diff options
Diffstat (limited to 'third_party/abseil_cpp/absl/random/distributions.h')
-rw-r--r-- | third_party/abseil_cpp/absl/random/distributions.h | 452 |
1 files changed, 0 insertions, 452 deletions
diff --git a/third_party/abseil_cpp/absl/random/distributions.h b/third_party/abseil_cpp/absl/random/distributions.h deleted file mode 100644 index 31c79694e51b..000000000000 --- a/third_party/abseil_cpp/absl/random/distributions.h +++ /dev/null @@ -1,452 +0,0 @@ -// Copyright 2017 The Abseil Authors. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// https://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. -// -// ----------------------------------------------------------------------------- -// File: distributions.h -// ----------------------------------------------------------------------------- -// -// This header defines functions representing distributions, which you use in -// combination with an Abseil random bit generator to produce random values -// according to the rules of that distribution. -// -// The Abseil random library defines the following distributions within this -// file: -// -// * `absl::Uniform` for uniform (constant) distributions having constant -// probability -// * `absl::Bernoulli` for discrete distributions having exactly two outcomes -// * `absl::Beta` for continuous distributions parameterized through two -// free parameters -// * `absl::Exponential` for discrete distributions of events occurring -// continuously and independently at a constant average rate -// * `absl::Gaussian` (also known as "normal distributions") for continuous -// distributions using an associated quadratic function -// * `absl::LogUniform` for continuous uniform distributions where the log -// to the given base of all values is uniform -// * `absl::Poisson` for discrete probability distributions that express the -// probability of a given number of events occurring within a fixed interval -// * `absl::Zipf` for discrete probability distributions commonly used for -// modelling of rare events -// -// Prefer use of these distribution function classes over manual construction of -// your own distribution classes, as it allows library maintainers greater -// flexibility to change the underlying implementation in the future. - -#ifndef ABSL_RANDOM_DISTRIBUTIONS_H_ -#define ABSL_RANDOM_DISTRIBUTIONS_H_ - -#include <algorithm> -#include <cmath> -#include <limits> -#include <random> -#include <type_traits> - -#include "absl/base/internal/inline_variable.h" -#include "absl/random/bernoulli_distribution.h" -#include "absl/random/beta_distribution.h" -#include "absl/random/exponential_distribution.h" -#include "absl/random/gaussian_distribution.h" -#include "absl/random/internal/distribution_caller.h" // IWYU pragma: export -#include "absl/random/internal/uniform_helper.h" // IWYU pragma: export -#include "absl/random/log_uniform_int_distribution.h" -#include "absl/random/poisson_distribution.h" -#include "absl/random/uniform_int_distribution.h" -#include "absl/random/uniform_real_distribution.h" -#include "absl/random/zipf_distribution.h" - -namespace absl { -ABSL_NAMESPACE_BEGIN - -ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosedClosed, - {}); -ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosed, {}); -ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedOpenTag, IntervalClosedOpen, {}); -ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpenOpen, {}); -ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpen, {}); -ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenClosedTag, IntervalOpenClosed, {}); - -// ----------------------------------------------------------------------------- -// absl::Uniform<T>(tag, bitgen, lo, hi) -// ----------------------------------------------------------------------------- -// -// `absl::Uniform()` produces random values of type `T` uniformly distributed in -// a defined interval {lo, hi}. The interval `tag` defines the type of interval -// which should be one of the following possible values: -// -// * `absl::IntervalOpenOpen` -// * `absl::IntervalOpenClosed` -// * `absl::IntervalClosedOpen` -// * `absl::IntervalClosedClosed` -// -// where "open" refers to an exclusive value (excluded) from the output, while -// "closed" refers to an inclusive value (included) from the output. -// -// In the absence of an explicit return type `T`, `absl::Uniform()` will deduce -// the return type based on the provided endpoint arguments {A lo, B hi}. -// Given these endpoints, one of {A, B} will be chosen as the return type, if -// a type can be implicitly converted into the other in a lossless way. The -// lack of any such implicit conversion between {A, B} will produce a -// compile-time error -// -// See https://en.wikipedia.org/wiki/Uniform_distribution_(continuous) -// -// Example: -// -// absl::BitGen bitgen; -// -// // Produce a random float value between 0.0 and 1.0, inclusive -// auto x = absl::Uniform(absl::IntervalClosedClosed, bitgen, 0.0f, 1.0f); -// -// // The most common interval of `absl::IntervalClosedOpen` is available by -// // default: -// -// auto x = absl::Uniform(bitgen, 0.0f, 1.0f); -// -// // Return-types are typically inferred from the arguments, however callers -// // can optionally provide an explicit return-type to the template. -// -// auto x = absl::Uniform<float>(bitgen, 0, 1); -// -template <typename R = void, typename TagType, typename URBG> -typename absl::enable_if_t<!std::is_same<R, void>::value, R> // -Uniform(TagType tag, - URBG&& urbg, // NOLINT(runtime/references) - R lo, R hi) { - using gen_t = absl::decay_t<URBG>; - using distribution_t = random_internal::UniformDistributionWrapper<R>; - - auto a = random_internal::uniform_lower_bound(tag, lo, hi); - auto b = random_internal::uniform_upper_bound(tag, lo, hi); - if (!random_internal::is_uniform_range_valid(a, b)) return lo; - - return random_internal::DistributionCaller<gen_t>::template Call< - distribution_t>(&urbg, tag, lo, hi); -} - -// absl::Uniform<T>(bitgen, lo, hi) -// -// Overload of `Uniform()` using the default closed-open interval of [lo, hi), -// and returning values of type `T` -template <typename R = void, typename URBG> -typename absl::enable_if_t<!std::is_same<R, void>::value, R> // -Uniform(URBG&& urbg, // NOLINT(runtime/references) - R lo, R hi) { - using gen_t = absl::decay_t<URBG>; - using distribution_t = random_internal::UniformDistributionWrapper<R>; - constexpr auto tag = absl::IntervalClosedOpen; - - auto a = random_internal::uniform_lower_bound(tag, lo, hi); - auto b = random_internal::uniform_upper_bound(tag, lo, hi); - if (!random_internal::is_uniform_range_valid(a, b)) return lo; - - return random_internal::DistributionCaller<gen_t>::template Call< - distribution_t>(&urbg, lo, hi); -} - -// absl::Uniform(tag, bitgen, lo, hi) -// -// Overload of `Uniform()` using different (but compatible) lo, hi types. Note -// that a compile-error will result if the return type cannot be deduced -// correctly from the passed types. -template <typename R = void, typename TagType, typename URBG, typename A, - typename B> -typename absl::enable_if_t<std::is_same<R, void>::value, - random_internal::uniform_inferred_return_t<A, B>> -Uniform(TagType tag, - URBG&& urbg, // NOLINT(runtime/references) - A lo, B hi) { - using gen_t = absl::decay_t<URBG>; - using return_t = typename random_internal::uniform_inferred_return_t<A, B>; - using distribution_t = random_internal::UniformDistributionWrapper<return_t>; - - auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi); - auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi); - if (!random_internal::is_uniform_range_valid(a, b)) return lo; - - return random_internal::DistributionCaller<gen_t>::template Call< - distribution_t>(&urbg, tag, static_cast<return_t>(lo), - static_cast<return_t>(hi)); -} - -// absl::Uniform(bitgen, lo, hi) -// -// Overload of `Uniform()` using different (but compatible) lo, hi types and the -// default closed-open interval of [lo, hi). Note that a compile-error will -// result if the return type cannot be deduced correctly from the passed types. -template <typename R = void, typename URBG, typename A, typename B> -typename absl::enable_if_t<std::is_same<R, void>::value, - random_internal::uniform_inferred_return_t<A, B>> -Uniform(URBG&& urbg, // NOLINT(runtime/references) - A lo, B hi) { - using gen_t = absl::decay_t<URBG>; - using return_t = typename random_internal::uniform_inferred_return_t<A, B>; - using distribution_t = random_internal::UniformDistributionWrapper<return_t>; - - constexpr auto tag = absl::IntervalClosedOpen; - auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi); - auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi); - if (!random_internal::is_uniform_range_valid(a, b)) return lo; - - return random_internal::DistributionCaller<gen_t>::template Call< - distribution_t>(&urbg, static_cast<return_t>(lo), - static_cast<return_t>(hi)); -} - -// absl::Uniform<unsigned T>(bitgen) -// -// Overload of Uniform() using the minimum and maximum values of a given type -// `T` (which must be unsigned), returning a value of type `unsigned T` -template <typename R, typename URBG> -typename absl::enable_if_t<!std::is_signed<R>::value, R> // -Uniform(URBG&& urbg) { // NOLINT(runtime/references) - using gen_t = absl::decay_t<URBG>; - using distribution_t = random_internal::UniformDistributionWrapper<R>; - - return random_internal::DistributionCaller<gen_t>::template Call< - distribution_t>(&urbg); -} - -// ----------------------------------------------------------------------------- -// absl::Bernoulli(bitgen, p) -// ----------------------------------------------------------------------------- -// -// `absl::Bernoulli` produces a random boolean value, with probability `p` -// (where 0.0 <= p <= 1.0) equaling `true`. -// -// Prefer `absl::Bernoulli` to produce boolean values over other alternatives -// such as comparing an `absl::Uniform()` value to a specific output. -// -// See https://en.wikipedia.org/wiki/Bernoulli_distribution -// -// Example: -// -// absl::BitGen bitgen; -// ... -// if (absl::Bernoulli(bitgen, 1.0/3721.0)) { -// std::cout << "Asteroid field navigation successful."; -// } -// -template <typename URBG> -bool Bernoulli(URBG&& urbg, // NOLINT(runtime/references) - double p) { - using gen_t = absl::decay_t<URBG>; - using distribution_t = absl::bernoulli_distribution; - - return random_internal::DistributionCaller<gen_t>::template Call< - distribution_t>(&urbg, p); -} - -// ----------------------------------------------------------------------------- -// absl::Beta<T>(bitgen, alpha, beta) -// ----------------------------------------------------------------------------- -// -// `absl::Beta` produces a floating point number distributed in the closed -// interval [0,1] and parameterized by two values `alpha` and `beta` as per a -// Beta distribution. `T` must be a floating point type, but may be inferred -// from the types of `alpha` and `beta`. -// -// See https://en.wikipedia.org/wiki/Beta_distribution. -// -// Example: -// -// absl::BitGen bitgen; -// ... -// double sample = absl::Beta(bitgen, 3.0, 2.0); -// -template <typename RealType, typename URBG> -RealType Beta(URBG&& urbg, // NOLINT(runtime/references) - RealType alpha, RealType beta) { - static_assert( - std::is_floating_point<RealType>::value, - "Template-argument 'RealType' must be a floating-point type, in " - "absl::Beta<RealType, URBG>(...)"); - - using gen_t = absl::decay_t<URBG>; - using distribution_t = typename absl::beta_distribution<RealType>; - - return random_internal::DistributionCaller<gen_t>::template Call< - distribution_t>(&urbg, alpha, beta); -} - -// ----------------------------------------------------------------------------- -// absl::Exponential<T>(bitgen, lambda = 1) -// ----------------------------------------------------------------------------- -// -// `absl::Exponential` produces a floating point number representing the -// distance (time) between two consecutive events in a point process of events -// occurring continuously and independently at a constant average rate. `T` must -// be a floating point type, but may be inferred from the type of `lambda`. -// -// See https://en.wikipedia.org/wiki/Exponential_distribution. -// -// Example: -// -// absl::BitGen bitgen; -// ... -// double call_length = absl::Exponential(bitgen, 7.0); -// -template <typename RealType, typename URBG> -RealType Exponential(URBG&& urbg, // NOLINT(runtime/references) - RealType lambda = 1) { - static_assert( - std::is_floating_point<RealType>::value, - "Template-argument 'RealType' must be a floating-point type, in " - "absl::Exponential<RealType, URBG>(...)"); - - using gen_t = absl::decay_t<URBG>; - using distribution_t = typename absl::exponential_distribution<RealType>; - - return random_internal::DistributionCaller<gen_t>::template Call< - distribution_t>(&urbg, lambda); -} - -// ----------------------------------------------------------------------------- -// absl::Gaussian<T>(bitgen, mean = 0, stddev = 1) -// ----------------------------------------------------------------------------- -// -// `absl::Gaussian` produces a floating point number selected from the Gaussian -// (ie. "Normal") distribution. `T` must be a floating point type, but may be -// inferred from the types of `mean` and `stddev`. -// -// See https://en.wikipedia.org/wiki/Normal_distribution -// -// Example: -// -// absl::BitGen bitgen; -// ... -// double giraffe_height = absl::Gaussian(bitgen, 16.3, 3.3); -// -template <typename RealType, typename URBG> -RealType Gaussian(URBG&& urbg, // NOLINT(runtime/references) - RealType mean = 0, RealType stddev = 1) { - static_assert( - std::is_floating_point<RealType>::value, - "Template-argument 'RealType' must be a floating-point type, in " - "absl::Gaussian<RealType, URBG>(...)"); - - using gen_t = absl::decay_t<URBG>; - using distribution_t = typename absl::gaussian_distribution<RealType>; - - return random_internal::DistributionCaller<gen_t>::template Call< - distribution_t>(&urbg, mean, stddev); -} - -// ----------------------------------------------------------------------------- -// absl::LogUniform<T>(bitgen, lo, hi, base = 2) -// ----------------------------------------------------------------------------- -// -// `absl::LogUniform` produces random values distributed where the log to a -// given base of all values is uniform in a closed interval [lo, hi]. `T` must -// be an integral type, but may be inferred from the types of `lo` and `hi`. -// -// I.e., `LogUniform(0, n, b)` is uniformly distributed across buckets -// [0], [1, b-1], [b, b^2-1] .. [b^(k-1), (b^k)-1] .. [b^floor(log(n, b)), n] -// and is uniformly distributed within each bucket. -// -// The resulting probability density is inversely related to bucket size, though -// values in the final bucket may be more likely than previous values. (In the -// extreme case where n = b^i the final value will be tied with zero as the most -// probable result. -// -// If `lo` is nonzero then this distribution is shifted to the desired interval, -// so LogUniform(lo, hi, b) is equivalent to LogUniform(0, hi-lo, b)+lo. -// -// See http://ecolego.facilia.se/ecolego/show/Log-Uniform%20Distribution -// -// Example: -// -// absl::BitGen bitgen; -// ... -// int v = absl::LogUniform(bitgen, 0, 1000); -// -template <typename IntType, typename URBG> -IntType LogUniform(URBG&& urbg, // NOLINT(runtime/references) - IntType lo, IntType hi, IntType base = 2) { - static_assert(std::is_integral<IntType>::value, - "Template-argument 'IntType' must be an integral type, in " - "absl::LogUniform<IntType, URBG>(...)"); - - using gen_t = absl::decay_t<URBG>; - using distribution_t = typename absl::log_uniform_int_distribution<IntType>; - - return random_internal::DistributionCaller<gen_t>::template Call< - distribution_t>(&urbg, lo, hi, base); -} - -// ----------------------------------------------------------------------------- -// absl::Poisson<T>(bitgen, mean = 1) -// ----------------------------------------------------------------------------- -// -// `absl::Poisson` produces discrete probabilities for a given number of events -// occurring within a fixed interval within the closed interval [0, max]. `T` -// must be an integral type. -// -// See https://en.wikipedia.org/wiki/Poisson_distribution -// -// Example: -// -// absl::BitGen bitgen; -// ... -// int requests_per_minute = absl::Poisson<int>(bitgen, 3.2); -// -template <typename IntType, typename URBG> -IntType Poisson(URBG&& urbg, // NOLINT(runtime/references) - double mean = 1.0) { - static_assert(std::is_integral<IntType>::value, - "Template-argument 'IntType' must be an integral type, in " - "absl::Poisson<IntType, URBG>(...)"); - - using gen_t = absl::decay_t<URBG>; - using distribution_t = typename absl::poisson_distribution<IntType>; - - return random_internal::DistributionCaller<gen_t>::template Call< - distribution_t>(&urbg, mean); -} - -// ----------------------------------------------------------------------------- -// absl::Zipf<T>(bitgen, hi = max, q = 2, v = 1) -// ----------------------------------------------------------------------------- -// -// `absl::Zipf` produces discrete probabilities commonly used for modelling of -// rare events over the closed interval [0, hi]. The parameters `v` and `q` -// determine the skew of the distribution. `T` must be an integral type, but -// may be inferred from the type of `hi`. -// -// See http://mathworld.wolfram.com/ZipfDistribution.html -// -// Example: -// -// absl::BitGen bitgen; -// ... -// int term_rank = absl::Zipf<int>(bitgen); -// -template <typename IntType, typename URBG> -IntType Zipf(URBG&& urbg, // NOLINT(runtime/references) - IntType hi = (std::numeric_limits<IntType>::max)(), double q = 2.0, - double v = 1.0) { - static_assert(std::is_integral<IntType>::value, - "Template-argument 'IntType' must be an integral type, in " - "absl::Zipf<IntType, URBG>(...)"); - - using gen_t = absl::decay_t<URBG>; - using distribution_t = typename absl::zipf_distribution<IntType>; - - return random_internal::DistributionCaller<gen_t>::template Call< - distribution_t>(&urbg, hi, q, v); -} - -ABSL_NAMESPACE_END -} // namespace absl - -#endif // ABSL_RANDOM_DISTRIBUTIONS_H_ |