about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/memory/memory.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil_cpp/absl/memory/memory.h')
-rw-r--r--third_party/abseil_cpp/absl/memory/memory.h699
1 files changed, 0 insertions, 699 deletions
diff --git a/third_party/abseil_cpp/absl/memory/memory.h b/third_party/abseil_cpp/absl/memory/memory.h
deleted file mode 100644
index 2b5ff623d430..000000000000
--- a/third_party/abseil_cpp/absl/memory/memory.h
+++ /dev/null
@@ -1,699 +0,0 @@
-// Copyright 2017 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-//      https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// -----------------------------------------------------------------------------
-// File: memory.h
-// -----------------------------------------------------------------------------
-//
-// This header file contains utility functions for managing the creation and
-// conversion of smart pointers. This file is an extension to the C++
-// standard <memory> library header file.
-
-#ifndef ABSL_MEMORY_MEMORY_H_
-#define ABSL_MEMORY_MEMORY_H_
-
-#include <cstddef>
-#include <limits>
-#include <memory>
-#include <new>
-#include <type_traits>
-#include <utility>
-
-#include "absl/base/macros.h"
-#include "absl/meta/type_traits.h"
-
-namespace absl {
-ABSL_NAMESPACE_BEGIN
-
-// -----------------------------------------------------------------------------
-// Function Template: WrapUnique()
-// -----------------------------------------------------------------------------
-//
-// Adopts ownership from a raw pointer and transfers it to the returned
-// `std::unique_ptr`, whose type is deduced. Because of this deduction, *do not*
-// specify the template type `T` when calling `WrapUnique`.
-//
-// Example:
-//   X* NewX(int, int);
-//   auto x = WrapUnique(NewX(1, 2));  // 'x' is std::unique_ptr<X>.
-//
-// Do not call WrapUnique with an explicit type, as in
-// `WrapUnique<X>(NewX(1, 2))`.  The purpose of WrapUnique is to automatically
-// deduce the pointer type. If you wish to make the type explicit, just use
-// `std::unique_ptr` directly.
-//
-//   auto x = std::unique_ptr<X>(NewX(1, 2));
-//                  - or -
-//   std::unique_ptr<X> x(NewX(1, 2));
-//
-// While `absl::WrapUnique` is useful for capturing the output of a raw
-// pointer factory, prefer 'absl::make_unique<T>(args...)' over
-// 'absl::WrapUnique(new T(args...))'.
-//
-//   auto x = WrapUnique(new X(1, 2));  // works, but nonideal.
-//   auto x = make_unique<X>(1, 2);     // safer, standard, avoids raw 'new'.
-//
-// Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid
-// expression. In particular, `absl::WrapUnique()` cannot wrap pointers to
-// arrays, functions or void, and it must not be used to capture pointers
-// obtained from array-new expressions (even though that would compile!).
-template <typename T>
-std::unique_ptr<T> WrapUnique(T* ptr) {
-  static_assert(!std::is_array<T>::value, "array types are unsupported");
-  static_assert(std::is_object<T>::value, "non-object types are unsupported");
-  return std::unique_ptr<T>(ptr);
-}
-
-namespace memory_internal {
-
-// Traits to select proper overload and return type for `absl::make_unique<>`.
-template <typename T>
-struct MakeUniqueResult {
-  using scalar = std::unique_ptr<T>;
-};
-template <typename T>
-struct MakeUniqueResult<T[]> {
-  using array = std::unique_ptr<T[]>;
-};
-template <typename T, size_t N>
-struct MakeUniqueResult<T[N]> {
-  using invalid = void;
-};
-
-}  // namespace memory_internal
-
-// gcc 4.8 has __cplusplus at 201301 but the libstdc++ shipped with it doesn't
-// define make_unique.  Other supported compilers either just define __cplusplus
-// as 201103 but have make_unique (msvc), or have make_unique whenever
-// __cplusplus > 201103 (clang).
-#if (__cplusplus > 201103L || defined(_MSC_VER)) && \
-    !(defined(__GLIBCXX__) && !defined(__cpp_lib_make_unique))
-using std::make_unique;
-#else
-// -----------------------------------------------------------------------------
-// Function Template: make_unique<T>()
-// -----------------------------------------------------------------------------
-//
-// Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries
-// during the construction process. `absl::make_unique<>` also avoids redundant
-// type declarations, by avoiding the need to explicitly use the `new` operator.
-//
-// This implementation of `absl::make_unique<>` is designed for C++11 code and
-// will be replaced in C++14 by the equivalent `std::make_unique<>` abstraction.
-// `absl::make_unique<>` is designed to be 100% compatible with
-// `std::make_unique<>` so that the eventual migration will involve a simple
-// rename operation.
-//
-// For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic,
-// see Herb Sutter's explanation on
-// (Exception-Safe Function Calls)[https://herbsutter.com/gotw/_102/].
-// (In general, reviewers should treat `new T(a,b)` with scrutiny.)
-//
-// Example usage:
-//
-//    auto p = make_unique<X>(args...);  // 'p'  is a std::unique_ptr<X>
-//    auto pa = make_unique<X[]>(5);     // 'pa' is a std::unique_ptr<X[]>
-//
-// Three overloads of `absl::make_unique` are required:
-//
-//   - For non-array T:
-//
-//       Allocates a T with `new T(std::forward<Args> args...)`,
-//       forwarding all `args` to T's constructor.
-//       Returns a `std::unique_ptr<T>` owning that object.
-//
-//   - For an array of unknown bounds T[]:
-//
-//       `absl::make_unique<>` will allocate an array T of type U[] with
-//       `new U[n]()` and return a `std::unique_ptr<U[]>` owning that array.
-//
-//       Note that 'U[n]()' is different from 'U[n]', and elements will be
-//       value-initialized. Note as well that `std::unique_ptr` will perform its
-//       own destruction of the array elements upon leaving scope, even though
-//       the array [] does not have a default destructor.
-//
-//       NOTE: an array of unknown bounds T[] may still be (and often will be)
-//       initialized to have a size, and will still use this overload. E.g:
-//
-//         auto my_array = absl::make_unique<int[]>(10);
-//
-//   - For an array of known bounds T[N]:
-//
-//       `absl::make_unique<>` is deleted (like with `std::make_unique<>`) as
-//       this overload is not useful.
-//
-//       NOTE: an array of known bounds T[N] is not considered a useful
-//       construction, and may cause undefined behavior in templates. E.g:
-//
-//         auto my_array = absl::make_unique<int[10]>();
-//
-//       In those cases, of course, you can still use the overload above and
-//       simply initialize it to its desired size:
-//
-//         auto my_array = absl::make_unique<int[]>(10);
-
-// `absl::make_unique` overload for non-array types.
-template <typename T, typename... Args>
-typename memory_internal::MakeUniqueResult<T>::scalar make_unique(
-    Args&&... args) {
-  return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
-}
-
-// `absl::make_unique` overload for an array T[] of unknown bounds.
-// The array allocation needs to use the `new T[size]` form and cannot take
-// element constructor arguments. The `std::unique_ptr` will manage destructing
-// these array elements.
-template <typename T>
-typename memory_internal::MakeUniqueResult<T>::array make_unique(size_t n) {
-  return std::unique_ptr<T>(new typename absl::remove_extent_t<T>[n]());
-}
-
-// `absl::make_unique` overload for an array T[N] of known bounds.
-// This construction will be rejected.
-template <typename T, typename... Args>
-typename memory_internal::MakeUniqueResult<T>::invalid make_unique(
-    Args&&... /* args */) = delete;
-#endif
-
-// -----------------------------------------------------------------------------
-// Function Template: RawPtr()
-// -----------------------------------------------------------------------------
-//
-// Extracts the raw pointer from a pointer-like value `ptr`. `absl::RawPtr` is
-// useful within templates that need to handle a complement of raw pointers,
-// `std::nullptr_t`, and smart pointers.
-template <typename T>
-auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) {
-  // ptr is a forwarding reference to support Ts with non-const operators.
-  return (ptr != nullptr) ? std::addressof(*ptr) : nullptr;
-}
-inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; }
-
-// -----------------------------------------------------------------------------
-// Function Template: ShareUniquePtr()
-// -----------------------------------------------------------------------------
-//
-// Adopts a `std::unique_ptr` rvalue and returns a `std::shared_ptr` of deduced
-// type. Ownership (if any) of the held value is transferred to the returned
-// shared pointer.
-//
-// Example:
-//
-//     auto up = absl::make_unique<int>(10);
-//     auto sp = absl::ShareUniquePtr(std::move(up));  // shared_ptr<int>
-//     CHECK_EQ(*sp, 10);
-//     CHECK(up == nullptr);
-//
-// Note that this conversion is correct even when T is an array type, and more
-// generally it works for *any* deleter of the `unique_ptr` (single-object
-// deleter, array deleter, or any custom deleter), since the deleter is adopted
-// by the shared pointer as well. The deleter is copied (unless it is a
-// reference).
-//
-// Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a
-// null shared pointer does not attempt to call the deleter.
-template <typename T, typename D>
-std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) {
-  return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>();
-}
-
-// -----------------------------------------------------------------------------
-// Function Template: WeakenPtr()
-// -----------------------------------------------------------------------------
-//
-// Creates a weak pointer associated with a given shared pointer. The returned
-// value is a `std::weak_ptr` of deduced type.
-//
-// Example:
-//
-//    auto sp = std::make_shared<int>(10);
-//    auto wp = absl::WeakenPtr(sp);
-//    CHECK_EQ(sp.get(), wp.lock().get());
-//    sp.reset();
-//    CHECK(wp.lock() == nullptr);
-//
-template <typename T>
-std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) {
-  return std::weak_ptr<T>(ptr);
-}
-
-namespace memory_internal {
-
-// ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D.
-template <template <typename> class Extract, typename Obj, typename Default,
-          typename>
-struct ExtractOr {
-  using type = Default;
-};
-
-template <template <typename> class Extract, typename Obj, typename Default>
-struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> {
-  using type = Extract<Obj>;
-};
-
-template <template <typename> class Extract, typename Obj, typename Default>
-using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type;
-
-// Extractors for the features of allocators.
-template <typename T>
-using GetPointer = typename T::pointer;
-
-template <typename T>
-using GetConstPointer = typename T::const_pointer;
-
-template <typename T>
-using GetVoidPointer = typename T::void_pointer;
-
-template <typename T>
-using GetConstVoidPointer = typename T::const_void_pointer;
-
-template <typename T>
-using GetDifferenceType = typename T::difference_type;
-
-template <typename T>
-using GetSizeType = typename T::size_type;
-
-template <typename T>
-using GetPropagateOnContainerCopyAssignment =
-    typename T::propagate_on_container_copy_assignment;
-
-template <typename T>
-using GetPropagateOnContainerMoveAssignment =
-    typename T::propagate_on_container_move_assignment;
-
-template <typename T>
-using GetPropagateOnContainerSwap = typename T::propagate_on_container_swap;
-
-template <typename T>
-using GetIsAlwaysEqual = typename T::is_always_equal;
-
-template <typename T>
-struct GetFirstArg;
-
-template <template <typename...> class Class, typename T, typename... Args>
-struct GetFirstArg<Class<T, Args...>> {
-  using type = T;
-};
-
-template <typename Ptr, typename = void>
-struct ElementType {
-  using type = typename GetFirstArg<Ptr>::type;
-};
-
-template <typename T>
-struct ElementType<T, void_t<typename T::element_type>> {
-  using type = typename T::element_type;
-};
-
-template <typename T, typename U>
-struct RebindFirstArg;
-
-template <template <typename...> class Class, typename T, typename... Args,
-          typename U>
-struct RebindFirstArg<Class<T, Args...>, U> {
-  using type = Class<U, Args...>;
-};
-
-template <typename T, typename U, typename = void>
-struct RebindPtr {
-  using type = typename RebindFirstArg<T, U>::type;
-};
-
-template <typename T, typename U>
-struct RebindPtr<T, U, void_t<typename T::template rebind<U>>> {
-  using type = typename T::template rebind<U>;
-};
-
-template <typename T, typename U>
-constexpr bool HasRebindAlloc(...) {
-  return false;
-}
-
-template <typename T, typename U>
-constexpr bool HasRebindAlloc(typename T::template rebind<U>::other*) {
-  return true;
-}
-
-template <typename T, typename U, bool = HasRebindAlloc<T, U>(nullptr)>
-struct RebindAlloc {
-  using type = typename RebindFirstArg<T, U>::type;
-};
-
-template <typename T, typename U>
-struct RebindAlloc<T, U, true> {
-  using type = typename T::template rebind<U>::other;
-};
-
-}  // namespace memory_internal
-
-// -----------------------------------------------------------------------------
-// Class Template: pointer_traits
-// -----------------------------------------------------------------------------
-//
-// An implementation of C++11's std::pointer_traits.
-//
-// Provided for portability on toolchains that have a working C++11 compiler,
-// but the standard library is lacking in C++11 support. For example, some
-// version of the Android NDK.
-//
-
-template <typename Ptr>
-struct pointer_traits {
-  using pointer = Ptr;
-
-  // element_type:
-  // Ptr::element_type if present. Otherwise T if Ptr is a template
-  // instantiation Template<T, Args...>
-  using element_type = typename memory_internal::ElementType<Ptr>::type;
-
-  // difference_type:
-  // Ptr::difference_type if present, otherwise std::ptrdiff_t
-  using difference_type =
-      memory_internal::ExtractOrT<memory_internal::GetDifferenceType, Ptr,
-                                  std::ptrdiff_t>;
-
-  // rebind:
-  // Ptr::rebind<U> if exists, otherwise Template<U, Args...> if Ptr is a
-  // template instantiation Template<T, Args...>
-  template <typename U>
-  using rebind = typename memory_internal::RebindPtr<Ptr, U>::type;
-
-  // pointer_to:
-  // Calls Ptr::pointer_to(r)
-  static pointer pointer_to(element_type& r) {  // NOLINT(runtime/references)
-    return Ptr::pointer_to(r);
-  }
-};
-
-// Specialization for T*.
-template <typename T>
-struct pointer_traits<T*> {
-  using pointer = T*;
-  using element_type = T;
-  using difference_type = std::ptrdiff_t;
-
-  template <typename U>
-  using rebind = U*;
-
-  // pointer_to:
-  // Calls std::addressof(r)
-  static pointer pointer_to(
-      element_type& r) noexcept {  // NOLINT(runtime/references)
-    return std::addressof(r);
-  }
-};
-
-// -----------------------------------------------------------------------------
-// Class Template: allocator_traits
-// -----------------------------------------------------------------------------
-//
-// A C++11 compatible implementation of C++17's std::allocator_traits.
-//
-#if __cplusplus >= 201703L
-using std::allocator_traits;
-#else  // __cplusplus >= 201703L
-template <typename Alloc>
-struct allocator_traits {
-  using allocator_type = Alloc;
-
-  // value_type:
-  // Alloc::value_type
-  using value_type = typename Alloc::value_type;
-
-  // pointer:
-  // Alloc::pointer if present, otherwise value_type*
-  using pointer = memory_internal::ExtractOrT<memory_internal::GetPointer,
-                                              Alloc, value_type*>;
-
-  // const_pointer:
-  // Alloc::const_pointer if present, otherwise
-  // absl::pointer_traits<pointer>::rebind<const value_type>
-  using const_pointer =
-      memory_internal::ExtractOrT<memory_internal::GetConstPointer, Alloc,
-                                  typename absl::pointer_traits<pointer>::
-                                      template rebind<const value_type>>;
-
-  // void_pointer:
-  // Alloc::void_pointer if present, otherwise
-  // absl::pointer_traits<pointer>::rebind<void>
-  using void_pointer = memory_internal::ExtractOrT<
-      memory_internal::GetVoidPointer, Alloc,
-      typename absl::pointer_traits<pointer>::template rebind<void>>;
-
-  // const_void_pointer:
-  // Alloc::const_void_pointer if present, otherwise
-  // absl::pointer_traits<pointer>::rebind<const void>
-  using const_void_pointer = memory_internal::ExtractOrT<
-      memory_internal::GetConstVoidPointer, Alloc,
-      typename absl::pointer_traits<pointer>::template rebind<const void>>;
-
-  // difference_type:
-  // Alloc::difference_type if present, otherwise
-  // absl::pointer_traits<pointer>::difference_type
-  using difference_type = memory_internal::ExtractOrT<
-      memory_internal::GetDifferenceType, Alloc,
-      typename absl::pointer_traits<pointer>::difference_type>;
-
-  // size_type:
-  // Alloc::size_type if present, otherwise
-  // std::make_unsigned<difference_type>::type
-  using size_type = memory_internal::ExtractOrT<
-      memory_internal::GetSizeType, Alloc,
-      typename std::make_unsigned<difference_type>::type>;
-
-  // propagate_on_container_copy_assignment:
-  // Alloc::propagate_on_container_copy_assignment if present, otherwise
-  // std::false_type
-  using propagate_on_container_copy_assignment = memory_internal::ExtractOrT<
-      memory_internal::GetPropagateOnContainerCopyAssignment, Alloc,
-      std::false_type>;
-
-  // propagate_on_container_move_assignment:
-  // Alloc::propagate_on_container_move_assignment if present, otherwise
-  // std::false_type
-  using propagate_on_container_move_assignment = memory_internal::ExtractOrT<
-      memory_internal::GetPropagateOnContainerMoveAssignment, Alloc,
-      std::false_type>;
-
-  // propagate_on_container_swap:
-  // Alloc::propagate_on_container_swap if present, otherwise std::false_type
-  using propagate_on_container_swap =
-      memory_internal::ExtractOrT<memory_internal::GetPropagateOnContainerSwap,
-                                  Alloc, std::false_type>;
-
-  // is_always_equal:
-  // Alloc::is_always_equal if present, otherwise std::is_empty<Alloc>::type
-  using is_always_equal =
-      memory_internal::ExtractOrT<memory_internal::GetIsAlwaysEqual, Alloc,
-                                  typename std::is_empty<Alloc>::type>;
-
-  // rebind_alloc:
-  // Alloc::rebind<T>::other if present, otherwise Alloc<T, Args> if this Alloc
-  // is Alloc<U, Args>
-  template <typename T>
-  using rebind_alloc = typename memory_internal::RebindAlloc<Alloc, T>::type;
-
-  // rebind_traits:
-  // absl::allocator_traits<rebind_alloc<T>>
-  template <typename T>
-  using rebind_traits = absl::allocator_traits<rebind_alloc<T>>;
-
-  // allocate(Alloc& a, size_type n):
-  // Calls a.allocate(n)
-  static pointer allocate(Alloc& a,  // NOLINT(runtime/references)
-                          size_type n) {
-    return a.allocate(n);
-  }
-
-  // allocate(Alloc& a, size_type n, const_void_pointer hint):
-  // Calls a.allocate(n, hint) if possible.
-  // If not possible, calls a.allocate(n)
-  static pointer allocate(Alloc& a, size_type n,  // NOLINT(runtime/references)
-                          const_void_pointer hint) {
-    return allocate_impl(0, a, n, hint);
-  }
-
-  // deallocate(Alloc& a, pointer p, size_type n):
-  // Calls a.deallocate(p, n)
-  static void deallocate(Alloc& a, pointer p,  // NOLINT(runtime/references)
-                         size_type n) {
-    a.deallocate(p, n);
-  }
-
-  // construct(Alloc& a, T* p, Args&&... args):
-  // Calls a.construct(p, std::forward<Args>(args)...) if possible.
-  // If not possible, calls
-  //   ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...)
-  template <typename T, typename... Args>
-  static void construct(Alloc& a, T* p,  // NOLINT(runtime/references)
-                        Args&&... args) {
-    construct_impl(0, a, p, std::forward<Args>(args)...);
-  }
-
-  // destroy(Alloc& a, T* p):
-  // Calls a.destroy(p) if possible. If not possible, calls p->~T().
-  template <typename T>
-  static void destroy(Alloc& a, T* p) {  // NOLINT(runtime/references)
-    destroy_impl(0, a, p);
-  }
-
-  // max_size(const Alloc& a):
-  // Returns a.max_size() if possible. If not possible, returns
-  //   std::numeric_limits<size_type>::max() / sizeof(value_type)
-  static size_type max_size(const Alloc& a) { return max_size_impl(0, a); }
-
-  // select_on_container_copy_construction(const Alloc& a):
-  // Returns a.select_on_container_copy_construction() if possible.
-  // If not possible, returns a.
-  static Alloc select_on_container_copy_construction(const Alloc& a) {
-    return select_on_container_copy_construction_impl(0, a);
-  }
-
- private:
-  template <typename A>
-  static auto allocate_impl(int, A& a,  // NOLINT(runtime/references)
-                            size_type n, const_void_pointer hint)
-      -> decltype(a.allocate(n, hint)) {
-    return a.allocate(n, hint);
-  }
-  static pointer allocate_impl(char, Alloc& a,  // NOLINT(runtime/references)
-                               size_type n, const_void_pointer) {
-    return a.allocate(n);
-  }
-
-  template <typename A, typename... Args>
-  static auto construct_impl(int, A& a,  // NOLINT(runtime/references)
-                             Args&&... args)
-      -> decltype(a.construct(std::forward<Args>(args)...)) {
-    a.construct(std::forward<Args>(args)...);
-  }
-
-  template <typename T, typename... Args>
-  static void construct_impl(char, Alloc&, T* p, Args&&... args) {
-    ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...);
-  }
-
-  template <typename A, typename T>
-  static auto destroy_impl(int, A& a,  // NOLINT(runtime/references)
-                           T* p) -> decltype(a.destroy(p)) {
-    a.destroy(p);
-  }
-  template <typename T>
-  static void destroy_impl(char, Alloc&, T* p) {
-    p->~T();
-  }
-
-  template <typename A>
-  static auto max_size_impl(int, const A& a) -> decltype(a.max_size()) {
-    return a.max_size();
-  }
-  static size_type max_size_impl(char, const Alloc&) {
-    return (std::numeric_limits<size_type>::max)() / sizeof(value_type);
-  }
-
-  template <typename A>
-  static auto select_on_container_copy_construction_impl(int, const A& a)
-      -> decltype(a.select_on_container_copy_construction()) {
-    return a.select_on_container_copy_construction();
-  }
-  static Alloc select_on_container_copy_construction_impl(char,
-                                                          const Alloc& a) {
-    return a;
-  }
-};
-#endif  // __cplusplus >= 201703L
-
-namespace memory_internal {
-
-// This template alias transforms Alloc::is_nothrow into a metafunction with
-// Alloc as a parameter so it can be used with ExtractOrT<>.
-template <typename Alloc>
-using GetIsNothrow = typename Alloc::is_nothrow;
-
-}  // namespace memory_internal
-
-// ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to
-// specify whether the default allocation function can throw or never throws.
-// If the allocation function never throws, user should define it to a non-zero
-// value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`).
-// If the allocation function can throw, user should leave it undefined or
-// define it to zero.
-//
-// allocator_is_nothrow<Alloc> is a traits class that derives from
-// Alloc::is_nothrow if present, otherwise std::false_type. It's specialized
-// for Alloc = std::allocator<T> for any type T according to the state of
-// ABSL_ALLOCATOR_NOTHROW.
-//
-// default_allocator_is_nothrow is a class that derives from std::true_type
-// when the default allocator (global operator new) never throws, and
-// std::false_type when it can throw. It is a convenience shorthand for writing
-// allocator_is_nothrow<std::allocator<T>> (T can be any type).
-// NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from
-// the same type for all T, because users should specialize neither
-// allocator_is_nothrow nor std::allocator.
-template <typename Alloc>
-struct allocator_is_nothrow
-    : memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc,
-                                  std::false_type> {};
-
-#if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW
-template <typename T>
-struct allocator_is_nothrow<std::allocator<T>> : std::true_type {};
-struct default_allocator_is_nothrow : std::true_type {};
-#else
-struct default_allocator_is_nothrow : std::false_type {};
-#endif
-
-namespace memory_internal {
-template <typename Allocator, typename Iterator, typename... Args>
-void ConstructRange(Allocator& alloc, Iterator first, Iterator last,
-                    const Args&... args) {
-  for (Iterator cur = first; cur != last; ++cur) {
-    ABSL_INTERNAL_TRY {
-      std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
-                                                  args...);
-    }
-    ABSL_INTERNAL_CATCH_ANY {
-      while (cur != first) {
-        --cur;
-        std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
-      }
-      ABSL_INTERNAL_RETHROW;
-    }
-  }
-}
-
-template <typename Allocator, typename Iterator, typename InputIterator>
-void CopyRange(Allocator& alloc, Iterator destination, InputIterator first,
-               InputIterator last) {
-  for (Iterator cur = destination; first != last;
-       static_cast<void>(++cur), static_cast<void>(++first)) {
-    ABSL_INTERNAL_TRY {
-      std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
-                                                  *first);
-    }
-    ABSL_INTERNAL_CATCH_ANY {
-      while (cur != destination) {
-        --cur;
-        std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
-      }
-      ABSL_INTERNAL_RETHROW;
-    }
-  }
-}
-}  // namespace memory_internal
-ABSL_NAMESPACE_END
-}  // namespace absl
-
-#endif  // ABSL_MEMORY_MEMORY_H_