about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc')
-rw-r--r--third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc573
1 files changed, 0 insertions, 573 deletions
diff --git a/third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc b/third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc
deleted file mode 100644
index b5a3f90aee63..000000000000
--- a/third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc
+++ /dev/null
@@ -1,573 +0,0 @@
-// Copyright 2017 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-//      https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-// HERMETIC NOTE: The randen_hwaes target must not introduce duplicate
-// symbols from arbitrary system and other headers, since it may be built
-// with different flags from other targets, using different levels of
-// optimization, potentially introducing ODR violations.
-
-#include "absl/random/internal/randen_hwaes.h"
-
-#include <cstdint>
-#include <cstring>
-
-#include "absl/base/attributes.h"
-#include "absl/random/internal/platform.h"
-#include "absl/random/internal/randen_traits.h"
-
-// ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain
-// a hardware accelerated implementation of randen, or whether it
-// will contain stubs that exit the process.
-#if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
-// The platform.h directives are sufficient to indicate whether
-// we should build accelerated implementations for x86.
-#if (ABSL_HAVE_ACCELERATED_AES || ABSL_RANDOM_INTERNAL_AES_DISPATCH)
-#define ABSL_RANDEN_HWAES_IMPL 1
-#endif
-#elif defined(ABSL_ARCH_PPC)
-// The platform.h directives are sufficient to indicate whether
-// we should build accelerated implementations for PPC.
-//
-// NOTE: This has mostly been tested on 64-bit Power variants,
-// and not embedded cpus such as powerpc32-8540
-#if ABSL_HAVE_ACCELERATED_AES
-#define ABSL_RANDEN_HWAES_IMPL 1
-#endif
-#elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
-// ARM is somewhat more complicated. We might support crypto natively...
-#if ABSL_HAVE_ACCELERATED_AES || \
-    (defined(__ARM_NEON) && defined(__ARM_FEATURE_CRYPTO))
-#define ABSL_RANDEN_HWAES_IMPL 1
-
-#elif ABSL_RANDOM_INTERNAL_AES_DISPATCH && !defined(__APPLE__) && \
-    (defined(__GNUC__) && __GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ > 9)
-// ...or, on GCC, we can use an ASM directive to
-// instruct the assember to allow crypto instructions.
-#define ABSL_RANDEN_HWAES_IMPL 1
-#define ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE 1
-#endif
-#else
-// HWAES is unsupported by these architectures / platforms:
-//   __myriad2__
-//   __mips__
-//
-// Other architectures / platforms are unknown.
-//
-// See the Abseil documentation on supported macros at:
-// https://abseil.io/docs/cpp/platforms/macros
-#endif
-
-#if !defined(ABSL_RANDEN_HWAES_IMPL)
-// No accelerated implementation is supported.
-// The RandenHwAes functions are stubs that print an error and exit.
-
-#include <cstdio>
-#include <cstdlib>
-
-namespace absl {
-ABSL_NAMESPACE_BEGIN
-namespace random_internal {
-
-// No accelerated implementation.
-bool HasRandenHwAesImplementation() { return false; }
-
-// NOLINTNEXTLINE
-const void* RandenHwAes::GetKeys() {
-  // Attempted to dispatch to an unsupported dispatch target.
-  const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
-  fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
-  exit(1);
-  return nullptr;
-}
-
-// NOLINTNEXTLINE
-void RandenHwAes::Absorb(const void*, void*) {
-  // Attempted to dispatch to an unsupported dispatch target.
-  const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
-  fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
-  exit(1);
-}
-
-// NOLINTNEXTLINE
-void RandenHwAes::Generate(const void*, void*) {
-  // Attempted to dispatch to an unsupported dispatch target.
-  const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
-  fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
-  exit(1);
-}
-
-}  // namespace random_internal
-ABSL_NAMESPACE_END
-}  // namespace absl
-
-#else  // defined(ABSL_RANDEN_HWAES_IMPL)
-//
-// Accelerated implementations are supported.
-// We need the per-architecture includes and defines.
-//
-namespace {
-
-using absl::random_internal::RandenTraits;
-
-// Randen operates on 128-bit vectors.
-struct alignas(16) u64x2 {
-  uint64_t data[2];
-};
-
-}  // namespace
-
-// TARGET_CRYPTO defines a crypto attribute for each architecture.
-//
-// NOTE: Evaluate whether we should eliminate ABSL_TARGET_CRYPTO.
-#if (defined(__clang__) || defined(__GNUC__))
-#if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
-#define ABSL_TARGET_CRYPTO __attribute__((target("aes")))
-#elif defined(ABSL_ARCH_PPC)
-#define ABSL_TARGET_CRYPTO __attribute__((target("crypto")))
-#else
-#define ABSL_TARGET_CRYPTO
-#endif
-#else
-#define ABSL_TARGET_CRYPTO
-#endif
-
-#if defined(ABSL_ARCH_PPC)
-// NOTE: Keep in mind that PPC can operate in little-endian or big-endian mode,
-// however the PPC altivec vector registers (and thus the AES instructions)
-// always operate in big-endian mode.
-
-#include <altivec.h>
-// <altivec.h> #defines vector __vector; in C++, this is bad form.
-#undef vector
-#undef bool
-
-// Rely on the PowerPC AltiVec vector operations for accelerated AES
-// instructions. GCC support of the PPC vector types is described in:
-// https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html
-//
-// Already provides operator^=.
-using Vector128 = __vector unsigned long long;  // NOLINT(runtime/int)
-
-namespace {
-inline ABSL_TARGET_CRYPTO Vector128 ReverseBytes(const Vector128& v) {
-  // Reverses the bytes of the vector.
-  const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8,
-                                       7,  6,  5,  4,  3,  2,  1, 0};
-  return vec_perm(v, v, perm);
-}
-
-// WARNING: these load/store in native byte order. It is OK to load and then
-// store an unchanged vector, but interpreting the bits as a number or input
-// to AES will have undefined results.
-inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
-  return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from));
-}
-
-inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
-  vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to));
-}
-
-// One round of AES. "round_key" is a public constant for breaking the
-// symmetry of AES (ensures previously equal columns differ afterwards).
-inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
-                                             const Vector128& round_key) {
-  return Vector128(__builtin_crypto_vcipher(state, round_key));
-}
-
-// Enables native loads in the round loop by pre-swapping.
-inline ABSL_TARGET_CRYPTO void SwapEndian(u64x2* state) {
-  for (uint32_t block = 0; block < RandenTraits::kFeistelBlocks; ++block) {
-    Vector128Store(ReverseBytes(Vector128Load(state + block)), state + block);
-  }
-}
-
-}  // namespace
-
-#elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
-
-// This asm directive will cause the file to be compiled with crypto extensions
-// whether or not the cpu-architecture supports it.
-#if ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE
-asm(".arch_extension  crypto\n");
-
-// Override missing defines.
-#if !defined(__ARM_NEON)
-#define __ARM_NEON 1
-#endif
-
-#if !defined(__ARM_FEATURE_CRYPTO)
-#define __ARM_FEATURE_CRYPTO 1
-#endif
-
-#endif
-
-// Rely on the ARM NEON+Crypto advanced simd types, defined in <arm_neon.h>.
-// uint8x16_t is the user alias for underlying __simd128_uint8_t type.
-// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf
-//
-// <arm_neon> defines the following
-//
-// typedef __attribute__((neon_vector_type(16))) uint8_t uint8x16_t;
-// typedef __attribute__((neon_vector_type(16))) int8_t int8x16_t;
-// typedef __attribute__((neon_polyvector_type(16))) int8_t poly8x16_t;
-//
-// vld1q_v
-// vst1q_v
-// vaeseq_v
-// vaesmcq_v
-#include <arm_neon.h>
-
-// Already provides operator^=.
-using Vector128 = uint8x16_t;
-
-namespace {
-
-inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
-  return vld1q_u8(reinterpret_cast<const uint8_t*>(from));
-}
-
-inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
-  vst1q_u8(reinterpret_cast<uint8_t*>(to), v);
-}
-
-// One round of AES. "round_key" is a public constant for breaking the
-// symmetry of AES (ensures previously equal columns differ afterwards).
-inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
-                                             const Vector128& round_key) {
-  // It is important to always use the full round function - omitting the
-  // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
-  // and does not help because we never decrypt.
-  //
-  // Note that ARM divides AES instructions differently than x86 / PPC,
-  // And we need to skip the first AddRoundKey step and add an extra
-  // AddRoundKey step to the end. Lucky for us this is just XOR.
-  return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key;
-}
-
-inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {}
-
-}  // namespace
-
-#elif defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
-// On x86 we rely on the aesni instructions
-#include <wmmintrin.h>
-
-namespace {
-
-// Vector128 class is only wrapper for __m128i, benchmark indicates that it's
-// faster than using __m128i directly.
-class Vector128 {
- public:
-  // Convert from/to intrinsics.
-  inline explicit Vector128(const __m128i& Vector128) : data_(Vector128) {}
-
-  inline __m128i data() const { return data_; }
-
-  inline Vector128& operator^=(const Vector128& other) {
-    data_ = _mm_xor_si128(data_, other.data());
-    return *this;
-  }
-
- private:
-  __m128i data_;
-};
-
-inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
-  return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from)));
-}
-
-inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
-  _mm_store_si128(reinterpret_cast<__m128i*>(to), v.data());
-}
-
-// One round of AES. "round_key" is a public constant for breaking the
-// symmetry of AES (ensures previously equal columns differ afterwards).
-inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
-                                             const Vector128& round_key) {
-  // It is important to always use the full round function - omitting the
-  // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
-  // and does not help because we never decrypt.
-  return Vector128(_mm_aesenc_si128(state.data(), round_key.data()));
-}
-
-inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {}
-
-}  // namespace
-
-#endif
-
-#ifdef __clang__
-#pragma clang diagnostic push
-#pragma clang diagnostic ignored "-Wunknown-pragmas"
-#endif
-
-// At this point, all of the platform-specific features have been defined /
-// implemented.
-//
-// REQUIRES: using Vector128 = ...
-// REQUIRES: Vector128 Vector128Load(void*) {...}
-// REQUIRES: void Vector128Store(Vector128, void*) {...}
-// REQUIRES: Vector128 AesRound(Vector128, Vector128) {...}
-// REQUIRES: void SwapEndian(uint64_t*) {...}
-//
-// PROVIDES: absl::random_internal::RandenHwAes::Absorb
-// PROVIDES: absl::random_internal::RandenHwAes::Generate
-namespace {
-
-// Block shuffles applies a shuffle to the entire state between AES rounds.
-// Improved odd-even shuffle from "New criterion for diffusion property".
-inline ABSL_TARGET_CRYPTO void BlockShuffle(u64x2* state) {
-  static_assert(RandenTraits::kFeistelBlocks == 16,
-                "Expecting 16 FeistelBlocks.");
-
-  constexpr size_t shuffle[RandenTraits::kFeistelBlocks] = {
-      7, 2, 13, 4, 11, 8, 3, 6, 15, 0, 9, 10, 1, 14, 5, 12};
-
-  const Vector128 v0 = Vector128Load(state + shuffle[0]);
-  const Vector128 v1 = Vector128Load(state + shuffle[1]);
-  const Vector128 v2 = Vector128Load(state + shuffle[2]);
-  const Vector128 v3 = Vector128Load(state + shuffle[3]);
-  const Vector128 v4 = Vector128Load(state + shuffle[4]);
-  const Vector128 v5 = Vector128Load(state + shuffle[5]);
-  const Vector128 v6 = Vector128Load(state + shuffle[6]);
-  const Vector128 v7 = Vector128Load(state + shuffle[7]);
-  const Vector128 w0 = Vector128Load(state + shuffle[8]);
-  const Vector128 w1 = Vector128Load(state + shuffle[9]);
-  const Vector128 w2 = Vector128Load(state + shuffle[10]);
-  const Vector128 w3 = Vector128Load(state + shuffle[11]);
-  const Vector128 w4 = Vector128Load(state + shuffle[12]);
-  const Vector128 w5 = Vector128Load(state + shuffle[13]);
-  const Vector128 w6 = Vector128Load(state + shuffle[14]);
-  const Vector128 w7 = Vector128Load(state + shuffle[15]);
-
-  Vector128Store(v0, state + 0);
-  Vector128Store(v1, state + 1);
-  Vector128Store(v2, state + 2);
-  Vector128Store(v3, state + 3);
-  Vector128Store(v4, state + 4);
-  Vector128Store(v5, state + 5);
-  Vector128Store(v6, state + 6);
-  Vector128Store(v7, state + 7);
-  Vector128Store(w0, state + 8);
-  Vector128Store(w1, state + 9);
-  Vector128Store(w2, state + 10);
-  Vector128Store(w3, state + 11);
-  Vector128Store(w4, state + 12);
-  Vector128Store(w5, state + 13);
-  Vector128Store(w6, state + 14);
-  Vector128Store(w7, state + 15);
-}
-
-// Feistel round function using two AES subrounds. Very similar to F()
-// from Simpira v2, but with independent subround keys. Uses 17 AES rounds
-// per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in
-// parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel
-// XORs are 'free' (included in the second AES instruction).
-inline ABSL_TARGET_CRYPTO const u64x2* FeistelRound(
-    u64x2* state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
-  static_assert(RandenTraits::kFeistelBlocks == 16,
-                "Expecting 16 FeistelBlocks.");
-
-  // MSVC does a horrible job at unrolling loops.
-  // So we unroll the loop by hand to improve the performance.
-  const Vector128 s0 = Vector128Load(state + 0);
-  const Vector128 s1 = Vector128Load(state + 1);
-  const Vector128 s2 = Vector128Load(state + 2);
-  const Vector128 s3 = Vector128Load(state + 3);
-  const Vector128 s4 = Vector128Load(state + 4);
-  const Vector128 s5 = Vector128Load(state + 5);
-  const Vector128 s6 = Vector128Load(state + 6);
-  const Vector128 s7 = Vector128Load(state + 7);
-  const Vector128 s8 = Vector128Load(state + 8);
-  const Vector128 s9 = Vector128Load(state + 9);
-  const Vector128 s10 = Vector128Load(state + 10);
-  const Vector128 s11 = Vector128Load(state + 11);
-  const Vector128 s12 = Vector128Load(state + 12);
-  const Vector128 s13 = Vector128Load(state + 13);
-  const Vector128 s14 = Vector128Load(state + 14);
-  const Vector128 s15 = Vector128Load(state + 15);
-
-  // Encode even blocks with keys.
-  const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0));
-  const Vector128 e2 = AesRound(s2, Vector128Load(keys + 1));
-  const Vector128 e4 = AesRound(s4, Vector128Load(keys + 2));
-  const Vector128 e6 = AesRound(s6, Vector128Load(keys + 3));
-  const Vector128 e8 = AesRound(s8, Vector128Load(keys + 4));
-  const Vector128 e10 = AesRound(s10, Vector128Load(keys + 5));
-  const Vector128 e12 = AesRound(s12, Vector128Load(keys + 6));
-  const Vector128 e14 = AesRound(s14, Vector128Load(keys + 7));
-
-  // Encode odd blocks with even output from above.
-  const Vector128 o1 = AesRound(e0, s1);
-  const Vector128 o3 = AesRound(e2, s3);
-  const Vector128 o5 = AesRound(e4, s5);
-  const Vector128 o7 = AesRound(e6, s7);
-  const Vector128 o9 = AesRound(e8, s9);
-  const Vector128 o11 = AesRound(e10, s11);
-  const Vector128 o13 = AesRound(e12, s13);
-  const Vector128 o15 = AesRound(e14, s15);
-
-  // Store odd blocks. (These will be shuffled later).
-  Vector128Store(o1, state + 1);
-  Vector128Store(o3, state + 3);
-  Vector128Store(o5, state + 5);
-  Vector128Store(o7, state + 7);
-  Vector128Store(o9, state + 9);
-  Vector128Store(o11, state + 11);
-  Vector128Store(o13, state + 13);
-  Vector128Store(o15, state + 15);
-
-  return keys + 8;
-}
-
-// Cryptographic permutation based via type-2 Generalized Feistel Network.
-// Indistinguishable from ideal by chosen-ciphertext adversaries using less than
-// 2^64 queries if the round function is a PRF. This is similar to the b=8 case
-// of Simpira v2, but more efficient than its generic construction for b=16.
-inline ABSL_TARGET_CRYPTO void Permute(
-    u64x2* state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
-  // (Successfully unrolled; the first iteration jumps into the second half)
-#ifdef __clang__
-#pragma clang loop unroll_count(2)
-#endif
-  for (size_t round = 0; round < RandenTraits::kFeistelRounds; ++round) {
-    keys = FeistelRound(state, keys);
-    BlockShuffle(state);
-  }
-}
-
-}  // namespace
-
-namespace absl {
-ABSL_NAMESPACE_BEGIN
-namespace random_internal {
-
-bool HasRandenHwAesImplementation() { return true; }
-
-const void* ABSL_TARGET_CRYPTO RandenHwAes::GetKeys() {
-  // Round keys for one AES per Feistel round and branch.
-  // The canonical implementation uses first digits of Pi.
-#if defined(ABSL_ARCH_PPC)
-  return kRandenRoundKeysBE;
-#else
-  return kRandenRoundKeys;
-#endif
-}
-
-// NOLINTNEXTLINE
-void ABSL_TARGET_CRYPTO RandenHwAes::Absorb(const void* seed_void,
-                                            void* state_void) {
-  static_assert(RandenTraits::kCapacityBytes / sizeof(Vector128) == 1,
-                "Unexpected Randen kCapacityBlocks");
-  static_assert(RandenTraits::kStateBytes / sizeof(Vector128) == 16,
-                "Unexpected Randen kStateBlocks");
-
-  auto* state =
-      reinterpret_cast<u64x2 * ABSL_RANDOM_INTERNAL_RESTRICT>(state_void);
-  const auto* seed =
-      reinterpret_cast<const u64x2 * ABSL_RANDOM_INTERNAL_RESTRICT>(seed_void);
-
-  Vector128 b1 = Vector128Load(state + 1);
-  b1 ^= Vector128Load(seed + 0);
-  Vector128Store(b1, state + 1);
-
-  Vector128 b2 = Vector128Load(state + 2);
-  b2 ^= Vector128Load(seed + 1);
-  Vector128Store(b2, state + 2);
-
-  Vector128 b3 = Vector128Load(state + 3);
-  b3 ^= Vector128Load(seed + 2);
-  Vector128Store(b3, state + 3);
-
-  Vector128 b4 = Vector128Load(state + 4);
-  b4 ^= Vector128Load(seed + 3);
-  Vector128Store(b4, state + 4);
-
-  Vector128 b5 = Vector128Load(state + 5);
-  b5 ^= Vector128Load(seed + 4);
-  Vector128Store(b5, state + 5);
-
-  Vector128 b6 = Vector128Load(state + 6);
-  b6 ^= Vector128Load(seed + 5);
-  Vector128Store(b6, state + 6);
-
-  Vector128 b7 = Vector128Load(state + 7);
-  b7 ^= Vector128Load(seed + 6);
-  Vector128Store(b7, state + 7);
-
-  Vector128 b8 = Vector128Load(state + 8);
-  b8 ^= Vector128Load(seed + 7);
-  Vector128Store(b8, state + 8);
-
-  Vector128 b9 = Vector128Load(state + 9);
-  b9 ^= Vector128Load(seed + 8);
-  Vector128Store(b9, state + 9);
-
-  Vector128 b10 = Vector128Load(state + 10);
-  b10 ^= Vector128Load(seed + 9);
-  Vector128Store(b10, state + 10);
-
-  Vector128 b11 = Vector128Load(state + 11);
-  b11 ^= Vector128Load(seed + 10);
-  Vector128Store(b11, state + 11);
-
-  Vector128 b12 = Vector128Load(state + 12);
-  b12 ^= Vector128Load(seed + 11);
-  Vector128Store(b12, state + 12);
-
-  Vector128 b13 = Vector128Load(state + 13);
-  b13 ^= Vector128Load(seed + 12);
-  Vector128Store(b13, state + 13);
-
-  Vector128 b14 = Vector128Load(state + 14);
-  b14 ^= Vector128Load(seed + 13);
-  Vector128Store(b14, state + 14);
-
-  Vector128 b15 = Vector128Load(state + 15);
-  b15 ^= Vector128Load(seed + 14);
-  Vector128Store(b15, state + 15);
-}
-
-// NOLINTNEXTLINE
-void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys_void,
-                                              void* state_void) {
-  static_assert(RandenTraits::kCapacityBytes == sizeof(Vector128),
-                "Capacity mismatch");
-
-  auto* state = reinterpret_cast<u64x2*>(state_void);
-  const auto* keys = reinterpret_cast<const u64x2*>(keys_void);
-
-  const Vector128 prev_inner = Vector128Load(state);
-
-  SwapEndian(state);
-
-  Permute(state, keys);
-
-  SwapEndian(state);
-
-  // Ensure backtracking resistance.
-  Vector128 inner = Vector128Load(state);
-  inner ^= prev_inner;
-  Vector128Store(inner, state);
-}
-
-#ifdef __clang__
-#pragma clang diagnostic pop
-#endif
-
-}  // namespace random_internal
-ABSL_NAMESPACE_END
-}  // namespace absl
-
-#endif  // (ABSL_RANDEN_HWAES_IMPL)