diff options
Diffstat (limited to 'third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc')
-rw-r--r-- | third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc | 573 |
1 files changed, 0 insertions, 573 deletions
diff --git a/third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc b/third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc deleted file mode 100644 index b5a3f90aee63..000000000000 --- a/third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc +++ /dev/null @@ -1,573 +0,0 @@ -// Copyright 2017 The Abseil Authors. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// https://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -// HERMETIC NOTE: The randen_hwaes target must not introduce duplicate -// symbols from arbitrary system and other headers, since it may be built -// with different flags from other targets, using different levels of -// optimization, potentially introducing ODR violations. - -#include "absl/random/internal/randen_hwaes.h" - -#include <cstdint> -#include <cstring> - -#include "absl/base/attributes.h" -#include "absl/random/internal/platform.h" -#include "absl/random/internal/randen_traits.h" - -// ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain -// a hardware accelerated implementation of randen, or whether it -// will contain stubs that exit the process. -#if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) -// The platform.h directives are sufficient to indicate whether -// we should build accelerated implementations for x86. -#if (ABSL_HAVE_ACCELERATED_AES || ABSL_RANDOM_INTERNAL_AES_DISPATCH) -#define ABSL_RANDEN_HWAES_IMPL 1 -#endif -#elif defined(ABSL_ARCH_PPC) -// The platform.h directives are sufficient to indicate whether -// we should build accelerated implementations for PPC. -// -// NOTE: This has mostly been tested on 64-bit Power variants, -// and not embedded cpus such as powerpc32-8540 -#if ABSL_HAVE_ACCELERATED_AES -#define ABSL_RANDEN_HWAES_IMPL 1 -#endif -#elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64) -// ARM is somewhat more complicated. We might support crypto natively... -#if ABSL_HAVE_ACCELERATED_AES || \ - (defined(__ARM_NEON) && defined(__ARM_FEATURE_CRYPTO)) -#define ABSL_RANDEN_HWAES_IMPL 1 - -#elif ABSL_RANDOM_INTERNAL_AES_DISPATCH && !defined(__APPLE__) && \ - (defined(__GNUC__) && __GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ > 9) -// ...or, on GCC, we can use an ASM directive to -// instruct the assember to allow crypto instructions. -#define ABSL_RANDEN_HWAES_IMPL 1 -#define ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE 1 -#endif -#else -// HWAES is unsupported by these architectures / platforms: -// __myriad2__ -// __mips__ -// -// Other architectures / platforms are unknown. -// -// See the Abseil documentation on supported macros at: -// https://abseil.io/docs/cpp/platforms/macros -#endif - -#if !defined(ABSL_RANDEN_HWAES_IMPL) -// No accelerated implementation is supported. -// The RandenHwAes functions are stubs that print an error and exit. - -#include <cstdio> -#include <cstdlib> - -namespace absl { -ABSL_NAMESPACE_BEGIN -namespace random_internal { - -// No accelerated implementation. -bool HasRandenHwAesImplementation() { return false; } - -// NOLINTNEXTLINE -const void* RandenHwAes::GetKeys() { - // Attempted to dispatch to an unsupported dispatch target. - const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; - fprintf(stderr, "AES Hardware detection failed (%d).\n", d); - exit(1); - return nullptr; -} - -// NOLINTNEXTLINE -void RandenHwAes::Absorb(const void*, void*) { - // Attempted to dispatch to an unsupported dispatch target. - const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; - fprintf(stderr, "AES Hardware detection failed (%d).\n", d); - exit(1); -} - -// NOLINTNEXTLINE -void RandenHwAes::Generate(const void*, void*) { - // Attempted to dispatch to an unsupported dispatch target. - const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; - fprintf(stderr, "AES Hardware detection failed (%d).\n", d); - exit(1); -} - -} // namespace random_internal -ABSL_NAMESPACE_END -} // namespace absl - -#else // defined(ABSL_RANDEN_HWAES_IMPL) -// -// Accelerated implementations are supported. -// We need the per-architecture includes and defines. -// -namespace { - -using absl::random_internal::RandenTraits; - -// Randen operates on 128-bit vectors. -struct alignas(16) u64x2 { - uint64_t data[2]; -}; - -} // namespace - -// TARGET_CRYPTO defines a crypto attribute for each architecture. -// -// NOTE: Evaluate whether we should eliminate ABSL_TARGET_CRYPTO. -#if (defined(__clang__) || defined(__GNUC__)) -#if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) -#define ABSL_TARGET_CRYPTO __attribute__((target("aes"))) -#elif defined(ABSL_ARCH_PPC) -#define ABSL_TARGET_CRYPTO __attribute__((target("crypto"))) -#else -#define ABSL_TARGET_CRYPTO -#endif -#else -#define ABSL_TARGET_CRYPTO -#endif - -#if defined(ABSL_ARCH_PPC) -// NOTE: Keep in mind that PPC can operate in little-endian or big-endian mode, -// however the PPC altivec vector registers (and thus the AES instructions) -// always operate in big-endian mode. - -#include <altivec.h> -// <altivec.h> #defines vector __vector; in C++, this is bad form. -#undef vector -#undef bool - -// Rely on the PowerPC AltiVec vector operations for accelerated AES -// instructions. GCC support of the PPC vector types is described in: -// https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html -// -// Already provides operator^=. -using Vector128 = __vector unsigned long long; // NOLINT(runtime/int) - -namespace { -inline ABSL_TARGET_CRYPTO Vector128 ReverseBytes(const Vector128& v) { - // Reverses the bytes of the vector. - const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8, - 7, 6, 5, 4, 3, 2, 1, 0}; - return vec_perm(v, v, perm); -} - -// WARNING: these load/store in native byte order. It is OK to load and then -// store an unchanged vector, but interpreting the bits as a number or input -// to AES will have undefined results. -inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) { - return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from)); -} - -inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) { - vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to)); -} - -// One round of AES. "round_key" is a public constant for breaking the -// symmetry of AES (ensures previously equal columns differ afterwards). -inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, - const Vector128& round_key) { - return Vector128(__builtin_crypto_vcipher(state, round_key)); -} - -// Enables native loads in the round loop by pre-swapping. -inline ABSL_TARGET_CRYPTO void SwapEndian(u64x2* state) { - for (uint32_t block = 0; block < RandenTraits::kFeistelBlocks; ++block) { - Vector128Store(ReverseBytes(Vector128Load(state + block)), state + block); - } -} - -} // namespace - -#elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64) - -// This asm directive will cause the file to be compiled with crypto extensions -// whether or not the cpu-architecture supports it. -#if ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE -asm(".arch_extension crypto\n"); - -// Override missing defines. -#if !defined(__ARM_NEON) -#define __ARM_NEON 1 -#endif - -#if !defined(__ARM_FEATURE_CRYPTO) -#define __ARM_FEATURE_CRYPTO 1 -#endif - -#endif - -// Rely on the ARM NEON+Crypto advanced simd types, defined in <arm_neon.h>. -// uint8x16_t is the user alias for underlying __simd128_uint8_t type. -// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf -// -// <arm_neon> defines the following -// -// typedef __attribute__((neon_vector_type(16))) uint8_t uint8x16_t; -// typedef __attribute__((neon_vector_type(16))) int8_t int8x16_t; -// typedef __attribute__((neon_polyvector_type(16))) int8_t poly8x16_t; -// -// vld1q_v -// vst1q_v -// vaeseq_v -// vaesmcq_v -#include <arm_neon.h> - -// Already provides operator^=. -using Vector128 = uint8x16_t; - -namespace { - -inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) { - return vld1q_u8(reinterpret_cast<const uint8_t*>(from)); -} - -inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) { - vst1q_u8(reinterpret_cast<uint8_t*>(to), v); -} - -// One round of AES. "round_key" is a public constant for breaking the -// symmetry of AES (ensures previously equal columns differ afterwards). -inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, - const Vector128& round_key) { - // It is important to always use the full round function - omitting the - // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf] - // and does not help because we never decrypt. - // - // Note that ARM divides AES instructions differently than x86 / PPC, - // And we need to skip the first AddRoundKey step and add an extra - // AddRoundKey step to the end. Lucky for us this is just XOR. - return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key; -} - -inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {} - -} // namespace - -#elif defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) -// On x86 we rely on the aesni instructions -#include <wmmintrin.h> - -namespace { - -// Vector128 class is only wrapper for __m128i, benchmark indicates that it's -// faster than using __m128i directly. -class Vector128 { - public: - // Convert from/to intrinsics. - inline explicit Vector128(const __m128i& Vector128) : data_(Vector128) {} - - inline __m128i data() const { return data_; } - - inline Vector128& operator^=(const Vector128& other) { - data_ = _mm_xor_si128(data_, other.data()); - return *this; - } - - private: - __m128i data_; -}; - -inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) { - return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from))); -} - -inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) { - _mm_store_si128(reinterpret_cast<__m128i*>(to), v.data()); -} - -// One round of AES. "round_key" is a public constant for breaking the -// symmetry of AES (ensures previously equal columns differ afterwards). -inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, - const Vector128& round_key) { - // It is important to always use the full round function - omitting the - // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf] - // and does not help because we never decrypt. - return Vector128(_mm_aesenc_si128(state.data(), round_key.data())); -} - -inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {} - -} // namespace - -#endif - -#ifdef __clang__ -#pragma clang diagnostic push -#pragma clang diagnostic ignored "-Wunknown-pragmas" -#endif - -// At this point, all of the platform-specific features have been defined / -// implemented. -// -// REQUIRES: using Vector128 = ... -// REQUIRES: Vector128 Vector128Load(void*) {...} -// REQUIRES: void Vector128Store(Vector128, void*) {...} -// REQUIRES: Vector128 AesRound(Vector128, Vector128) {...} -// REQUIRES: void SwapEndian(uint64_t*) {...} -// -// PROVIDES: absl::random_internal::RandenHwAes::Absorb -// PROVIDES: absl::random_internal::RandenHwAes::Generate -namespace { - -// Block shuffles applies a shuffle to the entire state between AES rounds. -// Improved odd-even shuffle from "New criterion for diffusion property". -inline ABSL_TARGET_CRYPTO void BlockShuffle(u64x2* state) { - static_assert(RandenTraits::kFeistelBlocks == 16, - "Expecting 16 FeistelBlocks."); - - constexpr size_t shuffle[RandenTraits::kFeistelBlocks] = { - 7, 2, 13, 4, 11, 8, 3, 6, 15, 0, 9, 10, 1, 14, 5, 12}; - - const Vector128 v0 = Vector128Load(state + shuffle[0]); - const Vector128 v1 = Vector128Load(state + shuffle[1]); - const Vector128 v2 = Vector128Load(state + shuffle[2]); - const Vector128 v3 = Vector128Load(state + shuffle[3]); - const Vector128 v4 = Vector128Load(state + shuffle[4]); - const Vector128 v5 = Vector128Load(state + shuffle[5]); - const Vector128 v6 = Vector128Load(state + shuffle[6]); - const Vector128 v7 = Vector128Load(state + shuffle[7]); - const Vector128 w0 = Vector128Load(state + shuffle[8]); - const Vector128 w1 = Vector128Load(state + shuffle[9]); - const Vector128 w2 = Vector128Load(state + shuffle[10]); - const Vector128 w3 = Vector128Load(state + shuffle[11]); - const Vector128 w4 = Vector128Load(state + shuffle[12]); - const Vector128 w5 = Vector128Load(state + shuffle[13]); - const Vector128 w6 = Vector128Load(state + shuffle[14]); - const Vector128 w7 = Vector128Load(state + shuffle[15]); - - Vector128Store(v0, state + 0); - Vector128Store(v1, state + 1); - Vector128Store(v2, state + 2); - Vector128Store(v3, state + 3); - Vector128Store(v4, state + 4); - Vector128Store(v5, state + 5); - Vector128Store(v6, state + 6); - Vector128Store(v7, state + 7); - Vector128Store(w0, state + 8); - Vector128Store(w1, state + 9); - Vector128Store(w2, state + 10); - Vector128Store(w3, state + 11); - Vector128Store(w4, state + 12); - Vector128Store(w5, state + 13); - Vector128Store(w6, state + 14); - Vector128Store(w7, state + 15); -} - -// Feistel round function using two AES subrounds. Very similar to F() -// from Simpira v2, but with independent subround keys. Uses 17 AES rounds -// per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in -// parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel -// XORs are 'free' (included in the second AES instruction). -inline ABSL_TARGET_CRYPTO const u64x2* FeistelRound( - u64x2* state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) { - static_assert(RandenTraits::kFeistelBlocks == 16, - "Expecting 16 FeistelBlocks."); - - // MSVC does a horrible job at unrolling loops. - // So we unroll the loop by hand to improve the performance. - const Vector128 s0 = Vector128Load(state + 0); - const Vector128 s1 = Vector128Load(state + 1); - const Vector128 s2 = Vector128Load(state + 2); - const Vector128 s3 = Vector128Load(state + 3); - const Vector128 s4 = Vector128Load(state + 4); - const Vector128 s5 = Vector128Load(state + 5); - const Vector128 s6 = Vector128Load(state + 6); - const Vector128 s7 = Vector128Load(state + 7); - const Vector128 s8 = Vector128Load(state + 8); - const Vector128 s9 = Vector128Load(state + 9); - const Vector128 s10 = Vector128Load(state + 10); - const Vector128 s11 = Vector128Load(state + 11); - const Vector128 s12 = Vector128Load(state + 12); - const Vector128 s13 = Vector128Load(state + 13); - const Vector128 s14 = Vector128Load(state + 14); - const Vector128 s15 = Vector128Load(state + 15); - - // Encode even blocks with keys. - const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0)); - const Vector128 e2 = AesRound(s2, Vector128Load(keys + 1)); - const Vector128 e4 = AesRound(s4, Vector128Load(keys + 2)); - const Vector128 e6 = AesRound(s6, Vector128Load(keys + 3)); - const Vector128 e8 = AesRound(s8, Vector128Load(keys + 4)); - const Vector128 e10 = AesRound(s10, Vector128Load(keys + 5)); - const Vector128 e12 = AesRound(s12, Vector128Load(keys + 6)); - const Vector128 e14 = AesRound(s14, Vector128Load(keys + 7)); - - // Encode odd blocks with even output from above. - const Vector128 o1 = AesRound(e0, s1); - const Vector128 o3 = AesRound(e2, s3); - const Vector128 o5 = AesRound(e4, s5); - const Vector128 o7 = AesRound(e6, s7); - const Vector128 o9 = AesRound(e8, s9); - const Vector128 o11 = AesRound(e10, s11); - const Vector128 o13 = AesRound(e12, s13); - const Vector128 o15 = AesRound(e14, s15); - - // Store odd blocks. (These will be shuffled later). - Vector128Store(o1, state + 1); - Vector128Store(o3, state + 3); - Vector128Store(o5, state + 5); - Vector128Store(o7, state + 7); - Vector128Store(o9, state + 9); - Vector128Store(o11, state + 11); - Vector128Store(o13, state + 13); - Vector128Store(o15, state + 15); - - return keys + 8; -} - -// Cryptographic permutation based via type-2 Generalized Feistel Network. -// Indistinguishable from ideal by chosen-ciphertext adversaries using less than -// 2^64 queries if the round function is a PRF. This is similar to the b=8 case -// of Simpira v2, but more efficient than its generic construction for b=16. -inline ABSL_TARGET_CRYPTO void Permute( - u64x2* state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) { - // (Successfully unrolled; the first iteration jumps into the second half) -#ifdef __clang__ -#pragma clang loop unroll_count(2) -#endif - for (size_t round = 0; round < RandenTraits::kFeistelRounds; ++round) { - keys = FeistelRound(state, keys); - BlockShuffle(state); - } -} - -} // namespace - -namespace absl { -ABSL_NAMESPACE_BEGIN -namespace random_internal { - -bool HasRandenHwAesImplementation() { return true; } - -const void* ABSL_TARGET_CRYPTO RandenHwAes::GetKeys() { - // Round keys for one AES per Feistel round and branch. - // The canonical implementation uses first digits of Pi. -#if defined(ABSL_ARCH_PPC) - return kRandenRoundKeysBE; -#else - return kRandenRoundKeys; -#endif -} - -// NOLINTNEXTLINE -void ABSL_TARGET_CRYPTO RandenHwAes::Absorb(const void* seed_void, - void* state_void) { - static_assert(RandenTraits::kCapacityBytes / sizeof(Vector128) == 1, - "Unexpected Randen kCapacityBlocks"); - static_assert(RandenTraits::kStateBytes / sizeof(Vector128) == 16, - "Unexpected Randen kStateBlocks"); - - auto* state = - reinterpret_cast<u64x2 * ABSL_RANDOM_INTERNAL_RESTRICT>(state_void); - const auto* seed = - reinterpret_cast<const u64x2 * ABSL_RANDOM_INTERNAL_RESTRICT>(seed_void); - - Vector128 b1 = Vector128Load(state + 1); - b1 ^= Vector128Load(seed + 0); - Vector128Store(b1, state + 1); - - Vector128 b2 = Vector128Load(state + 2); - b2 ^= Vector128Load(seed + 1); - Vector128Store(b2, state + 2); - - Vector128 b3 = Vector128Load(state + 3); - b3 ^= Vector128Load(seed + 2); - Vector128Store(b3, state + 3); - - Vector128 b4 = Vector128Load(state + 4); - b4 ^= Vector128Load(seed + 3); - Vector128Store(b4, state + 4); - - Vector128 b5 = Vector128Load(state + 5); - b5 ^= Vector128Load(seed + 4); - Vector128Store(b5, state + 5); - - Vector128 b6 = Vector128Load(state + 6); - b6 ^= Vector128Load(seed + 5); - Vector128Store(b6, state + 6); - - Vector128 b7 = Vector128Load(state + 7); - b7 ^= Vector128Load(seed + 6); - Vector128Store(b7, state + 7); - - Vector128 b8 = Vector128Load(state + 8); - b8 ^= Vector128Load(seed + 7); - Vector128Store(b8, state + 8); - - Vector128 b9 = Vector128Load(state + 9); - b9 ^= Vector128Load(seed + 8); - Vector128Store(b9, state + 9); - - Vector128 b10 = Vector128Load(state + 10); - b10 ^= Vector128Load(seed + 9); - Vector128Store(b10, state + 10); - - Vector128 b11 = Vector128Load(state + 11); - b11 ^= Vector128Load(seed + 10); - Vector128Store(b11, state + 11); - - Vector128 b12 = Vector128Load(state + 12); - b12 ^= Vector128Load(seed + 11); - Vector128Store(b12, state + 12); - - Vector128 b13 = Vector128Load(state + 13); - b13 ^= Vector128Load(seed + 12); - Vector128Store(b13, state + 13); - - Vector128 b14 = Vector128Load(state + 14); - b14 ^= Vector128Load(seed + 13); - Vector128Store(b14, state + 14); - - Vector128 b15 = Vector128Load(state + 15); - b15 ^= Vector128Load(seed + 14); - Vector128Store(b15, state + 15); -} - -// NOLINTNEXTLINE -void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys_void, - void* state_void) { - static_assert(RandenTraits::kCapacityBytes == sizeof(Vector128), - "Capacity mismatch"); - - auto* state = reinterpret_cast<u64x2*>(state_void); - const auto* keys = reinterpret_cast<const u64x2*>(keys_void); - - const Vector128 prev_inner = Vector128Load(state); - - SwapEndian(state); - - Permute(state, keys); - - SwapEndian(state); - - // Ensure backtracking resistance. - Vector128 inner = Vector128Load(state); - inner ^= prev_inner; - Vector128Store(inner, state); -} - -#ifdef __clang__ -#pragma clang diagnostic pop -#endif - -} // namespace random_internal -ABSL_NAMESPACE_END -} // namespace absl - -#endif // (ABSL_RANDEN_HWAES_IMPL) |