about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/random/distributions.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil_cpp/absl/random/distributions.h')
-rw-r--r--third_party/abseil_cpp/absl/random/distributions.h452
1 files changed, 0 insertions, 452 deletions
diff --git a/third_party/abseil_cpp/absl/random/distributions.h b/third_party/abseil_cpp/absl/random/distributions.h
deleted file mode 100644
index 31c79694e51b..000000000000
--- a/third_party/abseil_cpp/absl/random/distributions.h
+++ /dev/null
@@ -1,452 +0,0 @@
-// Copyright 2017 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-//      https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// -----------------------------------------------------------------------------
-// File: distributions.h
-// -----------------------------------------------------------------------------
-//
-// This header defines functions representing distributions, which you use in
-// combination with an Abseil random bit generator to produce random values
-// according to the rules of that distribution.
-//
-// The Abseil random library defines the following distributions within this
-// file:
-//
-//   * `absl::Uniform` for uniform (constant) distributions having constant
-//     probability
-//   * `absl::Bernoulli` for discrete distributions having exactly two outcomes
-//   * `absl::Beta` for continuous distributions parameterized through two
-//     free parameters
-//   * `absl::Exponential` for discrete distributions of events occurring
-//     continuously and independently at a constant average rate
-//   * `absl::Gaussian` (also known as "normal distributions") for continuous
-//     distributions using an associated quadratic function
-//   * `absl::LogUniform` for continuous uniform distributions where the log
-//     to the given base of all values is uniform
-//   * `absl::Poisson` for discrete probability distributions that express the
-//     probability of a given number of events occurring within a fixed interval
-//   * `absl::Zipf` for discrete probability distributions commonly used for
-//     modelling of rare events
-//
-// Prefer use of these distribution function classes over manual construction of
-// your own distribution classes, as it allows library maintainers greater
-// flexibility to change the underlying implementation in the future.
-
-#ifndef ABSL_RANDOM_DISTRIBUTIONS_H_
-#define ABSL_RANDOM_DISTRIBUTIONS_H_
-
-#include <algorithm>
-#include <cmath>
-#include <limits>
-#include <random>
-#include <type_traits>
-
-#include "absl/base/internal/inline_variable.h"
-#include "absl/random/bernoulli_distribution.h"
-#include "absl/random/beta_distribution.h"
-#include "absl/random/exponential_distribution.h"
-#include "absl/random/gaussian_distribution.h"
-#include "absl/random/internal/distribution_caller.h"  // IWYU pragma: export
-#include "absl/random/internal/uniform_helper.h"  // IWYU pragma: export
-#include "absl/random/log_uniform_int_distribution.h"
-#include "absl/random/poisson_distribution.h"
-#include "absl/random/uniform_int_distribution.h"
-#include "absl/random/uniform_real_distribution.h"
-#include "absl/random/zipf_distribution.h"
-
-namespace absl {
-ABSL_NAMESPACE_BEGIN
-
-ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosedClosed,
-                               {});
-ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosed, {});
-ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedOpenTag, IntervalClosedOpen, {});
-ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpenOpen, {});
-ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpen, {});
-ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenClosedTag, IntervalOpenClosed, {});
-
-// -----------------------------------------------------------------------------
-// absl::Uniform<T>(tag, bitgen, lo, hi)
-// -----------------------------------------------------------------------------
-//
-// `absl::Uniform()` produces random values of type `T` uniformly distributed in
-// a defined interval {lo, hi}. The interval `tag` defines the type of interval
-// which should be one of the following possible values:
-//
-//   * `absl::IntervalOpenOpen`
-//   * `absl::IntervalOpenClosed`
-//   * `absl::IntervalClosedOpen`
-//   * `absl::IntervalClosedClosed`
-//
-// where "open" refers to an exclusive value (excluded) from the output, while
-// "closed" refers to an inclusive value (included) from the output.
-//
-// In the absence of an explicit return type `T`, `absl::Uniform()` will deduce
-// the return type based on the provided endpoint arguments {A lo, B hi}.
-// Given these endpoints, one of {A, B} will be chosen as the return type, if
-// a type can be implicitly converted into the other in a lossless way. The
-// lack of any such implicit conversion between {A, B} will produce a
-// compile-time error
-//
-// See https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
-//
-// Example:
-//
-//   absl::BitGen bitgen;
-//
-//   // Produce a random float value between 0.0 and 1.0, inclusive
-//   auto x = absl::Uniform(absl::IntervalClosedClosed, bitgen, 0.0f, 1.0f);
-//
-//   // The most common interval of `absl::IntervalClosedOpen` is available by
-//   // default:
-//
-//   auto x = absl::Uniform(bitgen, 0.0f, 1.0f);
-//
-//   // Return-types are typically inferred from the arguments, however callers
-//   // can optionally provide an explicit return-type to the template.
-//
-//   auto x = absl::Uniform<float>(bitgen, 0, 1);
-//
-template <typename R = void, typename TagType, typename URBG>
-typename absl::enable_if_t<!std::is_same<R, void>::value, R>  //
-Uniform(TagType tag,
-        URBG&& urbg,  // NOLINT(runtime/references)
-        R lo, R hi) {
-  using gen_t = absl::decay_t<URBG>;
-  using distribution_t = random_internal::UniformDistributionWrapper<R>;
-
-  auto a = random_internal::uniform_lower_bound(tag, lo, hi);
-  auto b = random_internal::uniform_upper_bound(tag, lo, hi);
-  if (!random_internal::is_uniform_range_valid(a, b)) return lo;
-
-  return random_internal::DistributionCaller<gen_t>::template Call<
-      distribution_t>(&urbg, tag, lo, hi);
-}
-
-// absl::Uniform<T>(bitgen, lo, hi)
-//
-// Overload of `Uniform()` using the default closed-open interval of [lo, hi),
-// and returning values of type `T`
-template <typename R = void, typename URBG>
-typename absl::enable_if_t<!std::is_same<R, void>::value, R>  //
-Uniform(URBG&& urbg,  // NOLINT(runtime/references)
-        R lo, R hi) {
-  using gen_t = absl::decay_t<URBG>;
-  using distribution_t = random_internal::UniformDistributionWrapper<R>;
-  constexpr auto tag = absl::IntervalClosedOpen;
-
-  auto a = random_internal::uniform_lower_bound(tag, lo, hi);
-  auto b = random_internal::uniform_upper_bound(tag, lo, hi);
-  if (!random_internal::is_uniform_range_valid(a, b)) return lo;
-
-  return random_internal::DistributionCaller<gen_t>::template Call<
-      distribution_t>(&urbg, lo, hi);
-}
-
-// absl::Uniform(tag, bitgen, lo, hi)
-//
-// Overload of `Uniform()` using different (but compatible) lo, hi types. Note
-// that a compile-error will result if the return type cannot be deduced
-// correctly from the passed types.
-template <typename R = void, typename TagType, typename URBG, typename A,
-          typename B>
-typename absl::enable_if_t<std::is_same<R, void>::value,
-                           random_internal::uniform_inferred_return_t<A, B>>
-Uniform(TagType tag,
-        URBG&& urbg,  // NOLINT(runtime/references)
-        A lo, B hi) {
-  using gen_t = absl::decay_t<URBG>;
-  using return_t = typename random_internal::uniform_inferred_return_t<A, B>;
-  using distribution_t = random_internal::UniformDistributionWrapper<return_t>;
-
-  auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi);
-  auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi);
-  if (!random_internal::is_uniform_range_valid(a, b)) return lo;
-
-  return random_internal::DistributionCaller<gen_t>::template Call<
-      distribution_t>(&urbg, tag, static_cast<return_t>(lo),
-                                static_cast<return_t>(hi));
-}
-
-// absl::Uniform(bitgen, lo, hi)
-//
-// Overload of `Uniform()` using different (but compatible) lo, hi types and the
-// default closed-open interval of [lo, hi). Note that a compile-error will
-// result if the return type cannot be deduced correctly from the passed types.
-template <typename R = void, typename URBG, typename A, typename B>
-typename absl::enable_if_t<std::is_same<R, void>::value,
-                           random_internal::uniform_inferred_return_t<A, B>>
-Uniform(URBG&& urbg,  // NOLINT(runtime/references)
-        A lo, B hi) {
-  using gen_t = absl::decay_t<URBG>;
-  using return_t = typename random_internal::uniform_inferred_return_t<A, B>;
-  using distribution_t = random_internal::UniformDistributionWrapper<return_t>;
-
-  constexpr auto tag = absl::IntervalClosedOpen;
-  auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi);
-  auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi);
-  if (!random_internal::is_uniform_range_valid(a, b)) return lo;
-
-  return random_internal::DistributionCaller<gen_t>::template Call<
-      distribution_t>(&urbg, static_cast<return_t>(lo),
-                                static_cast<return_t>(hi));
-}
-
-// absl::Uniform<unsigned T>(bitgen)
-//
-// Overload of Uniform() using the minimum and maximum values of a given type
-// `T` (which must be unsigned), returning a value of type `unsigned T`
-template <typename R, typename URBG>
-typename absl::enable_if_t<!std::is_signed<R>::value, R>  //
-Uniform(URBG&& urbg) {  // NOLINT(runtime/references)
-  using gen_t = absl::decay_t<URBG>;
-  using distribution_t = random_internal::UniformDistributionWrapper<R>;
-
-  return random_internal::DistributionCaller<gen_t>::template Call<
-      distribution_t>(&urbg);
-}
-
-// -----------------------------------------------------------------------------
-// absl::Bernoulli(bitgen, p)
-// -----------------------------------------------------------------------------
-//
-// `absl::Bernoulli` produces a random boolean value, with probability `p`
-// (where 0.0 <= p <= 1.0) equaling `true`.
-//
-// Prefer `absl::Bernoulli` to produce boolean values over other alternatives
-// such as comparing an `absl::Uniform()` value to a specific output.
-//
-// See https://en.wikipedia.org/wiki/Bernoulli_distribution
-//
-// Example:
-//
-//   absl::BitGen bitgen;
-//   ...
-//   if (absl::Bernoulli(bitgen, 1.0/3721.0)) {
-//     std::cout << "Asteroid field navigation successful.";
-//   }
-//
-template <typename URBG>
-bool Bernoulli(URBG&& urbg,  // NOLINT(runtime/references)
-               double p) {
-  using gen_t = absl::decay_t<URBG>;
-  using distribution_t = absl::bernoulli_distribution;
-
-  return random_internal::DistributionCaller<gen_t>::template Call<
-      distribution_t>(&urbg, p);
-}
-
-// -----------------------------------------------------------------------------
-// absl::Beta<T>(bitgen, alpha, beta)
-// -----------------------------------------------------------------------------
-//
-// `absl::Beta` produces a floating point number distributed in the closed
-// interval [0,1] and parameterized by two values `alpha` and `beta` as per a
-// Beta distribution. `T` must be a floating point type, but may be inferred
-// from the types of `alpha` and `beta`.
-//
-// See https://en.wikipedia.org/wiki/Beta_distribution.
-//
-// Example:
-//
-//   absl::BitGen bitgen;
-//   ...
-//   double sample = absl::Beta(bitgen, 3.0, 2.0);
-//
-template <typename RealType, typename URBG>
-RealType Beta(URBG&& urbg,  // NOLINT(runtime/references)
-              RealType alpha, RealType beta) {
-  static_assert(
-      std::is_floating_point<RealType>::value,
-      "Template-argument 'RealType' must be a floating-point type, in "
-      "absl::Beta<RealType, URBG>(...)");
-
-  using gen_t = absl::decay_t<URBG>;
-  using distribution_t = typename absl::beta_distribution<RealType>;
-
-  return random_internal::DistributionCaller<gen_t>::template Call<
-      distribution_t>(&urbg, alpha, beta);
-}
-
-// -----------------------------------------------------------------------------
-// absl::Exponential<T>(bitgen, lambda = 1)
-// -----------------------------------------------------------------------------
-//
-// `absl::Exponential` produces a floating point number representing the
-// distance (time) between two consecutive events in a point process of events
-// occurring continuously and independently at a constant average rate. `T` must
-// be a floating point type, but may be inferred from the type of `lambda`.
-//
-// See https://en.wikipedia.org/wiki/Exponential_distribution.
-//
-// Example:
-//
-//   absl::BitGen bitgen;
-//   ...
-//   double call_length = absl::Exponential(bitgen, 7.0);
-//
-template <typename RealType, typename URBG>
-RealType Exponential(URBG&& urbg,  // NOLINT(runtime/references)
-                     RealType lambda = 1) {
-  static_assert(
-      std::is_floating_point<RealType>::value,
-      "Template-argument 'RealType' must be a floating-point type, in "
-      "absl::Exponential<RealType, URBG>(...)");
-
-  using gen_t = absl::decay_t<URBG>;
-  using distribution_t = typename absl::exponential_distribution<RealType>;
-
-  return random_internal::DistributionCaller<gen_t>::template Call<
-      distribution_t>(&urbg, lambda);
-}
-
-// -----------------------------------------------------------------------------
-// absl::Gaussian<T>(bitgen, mean = 0, stddev = 1)
-// -----------------------------------------------------------------------------
-//
-// `absl::Gaussian` produces a floating point number selected from the Gaussian
-// (ie. "Normal") distribution. `T` must be a floating point type, but may be
-// inferred from the types of `mean` and `stddev`.
-//
-// See https://en.wikipedia.org/wiki/Normal_distribution
-//
-// Example:
-//
-//   absl::BitGen bitgen;
-//   ...
-//   double giraffe_height = absl::Gaussian(bitgen, 16.3, 3.3);
-//
-template <typename RealType, typename URBG>
-RealType Gaussian(URBG&& urbg,  // NOLINT(runtime/references)
-                  RealType mean = 0, RealType stddev = 1) {
-  static_assert(
-      std::is_floating_point<RealType>::value,
-      "Template-argument 'RealType' must be a floating-point type, in "
-      "absl::Gaussian<RealType, URBG>(...)");
-
-  using gen_t = absl::decay_t<URBG>;
-  using distribution_t = typename absl::gaussian_distribution<RealType>;
-
-  return random_internal::DistributionCaller<gen_t>::template Call<
-      distribution_t>(&urbg, mean, stddev);
-}
-
-// -----------------------------------------------------------------------------
-// absl::LogUniform<T>(bitgen, lo, hi, base = 2)
-// -----------------------------------------------------------------------------
-//
-// `absl::LogUniform` produces random values distributed where the log to a
-// given base of all values is uniform in a closed interval [lo, hi]. `T` must
-// be an integral type, but may be inferred from the types of `lo` and `hi`.
-//
-// I.e., `LogUniform(0, n, b)` is uniformly distributed across buckets
-// [0], [1, b-1], [b, b^2-1] .. [b^(k-1), (b^k)-1] .. [b^floor(log(n, b)), n]
-// and is uniformly distributed within each bucket.
-//
-// The resulting probability density is inversely related to bucket size, though
-// values in the final bucket may be more likely than previous values. (In the
-// extreme case where n = b^i the final value will be tied with zero as the most
-// probable result.
-//
-// If `lo` is nonzero then this distribution is shifted to the desired interval,
-// so LogUniform(lo, hi, b) is equivalent to LogUniform(0, hi-lo, b)+lo.
-//
-// See http://ecolego.facilia.se/ecolego/show/Log-Uniform%20Distribution
-//
-// Example:
-//
-//   absl::BitGen bitgen;
-//   ...
-//   int v = absl::LogUniform(bitgen, 0, 1000);
-//
-template <typename IntType, typename URBG>
-IntType LogUniform(URBG&& urbg,  // NOLINT(runtime/references)
-                   IntType lo, IntType hi, IntType base = 2) {
-  static_assert(std::is_integral<IntType>::value,
-                "Template-argument 'IntType' must be an integral type, in "
-                "absl::LogUniform<IntType, URBG>(...)");
-
-  using gen_t = absl::decay_t<URBG>;
-  using distribution_t = typename absl::log_uniform_int_distribution<IntType>;
-
-  return random_internal::DistributionCaller<gen_t>::template Call<
-      distribution_t>(&urbg, lo, hi, base);
-}
-
-// -----------------------------------------------------------------------------
-// absl::Poisson<T>(bitgen, mean = 1)
-// -----------------------------------------------------------------------------
-//
-// `absl::Poisson` produces discrete probabilities for a given number of events
-// occurring within a fixed interval within the closed interval [0, max]. `T`
-// must be an integral type.
-//
-// See https://en.wikipedia.org/wiki/Poisson_distribution
-//
-// Example:
-//
-//   absl::BitGen bitgen;
-//   ...
-//   int requests_per_minute = absl::Poisson<int>(bitgen, 3.2);
-//
-template <typename IntType, typename URBG>
-IntType Poisson(URBG&& urbg,  // NOLINT(runtime/references)
-                double mean = 1.0) {
-  static_assert(std::is_integral<IntType>::value,
-                "Template-argument 'IntType' must be an integral type, in "
-                "absl::Poisson<IntType, URBG>(...)");
-
-  using gen_t = absl::decay_t<URBG>;
-  using distribution_t = typename absl::poisson_distribution<IntType>;
-
-  return random_internal::DistributionCaller<gen_t>::template Call<
-      distribution_t>(&urbg, mean);
-}
-
-// -----------------------------------------------------------------------------
-// absl::Zipf<T>(bitgen, hi = max, q = 2, v = 1)
-// -----------------------------------------------------------------------------
-//
-// `absl::Zipf` produces discrete probabilities commonly used for modelling of
-// rare events over the closed interval [0, hi]. The parameters `v` and `q`
-// determine the skew of the distribution. `T`  must be an integral type, but
-// may be inferred from the type of `hi`.
-//
-// See http://mathworld.wolfram.com/ZipfDistribution.html
-//
-// Example:
-//
-//   absl::BitGen bitgen;
-//   ...
-//   int term_rank = absl::Zipf<int>(bitgen);
-//
-template <typename IntType, typename URBG>
-IntType Zipf(URBG&& urbg,  // NOLINT(runtime/references)
-             IntType hi = (std::numeric_limits<IntType>::max)(), double q = 2.0,
-             double v = 1.0) {
-  static_assert(std::is_integral<IntType>::value,
-                "Template-argument 'IntType' must be an integral type, in "
-                "absl::Zipf<IntType, URBG>(...)");
-
-  using gen_t = absl::decay_t<URBG>;
-  using distribution_t = typename absl::zipf_distribution<IntType>;
-
-  return random_internal::DistributionCaller<gen_t>::template Call<
-      distribution_t>(&urbg, hi, q, v);
-}
-
-ABSL_NAMESPACE_END
-}  // namespace absl
-
-#endif  // ABSL_RANDOM_DISTRIBUTIONS_H_