diff options
Diffstat (limited to 'third_party/abseil_cpp/absl/random/gaussian_distribution.h')
-rw-r--r-- | third_party/abseil_cpp/absl/random/gaussian_distribution.h | 275 |
1 files changed, 275 insertions, 0 deletions
diff --git a/third_party/abseil_cpp/absl/random/gaussian_distribution.h b/third_party/abseil_cpp/absl/random/gaussian_distribution.h new file mode 100644 index 000000000000..4b07a5c0af9d --- /dev/null +++ b/third_party/abseil_cpp/absl/random/gaussian_distribution.h @@ -0,0 +1,275 @@ +// Copyright 2017 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_ +#define ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_ + +// absl::gaussian_distribution implements the Ziggurat algorithm +// for generating random gaussian numbers. +// +// Implementation based on "The Ziggurat Method for Generating Random Variables" +// by George Marsaglia and Wai Wan Tsang: http://www.jstatsoft.org/v05/i08/ +// + +#include <cmath> +#include <cstdint> +#include <istream> +#include <limits> +#include <type_traits> + +#include "absl/base/config.h" +#include "absl/random/internal/fast_uniform_bits.h" +#include "absl/random/internal/generate_real.h" +#include "absl/random/internal/iostream_state_saver.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace random_internal { + +// absl::gaussian_distribution_base implements the underlying ziggurat algorithm +// using the ziggurat tables generated by the gaussian_distribution_gentables +// binary. +// +// The specific algorithm has some of the improvements suggested by the +// 2005 paper, "An Improved Ziggurat Method to Generate Normal Random Samples", +// Jurgen A Doornik. (https://www.doornik.com/research/ziggurat.pdf) +class ABSL_DLL gaussian_distribution_base { + public: + template <typename URBG> + inline double zignor(URBG& g); // NOLINT(runtime/references) + + private: + friend class TableGenerator; + + template <typename URBG> + inline double zignor_fallback(URBG& g, // NOLINT(runtime/references) + bool neg); + + // Constants used for the gaussian distribution. + static constexpr double kR = 3.442619855899; // Start of the tail. + static constexpr double kRInv = 0.29047645161474317; // ~= (1.0 / kR) . + static constexpr double kV = 9.91256303526217e-3; + static constexpr uint64_t kMask = 0x07f; + + // The ziggurat tables store the pdf(f) and inverse-pdf(x) for equal-area + // points on one-half of the normal distribution, where the pdf function, + // pdf = e ^ (-1/2 *x^2), assumes that the mean = 0 & stddev = 1. + // + // These tables are just over 2kb in size; larger tables might improve the + // distributions, but also lead to more cache pollution. + // + // x = {3.71308, 3.44261, 3.22308, ..., 0} + // f = {0.00101, 0.00266, 0.00554, ..., 1} + struct Tables { + double x[kMask + 2]; + double f[kMask + 2]; + }; + static const Tables zg_; + random_internal::FastUniformBits<uint64_t> fast_u64_; +}; + +} // namespace random_internal + +// absl::gaussian_distribution: +// Generates a number conforming to a Gaussian distribution. +template <typename RealType = double> +class gaussian_distribution : random_internal::gaussian_distribution_base { + public: + using result_type = RealType; + + class param_type { + public: + using distribution_type = gaussian_distribution; + + explicit param_type(result_type mean = 0, result_type stddev = 1) + : mean_(mean), stddev_(stddev) {} + + // Returns the mean distribution parameter. The mean specifies the location + // of the peak. The default value is 0.0. + result_type mean() const { return mean_; } + + // Returns the deviation distribution parameter. The default value is 1.0. + result_type stddev() const { return stddev_; } + + friend bool operator==(const param_type& a, const param_type& b) { + return a.mean_ == b.mean_ && a.stddev_ == b.stddev_; + } + + friend bool operator!=(const param_type& a, const param_type& b) { + return !(a == b); + } + + private: + result_type mean_; + result_type stddev_; + + static_assert( + std::is_floating_point<RealType>::value, + "Class-template absl::gaussian_distribution<> must be parameterized " + "using a floating-point type."); + }; + + gaussian_distribution() : gaussian_distribution(0) {} + + explicit gaussian_distribution(result_type mean, result_type stddev = 1) + : param_(mean, stddev) {} + + explicit gaussian_distribution(const param_type& p) : param_(p) {} + + void reset() {} + + // Generating functions + template <typename URBG> + result_type operator()(URBG& g) { // NOLINT(runtime/references) + return (*this)(g, param_); + } + + template <typename URBG> + result_type operator()(URBG& g, // NOLINT(runtime/references) + const param_type& p); + + param_type param() const { return param_; } + void param(const param_type& p) { param_ = p; } + + result_type(min)() const { + return -std::numeric_limits<result_type>::infinity(); + } + result_type(max)() const { + return std::numeric_limits<result_type>::infinity(); + } + + result_type mean() const { return param_.mean(); } + result_type stddev() const { return param_.stddev(); } + + friend bool operator==(const gaussian_distribution& a, + const gaussian_distribution& b) { + return a.param_ == b.param_; + } + friend bool operator!=(const gaussian_distribution& a, + const gaussian_distribution& b) { + return a.param_ != b.param_; + } + + private: + param_type param_; +}; + +// -------------------------------------------------------------------------- +// Implementation details only below +// -------------------------------------------------------------------------- + +template <typename RealType> +template <typename URBG> +typename gaussian_distribution<RealType>::result_type +gaussian_distribution<RealType>::operator()( + URBG& g, // NOLINT(runtime/references) + const param_type& p) { + return p.mean() + p.stddev() * static_cast<result_type>(zignor(g)); +} + +template <typename CharT, typename Traits, typename RealType> +std::basic_ostream<CharT, Traits>& operator<<( + std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) + const gaussian_distribution<RealType>& x) { + auto saver = random_internal::make_ostream_state_saver(os); + os.precision(random_internal::stream_precision_helper<RealType>::kPrecision); + os << x.mean() << os.fill() << x.stddev(); + return os; +} + +template <typename CharT, typename Traits, typename RealType> +std::basic_istream<CharT, Traits>& operator>>( + std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) + gaussian_distribution<RealType>& x) { // NOLINT(runtime/references) + using result_type = typename gaussian_distribution<RealType>::result_type; + using param_type = typename gaussian_distribution<RealType>::param_type; + + auto saver = random_internal::make_istream_state_saver(is); + auto mean = random_internal::read_floating_point<result_type>(is); + if (is.fail()) return is; + auto stddev = random_internal::read_floating_point<result_type>(is); + if (!is.fail()) { + x.param(param_type(mean, stddev)); + } + return is; +} + +namespace random_internal { + +template <typename URBG> +inline double gaussian_distribution_base::zignor_fallback(URBG& g, bool neg) { + using random_internal::GeneratePositiveTag; + using random_internal::GenerateRealFromBits; + + // This fallback path happens approximately 0.05% of the time. + double x, y; + do { + // kRInv = 1/r, U(0, 1) + x = kRInv * + std::log(GenerateRealFromBits<double, GeneratePositiveTag, false>( + fast_u64_(g))); + y = -std::log( + GenerateRealFromBits<double, GeneratePositiveTag, false>(fast_u64_(g))); + } while ((y + y) < (x * x)); + return neg ? (x - kR) : (kR - x); +} + +template <typename URBG> +inline double gaussian_distribution_base::zignor( + URBG& g) { // NOLINT(runtime/references) + using random_internal::GeneratePositiveTag; + using random_internal::GenerateRealFromBits; + using random_internal::GenerateSignedTag; + + while (true) { + // We use a single uint64_t to generate both a double and a strip. + // These bits are unused when the generated double is > 1/2^5. + // This may introduce some bias from the duplicated low bits of small + // values (those smaller than 1/2^5, which all end up on the left tail). + uint64_t bits = fast_u64_(g); + int i = static_cast<int>(bits & kMask); // pick a random strip + double j = GenerateRealFromBits<double, GenerateSignedTag, false>( + bits); // U(-1, 1) + const double x = j * zg_.x[i]; + + // Retangular box. Handles >97% of all cases. + // For any given box, this handles between 75% and 99% of values. + // Equivalent to U(01) < (x[i+1] / x[i]), and when i == 0, ~93.5% + if (std::abs(x) < zg_.x[i + 1]) { + return x; + } + + // i == 0: Base box. Sample using a ratio of uniforms. + if (i == 0) { + // This path happens about 0.05% of the time. + return zignor_fallback(g, j < 0); + } + + // i > 0: Wedge samples using precomputed values. + double v = GenerateRealFromBits<double, GeneratePositiveTag, false>( + fast_u64_(g)); // U(0, 1) + if ((zg_.f[i + 1] + v * (zg_.f[i] - zg_.f[i + 1])) < + std::exp(-0.5 * x * x)) { + return x; + } + + // The wedge was missed; reject the value and try again. + } +} + +} // namespace random_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_ |