock
+//
+// ReleasableMutexLock is like MutexLock, but permits `Release()` of its
+// mutex before destruction. `Release()` may be called at most once.
+class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
+ public:
+  explicit ReleasableMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
+      : mu_(mu) {
+    this->mu_->Lock();
+  }
+  ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
+    if (this->mu_ != nullptr) { this->mu_->Unlock(); }
+  }
+
+  void Release() ABSL_UNLOCK_FUNCTION();
+
+ private:
+  Mutex *mu_;
+  ReleasableMutexLock(const ReleasableMutexLock&) = delete;
+  ReleasableMutexLock(ReleasableMutexLock&&) = delete;
+  ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
+  ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
+};
+
+#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
+
+inline constexpr Mutex::Mutex(absl::ConstInitType) : impl_(absl::kConstInit) {}
+
+#else
+
+inline Mutex::Mutex() : mu_(0) {
+  ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
+}
+
+inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
+
+inline CondVar::CondVar() : cv_(0) {}
+
+#endif  // ABSL_INTERNAL_USE_NONPROD_MUTEX
+
+// static
+template <typename T>
+bool Condition::CastAndCallMethod(const Condition *c) {
+  typedef bool (T::*MemberType)();
+  MemberType rm = reinterpret_cast<MemberType>(c->method_);
+  T *x = static_cast<T *>(c->arg_);
+  return (x->*rm)();
+}
+
+// static
+template <typename T>
+bool Condition::CastAndCallFunction(const Condition *c) {
+  typedef bool (*FuncType)(T *);
+  FuncType fn = reinterpret_cast<FuncType>(c->function_);
+  T *x = static_cast<T *>(c->arg_);
+  return (*fn)(x);
+}
+
+template <typename T>
+inline Condition::Condition(bool (*func)(T *), T *arg)
+    : eval_(&CastAndCallFunction<T>),
+      function_(reinterpret_cast<InternalFunctionType>(func)),
+      method_(nullptr),
+      arg_(const_cast<void *>(static_cast<const void *>(arg))) {}
+
+template <typename T>
+inline Condition::Condition(T *object,
+                            bool (absl::internal::identity<T>::type::*method)())
+    : eval_(&CastAndCallMethod<T>),
+      function_(nullptr),
+      method_(reinterpret_cast<InternalMethodType>(method)),
+      arg_(object) {}
+
+template <typename T>
+inline Condition::Condition(const T *object,
+                            bool (absl::internal::identity<T>::type::*method)()
+                                const)
+    : eval_(&CastAndCallMethod<T>),
+      function_(nullptr),
+      method_(reinterpret_cast<InternalMethodType>(method)),
+      arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {}
+
+// Register a hook for profiling support.
+//
+// The function pointer registered here will be called whenever a mutex is
+// contended.  The callback is given the absl/base/cycleclock.h timestamp when
+// waiting began.
+//
+// Calls to this function do not race or block, but there is no ordering
+// guaranteed between calls to this function and call to the provided hook.
+// In particular, the previously registered hook may still be called for some
+// time after this function returns.
+void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp));
+
+// Register a hook for Mutex tracing.
+//
+// The function pointer registered here will be called whenever a mutex is
+// contended.  The callback is given an opaque handle to the contended mutex,
+// an event name, and the number of wait cycles (as measured by
+// //absl/base/internal/cycleclock.h, and which may not be real
+// "cycle" counts.)
+//
+// The only event name currently sent is "slow release".
+//
+// This has the same memory ordering concerns as RegisterMutexProfiler() above.
+void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
+                              int64_t wait_cycles));
+
+// TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer()
+// into a single interface, since they are only ever called in pairs.
+
+// Register a hook for CondVar tracing.
+//
+// The function pointer registered here will be called here on various CondVar
+// events.  The callback is given an opaque handle to the CondVar object and
+// a string identifying the event.  This is thread-safe, but only a single
+// tracer can be registered.
+//
+// Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
+// "SignalAll wakeup".
+//
+// This has the same memory ordering concerns as RegisterMutexProfiler() above.
+void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
+
+// Register a hook for symbolizing stack traces in deadlock detector reports.
+//
+// 'pc' is the program counter being symbolized, 'out' is the buffer to write
+// into, and 'out_size' is the size of the buffer.  This function can return
+// false if symbolizing failed, or true if a NUL-terminated symbol was written
+// to 'out.'
+//
+// This has the same memory ordering concerns as RegisterMutexProfiler() above.
+//
+// DEPRECATED: The default symbolizer function is absl::Symbolize() and the
+// ability to register a different hook for symbolizing stack traces will be
+// removed on or after 2023-05-01.
+ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed "
+                "on or after 2023-05-01")
+void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
+
+// EnableMutexInvariantDebugging()
+//
+// Enable or disable global support for Mutex invariant debugging.  If enabled,
+// then invariant predicates can be registered per-Mutex for debug checking.
+// See Mutex::EnableInvariantDebugging().
+void EnableMutexInvariantDebugging(bool enabled);
+
+// When in debug mode, and when the feature has been enabled globally, the
+// implementation will keep track of lock ordering and complain (or optionally
+// crash) if a cycle is detected in the acquired-before graph.
+
+// Possible modes of operation for the deadlock detector in debug mode.
+enum class OnDeadlockCycle {
+  kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
+  kReport,  // Report lock cycles to stderr when detected
+  kAbort,  // Report lock cycles to stderr when detected, then abort
+};
+
+// SetMutexDeadlockDetectionMode()
+//
+// Enable or disable global support for detection of potential deadlocks
+// due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
+// lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
+// will be maintained internally, and detected cycles will be reported in
+// the manner chosen here.
+void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
+
+ABSL_NAMESPACE_END
+}  // namespace absl
+
+// In some build configurations we pass --detect-odr-violations to the
+// gold linker.  This causes it to flag weak symbol overrides as ODR
+// violations.  Because ODR only applies to C++ and not C,
+// --detect-odr-violations ignores symbols not mangled with C++ names.
+// By changing our extension points to be extern "C", we dodge this
+// check.
+extern "C" {
+void AbslInternalMutexYield();
+}  // extern "C"
+
+#endif  // ABSL_SYNCHRONIZATION_MUTEX_H_