about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/hash/internal/hash.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil_cpp/absl/hash/internal/hash.h')
-rw-r--r--third_party/abseil_cpp/absl/hash/internal/hash.h996
1 files changed, 996 insertions, 0 deletions
diff --git a/third_party/abseil_cpp/absl/hash/internal/hash.h b/third_party/abseil_cpp/absl/hash/internal/hash.h
new file mode 100644
index 000000000000..9e608f7c3c29
--- /dev/null
+++ b/third_party/abseil_cpp/absl/hash/internal/hash.h
@@ -0,0 +1,996 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: hash.h
+// -----------------------------------------------------------------------------
+//
+#ifndef ABSL_HASH_INTERNAL_HASH_H_
+#define ABSL_HASH_INTERNAL_HASH_H_
+
+#include <algorithm>
+#include <array>
+#include <cmath>
+#include <cstring>
+#include <deque>
+#include <forward_list>
+#include <functional>
+#include <iterator>
+#include <limits>
+#include <list>
+#include <map>
+#include <memory>
+#include <set>
+#include <string>
+#include <tuple>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+#include "absl/base/internal/endian.h"
+#include "absl/base/port.h"
+#include "absl/container/fixed_array.h"
+#include "absl/meta/type_traits.h"
+#include "absl/numeric/int128.h"
+#include "absl/strings/string_view.h"
+#include "absl/types/optional.h"
+#include "absl/types/variant.h"
+#include "absl/utility/utility.h"
+#include "absl/hash/internal/city.h"
+
+namespace absl {
+ABSL_NAMESPACE_BEGIN
+namespace hash_internal {
+
+// Internal detail: Large buffers are hashed in smaller chunks.  This function
+// returns the size of these chunks.
+constexpr size_t PiecewiseChunkSize() { return 1024; }
+
+// PiecewiseCombiner
+//
+// PiecewiseCombiner is an internal-only helper class for hashing a piecewise
+// buffer of `char` or `unsigned char` as though it were contiguous.  This class
+// provides two methods:
+//
+//   H add_buffer(state, data, size)
+//   H finalize(state)
+//
+// `add_buffer` can be called zero or more times, followed by a single call to
+// `finalize`.  This will produce the same hash expansion as concatenating each
+// buffer piece into a single contiguous buffer, and passing this to
+// `H::combine_contiguous`.
+//
+//  Example usage:
+//    PiecewiseCombiner combiner;
+//    for (const auto& piece : pieces) {
+//      state = combiner.add_buffer(std::move(state), piece.data, piece.size);
+//    }
+//    return combiner.finalize(std::move(state));
+class PiecewiseCombiner {
+ public:
+  PiecewiseCombiner() : position_(0) {}
+  PiecewiseCombiner(const PiecewiseCombiner&) = delete;
+  PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete;
+
+  // PiecewiseCombiner::add_buffer()
+  //
+  // Appends the given range of bytes to the sequence to be hashed, which may
+  // modify the provided hash state.
+  template <typename H>
+  H add_buffer(H state, const unsigned char* data, size_t size);
+  template <typename H>
+  H add_buffer(H state, const char* data, size_t size) {
+    return add_buffer(std::move(state),
+                      reinterpret_cast<const unsigned char*>(data), size);
+  }
+
+  // PiecewiseCombiner::finalize()
+  //
+  // Finishes combining the hash sequence, which may may modify the provided
+  // hash state.
+  //
+  // Once finalize() is called, add_buffer() may no longer be called. The
+  // resulting hash state will be the same as if the pieces passed to
+  // add_buffer() were concatenated into a single flat buffer, and then provided
+  // to H::combine_contiguous().
+  template <typename H>
+  H finalize(H state);
+
+ private:
+  unsigned char buf_[PiecewiseChunkSize()];
+  size_t position_;
+};
+
+// HashStateBase
+//
+// A hash state object represents an intermediate state in the computation
+// of an unspecified hash algorithm. `HashStateBase` provides a CRTP style
+// base class for hash state implementations. Developers adding type support
+// for `absl::Hash` should not rely on any parts of the state object other than
+// the following member functions:
+//
+//   * HashStateBase::combine()
+//   * HashStateBase::combine_contiguous()
+//
+// A derived hash state class of type `H` must provide a static member function
+// with a signature similar to the following:
+//
+//    `static H combine_contiguous(H state, const unsigned char*, size_t)`.
+//
+// `HashStateBase` will provide a complete implementation for a hash state
+// object in terms of this method.
+//
+// Example:
+//
+//   // Use CRTP to define your derived class.
+//   struct MyHashState : HashStateBase<MyHashState> {
+//       static H combine_contiguous(H state, const unsigned char*, size_t);
+//       using MyHashState::HashStateBase::combine;
+//       using MyHashState::HashStateBase::combine_contiguous;
+//   };
+template <typename H>
+class HashStateBase {
+ public:
+  // HashStateBase::combine()
+  //
+  // Combines an arbitrary number of values into a hash state, returning the
+  // updated state.
+  //
+  // Each of the value types `T` must be separately hashable by the Abseil
+  // hashing framework.
+  //
+  // NOTE:
+  //
+  //   state = H::combine(std::move(state), value1, value2, value3);
+  //
+  // is guaranteed to produce the same hash expansion as:
+  //
+  //   state = H::combine(std::move(state), value1);
+  //   state = H::combine(std::move(state), value2);
+  //   state = H::combine(std::move(state), value3);
+  template <typename T, typename... Ts>
+  static H combine(H state, const T& value, const Ts&... values);
+  static H combine(H state) { return state; }
+
+  // HashStateBase::combine_contiguous()
+  //
+  // Combines a contiguous array of `size` elements into a hash state, returning
+  // the updated state.
+  //
+  // NOTE:
+  //
+  //   state = H::combine_contiguous(std::move(state), data, size);
+  //
+  // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
+  // perform internal optimizations).  If you need this guarantee, use the
+  // for-loop instead.
+  template <typename T>
+  static H combine_contiguous(H state, const T* data, size_t size);
+
+  using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
+};
+
+// is_uniquely_represented
+//
+// `is_uniquely_represented<T>` is a trait class that indicates whether `T`
+// is uniquely represented.
+//
+// A type is "uniquely represented" if two equal values of that type are
+// guaranteed to have the same bytes in their underlying storage. In other
+// words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
+// zero. This property cannot be detected automatically, so this trait is false
+// by default, but can be specialized by types that wish to assert that they are
+// uniquely represented. This makes them eligible for certain optimizations.
+//
+// If you have any doubt whatsoever, do not specialize this template.
+// The default is completely safe, and merely disables some optimizations
+// that will not matter for most types. Specializing this template,
+// on the other hand, can be very hazardous.
+//
+// To be uniquely represented, a type must not have multiple ways of
+// representing the same value; for example, float and double are not
+// uniquely represented, because they have distinct representations for
+// +0 and -0. Furthermore, the type's byte representation must consist
+// solely of user-controlled data, with no padding bits and no compiler-
+// controlled data such as vptrs or sanitizer metadata. This is usually
+// very difficult to guarantee, because in most cases the compiler can
+// insert data and padding bits at its own discretion.
+//
+// If you specialize this template for a type `T`, you must do so in the file
+// that defines that type (or in this file). If you define that specialization
+// anywhere else, `is_uniquely_represented<T>` could have different meanings
+// in different places.
+//
+// The Enable parameter is meaningless; it is provided as a convenience,
+// to support certain SFINAE techniques when defining specializations.
+template <typename T, typename Enable = void>
+struct is_uniquely_represented : std::false_type {};
+
+// is_uniquely_represented<unsigned char>
+//
+// unsigned char is a synonym for "byte", so it is guaranteed to be
+// uniquely represented.
+template <>
+struct is_uniquely_represented<unsigned char> : std::true_type {};
+
+// is_uniquely_represented for non-standard integral types
+//
+// Integral types other than bool should be uniquely represented on any
+// platform that this will plausibly be ported to.
+template <typename Integral>
+struct is_uniquely_represented<
+    Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
+    : std::true_type {};
+
+// is_uniquely_represented<bool>
+//
+//
+template <>
+struct is_uniquely_represented<bool> : std::false_type {};
+
+// hash_bytes()
+//
+// Convenience function that combines `hash_state` with the byte representation
+// of `value`.
+template <typename H, typename T>
+H hash_bytes(H hash_state, const T& value) {
+  const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
+  return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Basic Types
+// -----------------------------------------------------------------------------
+
+// Note: Default `AbslHashValue` implementations live in `hash_internal`. This
+// allows us to block lexical scope lookup when doing an unqualified call to
+// `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
+// only be found via ADL.
+
+// AbslHashValue() for hashing bool values
+//
+// We use SFINAE to ensure that this overload only accepts bool, not types that
+// are convertible to bool.
+template <typename H, typename B>
+typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
+    H hash_state, B value) {
+  return H::combine(std::move(hash_state),
+                    static_cast<unsigned char>(value ? 1 : 0));
+}
+
+// AbslHashValue() for hashing enum values
+template <typename H, typename Enum>
+typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
+    H hash_state, Enum e) {
+  // In practice, we could almost certainly just invoke hash_bytes directly,
+  // but it's possible that a sanitizer might one day want to
+  // store data in the unused bits of an enum. To avoid that risk, we
+  // convert to the underlying type before hashing. Hopefully this will get
+  // optimized away; if not, we can reopen discussion with c-toolchain-team.
+  return H::combine(std::move(hash_state),
+                    static_cast<typename std::underlying_type<Enum>::type>(e));
+}
+// AbslHashValue() for hashing floating-point values
+template <typename H, typename Float>
+typename std::enable_if<std::is_same<Float, float>::value ||
+                            std::is_same<Float, double>::value,
+                        H>::type
+AbslHashValue(H hash_state, Float value) {
+  return hash_internal::hash_bytes(std::move(hash_state),
+                                   value == 0 ? 0 : value);
+}
+
+// Long double has the property that it might have extra unused bytes in it.
+// For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
+// of it. This means we can't use hash_bytes on a long double and have to
+// convert it to something else first.
+template <typename H, typename LongDouble>
+typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
+AbslHashValue(H hash_state, LongDouble value) {
+  const int category = std::fpclassify(value);
+  switch (category) {
+    case FP_INFINITE:
+      // Add the sign bit to differentiate between +Inf and -Inf
+      hash_state = H::combine(std::move(hash_state), std::signbit(value));
+      break;
+
+    case FP_NAN:
+    case FP_ZERO:
+    default:
+      // Category is enough for these.
+      break;
+
+    case FP_NORMAL:
+    case FP_SUBNORMAL:
+      // We can't convert `value` directly to double because this would have
+      // undefined behavior if the value is out of range.
+      // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
+      // guaranteed to be in range for `double`. The truncation is
+      // implementation defined, but that works as long as it is deterministic.
+      int exp;
+      auto mantissa = static_cast<double>(std::frexp(value, &exp));
+      hash_state = H::combine(std::move(hash_state), mantissa, exp);
+  }
+
+  return H::combine(std::move(hash_state), category);
+}
+
+// AbslHashValue() for hashing pointers
+template <typename H, typename T>
+H AbslHashValue(H hash_state, T* ptr) {
+  auto v = reinterpret_cast<uintptr_t>(ptr);
+  // Due to alignment, pointers tend to have low bits as zero, and the next few
+  // bits follow a pattern since they are also multiples of some base value.
+  // Mixing the pointer twice helps prevent stuck low bits for certain alignment
+  // values.
+  return H::combine(std::move(hash_state), v, v);
+}
+
+// AbslHashValue() for hashing nullptr_t
+template <typename H>
+H AbslHashValue(H hash_state, std::nullptr_t) {
+  return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Composite Types
+// -----------------------------------------------------------------------------
+
+// is_hashable()
+//
+// Trait class which returns true if T is hashable by the absl::Hash framework.
+// Used for the AbslHashValue implementations for composite types below.
+template <typename T>
+struct is_hashable;
+
+// AbslHashValue() for hashing pairs
+template <typename H, typename T1, typename T2>
+typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
+                        H>::type
+AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
+  return H::combine(std::move(hash_state), p.first, p.second);
+}
+
+// hash_tuple()
+//
+// Helper function for hashing a tuple. The third argument should
+// be an index_sequence running from 0 to tuple_size<Tuple> - 1.
+template <typename H, typename Tuple, size_t... Is>
+H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) {
+  return H::combine(std::move(hash_state), std::get<Is>(t)...);
+}
+
+// AbslHashValue for hashing tuples
+template <typename H, typename... Ts>
+#if defined(_MSC_VER)
+// This SFINAE gets MSVC confused under some conditions. Let's just disable it
+// for now.
+H
+#else  // _MSC_VER
+typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type
+#endif  // _MSC_VER
+AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
+  return hash_internal::hash_tuple(std::move(hash_state), t,
+                                   absl::make_index_sequence<sizeof...(Ts)>());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Pointers
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing unique_ptr
+template <typename H, typename T, typename D>
+H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
+  return H::combine(std::move(hash_state), ptr.get());
+}
+
+// AbslHashValue for hashing shared_ptr
+template <typename H, typename T>
+H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
+  return H::combine(std::move(hash_state), ptr.get());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for String-Like Types
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing strings
+//
+// All the string-like types supported here provide the same hash expansion for
+// the same character sequence. These types are:
+//
+//  - `absl::Cord`
+//  - `std::string` (and std::basic_string<char, std::char_traits<char>, A> for
+//      any allocator A)
+//  - `absl::string_view` and `std::string_view`
+//
+// For simplicity, we currently support only `char` strings. This support may
+// be broadened, if necessary, but with some caution - this overload would
+// misbehave in cases where the traits' `eq()` member isn't equivalent to `==`
+// on the underlying character type.
+template <typename H>
+H AbslHashValue(H hash_state, absl::string_view str) {
+  return H::combine(
+      H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
+      str.size());
+}
+
+// Support std::wstring, std::u16string and std::u32string.
+template <typename Char, typename Alloc, typename H,
+          typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
+                                       std::is_same<Char, char16_t>::value ||
+                                       std::is_same<Char, char32_t>::value>>
+H AbslHashValue(
+    H hash_state,
+    const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
+  return H::combine(
+      H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
+      str.size());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Sequence Containers
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing std::array
+template <typename H, typename T, size_t N>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+    H hash_state, const std::array<T, N>& array) {
+  return H::combine_contiguous(std::move(hash_state), array.data(),
+                               array.size());
+}
+
+// AbslHashValue for hashing std::deque
+template <typename H, typename T, typename Allocator>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+    H hash_state, const std::deque<T, Allocator>& deque) {
+  // TODO(gromer): investigate a more efficient implementation taking
+  // advantage of the chunk structure.
+  for (const auto& t : deque) {
+    hash_state = H::combine(std::move(hash_state), t);
+  }
+  return H::combine(std::move(hash_state), deque.size());
+}
+
+// AbslHashValue for hashing std::forward_list
+template <typename H, typename T, typename Allocator>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+    H hash_state, const std::forward_list<T, Allocator>& list) {
+  size_t size = 0;
+  for (const T& t : list) {
+    hash_state = H::combine(std::move(hash_state), t);
+    ++size;
+  }
+  return H::combine(std::move(hash_state), size);
+}
+
+// AbslHashValue for hashing std::list
+template <typename H, typename T, typename Allocator>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+    H hash_state, const std::list<T, Allocator>& list) {
+  for (const auto& t : list) {
+    hash_state = H::combine(std::move(hash_state), t);
+  }
+  return H::combine(std::move(hash_state), list.size());
+}
+
+// AbslHashValue for hashing std::vector
+//
+// Do not use this for vector<bool>. It does not have a .data(), and a fallback
+// for std::hash<> is most likely faster.
+template <typename H, typename T, typename Allocator>
+typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
+                        H>::type
+AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
+  return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(),
+                                          vector.size()),
+                    vector.size());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Ordered Associative Containers
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing std::map
+template <typename H, typename Key, typename T, typename Compare,
+          typename Allocator>
+typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
+                        H>::type
+AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
+  for (const auto& t : map) {
+    hash_state = H::combine(std::move(hash_state), t);
+  }
+  return H::combine(std::move(hash_state), map.size());
+}
+
+// AbslHashValue for hashing std::multimap
+template <typename H, typename Key, typename T, typename Compare,
+          typename Allocator>
+typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
+                        H>::type
+AbslHashValue(H hash_state,
+              const std::multimap<Key, T, Compare, Allocator>& map) {
+  for (const auto& t : map) {
+    hash_state = H::combine(std::move(hash_state), t);
+  }
+  return H::combine(std::move(hash_state), map.size());
+}
+
+// AbslHashValue for hashing std::set
+template <typename H, typename Key, typename Compare, typename Allocator>
+typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
+    H hash_state, const std::set<Key, Compare, Allocator>& set) {
+  for (const auto& t : set) {
+    hash_state = H::combine(std::move(hash_state), t);
+  }
+  return H::combine(std::move(hash_state), set.size());
+}
+
+// AbslHashValue for hashing std::multiset
+template <typename H, typename Key, typename Compare, typename Allocator>
+typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
+    H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
+  for (const auto& t : set) {
+    hash_state = H::combine(std::move(hash_state), t);
+  }
+  return H::combine(std::move(hash_state), set.size());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Wrapper Types
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing std::reference_wrapper
+template <typename H, typename T>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+    H hash_state, std::reference_wrapper<T> opt) {
+  return H::combine(std::move(hash_state), opt.get());
+}
+
+// AbslHashValue for hashing absl::optional
+template <typename H, typename T>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+    H hash_state, const absl::optional<T>& opt) {
+  if (opt) hash_state = H::combine(std::move(hash_state), *opt);
+  return H::combine(std::move(hash_state), opt.has_value());
+}
+
+// VariantVisitor
+template <typename H>
+struct VariantVisitor {
+  H&& hash_state;
+  template <typename T>
+  H operator()(const T& t) const {
+    return H::combine(std::move(hash_state), t);
+  }
+};
+
+// AbslHashValue for hashing absl::variant
+template <typename H, typename... T>
+typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
+AbslHashValue(H hash_state, const absl::variant<T...>& v) {
+  if (!v.valueless_by_exception()) {
+    hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
+  }
+  return H::combine(std::move(hash_state), v.index());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Other Types
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing std::bitset is not defined, for the same reason as
+// for vector<bool> (see std::vector above): It does not expose the raw bytes,
+// and a fallback to std::hash<> is most likely faster.
+
+// -----------------------------------------------------------------------------
+
+// hash_range_or_bytes()
+//
+// Mixes all values in the range [data, data+size) into the hash state.
+// This overload accepts only uniquely-represented types, and hashes them by
+// hashing the entire range of bytes.
+template <typename H, typename T>
+typename std::enable_if<is_uniquely_represented<T>::value, H>::type
+hash_range_or_bytes(H hash_state, const T* data, size_t size) {
+  const auto* bytes = reinterpret_cast<const unsigned char*>(data);
+  return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
+}
+
+// hash_range_or_bytes()
+template <typename H, typename T>
+typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
+hash_range_or_bytes(H hash_state, const T* data, size_t size) {
+  for (const auto end = data + size; data < end; ++data) {
+    hash_state = H::combine(std::move(hash_state), *data);
+  }
+  return hash_state;
+}
+
+#if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
+    ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
+#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
+#else
+#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
+#endif
+
+// HashSelect
+//
+// Type trait to select the appropriate hash implementation to use.
+// HashSelect::type<T> will give the proper hash implementation, to be invoked
+// as:
+//   HashSelect::type<T>::Invoke(state, value)
+// Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
+// valid `Invoke` function. Types that are not hashable will have a ::value of
+// `false`.
+struct HashSelect {
+ private:
+  struct State : HashStateBase<State> {
+    static State combine_contiguous(State hash_state, const unsigned char*,
+                                    size_t);
+    using State::HashStateBase::combine_contiguous;
+  };
+
+  struct UniquelyRepresentedProbe {
+    template <typename H, typename T>
+    static auto Invoke(H state, const T& value)
+        -> absl::enable_if_t<is_uniquely_represented<T>::value, H> {
+      return hash_internal::hash_bytes(std::move(state), value);
+    }
+  };
+
+  struct HashValueProbe {
+    template <typename H, typename T>
+    static auto Invoke(H state, const T& value) -> absl::enable_if_t<
+        std::is_same<H,
+                     decltype(AbslHashValue(std::move(state), value))>::value,
+        H> {
+      return AbslHashValue(std::move(state), value);
+    }
+  };
+
+  struct LegacyHashProbe {
+#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+    template <typename H, typename T>
+    static auto Invoke(H state, const T& value) -> absl::enable_if_t<
+        std::is_convertible<
+            decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
+            size_t>::value,
+        H> {
+      return hash_internal::hash_bytes(
+          std::move(state),
+          ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
+    }
+#endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+  };
+
+  struct StdHashProbe {
+    template <typename H, typename T>
+    static auto Invoke(H state, const T& value)
+        -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
+      return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
+    }
+  };
+
+  template <typename Hash, typename T>
+  struct Probe : Hash {
+   private:
+    template <typename H, typename = decltype(H::Invoke(
+                              std::declval<State>(), std::declval<const T&>()))>
+    static std::true_type Test(int);
+    template <typename U>
+    static std::false_type Test(char);
+
+   public:
+    static constexpr bool value = decltype(Test<Hash>(0))::value;
+  };
+
+ public:
+  // Probe each implementation in order.
+  // disjunction provides short circuiting wrt instantiation.
+  template <typename T>
+  using Apply = absl::disjunction<         //
+      Probe<UniquelyRepresentedProbe, T>,  //
+      Probe<HashValueProbe, T>,            //
+      Probe<LegacyHashProbe, T>,           //
+      Probe<StdHashProbe, T>,              //
+      std::false_type>;
+};
+
+template <typename T>
+struct is_hashable
+    : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
+
+// CityHashState
+class ABSL_DLL CityHashState
+    : public HashStateBase<CityHashState> {
+  // absl::uint128 is not an alias or a thin wrapper around the intrinsic.
+  // We use the intrinsic when available to improve performance.
+#ifdef ABSL_HAVE_INTRINSIC_INT128
+  using uint128 = __uint128_t;
+#else   // ABSL_HAVE_INTRINSIC_INT128
+  using uint128 = absl::uint128;
+#endif  // ABSL_HAVE_INTRINSIC_INT128
+
+  static constexpr uint64_t kMul =
+      sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51}
+                          : uint64_t{0x9ddfea08eb382d69};
+
+  template <typename T>
+  using IntegralFastPath =
+      conjunction<std::is_integral<T>, is_uniquely_represented<T>>;
+
+ public:
+  // Move only
+  CityHashState(CityHashState&&) = default;
+  CityHashState& operator=(CityHashState&&) = default;
+
+  // CityHashState::combine_contiguous()
+  //
+  // Fundamental base case for hash recursion: mixes the given range of bytes
+  // into the hash state.
+  static CityHashState combine_contiguous(CityHashState hash_state,
+                                          const unsigned char* first,
+                                          size_t size) {
+    return CityHashState(
+        CombineContiguousImpl(hash_state.state_, first, size,
+                              std::integral_constant<int, sizeof(size_t)>{}));
+  }
+  using CityHashState::HashStateBase::combine_contiguous;
+
+  // CityHashState::hash()
+  //
+  // For performance reasons in non-opt mode, we specialize this for
+  // integral types.
+  // Otherwise we would be instantiating and calling dozens of functions for
+  // something that is just one multiplication and a couple xor's.
+  // The result should be the same as running the whole algorithm, but faster.
+  template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
+  static size_t hash(T value) {
+    return static_cast<size_t>(Mix(Seed(), static_cast<uint64_t>(value)));
+  }
+
+  // Overload of CityHashState::hash()
+  template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
+  static size_t hash(const T& value) {
+    return static_cast<size_t>(combine(CityHashState{}, value).state_);
+  }
+
+ private:
+  // Invoked only once for a given argument; that plus the fact that this is
+  // move-only ensures that there is only one non-moved-from object.
+  CityHashState() : state_(Seed()) {}
+
+  // Workaround for MSVC bug.
+  // We make the type copyable to fix the calling convention, even though we
+  // never actually copy it. Keep it private to not affect the public API of the
+  // type.
+  CityHashState(const CityHashState&) = default;
+
+  explicit CityHashState(uint64_t state) : state_(state) {}
+
+  // Implementation of the base case for combine_contiguous where we actually
+  // mix the bytes into the state.
+  // Dispatch to different implementations of the combine_contiguous depending
+  // on the value of `sizeof(size_t)`.
+  static uint64_t CombineContiguousImpl(uint64_t state,
+                                        const unsigned char* first, size_t len,
+                                        std::integral_constant<int, 4>
+                                        /* sizeof_size_t */);
+  static uint64_t CombineContiguousImpl(uint64_t state,
+                                        const unsigned char* first, size_t len,
+                                        std::integral_constant<int, 8>
+                                        /* sizeof_size_t*/);
+
+  // Slow dispatch path for calls to CombineContiguousImpl with a size argument
+  // larger than PiecewiseChunkSize().  Has the same effect as calling
+  // CombineContiguousImpl() repeatedly with the chunk stride size.
+  static uint64_t CombineLargeContiguousImpl32(uint64_t state,
+                                               const unsigned char* first,
+                                               size_t len);
+  static uint64_t CombineLargeContiguousImpl64(uint64_t state,
+                                               const unsigned char* first,
+                                               size_t len);
+
+  // Reads 9 to 16 bytes from p.
+  // The first 8 bytes are in .first, the rest (zero padded) bytes are in
+  // .second.
+  static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
+                                                 size_t len) {
+    uint64_t high = little_endian::Load64(p + len - 8);
+    return {little_endian::Load64(p), high >> (128 - len * 8)};
+  }
+
+  // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
+  static uint64_t Read4To8(const unsigned char* p, size_t len) {
+    return (static_cast<uint64_t>(little_endian::Load32(p + len - 4))
+            << (len - 4) * 8) |
+           little_endian::Load32(p);
+  }
+
+  // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
+  static uint32_t Read1To3(const unsigned char* p, size_t len) {
+    return static_cast<uint32_t>((p[0]) |                         //
+                                 (p[len / 2] << (len / 2 * 8)) |  //
+                                 (p[len - 1] << ((len - 1) * 8)));
+  }
+
+  ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) {
+    using MultType =
+        absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>;
+    // We do the addition in 64-bit space to make sure the 128-bit
+    // multiplication is fast. If we were to do it as MultType the compiler has
+    // to assume that the high word is non-zero and needs to perform 2
+    // multiplications instead of one.
+    MultType m = state + v;
+    m *= kMul;
+    return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2)));
+  }
+
+  // Seed()
+  //
+  // A non-deterministic seed.
+  //
+  // The current purpose of this seed is to generate non-deterministic results
+  // and prevent having users depend on the particular hash values.
+  // It is not meant as a security feature right now, but it leaves the door
+  // open to upgrade it to a true per-process random seed. A true random seed
+  // costs more and we don't need to pay for that right now.
+  //
+  // On platforms with ASLR, we take advantage of it to make a per-process
+  // random value.
+  // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
+  //
+  // On other platforms this is still going to be non-deterministic but most
+  // probably per-build and not per-process.
+  ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() {
+    return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed));
+  }
+  static const void* const kSeed;
+
+  uint64_t state_;
+};
+
+// CityHashState::CombineContiguousImpl()
+inline uint64_t CityHashState::CombineContiguousImpl(
+    uint64_t state, const unsigned char* first, size_t len,
+    std::integral_constant<int, 4> /* sizeof_size_t */) {
+  // For large values we use CityHash, for small ones we just use a
+  // multiplicative hash.
+  uint64_t v;
+  if (len > 8) {
+    if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
+      return CombineLargeContiguousImpl32(state, first, len);
+    }
+    v = absl::hash_internal::CityHash32(reinterpret_cast<const char*>(first), len);
+  } else if (len >= 4) {
+    v = Read4To8(first, len);
+  } else if (len > 0) {
+    v = Read1To3(first, len);
+  } else {
+    // Empty ranges have no effect.
+    return state;
+  }
+  return Mix(state, v);
+}
+
+// Overload of CityHashState::CombineContiguousImpl()
+inline uint64_t CityHashState::CombineContiguousImpl(
+    uint64_t state, const unsigned char* first, size_t len,
+    std::integral_constant<int, 8> /* sizeof_size_t */) {
+  // For large values we use CityHash, for small ones we just use a
+  // multiplicative hash.
+  uint64_t v;
+  if (len > 16) {
+    if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
+      return CombineLargeContiguousImpl64(state, first, len);
+    }
+    v = absl::hash_internal::CityHash64(reinterpret_cast<const char*>(first), len);
+  } else if (len > 8) {
+    auto p = Read9To16(first, len);
+    state = Mix(state, p.first);
+    v = p.second;
+  } else if (len >= 4) {
+    v = Read4To8(first, len);
+  } else if (len > 0) {
+    v = Read1To3(first, len);
+  } else {
+    // Empty ranges have no effect.
+    return state;
+  }
+  return Mix(state, v);
+}
+
+struct AggregateBarrier {};
+
+// HashImpl
+
+// Add a private base class to make sure this type is not an aggregate.
+// Aggregates can be aggregate initialized even if the default constructor is
+// deleted.
+struct PoisonedHash : private AggregateBarrier {
+  PoisonedHash() = delete;
+  PoisonedHash(const PoisonedHash&) = delete;
+  PoisonedHash& operator=(const PoisonedHash&) = delete;
+};
+
+template <typename T>
+struct HashImpl {
+  size_t operator()(const T& value) const { return CityHashState::hash(value); }
+};
+
+template <typename T>
+struct Hash
+    : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
+
+template <typename H>
+template <typename T, typename... Ts>
+H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
+  return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
+                        std::move(state), value),
+                    values...);
+}
+
+// HashStateBase::combine_contiguous()
+template <typename H>
+template <typename T>
+H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
+  return hash_internal::hash_range_or_bytes(std::move(state), data, size);
+}
+
+// HashStateBase::PiecewiseCombiner::add_buffer()
+template <typename H>
+H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
+                                size_t size) {
+  if (position_ + size < PiecewiseChunkSize()) {
+    // This partial chunk does not fill our existing buffer
+    memcpy(buf_ + position_, data, size);
+    position_ += size;
+    return state;
+  }
+
+  // If the buffer is partially filled we need to complete the buffer
+  // and hash it.
+  if (position_ != 0) {
+    const size_t bytes_needed = PiecewiseChunkSize() - position_;
+    memcpy(buf_ + position_, data, bytes_needed);
+    state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
+    data += bytes_needed;
+    size -= bytes_needed;
+  }
+
+  // Hash whatever chunks we can without copying
+  while (size >= PiecewiseChunkSize()) {
+    state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
+    data += PiecewiseChunkSize();
+    size -= PiecewiseChunkSize();
+  }
+  // Fill the buffer with the remainder
+  memcpy(buf_, data, size);
+  position_ = size;
+  return state;
+}
+
+// HashStateBase::PiecewiseCombiner::finalize()
+template <typename H>
+H PiecewiseCombiner::finalize(H state) {
+  // Hash the remainder left in the buffer, which may be empty
+  return H::combine_contiguous(std::move(state), buf_, position_);
+}
+
+}  // namespace hash_internal
+ABSL_NAMESPACE_END
+}  // namespace absl
+
+#endif  // ABSL_HASH_INTERNAL_HASH_H_