diff options
Diffstat (limited to 'third_party/abseil_cpp/absl/random/internal/nanobenchmark.cc')
-rw-r--r-- | third_party/abseil_cpp/absl/random/internal/nanobenchmark.cc | 804 |
1 files changed, 804 insertions, 0 deletions
diff --git a/third_party/abseil_cpp/absl/random/internal/nanobenchmark.cc b/third_party/abseil_cpp/absl/random/internal/nanobenchmark.cc new file mode 100644 index 000000000000..c9181813f7f0 --- /dev/null +++ b/third_party/abseil_cpp/absl/random/internal/nanobenchmark.cc @@ -0,0 +1,804 @@ +// Copyright 2017 Google Inc. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/random/internal/nanobenchmark.h" + +#include <sys/types.h> + +#include <algorithm> // sort +#include <atomic> +#include <cstddef> +#include <cstdint> +#include <cstdlib> +#include <cstring> // memcpy +#include <limits> +#include <string> +#include <utility> +#include <vector> + +#include "absl/base/attributes.h" +#include "absl/base/internal/raw_logging.h" +#include "absl/random/internal/platform.h" +#include "absl/random/internal/randen_engine.h" + +// OS +#if defined(_WIN32) || defined(_WIN64) +#define ABSL_OS_WIN +#include <windows.h> // NOLINT + +#elif defined(__ANDROID__) +#define ABSL_OS_ANDROID + +#elif defined(__linux__) +#define ABSL_OS_LINUX +#include <sched.h> // NOLINT +#include <sys/syscall.h> // NOLINT +#endif + +#if defined(ABSL_ARCH_X86_64) && !defined(ABSL_OS_WIN) +#include <cpuid.h> // NOLINT +#endif + +// __ppc_get_timebase_freq +#if defined(ABSL_ARCH_PPC) +#include <sys/platform/ppc.h> // NOLINT +#endif + +// clock_gettime +#if defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64) +#include <time.h> // NOLINT +#endif + +// ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE prevents inlining of the method. +#if ABSL_HAVE_ATTRIBUTE(noinline) || (defined(__GNUC__) && !defined(__clang__)) +#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __attribute__((noinline)) +#elif defined(_MSC_VER) +#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __declspec(noinline) +#else +#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE +#endif + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace random_internal_nanobenchmark { +namespace { + +// For code folding. +namespace platform { +#if defined(ABSL_ARCH_X86_64) + +// TODO(janwas): Merge with the one in randen_hwaes.cc? +void Cpuid(const uint32_t level, const uint32_t count, + uint32_t* ABSL_RANDOM_INTERNAL_RESTRICT abcd) { +#if defined(ABSL_OS_WIN) + int regs[4]; + __cpuidex(regs, level, count); + for (int i = 0; i < 4; ++i) { + abcd[i] = regs[i]; + } +#else + uint32_t a, b, c, d; + __cpuid_count(level, count, a, b, c, d); + abcd[0] = a; + abcd[1] = b; + abcd[2] = c; + abcd[3] = d; +#endif +} + +std::string BrandString() { + char brand_string[49]; + uint32_t abcd[4]; + + // Check if brand string is supported (it is on all reasonable Intel/AMD) + Cpuid(0x80000000U, 0, abcd); + if (abcd[0] < 0x80000004U) { + return std::string(); + } + + for (int i = 0; i < 3; ++i) { + Cpuid(0x80000002U + i, 0, abcd); + memcpy(brand_string + i * 16, &abcd, sizeof(abcd)); + } + brand_string[48] = 0; + return brand_string; +} + +// Returns the frequency quoted inside the brand string. This does not +// account for throttling nor Turbo Boost. +double NominalClockRate() { + const std::string& brand_string = BrandString(); + // Brand strings include the maximum configured frequency. These prefixes are + // defined by Intel CPUID documentation. + const char* prefixes[3] = {"MHz", "GHz", "THz"}; + const double multipliers[3] = {1E6, 1E9, 1E12}; + for (size_t i = 0; i < 3; ++i) { + const size_t pos_prefix = brand_string.find(prefixes[i]); + if (pos_prefix != std::string::npos) { + const size_t pos_space = brand_string.rfind(' ', pos_prefix - 1); + if (pos_space != std::string::npos) { + const std::string digits = + brand_string.substr(pos_space + 1, pos_prefix - pos_space - 1); + return std::stod(digits) * multipliers[i]; + } + } + } + + return 0.0; +} + +#endif // ABSL_ARCH_X86_64 +} // namespace platform + +// Prevents the compiler from eliding the computations that led to "output". +template <class T> +inline void PreventElision(T&& output) { +#ifndef ABSL_OS_WIN + // Works by indicating to the compiler that "output" is being read and + // modified. The +r constraint avoids unnecessary writes to memory, but only + // works for built-in types (typically FuncOutput). + asm volatile("" : "+r"(output) : : "memory"); +#else + // MSVC does not support inline assembly anymore (and never supported GCC's + // RTL constraints). Self-assignment with #pragma optimize("off") might be + // expected to prevent elision, but it does not with MSVC 2015. Type-punning + // with volatile pointers generates inefficient code on MSVC 2017. + static std::atomic<T> dummy(T{}); + dummy.store(output, std::memory_order_relaxed); +#endif +} + +namespace timer { + +// Start/Stop return absolute timestamps and must be placed immediately before +// and after the region to measure. We provide separate Start/Stop functions +// because they use different fences. +// +// Background: RDTSC is not 'serializing'; earlier instructions may complete +// after it, and/or later instructions may complete before it. 'Fences' ensure +// regions' elapsed times are independent of such reordering. The only +// documented unprivileged serializing instruction is CPUID, which acts as a +// full fence (no reordering across it in either direction). Unfortunately +// the latency of CPUID varies wildly (perhaps made worse by not initializing +// its EAX input). Because it cannot reliably be deducted from the region's +// elapsed time, it must not be included in the region to measure (i.e. +// between the two RDTSC). +// +// The newer RDTSCP is sometimes described as serializing, but it actually +// only serves as a half-fence with release semantics. Although all +// instructions in the region will complete before the final timestamp is +// captured, subsequent instructions may leak into the region and increase the +// elapsed time. Inserting another fence after the final RDTSCP would prevent +// such reordering without affecting the measured region. +// +// Fortunately, such a fence exists. The LFENCE instruction is only documented +// to delay later loads until earlier loads are visible. However, Intel's +// reference manual says it acts as a full fence (waiting until all earlier +// instructions have completed, and delaying later instructions until it +// completes). AMD assigns the same behavior to MFENCE. +// +// We need a fence before the initial RDTSC to prevent earlier instructions +// from leaking into the region, and arguably another after RDTSC to avoid +// region instructions from completing before the timestamp is recorded. +// When surrounded by fences, the additional RDTSCP half-fence provides no +// benefit, so the initial timestamp can be recorded via RDTSC, which has +// lower overhead than RDTSCP because it does not read TSC_AUX. In summary, +// we define Start = LFENCE/RDTSC/LFENCE; Stop = RDTSCP/LFENCE. +// +// Using Start+Start leads to higher variance and overhead than Stop+Stop. +// However, Stop+Stop includes an LFENCE in the region measurements, which +// adds a delay dependent on earlier loads. The combination of Start+Stop +// is faster than Start+Start and more consistent than Stop+Stop because +// the first LFENCE already delayed subsequent loads before the measured +// region. This combination seems not to have been considered in prior work: +// http://akaros.cs.berkeley.edu/lxr/akaros/kern/arch/x86/rdtsc_test.c +// +// Note: performance counters can measure 'exact' instructions-retired or +// (unhalted) cycle counts. The RDPMC instruction is not serializing and also +// requires fences. Unfortunately, it is not accessible on all OSes and we +// prefer to avoid kernel-mode drivers. Performance counters are also affected +// by several under/over-count errata, so we use the TSC instead. + +// Returns a 64-bit timestamp in unit of 'ticks'; to convert to seconds, +// divide by InvariantTicksPerSecond. +inline uint64_t Start64() { + uint64_t t; +#if defined(ABSL_ARCH_PPC) + asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268)); +#elif defined(ABSL_ARCH_X86_64) +#if defined(ABSL_OS_WIN) + _ReadWriteBarrier(); + _mm_lfence(); + _ReadWriteBarrier(); + t = __rdtsc(); + _ReadWriteBarrier(); + _mm_lfence(); + _ReadWriteBarrier(); +#else + asm volatile( + "lfence\n\t" + "rdtsc\n\t" + "shl $32, %%rdx\n\t" + "or %%rdx, %0\n\t" + "lfence" + : "=a"(t) + : + // "memory" avoids reordering. rdx = TSC >> 32. + // "cc" = flags modified by SHL. + : "rdx", "memory", "cc"); +#endif +#else + // Fall back to OS - unsure how to reliably query cntvct_el0 frequency. + timespec ts; + clock_gettime(CLOCK_REALTIME, &ts); + t = ts.tv_sec * 1000000000LL + ts.tv_nsec; +#endif + return t; +} + +inline uint64_t Stop64() { + uint64_t t; +#if defined(ABSL_ARCH_X86_64) +#if defined(ABSL_OS_WIN) + _ReadWriteBarrier(); + unsigned aux; + t = __rdtscp(&aux); + _ReadWriteBarrier(); + _mm_lfence(); + _ReadWriteBarrier(); +#else + // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx). + asm volatile( + "rdtscp\n\t" + "shl $32, %%rdx\n\t" + "or %%rdx, %0\n\t" + "lfence" + : "=a"(t) + : + // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32. + // "cc" = flags modified by SHL. + : "rcx", "rdx", "memory", "cc"); +#endif +#else + t = Start64(); +#endif + return t; +} + +// Returns a 32-bit timestamp with about 4 cycles less overhead than +// Start64. Only suitable for measuring very short regions because the +// timestamp overflows about once a second. +inline uint32_t Start32() { + uint32_t t; +#if defined(ABSL_ARCH_X86_64) +#if defined(ABSL_OS_WIN) + _ReadWriteBarrier(); + _mm_lfence(); + _ReadWriteBarrier(); + t = static_cast<uint32_t>(__rdtsc()); + _ReadWriteBarrier(); + _mm_lfence(); + _ReadWriteBarrier(); +#else + asm volatile( + "lfence\n\t" + "rdtsc\n\t" + "lfence" + : "=a"(t) + : + // "memory" avoids reordering. rdx = TSC >> 32. + : "rdx", "memory"); +#endif +#else + t = static_cast<uint32_t>(Start64()); +#endif + return t; +} + +inline uint32_t Stop32() { + uint32_t t; +#if defined(ABSL_ARCH_X86_64) +#if defined(ABSL_OS_WIN) + _ReadWriteBarrier(); + unsigned aux; + t = static_cast<uint32_t>(__rdtscp(&aux)); + _ReadWriteBarrier(); + _mm_lfence(); + _ReadWriteBarrier(); +#else + // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx). + asm volatile( + "rdtscp\n\t" + "lfence" + : "=a"(t) + : + // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32. + : "rcx", "rdx", "memory"); +#endif +#else + t = static_cast<uint32_t>(Stop64()); +#endif + return t; +} + +} // namespace timer + +namespace robust_statistics { + +// Sorts integral values in ascending order (e.g. for Mode). About 3x faster +// than std::sort for input distributions with very few unique values. +template <class T> +void CountingSort(T* values, size_t num_values) { + // Unique values and their frequency (similar to flat_map). + using Unique = std::pair<T, int>; + std::vector<Unique> unique; + for (size_t i = 0; i < num_values; ++i) { + const T value = values[i]; + const auto pos = + std::find_if(unique.begin(), unique.end(), + [value](const Unique u) { return u.first == value; }); + if (pos == unique.end()) { + unique.push_back(std::make_pair(value, 1)); + } else { + ++pos->second; + } + } + + // Sort in ascending order of value (pair.first). + std::sort(unique.begin(), unique.end()); + + // Write that many copies of each unique value to the array. + T* ABSL_RANDOM_INTERNAL_RESTRICT p = values; + for (const auto& value_count : unique) { + std::fill(p, p + value_count.second, value_count.first); + p += value_count.second; + } + ABSL_RAW_CHECK(p == values + num_values, "Did not produce enough output"); +} + +// @return i in [idx_begin, idx_begin + half_count) that minimizes +// sorted[i + half_count] - sorted[i]. +template <typename T> +size_t MinRange(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted, + const size_t idx_begin, const size_t half_count) { + T min_range = (std::numeric_limits<T>::max)(); + size_t min_idx = 0; + + for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) { + ABSL_RAW_CHECK(sorted[idx] <= sorted[idx + half_count], "Not sorted"); + const T range = sorted[idx + half_count] - sorted[idx]; + if (range < min_range) { + min_range = range; + min_idx = idx; + } + } + + return min_idx; +} + +// Returns an estimate of the mode by calling MinRange on successively +// halved intervals. "sorted" must be in ascending order. This is the +// Half Sample Mode estimator proposed by Bickel in "On a fast, robust +// estimator of the mode", with complexity O(N log N). The mode is less +// affected by outliers in highly-skewed distributions than the median. +// The averaging operation below assumes "T" is an unsigned integer type. +template <typename T> +T ModeOfSorted(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted, + const size_t num_values) { + size_t idx_begin = 0; + size_t half_count = num_values / 2; + while (half_count > 1) { + idx_begin = MinRange(sorted, idx_begin, half_count); + half_count >>= 1; + } + + const T x = sorted[idx_begin + 0]; + if (half_count == 0) { + return x; + } + ABSL_RAW_CHECK(half_count == 1, "Should stop at half_count=1"); + const T average = (x + sorted[idx_begin + 1] + 1) / 2; + return average; +} + +// Returns the mode. Side effect: sorts "values". +template <typename T> +T Mode(T* values, const size_t num_values) { + CountingSort(values, num_values); + return ModeOfSorted(values, num_values); +} + +template <typename T, size_t N> +T Mode(T (&values)[N]) { + return Mode(&values[0], N); +} + +// Returns the median value. Side effect: sorts "values". +template <typename T> +T Median(T* values, const size_t num_values) { + ABSL_RAW_CHECK(num_values != 0, "Empty input"); + std::sort(values, values + num_values); + const size_t half = num_values / 2; + // Odd count: return middle + if (num_values % 2) { + return values[half]; + } + // Even count: return average of middle two. + return (values[half] + values[half - 1] + 1) / 2; +} + +// Returns a robust measure of variability. +template <typename T> +T MedianAbsoluteDeviation(const T* values, const size_t num_values, + const T median) { + ABSL_RAW_CHECK(num_values != 0, "Empty input"); + std::vector<T> abs_deviations; + abs_deviations.reserve(num_values); + for (size_t i = 0; i < num_values; ++i) { + const int64_t abs = std::abs(int64_t(values[i]) - int64_t(median)); + abs_deviations.push_back(static_cast<T>(abs)); + } + return Median(abs_deviations.data(), num_values); +} + +} // namespace robust_statistics + +// Ticks := platform-specific timer values (CPU cycles on x86). Must be +// unsigned to guarantee wraparound on overflow. 32 bit timers are faster to +// read than 64 bit. +using Ticks = uint32_t; + +// Returns timer overhead / minimum measurable difference. +Ticks TimerResolution() { + // Nested loop avoids exceeding stack/L1 capacity. + Ticks repetitions[Params::kTimerSamples]; + for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) { + Ticks samples[Params::kTimerSamples]; + for (size_t i = 0; i < Params::kTimerSamples; ++i) { + const Ticks t0 = timer::Start32(); + const Ticks t1 = timer::Stop32(); + samples[i] = t1 - t0; + } + repetitions[rep] = robust_statistics::Mode(samples); + } + return robust_statistics::Mode(repetitions); +} + +static const Ticks timer_resolution = TimerResolution(); + +// Estimates the expected value of "lambda" values with a variable number of +// samples until the variability "rel_mad" is less than "max_rel_mad". +template <class Lambda> +Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad, + const Params& p, const Lambda& lambda) { + auto measure_duration = [&lambda]() -> Ticks { + const Ticks t0 = timer::Start32(); + lambda(); + const Ticks t1 = timer::Stop32(); + return t1 - t0; + }; + + // Choose initial samples_per_eval based on a single estimated duration. + Ticks est = measure_duration(); + static const double ticks_per_second = InvariantTicksPerSecond(); + const size_t ticks_per_eval = ticks_per_second * p.seconds_per_eval; + size_t samples_per_eval = ticks_per_eval / est; + samples_per_eval = (std::max)(samples_per_eval, p.min_samples_per_eval); + + std::vector<Ticks> samples; + samples.reserve(1 + samples_per_eval); + samples.push_back(est); + + // Percentage is too strict for tiny differences, so also allow a small + // absolute "median absolute deviation". + const Ticks max_abs_mad = (timer_resolution + 99) / 100; + *rel_mad = 0.0; // ensure initialized + + for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) { + samples.reserve(samples.size() + samples_per_eval); + for (size_t i = 0; i < samples_per_eval; ++i) { + const Ticks r = measure_duration(); + samples.push_back(r); + } + + if (samples.size() >= p.min_mode_samples) { + est = robust_statistics::Mode(samples.data(), samples.size()); + } else { + // For "few" (depends also on the variance) samples, Median is safer. + est = robust_statistics::Median(samples.data(), samples.size()); + } + ABSL_RAW_CHECK(est != 0, "Estimator returned zero duration"); + + // Median absolute deviation (mad) is a robust measure of 'variability'. + const Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation( + samples.data(), samples.size(), est); + *rel_mad = static_cast<double>(static_cast<int>(abs_mad)) / est; + + if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) { + if (p.verbose) { + ABSL_RAW_LOG(INFO, + "%6zu samples => %5u (abs_mad=%4u, rel_mad=%4.2f%%)\n", + samples.size(), est, abs_mad, *rel_mad * 100.0); + } + return est; + } + } + + if (p.verbose) { + ABSL_RAW_LOG(WARNING, + "rel_mad=%4.2f%% still exceeds %4.2f%% after %6zu samples.\n", + *rel_mad * 100.0, max_rel_mad * 100.0, samples.size()); + } + return est; +} + +using InputVec = std::vector<FuncInput>; + +// Returns vector of unique input values. +InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) { + InputVec unique(inputs, inputs + num_inputs); + std::sort(unique.begin(), unique.end()); + unique.erase(std::unique(unique.begin(), unique.end()), unique.end()); + return unique; +} + +// Returns how often we need to call func for sufficient precision, or zero +// on failure (e.g. the elapsed time is too long for a 32-bit tick count). +size_t NumSkip(const Func func, const void* arg, const InputVec& unique, + const Params& p) { + // Min elapsed ticks for any input. + Ticks min_duration = ~0u; + + for (const FuncInput input : unique) { + // Make sure a 32-bit timer is sufficient. + const uint64_t t0 = timer::Start64(); + PreventElision(func(arg, input)); + const uint64_t t1 = timer::Stop64(); + const uint64_t elapsed = t1 - t0; + if (elapsed >= (1ULL << 30)) { + ABSL_RAW_LOG(WARNING, + "Measurement failed: need 64-bit timer for input=%zu\n", + static_cast<size_t>(input)); + return 0; + } + + double rel_mad; + const Ticks total = SampleUntilStable( + p.target_rel_mad, &rel_mad, p, + [func, arg, input]() { PreventElision(func(arg, input)); }); + min_duration = (std::min)(min_duration, total - timer_resolution); + } + + // Number of repetitions required to reach the target resolution. + const size_t max_skip = p.precision_divisor; + // Number of repetitions given the estimated duration. + const size_t num_skip = + min_duration == 0 ? 0 : (max_skip + min_duration - 1) / min_duration; + if (p.verbose) { + ABSL_RAW_LOG(INFO, "res=%u max_skip=%zu min_dur=%u num_skip=%zu\n", + timer_resolution, max_skip, min_duration, num_skip); + } + return num_skip; +} + +// Replicates inputs until we can omit "num_skip" occurrences of an input. +InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs, + const size_t num_unique, const size_t num_skip, + const Params& p) { + InputVec full; + if (num_unique == 1) { + full.assign(p.subset_ratio * num_skip, inputs[0]); + return full; + } + + full.reserve(p.subset_ratio * num_skip * num_inputs); + for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) { + full.insert(full.end(), inputs, inputs + num_inputs); + } + absl::random_internal::randen_engine<uint32_t> rng; + std::shuffle(full.begin(), full.end(), rng); + return full; +} + +// Copies the "full" to "subset" in the same order, but with "num_skip" +// randomly selected occurrences of "input_to_skip" removed. +void FillSubset(const InputVec& full, const FuncInput input_to_skip, + const size_t num_skip, InputVec* subset) { + const size_t count = std::count(full.begin(), full.end(), input_to_skip); + // Generate num_skip random indices: which occurrence to skip. + std::vector<uint32_t> omit; + // Replacement for std::iota, not yet available in MSVC builds. + omit.reserve(count); + for (size_t i = 0; i < count; ++i) { + omit.push_back(i); + } + // omit[] is the same on every call, but that's OK because they identify the + // Nth instance of input_to_skip, so the position within full[] differs. + absl::random_internal::randen_engine<uint32_t> rng; + std::shuffle(omit.begin(), omit.end(), rng); + omit.resize(num_skip); + std::sort(omit.begin(), omit.end()); + + uint32_t occurrence = ~0u; // 0 after preincrement + size_t idx_omit = 0; // cursor within omit[] + size_t idx_subset = 0; // cursor within *subset + for (const FuncInput next : full) { + if (next == input_to_skip) { + ++occurrence; + // Haven't removed enough already + if (idx_omit < num_skip) { + // This one is up for removal + if (occurrence == omit[idx_omit]) { + ++idx_omit; + continue; + } + } + } + if (idx_subset < subset->size()) { + (*subset)[idx_subset++] = next; + } + } + ABSL_RAW_CHECK(idx_subset == subset->size(), "idx_subset not at end"); + ABSL_RAW_CHECK(idx_omit == omit.size(), "idx_omit not at end"); + ABSL_RAW_CHECK(occurrence == count - 1, "occurrence not at end"); +} + +// Returns total ticks elapsed for all inputs. +Ticks TotalDuration(const Func func, const void* arg, const InputVec* inputs, + const Params& p, double* max_rel_mad) { + double rel_mad; + const Ticks duration = + SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() { + for (const FuncInput input : *inputs) { + PreventElision(func(arg, input)); + } + }); + *max_rel_mad = (std::max)(*max_rel_mad, rel_mad); + return duration; +} + +// (Nearly) empty Func for measuring timer overhead/resolution. +ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE FuncOutput +EmptyFunc(const void* arg, const FuncInput input) { + return input; +} + +// Returns overhead of accessing inputs[] and calling a function; this will +// be deducted from future TotalDuration return values. +Ticks Overhead(const void* arg, const InputVec* inputs, const Params& p) { + double rel_mad; + // Zero tolerance because repeatability is crucial and EmptyFunc is fast. + return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() { + for (const FuncInput input : *inputs) { + PreventElision(EmptyFunc(arg, input)); + } + }); +} + +} // namespace + +void PinThreadToCPU(int cpu) { + // We might migrate to another CPU before pinning below, but at least cpu + // will be one of the CPUs on which this thread ran. +#if defined(ABSL_OS_WIN) + if (cpu < 0) { + cpu = static_cast<int>(GetCurrentProcessorNumber()); + ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed"); + if (cpu >= 64) { + // NOTE: On wine, at least, GetCurrentProcessorNumber() sometimes returns + // a value > 64, which is out of range. When this happens, log a message + // and don't set a cpu affinity. + ABSL_RAW_LOG(ERROR, "Invalid CPU number: %d", cpu); + return; + } + } else if (cpu >= 64) { + // User specified an explicit CPU affinity > the valid range. + ABSL_RAW_LOG(FATAL, "Invalid CPU number: %d", cpu); + } + const DWORD_PTR prev = SetThreadAffinityMask(GetCurrentThread(), 1ULL << cpu); + ABSL_RAW_CHECK(prev != 0, "SetAffinity failed"); +#elif defined(ABSL_OS_LINUX) && !defined(ABSL_OS_ANDROID) + if (cpu < 0) { + cpu = sched_getcpu(); + ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed"); + } + const pid_t pid = 0; // current thread + cpu_set_t set; + CPU_ZERO(&set); + CPU_SET(cpu, &set); + const int err = sched_setaffinity(pid, sizeof(set), &set); + ABSL_RAW_CHECK(err == 0, "SetAffinity failed"); +#endif +} + +// Returns tick rate. Invariant means the tick counter frequency is independent +// of CPU throttling or sleep. May be expensive, caller should cache the result. +double InvariantTicksPerSecond() { +#if defined(ABSL_ARCH_PPC) + return __ppc_get_timebase_freq(); +#elif defined(ABSL_ARCH_X86_64) + // We assume the TSC is invariant; it is on all recent Intel/AMD CPUs. + return platform::NominalClockRate(); +#else + // Fall back to clock_gettime nanoseconds. + return 1E9; +#endif +} + +size_t MeasureImpl(const Func func, const void* arg, const size_t num_skip, + const InputVec& unique, const InputVec& full, + const Params& p, Result* results) { + const float mul = 1.0f / static_cast<int>(num_skip); + + InputVec subset(full.size() - num_skip); + const Ticks overhead = Overhead(arg, &full, p); + const Ticks overhead_skip = Overhead(arg, &subset, p); + if (overhead < overhead_skip) { + ABSL_RAW_LOG(WARNING, "Measurement failed: overhead %u < %u\n", overhead, + overhead_skip); + return 0; + } + + if (p.verbose) { + ABSL_RAW_LOG(INFO, "#inputs=%5zu,%5zu overhead=%5u,%5u\n", full.size(), + subset.size(), overhead, overhead_skip); + } + + double max_rel_mad = 0.0; + const Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad); + + for (size_t i = 0; i < unique.size(); ++i) { + FillSubset(full, unique[i], num_skip, &subset); + const Ticks total_skip = TotalDuration(func, arg, &subset, p, &max_rel_mad); + + if (total < total_skip) { + ABSL_RAW_LOG(WARNING, "Measurement failed: total %u < %u\n", total, + total_skip); + return 0; + } + + const Ticks duration = (total - overhead) - (total_skip - overhead_skip); + results[i].input = unique[i]; + results[i].ticks = duration * mul; + results[i].variability = max_rel_mad; + } + + return unique.size(); +} + +size_t Measure(const Func func, const void* arg, const FuncInput* inputs, + const size_t num_inputs, Result* results, const Params& p) { + ABSL_RAW_CHECK(num_inputs != 0, "No inputs"); + + const InputVec unique = UniqueInputs(inputs, num_inputs); + const size_t num_skip = NumSkip(func, arg, unique, p); // never 0 + if (num_skip == 0) return 0; // NumSkip already printed error message + + const InputVec full = + ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p); + + // MeasureImpl may fail up to p.max_measure_retries times. + for (size_t i = 0; i < p.max_measure_retries; i++) { + auto result = MeasureImpl(func, arg, num_skip, unique, full, p, results); + if (result != 0) { + return result; + } + } + // All retries failed. (Unusual) + return 0; +} + +} // namespace random_internal_nanobenchmark +ABSL_NAMESPACE_END +} // namespace absl |