diff options
Diffstat (limited to 'third_party/abseil_cpp/absl/container/internal')
47 files changed, 18132 insertions, 0 deletions
diff --git a/third_party/abseil_cpp/absl/container/internal/btree.h b/third_party/abseil_cpp/absl/container/internal/btree.h new file mode 100644 index 000000000000..f2fc31df8d41 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/btree.h @@ -0,0 +1,2587 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// A btree implementation of the STL set and map interfaces. A btree is smaller +// and generally also faster than STL set/map (refer to the benchmarks below). +// The red-black tree implementation of STL set/map has an overhead of 3 +// pointers (left, right and parent) plus the node color information for each +// stored value. So a set<int32_t> consumes 40 bytes for each value stored in +// 64-bit mode. This btree implementation stores multiple values on fixed +// size nodes (usually 256 bytes) and doesn't store child pointers for leaf +// nodes. The result is that a btree_set<int32_t> may use much less memory per +// stored value. For the random insertion benchmark in btree_bench.cc, a +// btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value. +// +// The packing of multiple values on to each node of a btree has another effect +// besides better space utilization: better cache locality due to fewer cache +// lines being accessed. Better cache locality translates into faster +// operations. +// +// CAVEATS +// +// Insertions and deletions on a btree can cause splitting, merging or +// rebalancing of btree nodes. And even without these operations, insertions +// and deletions on a btree will move values around within a node. In both +// cases, the result is that insertions and deletions can invalidate iterators +// pointing to values other than the one being inserted/deleted. Therefore, this +// container does not provide pointer stability. This is notably different from +// STL set/map which takes care to not invalidate iterators on insert/erase +// except, of course, for iterators pointing to the value being erased. A +// partial workaround when erasing is available: erase() returns an iterator +// pointing to the item just after the one that was erased (or end() if none +// exists). + +#ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_ +#define ABSL_CONTAINER_INTERNAL_BTREE_H_ + +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstring> +#include <functional> +#include <iterator> +#include <limits> +#include <new> +#include <string> +#include <type_traits> +#include <utility> + +#include "absl/base/macros.h" +#include "absl/container/internal/common.h" +#include "absl/container/internal/compressed_tuple.h" +#include "absl/container/internal/container_memory.h" +#include "absl/container/internal/layout.h" +#include "absl/memory/memory.h" +#include "absl/meta/type_traits.h" +#include "absl/strings/cord.h" +#include "absl/strings/string_view.h" +#include "absl/types/compare.h" +#include "absl/utility/utility.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +// A helper class that indicates if the Compare parameter is a key-compare-to +// comparator. +template <typename Compare, typename T> +using btree_is_key_compare_to = + std::is_convertible<absl::result_of_t<Compare(const T &, const T &)>, + absl::weak_ordering>; + +struct StringBtreeDefaultLess { + using is_transparent = void; + + StringBtreeDefaultLess() = default; + + // Compatibility constructor. + StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT + StringBtreeDefaultLess(std::less<string_view>) {} // NOLINT + + absl::weak_ordering operator()(absl::string_view lhs, + absl::string_view rhs) const { + return compare_internal::compare_result_as_ordering(lhs.compare(rhs)); + } + StringBtreeDefaultLess(std::less<absl::Cord>) {} // NOLINT + absl::weak_ordering operator()(const absl::Cord &lhs, + const absl::Cord &rhs) const { + return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); + } + absl::weak_ordering operator()(const absl::Cord &lhs, + absl::string_view rhs) const { + return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); + } + absl::weak_ordering operator()(absl::string_view lhs, + const absl::Cord &rhs) const { + return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs)); + } +}; + +struct StringBtreeDefaultGreater { + using is_transparent = void; + + StringBtreeDefaultGreater() = default; + + StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT + StringBtreeDefaultGreater(std::greater<string_view>) {} // NOLINT + + absl::weak_ordering operator()(absl::string_view lhs, + absl::string_view rhs) const { + return compare_internal::compare_result_as_ordering(rhs.compare(lhs)); + } + StringBtreeDefaultGreater(std::greater<absl::Cord>) {} // NOLINT + absl::weak_ordering operator()(const absl::Cord &lhs, + const absl::Cord &rhs) const { + return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); + } + absl::weak_ordering operator()(const absl::Cord &lhs, + absl::string_view rhs) const { + return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs)); + } + absl::weak_ordering operator()(absl::string_view lhs, + const absl::Cord &rhs) const { + return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); + } +}; + +// A helper class to convert a boolean comparison into a three-way "compare-to" +// comparison that returns an `absl::weak_ordering`. This helper +// class is specialized for less<std::string>, greater<std::string>, +// less<string_view>, greater<string_view>, less<absl::Cord>, and +// greater<absl::Cord>. +// +// key_compare_to_adapter is provided so that btree users +// automatically get the more efficient compare-to code when using common +// Abseil string types with common comparison functors. +// These string-like specializations also turn on heterogeneous lookup by +// default. +template <typename Compare> +struct key_compare_to_adapter { + using type = Compare; +}; + +template <> +struct key_compare_to_adapter<std::less<std::string>> { + using type = StringBtreeDefaultLess; +}; + +template <> +struct key_compare_to_adapter<std::greater<std::string>> { + using type = StringBtreeDefaultGreater; +}; + +template <> +struct key_compare_to_adapter<std::less<absl::string_view>> { + using type = StringBtreeDefaultLess; +}; + +template <> +struct key_compare_to_adapter<std::greater<absl::string_view>> { + using type = StringBtreeDefaultGreater; +}; + +template <> +struct key_compare_to_adapter<std::less<absl::Cord>> { + using type = StringBtreeDefaultLess; +}; + +template <> +struct key_compare_to_adapter<std::greater<absl::Cord>> { + using type = StringBtreeDefaultGreater; +}; + +// Detects an 'absl_btree_prefer_linear_node_search' member. This is +// a protocol used as an opt-in or opt-out of linear search. +// +// For example, this would be useful for key types that wrap an integer +// and define their own cheap operator<(). For example: +// +// class K { +// public: +// using absl_btree_prefer_linear_node_search = std::true_type; +// ... +// private: +// friend bool operator<(K a, K b) { return a.k_ < b.k_; } +// int k_; +// }; +// +// btree_map<K, V> m; // Uses linear search +// +// If T has the preference tag, then it has a preference. +// Btree will use the tag's truth value. +template <typename T, typename = void> +struct has_linear_node_search_preference : std::false_type {}; +template <typename T, typename = void> +struct prefers_linear_node_search : std::false_type {}; +template <typename T> +struct has_linear_node_search_preference< + T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> + : std::true_type {}; +template <typename T> +struct prefers_linear_node_search< + T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> + : T::absl_btree_prefer_linear_node_search {}; + +template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, + bool Multi, typename SlotPolicy> +struct common_params { + // If Compare is a common comparator for a string-like type, then we adapt it + // to use heterogeneous lookup and to be a key-compare-to comparator. + using key_compare = typename key_compare_to_adapter<Compare>::type; + // True when key_compare has been adapted to StringBtreeDefault{Less,Greater}. + using is_key_compare_adapted = + absl::negation<std::is_same<key_compare, Compare>>; + // A type which indicates if we have a key-compare-to functor or a plain old + // key-compare functor. + using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>; + + using allocator_type = Alloc; + using key_type = Key; + using size_type = std::make_signed<size_t>::type; + using difference_type = ptrdiff_t; + + // True if this is a multiset or multimap. + using is_multi_container = std::integral_constant<bool, Multi>; + + using slot_policy = SlotPolicy; + using slot_type = typename slot_policy::slot_type; + using value_type = typename slot_policy::value_type; + using init_type = typename slot_policy::mutable_value_type; + using pointer = value_type *; + using const_pointer = const value_type *; + using reference = value_type &; + using const_reference = const value_type &; + + enum { + kTargetNodeSize = TargetNodeSize, + + // Upper bound for the available space for values. This is largest for leaf + // nodes, which have overhead of at least a pointer + 4 bytes (for storing + // 3 field_types and an enum). + kNodeValueSpace = + TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4), + }; + + // This is an integral type large enough to hold as many + // ValueSize-values as will fit a node of TargetNodeSize bytes. + using node_count_type = + absl::conditional_t<(kNodeValueSpace / sizeof(value_type) > + (std::numeric_limits<uint8_t>::max)()), + uint16_t, uint8_t>; // NOLINT + + // The following methods are necessary for passing this struct as PolicyTraits + // for node_handle and/or are used within btree. + static value_type &element(slot_type *slot) { + return slot_policy::element(slot); + } + static const value_type &element(const slot_type *slot) { + return slot_policy::element(slot); + } + template <class... Args> + static void construct(Alloc *alloc, slot_type *slot, Args &&... args) { + slot_policy::construct(alloc, slot, std::forward<Args>(args)...); + } + static void construct(Alloc *alloc, slot_type *slot, slot_type *other) { + slot_policy::construct(alloc, slot, other); + } + static void destroy(Alloc *alloc, slot_type *slot) { + slot_policy::destroy(alloc, slot); + } + static void transfer(Alloc *alloc, slot_type *new_slot, slot_type *old_slot) { + construct(alloc, new_slot, old_slot); + destroy(alloc, old_slot); + } + static void swap(Alloc *alloc, slot_type *a, slot_type *b) { + slot_policy::swap(alloc, a, b); + } + static void move(Alloc *alloc, slot_type *src, slot_type *dest) { + slot_policy::move(alloc, src, dest); + } +}; + +// A parameters structure for holding the type parameters for a btree_map. +// Compare and Alloc should be nothrow copy-constructible. +template <typename Key, typename Data, typename Compare, typename Alloc, + int TargetNodeSize, bool Multi> +struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi, + map_slot_policy<Key, Data>> { + using super_type = typename map_params::common_params; + using mapped_type = Data; + // This type allows us to move keys when it is safe to do so. It is safe + // for maps in which value_type and mutable_value_type are layout compatible. + using slot_policy = typename super_type::slot_policy; + using slot_type = typename super_type::slot_type; + using value_type = typename super_type::value_type; + using init_type = typename super_type::init_type; + + using key_compare = typename super_type::key_compare; + // Inherit from key_compare for empty base class optimization. + struct value_compare : private key_compare { + value_compare() = default; + explicit value_compare(const key_compare &cmp) : key_compare(cmp) {} + + template <typename T, typename U> + auto operator()(const T &left, const U &right) const + -> decltype(std::declval<key_compare>()(left.first, right.first)) { + return key_compare::operator()(left.first, right.first); + } + }; + using is_map_container = std::true_type; + + template <typename V> + static auto key(const V &value) -> decltype(value.first) { + return value.first; + } + static const Key &key(const slot_type *s) { return slot_policy::key(s); } + static const Key &key(slot_type *s) { return slot_policy::key(s); } + // For use in node handle. + static auto mutable_key(slot_type *s) + -> decltype(slot_policy::mutable_key(s)) { + return slot_policy::mutable_key(s); + } + static mapped_type &value(value_type *value) { return value->second; } +}; + +// This type implements the necessary functions from the +// absl::container_internal::slot_type interface. +template <typename Key> +struct set_slot_policy { + using slot_type = Key; + using value_type = Key; + using mutable_value_type = Key; + + static value_type &element(slot_type *slot) { return *slot; } + static const value_type &element(const slot_type *slot) { return *slot; } + + template <typename Alloc, class... Args> + static void construct(Alloc *alloc, slot_type *slot, Args &&... args) { + absl::allocator_traits<Alloc>::construct(*alloc, slot, + std::forward<Args>(args)...); + } + + template <typename Alloc> + static void construct(Alloc *alloc, slot_type *slot, slot_type *other) { + absl::allocator_traits<Alloc>::construct(*alloc, slot, std::move(*other)); + } + + template <typename Alloc> + static void destroy(Alloc *alloc, slot_type *slot) { + absl::allocator_traits<Alloc>::destroy(*alloc, slot); + } + + template <typename Alloc> + static void swap(Alloc * /*alloc*/, slot_type *a, slot_type *b) { + using std::swap; + swap(*a, *b); + } + + template <typename Alloc> + static void move(Alloc * /*alloc*/, slot_type *src, slot_type *dest) { + *dest = std::move(*src); + } +}; + +// A parameters structure for holding the type parameters for a btree_set. +// Compare and Alloc should be nothrow copy-constructible. +template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, + bool Multi> +struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi, + set_slot_policy<Key>> { + using value_type = Key; + using slot_type = typename set_params::common_params::slot_type; + using value_compare = typename set_params::common_params::key_compare; + using is_map_container = std::false_type; + + template <typename V> + static const V &key(const V &value) { return value; } + static const Key &key(const slot_type *slot) { return *slot; } + static const Key &key(slot_type *slot) { return *slot; } +}; + +// An adapter class that converts a lower-bound compare into an upper-bound +// compare. Note: there is no need to make a version of this adapter specialized +// for key-compare-to functors because the upper-bound (the first value greater +// than the input) is never an exact match. +template <typename Compare> +struct upper_bound_adapter { + explicit upper_bound_adapter(const Compare &c) : comp(c) {} + template <typename K1, typename K2> + bool operator()(const K1 &a, const K2 &b) const { + // Returns true when a is not greater than b. + return !compare_internal::compare_result_as_less_than(comp(b, a)); + } + + private: + Compare comp; +}; + +enum class MatchKind : uint8_t { kEq, kNe }; + +template <typename V, bool IsCompareTo> +struct SearchResult { + V value; + MatchKind match; + + static constexpr bool HasMatch() { return true; } + bool IsEq() const { return match == MatchKind::kEq; } +}; + +// When we don't use CompareTo, `match` is not present. +// This ensures that callers can't use it accidentally when it provides no +// useful information. +template <typename V> +struct SearchResult<V, false> { + SearchResult() {} + explicit SearchResult(V value) : value(value) {} + SearchResult(V value, MatchKind /*match*/) : value(value) {} + + V value; + + static constexpr bool HasMatch() { return false; } + static constexpr bool IsEq() { return false; } +}; + +// A node in the btree holding. The same node type is used for both internal +// and leaf nodes in the btree, though the nodes are allocated in such a way +// that the children array is only valid in internal nodes. +template <typename Params> +class btree_node { + using is_key_compare_to = typename Params::is_key_compare_to; + using is_multi_container = typename Params::is_multi_container; + using field_type = typename Params::node_count_type; + using allocator_type = typename Params::allocator_type; + using slot_type = typename Params::slot_type; + + public: + using params_type = Params; + using key_type = typename Params::key_type; + using value_type = typename Params::value_type; + using pointer = typename Params::pointer; + using const_pointer = typename Params::const_pointer; + using reference = typename Params::reference; + using const_reference = typename Params::const_reference; + using key_compare = typename Params::key_compare; + using size_type = typename Params::size_type; + using difference_type = typename Params::difference_type; + + // Btree decides whether to use linear node search as follows: + // - If the comparator expresses a preference, use that. + // - If the key expresses a preference, use that. + // - If the key is arithmetic and the comparator is std::less or + // std::greater, choose linear. + // - Otherwise, choose binary. + // TODO(ezb): Might make sense to add condition(s) based on node-size. + using use_linear_search = std::integral_constant< + bool, + has_linear_node_search_preference<key_compare>::value + ? prefers_linear_node_search<key_compare>::value + : has_linear_node_search_preference<key_type>::value + ? prefers_linear_node_search<key_type>::value + : std::is_arithmetic<key_type>::value && + (std::is_same<std::less<key_type>, key_compare>::value || + std::is_same<std::greater<key_type>, + key_compare>::value)>; + + // This class is organized by gtl::Layout as if it had the following + // structure: + // // A pointer to the node's parent. + // btree_node *parent; + // + // // The position of the node in the node's parent. + // field_type position; + // // The index of the first populated value in `values`. + // // TODO(ezb): right now, `start` is always 0. Update insertion/merge + // // logic to allow for floating storage within nodes. + // field_type start; + // // The index after the last populated value in `values`. Currently, this + // // is the same as the count of values. + // field_type finish; + // // The maximum number of values the node can hold. This is an integer in + // // [1, kNodeValues] for root leaf nodes, kNodeValues for non-root leaf + // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal + // // nodes (even though there are still kNodeValues values in the node). + // // TODO(ezb): make max_count use only 4 bits and record log2(capacity) + // // to free extra bits for is_root, etc. + // field_type max_count; + // + // // The array of values. The capacity is `max_count` for leaf nodes and + // // kNodeValues for internal nodes. Only the values in + // // [start, finish) have been initialized and are valid. + // slot_type values[max_count]; + // + // // The array of child pointers. The keys in children[i] are all less + // // than key(i). The keys in children[i + 1] are all greater than key(i). + // // There are 0 children for leaf nodes and kNodeValues + 1 children for + // // internal nodes. + // btree_node *children[kNodeValues + 1]; + // + // This class is only constructed by EmptyNodeType. Normally, pointers to the + // layout above are allocated, cast to btree_node*, and de-allocated within + // the btree implementation. + ~btree_node() = default; + btree_node(btree_node const &) = delete; + btree_node &operator=(btree_node const &) = delete; + + // Public for EmptyNodeType. + constexpr static size_type Alignment() { + static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(), + "Alignment of all nodes must be equal."); + return InternalLayout().Alignment(); + } + + protected: + btree_node() = default; + + private: + using layout_type = absl::container_internal::Layout<btree_node *, field_type, + slot_type, btree_node *>; + constexpr static size_type SizeWithNValues(size_type n) { + return layout_type(/*parent*/ 1, + /*position, start, finish, max_count*/ 4, + /*values*/ n, + /*children*/ 0) + .AllocSize(); + } + // A lower bound for the overhead of fields other than values in a leaf node. + constexpr static size_type MinimumOverhead() { + return SizeWithNValues(1) - sizeof(value_type); + } + + // Compute how many values we can fit onto a leaf node taking into account + // padding. + constexpr static size_type NodeTargetValues(const int begin, const int end) { + return begin == end ? begin + : SizeWithNValues((begin + end) / 2 + 1) > + params_type::kTargetNodeSize + ? NodeTargetValues(begin, (begin + end) / 2) + : NodeTargetValues((begin + end) / 2 + 1, end); + } + + enum { + kTargetNodeSize = params_type::kTargetNodeSize, + kNodeTargetValues = NodeTargetValues(0, params_type::kTargetNodeSize), + + // We need a minimum of 3 values per internal node in order to perform + // splitting (1 value for the two nodes involved in the split and 1 value + // propagated to the parent as the delimiter for the split). + kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3, + + // The node is internal (i.e. is not a leaf node) if and only if `max_count` + // has this value. + kInternalNodeMaxCount = 0, + }; + + // Leaves can have less than kNodeValues values. + constexpr static layout_type LeafLayout(const int max_values = kNodeValues) { + return layout_type(/*parent*/ 1, + /*position, start, finish, max_count*/ 4, + /*values*/ max_values, + /*children*/ 0); + } + constexpr static layout_type InternalLayout() { + return layout_type(/*parent*/ 1, + /*position, start, finish, max_count*/ 4, + /*values*/ kNodeValues, + /*children*/ kNodeValues + 1); + } + constexpr static size_type LeafSize(const int max_values = kNodeValues) { + return LeafLayout(max_values).AllocSize(); + } + constexpr static size_type InternalSize() { + return InternalLayout().AllocSize(); + } + + // N is the index of the type in the Layout definition. + // ElementType<N> is the Nth type in the Layout definition. + template <size_type N> + inline typename layout_type::template ElementType<N> *GetField() { + // We assert that we don't read from values that aren't there. + assert(N < 3 || !leaf()); + return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this)); + } + template <size_type N> + inline const typename layout_type::template ElementType<N> *GetField() const { + assert(N < 3 || !leaf()); + return InternalLayout().template Pointer<N>( + reinterpret_cast<const char *>(this)); + } + void set_parent(btree_node *p) { *GetField<0>() = p; } + field_type &mutable_finish() { return GetField<1>()[2]; } + slot_type *slot(int i) { return &GetField<2>()[i]; } + slot_type *start_slot() { return slot(start()); } + slot_type *finish_slot() { return slot(finish()); } + const slot_type *slot(int i) const { return &GetField<2>()[i]; } + void set_position(field_type v) { GetField<1>()[0] = v; } + void set_start(field_type v) { GetField<1>()[1] = v; } + void set_finish(field_type v) { GetField<1>()[2] = v; } + // This method is only called by the node init methods. + void set_max_count(field_type v) { GetField<1>()[3] = v; } + + public: + // Whether this is a leaf node or not. This value doesn't change after the + // node is created. + bool leaf() const { return GetField<1>()[3] != kInternalNodeMaxCount; } + + // Getter for the position of this node in its parent. + field_type position() const { return GetField<1>()[0]; } + + // Getter for the offset of the first value in the `values` array. + field_type start() const { + // TODO(ezb): when floating storage is implemented, return GetField<1>()[1]; + assert(GetField<1>()[1] == 0); + return 0; + } + + // Getter for the offset after the last value in the `values` array. + field_type finish() const { return GetField<1>()[2]; } + + // Getters for the number of values stored in this node. + field_type count() const { + assert(finish() >= start()); + return finish() - start(); + } + field_type max_count() const { + // Internal nodes have max_count==kInternalNodeMaxCount. + // Leaf nodes have max_count in [1, kNodeValues]. + const field_type max_count = GetField<1>()[3]; + return max_count == field_type{kInternalNodeMaxCount} + ? field_type{kNodeValues} + : max_count; + } + + // Getter for the parent of this node. + btree_node *parent() const { return *GetField<0>(); } + // Getter for whether the node is the root of the tree. The parent of the + // root of the tree is the leftmost node in the tree which is guaranteed to + // be a leaf. + bool is_root() const { return parent()->leaf(); } + void make_root() { + assert(parent()->is_root()); + set_parent(parent()->parent()); + } + + // Getters for the key/value at position i in the node. + const key_type &key(int i) const { return params_type::key(slot(i)); } + reference value(int i) { return params_type::element(slot(i)); } + const_reference value(int i) const { return params_type::element(slot(i)); } + + // Getters/setter for the child at position i in the node. + btree_node *child(int i) const { return GetField<3>()[i]; } + btree_node *start_child() const { return child(start()); } + btree_node *&mutable_child(int i) { return GetField<3>()[i]; } + void clear_child(int i) { + absl::container_internal::SanitizerPoisonObject(&mutable_child(i)); + } + void set_child(int i, btree_node *c) { + absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i)); + mutable_child(i) = c; + c->set_position(i); + } + void init_child(int i, btree_node *c) { + set_child(i, c); + c->set_parent(this); + } + + // Returns the position of the first value whose key is not less than k. + template <typename K> + SearchResult<int, is_key_compare_to::value> lower_bound( + const K &k, const key_compare &comp) const { + return use_linear_search::value ? linear_search(k, comp) + : binary_search(k, comp); + } + // Returns the position of the first value whose key is greater than k. + template <typename K> + int upper_bound(const K &k, const key_compare &comp) const { + auto upper_compare = upper_bound_adapter<key_compare>(comp); + return use_linear_search::value ? linear_search(k, upper_compare).value + : binary_search(k, upper_compare).value; + } + + template <typename K, typename Compare> + SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value> + linear_search(const K &k, const Compare &comp) const { + return linear_search_impl(k, start(), finish(), comp, + btree_is_key_compare_to<Compare, key_type>()); + } + + template <typename K, typename Compare> + SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value> + binary_search(const K &k, const Compare &comp) const { + return binary_search_impl(k, start(), finish(), comp, + btree_is_key_compare_to<Compare, key_type>()); + } + + // Returns the position of the first value whose key is not less than k using + // linear search performed using plain compare. + template <typename K, typename Compare> + SearchResult<int, false> linear_search_impl( + const K &k, int s, const int e, const Compare &comp, + std::false_type /* IsCompareTo */) const { + while (s < e) { + if (!comp(key(s), k)) { + break; + } + ++s; + } + return SearchResult<int, false>{s}; + } + + // Returns the position of the first value whose key is not less than k using + // linear search performed using compare-to. + template <typename K, typename Compare> + SearchResult<int, true> linear_search_impl( + const K &k, int s, const int e, const Compare &comp, + std::true_type /* IsCompareTo */) const { + while (s < e) { + const absl::weak_ordering c = comp(key(s), k); + if (c == 0) { + return {s, MatchKind::kEq}; + } else if (c > 0) { + break; + } + ++s; + } + return {s, MatchKind::kNe}; + } + + // Returns the position of the first value whose key is not less than k using + // binary search performed using plain compare. + template <typename K, typename Compare> + SearchResult<int, false> binary_search_impl( + const K &k, int s, int e, const Compare &comp, + std::false_type /* IsCompareTo */) const { + while (s != e) { + const int mid = (s + e) >> 1; + if (comp(key(mid), k)) { + s = mid + 1; + } else { + e = mid; + } + } + return SearchResult<int, false>{s}; + } + + // Returns the position of the first value whose key is not less than k using + // binary search performed using compare-to. + template <typename K, typename CompareTo> + SearchResult<int, true> binary_search_impl( + const K &k, int s, int e, const CompareTo &comp, + std::true_type /* IsCompareTo */) const { + if (is_multi_container::value) { + MatchKind exact_match = MatchKind::kNe; + while (s != e) { + const int mid = (s + e) >> 1; + const absl::weak_ordering c = comp(key(mid), k); + if (c < 0) { + s = mid + 1; + } else { + e = mid; + if (c == 0) { + // Need to return the first value whose key is not less than k, + // which requires continuing the binary search if this is a + // multi-container. + exact_match = MatchKind::kEq; + } + } + } + return {s, exact_match}; + } else { // Not a multi-container. + while (s != e) { + const int mid = (s + e) >> 1; + const absl::weak_ordering c = comp(key(mid), k); + if (c < 0) { + s = mid + 1; + } else if (c > 0) { + e = mid; + } else { + return {mid, MatchKind::kEq}; + } + } + return {s, MatchKind::kNe}; + } + } + + // Emplaces a value at position i, shifting all existing values and + // children at positions >= i to the right by 1. + template <typename... Args> + void emplace_value(size_type i, allocator_type *alloc, Args &&... args); + + // Removes the values at positions [i, i + to_erase), shifting all existing + // values and children after that range to the left by to_erase. Clears all + // children between [i, i + to_erase). + void remove_values(field_type i, field_type to_erase, allocator_type *alloc); + + // Rebalances a node with its right sibling. + void rebalance_right_to_left(int to_move, btree_node *right, + allocator_type *alloc); + void rebalance_left_to_right(int to_move, btree_node *right, + allocator_type *alloc); + + // Splits a node, moving a portion of the node's values to its right sibling. + void split(int insert_position, btree_node *dest, allocator_type *alloc); + + // Merges a node with its right sibling, moving all of the values and the + // delimiting key in the parent node onto itself, and deleting the src node. + void merge(btree_node *src, allocator_type *alloc); + + // Node allocation/deletion routines. + void init_leaf(btree_node *parent, int max_count) { + set_parent(parent); + set_position(0); + set_start(0); + set_finish(0); + set_max_count(max_count); + absl::container_internal::SanitizerPoisonMemoryRegion( + start_slot(), max_count * sizeof(slot_type)); + } + void init_internal(btree_node *parent) { + init_leaf(parent, kNodeValues); + // Set `max_count` to a sentinel value to indicate that this node is + // internal. + set_max_count(kInternalNodeMaxCount); + absl::container_internal::SanitizerPoisonMemoryRegion( + &mutable_child(start()), (kNodeValues + 1) * sizeof(btree_node *)); + } + + static void deallocate(const size_type size, btree_node *node, + allocator_type *alloc) { + absl::container_internal::Deallocate<Alignment()>(alloc, node, size); + } + + // Deletes a node and all of its children. + static void clear_and_delete(btree_node *node, allocator_type *alloc); + + private: + template <typename... Args> + void value_init(const field_type i, allocator_type *alloc, Args &&... args) { + absl::container_internal::SanitizerUnpoisonObject(slot(i)); + params_type::construct(alloc, slot(i), std::forward<Args>(args)...); + } + void value_destroy(const field_type i, allocator_type *alloc) { + params_type::destroy(alloc, slot(i)); + absl::container_internal::SanitizerPoisonObject(slot(i)); + } + void value_destroy_n(const field_type i, const field_type n, + allocator_type *alloc) { + for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) { + params_type::destroy(alloc, s); + absl::container_internal::SanitizerPoisonObject(s); + } + } + + static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) { + absl::container_internal::SanitizerUnpoisonObject(dest); + params_type::transfer(alloc, dest, src); + absl::container_internal::SanitizerPoisonObject(src); + } + + // Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`. + void transfer(const size_type dest_i, const size_type src_i, + btree_node *src_node, allocator_type *alloc) { + transfer(slot(dest_i), src_node->slot(src_i), alloc); + } + + // Transfers `n` values starting at value `src_i` in `src_node` into the + // values starting at value `dest_i` in `this`. + void transfer_n(const size_type n, const size_type dest_i, + const size_type src_i, btree_node *src_node, + allocator_type *alloc) { + for (slot_type *src = src_node->slot(src_i), *end = src + n, + *dest = slot(dest_i); + src != end; ++src, ++dest) { + transfer(dest, src, alloc); + } + } + + // Same as above, except that we start at the end and work our way to the + // beginning. + void transfer_n_backward(const size_type n, const size_type dest_i, + const size_type src_i, btree_node *src_node, + allocator_type *alloc) { + for (slot_type *src = src_node->slot(src_i + n - 1), *end = src - n, + *dest = slot(dest_i + n - 1); + src != end; --src, --dest) { + transfer(dest, src, alloc); + } + } + + template <typename P> + friend class btree; + template <typename N, typename R, typename P> + friend struct btree_iterator; + friend class BtreeNodePeer; +}; + +template <typename Node, typename Reference, typename Pointer> +struct btree_iterator { + private: + using key_type = typename Node::key_type; + using size_type = typename Node::size_type; + using params_type = typename Node::params_type; + + using node_type = Node; + using normal_node = typename std::remove_const<Node>::type; + using const_node = const Node; + using normal_pointer = typename params_type::pointer; + using normal_reference = typename params_type::reference; + using const_pointer = typename params_type::const_pointer; + using const_reference = typename params_type::const_reference; + using slot_type = typename params_type::slot_type; + + using iterator = + btree_iterator<normal_node, normal_reference, normal_pointer>; + using const_iterator = + btree_iterator<const_node, const_reference, const_pointer>; + + public: + // These aliases are public for std::iterator_traits. + using difference_type = typename Node::difference_type; + using value_type = typename params_type::value_type; + using pointer = Pointer; + using reference = Reference; + using iterator_category = std::bidirectional_iterator_tag; + + btree_iterator() : node(nullptr), position(-1) {} + explicit btree_iterator(Node *n) : node(n), position(n->start()) {} + btree_iterator(Node *n, int p) : node(n), position(p) {} + + // NOTE: this SFINAE allows for implicit conversions from iterator to + // const_iterator, but it specifically avoids defining copy constructors so + // that btree_iterator can be trivially copyable. This is for performance and + // binary size reasons. + template <typename N, typename R, typename P, + absl::enable_if_t< + std::is_same<btree_iterator<N, R, P>, iterator>::value && + std::is_same<btree_iterator, const_iterator>::value, + int> = 0> + btree_iterator(const btree_iterator<N, R, P> &other) // NOLINT + : node(other.node), position(other.position) {} + + private: + // This SFINAE allows explicit conversions from const_iterator to + // iterator, but also avoids defining a copy constructor. + // NOTE: the const_cast is safe because this constructor is only called by + // non-const methods and the container owns the nodes. + template <typename N, typename R, typename P, + absl::enable_if_t< + std::is_same<btree_iterator<N, R, P>, const_iterator>::value && + std::is_same<btree_iterator, iterator>::value, + int> = 0> + explicit btree_iterator(const btree_iterator<N, R, P> &other) + : node(const_cast<node_type *>(other.node)), position(other.position) {} + + // Increment/decrement the iterator. + void increment() { + if (node->leaf() && ++position < node->finish()) { + return; + } + increment_slow(); + } + void increment_slow(); + + void decrement() { + if (node->leaf() && --position >= node->start()) { + return; + } + decrement_slow(); + } + void decrement_slow(); + + public: + bool operator==(const iterator &other) const { + return node == other.node && position == other.position; + } + bool operator==(const const_iterator &other) const { + return node == other.node && position == other.position; + } + bool operator!=(const iterator &other) const { + return node != other.node || position != other.position; + } + bool operator!=(const const_iterator &other) const { + return node != other.node || position != other.position; + } + + // Accessors for the key/value the iterator is pointing at. + reference operator*() const { + ABSL_HARDENING_ASSERT(node != nullptr); + ABSL_HARDENING_ASSERT(node->start() <= position); + ABSL_HARDENING_ASSERT(node->finish() > position); + return node->value(position); + } + pointer operator->() const { return &operator*(); } + + btree_iterator &operator++() { + increment(); + return *this; + } + btree_iterator &operator--() { + decrement(); + return *this; + } + btree_iterator operator++(int) { + btree_iterator tmp = *this; + ++*this; + return tmp; + } + btree_iterator operator--(int) { + btree_iterator tmp = *this; + --*this; + return tmp; + } + + private: + template <typename Params> + friend class btree; + template <typename Tree> + friend class btree_container; + template <typename Tree> + friend class btree_set_container; + template <typename Tree> + friend class btree_map_container; + template <typename Tree> + friend class btree_multiset_container; + template <typename N, typename R, typename P> + friend struct btree_iterator; + template <typename TreeType, typename CheckerType> + friend class base_checker; + + const key_type &key() const { return node->key(position); } + slot_type *slot() { return node->slot(position); } + + // The node in the tree the iterator is pointing at. + Node *node; + // The position within the node of the tree the iterator is pointing at. + // NOTE: this is an int rather than a field_type because iterators can point + // to invalid positions (such as -1) in certain circumstances. + int position; +}; + +template <typename Params> +class btree { + using node_type = btree_node<Params>; + using is_key_compare_to = typename Params::is_key_compare_to; + using init_type = typename Params::init_type; + using field_type = typename node_type::field_type; + using is_multi_container = typename Params::is_multi_container; + using is_key_compare_adapted = typename Params::is_key_compare_adapted; + + // We use a static empty node for the root/leftmost/rightmost of empty btrees + // in order to avoid branching in begin()/end(). + struct alignas(node_type::Alignment()) EmptyNodeType : node_type { + using field_type = typename node_type::field_type; + node_type *parent; + field_type position = 0; + field_type start = 0; + field_type finish = 0; + // max_count must be != kInternalNodeMaxCount (so that this node is regarded + // as a leaf node). max_count() is never called when the tree is empty. + field_type max_count = node_type::kInternalNodeMaxCount + 1; + +#ifdef _MSC_VER + // MSVC has constexpr code generations bugs here. + EmptyNodeType() : parent(this) {} +#else + constexpr EmptyNodeType(node_type *p) : parent(p) {} +#endif + }; + + static node_type *EmptyNode() { +#ifdef _MSC_VER + static EmptyNodeType *empty_node = new EmptyNodeType; + // This assert fails on some other construction methods. + assert(empty_node->parent == empty_node); + return empty_node; +#else + static constexpr EmptyNodeType empty_node( + const_cast<EmptyNodeType *>(&empty_node)); + return const_cast<EmptyNodeType *>(&empty_node); +#endif + } + + enum : uint32_t { + kNodeValues = node_type::kNodeValues, + kMinNodeValues = kNodeValues / 2, + }; + + struct node_stats { + using size_type = typename Params::size_type; + + node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {} + + node_stats &operator+=(const node_stats &other) { + leaf_nodes += other.leaf_nodes; + internal_nodes += other.internal_nodes; + return *this; + } + + size_type leaf_nodes; + size_type internal_nodes; + }; + + public: + using key_type = typename Params::key_type; + using value_type = typename Params::value_type; + using size_type = typename Params::size_type; + using difference_type = typename Params::difference_type; + using key_compare = typename Params::key_compare; + using value_compare = typename Params::value_compare; + using allocator_type = typename Params::allocator_type; + using reference = typename Params::reference; + using const_reference = typename Params::const_reference; + using pointer = typename Params::pointer; + using const_pointer = typename Params::const_pointer; + using iterator = btree_iterator<node_type, reference, pointer>; + using const_iterator = typename iterator::const_iterator; + using reverse_iterator = std::reverse_iterator<iterator>; + using const_reverse_iterator = std::reverse_iterator<const_iterator>; + using node_handle_type = node_handle<Params, Params, allocator_type>; + + // Internal types made public for use by btree_container types. + using params_type = Params; + using slot_type = typename Params::slot_type; + + private: + // For use in copy_or_move_values_in_order. + const value_type &maybe_move_from_iterator(const_iterator it) { return *it; } + value_type &&maybe_move_from_iterator(iterator it) { return std::move(*it); } + + // Copies or moves (depending on the template parameter) the values in + // other into this btree in their order in other. This btree must be empty + // before this method is called. This method is used in copy construction, + // copy assignment, and move assignment. + template <typename Btree> + void copy_or_move_values_in_order(Btree &other); + + // Validates that various assumptions/requirements are true at compile time. + constexpr static bool static_assert_validation(); + + public: + btree(const key_compare &comp, const allocator_type &alloc) + : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {} + + btree(const btree &other) : btree(other, other.allocator()) {} + btree(const btree &other, const allocator_type &alloc) + : btree(other.key_comp(), alloc) { + copy_or_move_values_in_order(other); + } + btree(btree &&other) noexcept + : root_(std::move(other.root_)), + rightmost_(absl::exchange(other.rightmost_, EmptyNode())), + size_(absl::exchange(other.size_, 0)) { + other.mutable_root() = EmptyNode(); + } + btree(btree &&other, const allocator_type &alloc) + : btree(other.key_comp(), alloc) { + if (alloc == other.allocator()) { + swap(other); + } else { + // Move values from `other` one at a time when allocators are different. + copy_or_move_values_in_order(other); + } + } + + ~btree() { + // Put static_asserts in destructor to avoid triggering them before the type + // is complete. + static_assert(static_assert_validation(), "This call must be elided."); + clear(); + } + + // Assign the contents of other to *this. + btree &operator=(const btree &other); + btree &operator=(btree &&other) noexcept; + + iterator begin() { return iterator(leftmost()); } + const_iterator begin() const { return const_iterator(leftmost()); } + iterator end() { return iterator(rightmost_, rightmost_->finish()); } + const_iterator end() const { + return const_iterator(rightmost_, rightmost_->finish()); + } + reverse_iterator rbegin() { return reverse_iterator(end()); } + const_reverse_iterator rbegin() const { + return const_reverse_iterator(end()); + } + reverse_iterator rend() { return reverse_iterator(begin()); } + const_reverse_iterator rend() const { + return const_reverse_iterator(begin()); + } + + // Finds the first element whose key is not less than key. + template <typename K> + iterator lower_bound(const K &key) { + return internal_end(internal_lower_bound(key).value); + } + template <typename K> + const_iterator lower_bound(const K &key) const { + return internal_end(internal_lower_bound(key).value); + } + + // Finds the first element whose key is greater than key. + template <typename K> + iterator upper_bound(const K &key) { + return internal_end(internal_upper_bound(key)); + } + template <typename K> + const_iterator upper_bound(const K &key) const { + return internal_end(internal_upper_bound(key)); + } + + // Finds the range of values which compare equal to key. The first member of + // the returned pair is equal to lower_bound(key). The second member of the + // pair is equal to upper_bound(key). + template <typename K> + std::pair<iterator, iterator> equal_range(const K &key); + template <typename K> + std::pair<const_iterator, const_iterator> equal_range(const K &key) const { + return const_cast<btree *>(this)->equal_range(key); + } + + // Inserts a value into the btree only if it does not already exist. The + // boolean return value indicates whether insertion succeeded or failed. + // Requirement: if `key` already exists in the btree, does not consume `args`. + // Requirement: `key` is never referenced after consuming `args`. + template <typename K, typename... Args> + std::pair<iterator, bool> insert_unique(const K &key, Args &&... args); + + // Inserts with hint. Checks to see if the value should be placed immediately + // before `position` in the tree. If so, then the insertion will take + // amortized constant time. If not, the insertion will take amortized + // logarithmic time as if a call to insert_unique() were made. + // Requirement: if `key` already exists in the btree, does not consume `args`. + // Requirement: `key` is never referenced after consuming `args`. + template <typename K, typename... Args> + std::pair<iterator, bool> insert_hint_unique(iterator position, + const K &key, + Args &&... args); + + // Insert a range of values into the btree. + // Note: the first overload avoids constructing a value_type if the key + // already exists in the btree. + template <typename InputIterator, + typename = decltype(std::declval<const key_compare &>()( + params_type::key(*std::declval<InputIterator>()), + std::declval<const key_type &>()))> + void insert_iterator_unique(InputIterator b, InputIterator e, int); + // We need the second overload for cases in which we need to construct a + // value_type in order to compare it with the keys already in the btree. + template <typename InputIterator> + void insert_iterator_unique(InputIterator b, InputIterator e, char); + + // Inserts a value into the btree. + template <typename ValueType> + iterator insert_multi(const key_type &key, ValueType &&v); + + // Inserts a value into the btree. + template <typename ValueType> + iterator insert_multi(ValueType &&v) { + return insert_multi(params_type::key(v), std::forward<ValueType>(v)); + } + + // Insert with hint. Check to see if the value should be placed immediately + // before position in the tree. If it does, then the insertion will take + // amortized constant time. If not, the insertion will take amortized + // logarithmic time as if a call to insert_multi(v) were made. + template <typename ValueType> + iterator insert_hint_multi(iterator position, ValueType &&v); + + // Insert a range of values into the btree. + template <typename InputIterator> + void insert_iterator_multi(InputIterator b, InputIterator e); + + // Erase the specified iterator from the btree. The iterator must be valid + // (i.e. not equal to end()). Return an iterator pointing to the node after + // the one that was erased (or end() if none exists). + // Requirement: does not read the value at `*iter`. + iterator erase(iterator iter); + + // Erases range. Returns the number of keys erased and an iterator pointing + // to the element after the last erased element. + std::pair<size_type, iterator> erase_range(iterator begin, iterator end); + + // Finds the iterator corresponding to a key or returns end() if the key is + // not present. + template <typename K> + iterator find(const K &key) { + return internal_end(internal_find(key)); + } + template <typename K> + const_iterator find(const K &key) const { + return internal_end(internal_find(key)); + } + + // Clear the btree, deleting all of the values it contains. + void clear(); + + // Swaps the contents of `this` and `other`. + void swap(btree &other); + + const key_compare &key_comp() const noexcept { + return root_.template get<0>(); + } + template <typename K1, typename K2> + bool compare_keys(const K1 &a, const K2 &b) const { + return compare_internal::compare_result_as_less_than(key_comp()(a, b)); + } + + value_compare value_comp() const { return value_compare(key_comp()); } + + // Verifies the structure of the btree. + void verify() const; + + // Size routines. + size_type size() const { return size_; } + size_type max_size() const { return (std::numeric_limits<size_type>::max)(); } + bool empty() const { return size_ == 0; } + + // The height of the btree. An empty tree will have height 0. + size_type height() const { + size_type h = 0; + if (!empty()) { + // Count the length of the chain from the leftmost node up to the + // root. We actually count from the root back around to the level below + // the root, but the calculation is the same because of the circularity + // of that traversal. + const node_type *n = root(); + do { + ++h; + n = n->parent(); + } while (n != root()); + } + return h; + } + + // The number of internal, leaf and total nodes used by the btree. + size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; } + size_type internal_nodes() const { + return internal_stats(root()).internal_nodes; + } + size_type nodes() const { + node_stats stats = internal_stats(root()); + return stats.leaf_nodes + stats.internal_nodes; + } + + // The total number of bytes used by the btree. + size_type bytes_used() const { + node_stats stats = internal_stats(root()); + if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) { + return sizeof(*this) + node_type::LeafSize(root()->max_count()); + } else { + return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() + + stats.internal_nodes * node_type::InternalSize(); + } + } + + // The average number of bytes used per value stored in the btree. + static double average_bytes_per_value() { + // Returns the number of bytes per value on a leaf node that is 75% + // full. Experimentally, this matches up nicely with the computed number of + // bytes per value in trees that had their values inserted in random order. + return node_type::LeafSize() / (kNodeValues * 0.75); + } + + // The fullness of the btree. Computed as the number of elements in the btree + // divided by the maximum number of elements a tree with the current number + // of nodes could hold. A value of 1 indicates perfect space + // utilization. Smaller values indicate space wastage. + // Returns 0 for empty trees. + double fullness() const { + if (empty()) return 0.0; + return static_cast<double>(size()) / (nodes() * kNodeValues); + } + // The overhead of the btree structure in bytes per node. Computed as the + // total number of bytes used by the btree minus the number of bytes used for + // storing elements divided by the number of elements. + // Returns 0 for empty trees. + double overhead() const { + if (empty()) return 0.0; + return (bytes_used() - size() * sizeof(value_type)) / + static_cast<double>(size()); + } + + // The allocator used by the btree. + allocator_type get_allocator() const { return allocator(); } + + private: + // Internal accessor routines. + node_type *root() { return root_.template get<2>(); } + const node_type *root() const { return root_.template get<2>(); } + node_type *&mutable_root() noexcept { return root_.template get<2>(); } + key_compare *mutable_key_comp() noexcept { return &root_.template get<0>(); } + + // The leftmost node is stored as the parent of the root node. + node_type *leftmost() { return root()->parent(); } + const node_type *leftmost() const { return root()->parent(); } + + // Allocator routines. + allocator_type *mutable_allocator() noexcept { + return &root_.template get<1>(); + } + const allocator_type &allocator() const noexcept { + return root_.template get<1>(); + } + + // Allocates a correctly aligned node of at least size bytes using the + // allocator. + node_type *allocate(const size_type size) { + return reinterpret_cast<node_type *>( + absl::container_internal::Allocate<node_type::Alignment()>( + mutable_allocator(), size)); + } + + // Node creation/deletion routines. + node_type *new_internal_node(node_type *parent) { + node_type *n = allocate(node_type::InternalSize()); + n->init_internal(parent); + return n; + } + node_type *new_leaf_node(node_type *parent) { + node_type *n = allocate(node_type::LeafSize()); + n->init_leaf(parent, kNodeValues); + return n; + } + node_type *new_leaf_root_node(const int max_count) { + node_type *n = allocate(node_type::LeafSize(max_count)); + n->init_leaf(/*parent=*/n, max_count); + return n; + } + + // Deletion helper routines. + iterator rebalance_after_delete(iterator iter); + + // Rebalances or splits the node iter points to. + void rebalance_or_split(iterator *iter); + + // Merges the values of left, right and the delimiting key on their parent + // onto left, removing the delimiting key and deleting right. + void merge_nodes(node_type *left, node_type *right); + + // Tries to merge node with its left or right sibling, and failing that, + // rebalance with its left or right sibling. Returns true if a merge + // occurred, at which point it is no longer valid to access node. Returns + // false if no merging took place. + bool try_merge_or_rebalance(iterator *iter); + + // Tries to shrink the height of the tree by 1. + void try_shrink(); + + iterator internal_end(iterator iter) { + return iter.node != nullptr ? iter : end(); + } + const_iterator internal_end(const_iterator iter) const { + return iter.node != nullptr ? iter : end(); + } + + // Emplaces a value into the btree immediately before iter. Requires that + // key(v) <= iter.key() and (--iter).key() <= key(v). + template <typename... Args> + iterator internal_emplace(iterator iter, Args &&... args); + + // Returns an iterator pointing to the first value >= the value "iter" is + // pointing at. Note that "iter" might be pointing to an invalid location such + // as iter.position == iter.node->finish(). This routine simply moves iter up + // in the tree to a valid location. + // Requires: iter.node is non-null. + template <typename IterType> + static IterType internal_last(IterType iter); + + // Returns an iterator pointing to the leaf position at which key would + // reside in the tree, unless there is an exact match - in which case, the + // result may not be on a leaf. When there's a three-way comparator, we can + // return whether there was an exact match. This allows the caller to avoid a + // subsequent comparison to determine if an exact match was made, which is + // important for keys with expensive comparison, such as strings. + template <typename K> + SearchResult<iterator, is_key_compare_to::value> internal_locate( + const K &key) const; + + // Internal routine which implements lower_bound(). + template <typename K> + SearchResult<iterator, is_key_compare_to::value> internal_lower_bound( + const K &key) const; + + // Internal routine which implements upper_bound(). + template <typename K> + iterator internal_upper_bound(const K &key) const; + + // Internal routine which implements find(). + template <typename K> + iterator internal_find(const K &key) const; + + // Verifies the tree structure of node. + int internal_verify(const node_type *node, const key_type *lo, + const key_type *hi) const; + + node_stats internal_stats(const node_type *node) const { + // The root can be a static empty node. + if (node == nullptr || (node == root() && empty())) { + return node_stats(0, 0); + } + if (node->leaf()) { + return node_stats(1, 0); + } + node_stats res(0, 1); + for (int i = node->start(); i <= node->finish(); ++i) { + res += internal_stats(node->child(i)); + } + return res; + } + + // We use compressed tuple in order to save space because key_compare and + // allocator_type are usually empty. + absl::container_internal::CompressedTuple<key_compare, allocator_type, + node_type *> + root_; + + // A pointer to the rightmost node. Note that the leftmost node is stored as + // the root's parent. + node_type *rightmost_; + + // Number of values. + size_type size_; +}; + +//// +// btree_node methods +template <typename P> +template <typename... Args> +inline void btree_node<P>::emplace_value(const size_type i, + allocator_type *alloc, + Args &&... args) { + assert(i >= start()); + assert(i <= finish()); + // Shift old values to create space for new value and then construct it in + // place. + if (i < finish()) { + transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this, + alloc); + } + value_init(i, alloc, std::forward<Args>(args)...); + set_finish(finish() + 1); + + if (!leaf() && finish() > i + 1) { + for (int j = finish(); j > i + 1; --j) { + set_child(j, child(j - 1)); + } + clear_child(i + 1); + } +} + +template <typename P> +inline void btree_node<P>::remove_values(const field_type i, + const field_type to_erase, + allocator_type *alloc) { + // Transfer values after the removed range into their new places. + value_destroy_n(i, to_erase, alloc); + const field_type orig_finish = finish(); + const field_type src_i = i + to_erase; + transfer_n(orig_finish - src_i, i, src_i, this, alloc); + + if (!leaf()) { + // Delete all children between begin and end. + for (int j = 0; j < to_erase; ++j) { + clear_and_delete(child(i + j + 1), alloc); + } + // Rotate children after end into new positions. + for (int j = i + to_erase + 1; j <= orig_finish; ++j) { + set_child(j - to_erase, child(j)); + clear_child(j); + } + } + set_finish(orig_finish - to_erase); +} + +template <typename P> +void btree_node<P>::rebalance_right_to_left(const int to_move, + btree_node *right, + allocator_type *alloc) { + assert(parent() == right->parent()); + assert(position() + 1 == right->position()); + assert(right->count() >= count()); + assert(to_move >= 1); + assert(to_move <= right->count()); + + // 1) Move the delimiting value in the parent to the left node. + transfer(finish(), position(), parent(), alloc); + + // 2) Move the (to_move - 1) values from the right node to the left node. + transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc); + + // 3) Move the new delimiting value to the parent from the right node. + parent()->transfer(position(), right->start() + to_move - 1, right, alloc); + + // 4) Shift the values in the right node to their correct positions. + right->transfer_n(right->count() - to_move, right->start(), + right->start() + to_move, right, alloc); + + if (!leaf()) { + // Move the child pointers from the right to the left node. + for (int i = 0; i < to_move; ++i) { + init_child(finish() + i + 1, right->child(i)); + } + for (int i = right->start(); i <= right->finish() - to_move; ++i) { + assert(i + to_move <= right->max_count()); + right->init_child(i, right->child(i + to_move)); + right->clear_child(i + to_move); + } + } + + // Fixup `finish` on the left and right nodes. + set_finish(finish() + to_move); + right->set_finish(right->finish() - to_move); +} + +template <typename P> +void btree_node<P>::rebalance_left_to_right(const int to_move, + btree_node *right, + allocator_type *alloc) { + assert(parent() == right->parent()); + assert(position() + 1 == right->position()); + assert(count() >= right->count()); + assert(to_move >= 1); + assert(to_move <= count()); + + // Values in the right node are shifted to the right to make room for the + // new to_move values. Then, the delimiting value in the parent and the + // other (to_move - 1) values in the left node are moved into the right node. + // Lastly, a new delimiting value is moved from the left node into the + // parent, and the remaining empty left node entries are destroyed. + + // 1) Shift existing values in the right node to their correct positions. + right->transfer_n_backward(right->count(), right->start() + to_move, + right->start(), right, alloc); + + // 2) Move the delimiting value in the parent to the right node. + right->transfer(right->start() + to_move - 1, position(), parent(), alloc); + + // 3) Move the (to_move - 1) values from the left node to the right node. + right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this, + alloc); + + // 4) Move the new delimiting value to the parent from the left node. + parent()->transfer(position(), finish() - to_move, this, alloc); + + if (!leaf()) { + // Move the child pointers from the left to the right node. + for (int i = right->finish(); i >= right->start(); --i) { + right->init_child(i + to_move, right->child(i)); + right->clear_child(i); + } + for (int i = 1; i <= to_move; ++i) { + right->init_child(i - 1, child(finish() - to_move + i)); + clear_child(finish() - to_move + i); + } + } + + // Fixup the counts on the left and right nodes. + set_finish(finish() - to_move); + right->set_finish(right->finish() + to_move); +} + +template <typename P> +void btree_node<P>::split(const int insert_position, btree_node *dest, + allocator_type *alloc) { + assert(dest->count() == 0); + assert(max_count() == kNodeValues); + + // We bias the split based on the position being inserted. If we're + // inserting at the beginning of the left node then bias the split to put + // more values on the right node. If we're inserting at the end of the + // right node then bias the split to put more values on the left node. + if (insert_position == start()) { + dest->set_finish(dest->start() + finish() - 1); + } else if (insert_position == kNodeValues) { + dest->set_finish(dest->start()); + } else { + dest->set_finish(dest->start() + count() / 2); + } + set_finish(finish() - dest->count()); + assert(count() >= 1); + + // Move values from the left sibling to the right sibling. + dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc); + + // The split key is the largest value in the left sibling. + --mutable_finish(); + parent()->emplace_value(position(), alloc, finish_slot()); + value_destroy(finish(), alloc); + parent()->init_child(position() + 1, dest); + + if (!leaf()) { + for (int i = dest->start(), j = finish() + 1; i <= dest->finish(); + ++i, ++j) { + assert(child(j) != nullptr); + dest->init_child(i, child(j)); + clear_child(j); + } + } +} + +template <typename P> +void btree_node<P>::merge(btree_node *src, allocator_type *alloc) { + assert(parent() == src->parent()); + assert(position() + 1 == src->position()); + + // Move the delimiting value to the left node. + value_init(finish(), alloc, parent()->slot(position())); + + // Move the values from the right to the left node. + transfer_n(src->count(), finish() + 1, src->start(), src, alloc); + + if (!leaf()) { + // Move the child pointers from the right to the left node. + for (int i = src->start(), j = finish() + 1; i <= src->finish(); ++i, ++j) { + init_child(j, src->child(i)); + src->clear_child(i); + } + } + + // Fixup `finish` on the src and dest nodes. + set_finish(start() + 1 + count() + src->count()); + src->set_finish(src->start()); + + // Remove the value on the parent node and delete the src node. + parent()->remove_values(position(), /*to_erase=*/1, alloc); +} + +template <typename P> +void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) { + if (node->leaf()) { + node->value_destroy_n(node->start(), node->count(), alloc); + deallocate(LeafSize(node->max_count()), node, alloc); + return; + } + if (node->count() == 0) { + deallocate(InternalSize(), node, alloc); + return; + } + + // The parent of the root of the subtree we are deleting. + btree_node *delete_root_parent = node->parent(); + + // Navigate to the leftmost leaf under node, and then delete upwards. + while (!node->leaf()) node = node->start_child(); + // Use `int` because `pos` needs to be able to hold `kNodeValues+1`, which + // isn't guaranteed to be a valid `field_type`. + int pos = node->position(); + btree_node *parent = node->parent(); + for (;;) { + // In each iteration of the next loop, we delete one leaf node and go right. + assert(pos <= parent->finish()); + do { + node = parent->child(pos); + if (!node->leaf()) { + // Navigate to the leftmost leaf under node. + while (!node->leaf()) node = node->start_child(); + pos = node->position(); + parent = node->parent(); + } + node->value_destroy_n(node->start(), node->count(), alloc); + deallocate(LeafSize(node->max_count()), node, alloc); + ++pos; + } while (pos <= parent->finish()); + + // Once we've deleted all children of parent, delete parent and go up/right. + assert(pos > parent->finish()); + do { + node = parent; + pos = node->position(); + parent = node->parent(); + node->value_destroy_n(node->start(), node->count(), alloc); + deallocate(InternalSize(), node, alloc); + if (parent == delete_root_parent) return; + ++pos; + } while (pos > parent->finish()); + } +} + +//// +// btree_iterator methods +template <typename N, typename R, typename P> +void btree_iterator<N, R, P>::increment_slow() { + if (node->leaf()) { + assert(position >= node->finish()); + btree_iterator save(*this); + while (position == node->finish() && !node->is_root()) { + assert(node->parent()->child(node->position()) == node); + position = node->position(); + node = node->parent(); + } + // TODO(ezb): assert we aren't incrementing end() instead of handling. + if (position == node->finish()) { + *this = save; + } + } else { + assert(position < node->finish()); + node = node->child(position + 1); + while (!node->leaf()) { + node = node->start_child(); + } + position = node->start(); + } +} + +template <typename N, typename R, typename P> +void btree_iterator<N, R, P>::decrement_slow() { + if (node->leaf()) { + assert(position <= -1); + btree_iterator save(*this); + while (position < node->start() && !node->is_root()) { + assert(node->parent()->child(node->position()) == node); + position = node->position() - 1; + node = node->parent(); + } + // TODO(ezb): assert we aren't decrementing begin() instead of handling. + if (position < node->start()) { + *this = save; + } + } else { + assert(position >= node->start()); + node = node->child(position); + while (!node->leaf()) { + node = node->child(node->finish()); + } + position = node->finish() - 1; + } +} + +//// +// btree methods +template <typename P> +template <typename Btree> +void btree<P>::copy_or_move_values_in_order(Btree &other) { + static_assert(std::is_same<btree, Btree>::value || + std::is_same<const btree, Btree>::value, + "Btree type must be same or const."); + assert(empty()); + + // We can avoid key comparisons because we know the order of the + // values is the same order we'll store them in. + auto iter = other.begin(); + if (iter == other.end()) return; + insert_multi(maybe_move_from_iterator(iter)); + ++iter; + for (; iter != other.end(); ++iter) { + // If the btree is not empty, we can just insert the new value at the end + // of the tree. + internal_emplace(end(), maybe_move_from_iterator(iter)); + } +} + +template <typename P> +constexpr bool btree<P>::static_assert_validation() { + static_assert(std::is_nothrow_copy_constructible<key_compare>::value, + "Key comparison must be nothrow copy constructible"); + static_assert(std::is_nothrow_copy_constructible<allocator_type>::value, + "Allocator must be nothrow copy constructible"); + static_assert(type_traits_internal::is_trivially_copyable<iterator>::value, + "iterator not trivially copyable."); + + // Note: We assert that kTargetValues, which is computed from + // Params::kTargetNodeSize, must fit the node_type::field_type. + static_assert( + kNodeValues < (1 << (8 * sizeof(typename node_type::field_type))), + "target node size too large"); + + // Verify that key_compare returns an absl::{weak,strong}_ordering or bool. + using compare_result_type = + absl::result_of_t<key_compare(key_type, key_type)>; + static_assert( + std::is_same<compare_result_type, bool>::value || + std::is_convertible<compare_result_type, absl::weak_ordering>::value, + "key comparison function must return absl::{weak,strong}_ordering or " + "bool."); + + // Test the assumption made in setting kNodeValueSpace. + static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4, + "node space assumption incorrect"); + + return true; +} + +template <typename P> +template <typename K> +auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> { + const SearchResult<iterator, is_key_compare_to::value> res = + internal_lower_bound(key); + const iterator lower = internal_end(res.value); + if (res.HasMatch() ? !res.IsEq() + : lower == end() || compare_keys(key, lower.key())) { + return {lower, lower}; + } + + const iterator next = std::next(lower); + // When the comparator is heterogeneous, we can't assume that comparison with + // non-`key_type` will be equivalent to `key_type` comparisons so there + // could be multiple equivalent keys even in a unique-container. But for + // heterogeneous comparisons from the default string adapted comparators, we + // don't need to worry about this. + if (!is_multi_container::value && + (std::is_same<K, key_type>::value || is_key_compare_adapted::value)) { + // The next iterator after lower must point to a key greater than `key`. + // Note: if this assert fails, then it may indicate that the comparator does + // not meet the equivalence requirements for Compare + // (see https://en.cppreference.com/w/cpp/named_req/Compare). + assert(next == end() || compare_keys(key, next.key())); + return {lower, next}; + } + // Try once more to avoid the call to upper_bound() if there's only one + // equivalent key. This should prevent all calls to upper_bound() in cases of + // unique-containers with heterogeneous comparators in which all comparison + // operators have the same equivalence classes. + if (next == end() || compare_keys(key, next.key())) return {lower, next}; + + // In this case, we need to call upper_bound() to avoid worst case O(N) + // behavior if we were to iterate over equal keys. + return {lower, upper_bound(key)}; +} + +template <typename P> +template <typename K, typename... Args> +auto btree<P>::insert_unique(const K &key, Args &&... args) + -> std::pair<iterator, bool> { + if (empty()) { + mutable_root() = rightmost_ = new_leaf_root_node(1); + } + + SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); + iterator iter = res.value; + + if (res.HasMatch()) { + if (res.IsEq()) { + // The key already exists in the tree, do nothing. + return {iter, false}; + } + } else { + iterator last = internal_last(iter); + if (last.node && !compare_keys(key, last.key())) { + // The key already exists in the tree, do nothing. + return {last, false}; + } + } + return {internal_emplace(iter, std::forward<Args>(args)...), true}; +} + +template <typename P> +template <typename K, typename... Args> +inline auto btree<P>::insert_hint_unique(iterator position, const K &key, + Args &&... args) + -> std::pair<iterator, bool> { + if (!empty()) { + if (position == end() || compare_keys(key, position.key())) { + if (position == begin() || compare_keys(std::prev(position).key(), key)) { + // prev.key() < key < position.key() + return {internal_emplace(position, std::forward<Args>(args)...), true}; + } + } else if (compare_keys(position.key(), key)) { + ++position; + if (position == end() || compare_keys(key, position.key())) { + // {original `position`}.key() < key < {current `position`}.key() + return {internal_emplace(position, std::forward<Args>(args)...), true}; + } + } else { + // position.key() == key + return {position, false}; + } + } + return insert_unique(key, std::forward<Args>(args)...); +} + +template <typename P> +template <typename InputIterator, typename> +void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) { + for (; b != e; ++b) { + insert_hint_unique(end(), params_type::key(*b), *b); + } +} + +template <typename P> +template <typename InputIterator> +void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) { + for (; b != e; ++b) { + init_type value(*b); + insert_hint_unique(end(), params_type::key(value), std::move(value)); + } +} + +template <typename P> +template <typename ValueType> +auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator { + if (empty()) { + mutable_root() = rightmost_ = new_leaf_root_node(1); + } + + iterator iter = internal_upper_bound(key); + if (iter.node == nullptr) { + iter = end(); + } + return internal_emplace(iter, std::forward<ValueType>(v)); +} + +template <typename P> +template <typename ValueType> +auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator { + if (!empty()) { + const key_type &key = params_type::key(v); + if (position == end() || !compare_keys(position.key(), key)) { + if (position == begin() || + !compare_keys(key, std::prev(position).key())) { + // prev.key() <= key <= position.key() + return internal_emplace(position, std::forward<ValueType>(v)); + } + } else { + ++position; + if (position == end() || !compare_keys(position.key(), key)) { + // {original `position`}.key() < key < {current `position`}.key() + return internal_emplace(position, std::forward<ValueType>(v)); + } + } + } + return insert_multi(std::forward<ValueType>(v)); +} + +template <typename P> +template <typename InputIterator> +void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) { + for (; b != e; ++b) { + insert_hint_multi(end(), *b); + } +} + +template <typename P> +auto btree<P>::operator=(const btree &other) -> btree & { + if (this != &other) { + clear(); + + *mutable_key_comp() = other.key_comp(); + if (absl::allocator_traits< + allocator_type>::propagate_on_container_copy_assignment::value) { + *mutable_allocator() = other.allocator(); + } + + copy_or_move_values_in_order(other); + } + return *this; +} + +template <typename P> +auto btree<P>::operator=(btree &&other) noexcept -> btree & { + if (this != &other) { + clear(); + + using std::swap; + if (absl::allocator_traits< + allocator_type>::propagate_on_container_copy_assignment::value) { + // Note: `root_` also contains the allocator and the key comparator. + swap(root_, other.root_); + swap(rightmost_, other.rightmost_); + swap(size_, other.size_); + } else { + if (allocator() == other.allocator()) { + swap(mutable_root(), other.mutable_root()); + swap(*mutable_key_comp(), *other.mutable_key_comp()); + swap(rightmost_, other.rightmost_); + swap(size_, other.size_); + } else { + // We aren't allowed to propagate the allocator and the allocator is + // different so we can't take over its memory. We must move each element + // individually. We need both `other` and `this` to have `other`s key + // comparator while moving the values so we can't swap the key + // comparators. + *mutable_key_comp() = other.key_comp(); + copy_or_move_values_in_order(other); + } + } + } + return *this; +} + +template <typename P> +auto btree<P>::erase(iterator iter) -> iterator { + bool internal_delete = false; + if (!iter.node->leaf()) { + // Deletion of a value on an internal node. First, move the largest value + // from our left child here, then delete that position (in remove_values() + // below). We can get to the largest value from our left child by + // decrementing iter. + iterator internal_iter(iter); + --iter; + assert(iter.node->leaf()); + params_type::move(mutable_allocator(), iter.node->slot(iter.position), + internal_iter.node->slot(internal_iter.position)); + internal_delete = true; + } + + // Delete the key from the leaf. + iter.node->remove_values(iter.position, /*to_erase=*/1, mutable_allocator()); + --size_; + + // We want to return the next value after the one we just erased. If we + // erased from an internal node (internal_delete == true), then the next + // value is ++(++iter). If we erased from a leaf node (internal_delete == + // false) then the next value is ++iter. Note that ++iter may point to an + // internal node and the value in the internal node may move to a leaf node + // (iter.node) when rebalancing is performed at the leaf level. + + iterator res = rebalance_after_delete(iter); + + // If we erased from an internal node, advance the iterator. + if (internal_delete) { + ++res; + } + return res; +} + +template <typename P> +auto btree<P>::rebalance_after_delete(iterator iter) -> iterator { + // Merge/rebalance as we walk back up the tree. + iterator res(iter); + bool first_iteration = true; + for (;;) { + if (iter.node == root()) { + try_shrink(); + if (empty()) { + return end(); + } + break; + } + if (iter.node->count() >= kMinNodeValues) { + break; + } + bool merged = try_merge_or_rebalance(&iter); + // On the first iteration, we should update `res` with `iter` because `res` + // may have been invalidated. + if (first_iteration) { + res = iter; + first_iteration = false; + } + if (!merged) { + break; + } + iter.position = iter.node->position(); + iter.node = iter.node->parent(); + } + + // Adjust our return value. If we're pointing at the end of a node, advance + // the iterator. + if (res.position == res.node->finish()) { + res.position = res.node->finish() - 1; + ++res; + } + + return res; +} + +template <typename P> +auto btree<P>::erase_range(iterator begin, iterator end) + -> std::pair<size_type, iterator> { + difference_type count = std::distance(begin, end); + assert(count >= 0); + + if (count == 0) { + return {0, begin}; + } + + if (count == size_) { + clear(); + return {count, this->end()}; + } + + if (begin.node == end.node) { + assert(end.position > begin.position); + begin.node->remove_values(begin.position, end.position - begin.position, + mutable_allocator()); + size_ -= count; + return {count, rebalance_after_delete(begin)}; + } + + const size_type target_size = size_ - count; + while (size_ > target_size) { + if (begin.node->leaf()) { + const size_type remaining_to_erase = size_ - target_size; + const size_type remaining_in_node = begin.node->finish() - begin.position; + const size_type to_erase = + (std::min)(remaining_to_erase, remaining_in_node); + begin.node->remove_values(begin.position, to_erase, mutable_allocator()); + size_ -= to_erase; + begin = rebalance_after_delete(begin); + } else { + begin = erase(begin); + } + } + return {count, begin}; +} + +template <typename P> +void btree<P>::clear() { + if (!empty()) { + node_type::clear_and_delete(root(), mutable_allocator()); + } + mutable_root() = EmptyNode(); + rightmost_ = EmptyNode(); + size_ = 0; +} + +template <typename P> +void btree<P>::swap(btree &other) { + using std::swap; + if (absl::allocator_traits< + allocator_type>::propagate_on_container_swap::value) { + // Note: `root_` also contains the allocator and the key comparator. + swap(root_, other.root_); + } else { + // It's undefined behavior if the allocators are unequal here. + assert(allocator() == other.allocator()); + swap(mutable_root(), other.mutable_root()); + swap(*mutable_key_comp(), *other.mutable_key_comp()); + } + swap(rightmost_, other.rightmost_); + swap(size_, other.size_); +} + +template <typename P> +void btree<P>::verify() const { + assert(root() != nullptr); + assert(leftmost() != nullptr); + assert(rightmost_ != nullptr); + assert(empty() || size() == internal_verify(root(), nullptr, nullptr)); + assert(leftmost() == (++const_iterator(root(), -1)).node); + assert(rightmost_ == (--const_iterator(root(), root()->finish())).node); + assert(leftmost()->leaf()); + assert(rightmost_->leaf()); +} + +template <typename P> +void btree<P>::rebalance_or_split(iterator *iter) { + node_type *&node = iter->node; + int &insert_position = iter->position; + assert(node->count() == node->max_count()); + assert(kNodeValues == node->max_count()); + + // First try to make room on the node by rebalancing. + node_type *parent = node->parent(); + if (node != root()) { + if (node->position() > parent->start()) { + // Try rebalancing with our left sibling. + node_type *left = parent->child(node->position() - 1); + assert(left->max_count() == kNodeValues); + if (left->count() < kNodeValues) { + // We bias rebalancing based on the position being inserted. If we're + // inserting at the end of the right node then we bias rebalancing to + // fill up the left node. + int to_move = (kNodeValues - left->count()) / + (1 + (insert_position < static_cast<int>(kNodeValues))); + to_move = (std::max)(1, to_move); + + if (insert_position - to_move >= node->start() || + left->count() + to_move < static_cast<int>(kNodeValues)) { + left->rebalance_right_to_left(to_move, node, mutable_allocator()); + + assert(node->max_count() - node->count() == to_move); + insert_position = insert_position - to_move; + if (insert_position < node->start()) { + insert_position = insert_position + left->count() + 1; + node = left; + } + + assert(node->count() < node->max_count()); + return; + } + } + } + + if (node->position() < parent->finish()) { + // Try rebalancing with our right sibling. + node_type *right = parent->child(node->position() + 1); + assert(right->max_count() == kNodeValues); + if (right->count() < kNodeValues) { + // We bias rebalancing based on the position being inserted. If we're + // inserting at the beginning of the left node then we bias rebalancing + // to fill up the right node. + int to_move = (static_cast<int>(kNodeValues) - right->count()) / + (1 + (insert_position > node->start())); + to_move = (std::max)(1, to_move); + + if (insert_position <= node->finish() - to_move || + right->count() + to_move < static_cast<int>(kNodeValues)) { + node->rebalance_left_to_right(to_move, right, mutable_allocator()); + + if (insert_position > node->finish()) { + insert_position = insert_position - node->count() - 1; + node = right; + } + + assert(node->count() < node->max_count()); + return; + } + } + } + + // Rebalancing failed, make sure there is room on the parent node for a new + // value. + assert(parent->max_count() == kNodeValues); + if (parent->count() == kNodeValues) { + iterator parent_iter(node->parent(), node->position()); + rebalance_or_split(&parent_iter); + } + } else { + // Rebalancing not possible because this is the root node. + // Create a new root node and set the current root node as the child of the + // new root. + parent = new_internal_node(parent); + parent->init_child(parent->start(), root()); + mutable_root() = parent; + // If the former root was a leaf node, then it's now the rightmost node. + assert(!parent->start_child()->leaf() || + parent->start_child() == rightmost_); + } + + // Split the node. + node_type *split_node; + if (node->leaf()) { + split_node = new_leaf_node(parent); + node->split(insert_position, split_node, mutable_allocator()); + if (rightmost_ == node) rightmost_ = split_node; + } else { + split_node = new_internal_node(parent); + node->split(insert_position, split_node, mutable_allocator()); + } + + if (insert_position > node->finish()) { + insert_position = insert_position - node->count() - 1; + node = split_node; + } +} + +template <typename P> +void btree<P>::merge_nodes(node_type *left, node_type *right) { + left->merge(right, mutable_allocator()); + if (rightmost_ == right) rightmost_ = left; +} + +template <typename P> +bool btree<P>::try_merge_or_rebalance(iterator *iter) { + node_type *parent = iter->node->parent(); + if (iter->node->position() > parent->start()) { + // Try merging with our left sibling. + node_type *left = parent->child(iter->node->position() - 1); + assert(left->max_count() == kNodeValues); + if (1U + left->count() + iter->node->count() <= kNodeValues) { + iter->position += 1 + left->count(); + merge_nodes(left, iter->node); + iter->node = left; + return true; + } + } + if (iter->node->position() < parent->finish()) { + // Try merging with our right sibling. + node_type *right = parent->child(iter->node->position() + 1); + assert(right->max_count() == kNodeValues); + if (1U + iter->node->count() + right->count() <= kNodeValues) { + merge_nodes(iter->node, right); + return true; + } + // Try rebalancing with our right sibling. We don't perform rebalancing if + // we deleted the first element from iter->node and the node is not + // empty. This is a small optimization for the common pattern of deleting + // from the front of the tree. + if (right->count() > kMinNodeValues && + (iter->node->count() == 0 || iter->position > iter->node->start())) { + int to_move = (right->count() - iter->node->count()) / 2; + to_move = (std::min)(to_move, right->count() - 1); + iter->node->rebalance_right_to_left(to_move, right, mutable_allocator()); + return false; + } + } + if (iter->node->position() > parent->start()) { + // Try rebalancing with our left sibling. We don't perform rebalancing if + // we deleted the last element from iter->node and the node is not + // empty. This is a small optimization for the common pattern of deleting + // from the back of the tree. + node_type *left = parent->child(iter->node->position() - 1); + if (left->count() > kMinNodeValues && + (iter->node->count() == 0 || iter->position < iter->node->finish())) { + int to_move = (left->count() - iter->node->count()) / 2; + to_move = (std::min)(to_move, left->count() - 1); + left->rebalance_left_to_right(to_move, iter->node, mutable_allocator()); + iter->position += to_move; + return false; + } + } + return false; +} + +template <typename P> +void btree<P>::try_shrink() { + node_type *orig_root = root(); + if (orig_root->count() > 0) { + return; + } + // Deleted the last item on the root node, shrink the height of the tree. + if (orig_root->leaf()) { + assert(size() == 0); + mutable_root() = rightmost_ = EmptyNode(); + } else { + node_type *child = orig_root->start_child(); + child->make_root(); + mutable_root() = child; + } + node_type::clear_and_delete(orig_root, mutable_allocator()); +} + +template <typename P> +template <typename IterType> +inline IterType btree<P>::internal_last(IterType iter) { + assert(iter.node != nullptr); + while (iter.position == iter.node->finish()) { + iter.position = iter.node->position(); + iter.node = iter.node->parent(); + if (iter.node->leaf()) { + iter.node = nullptr; + break; + } + } + return iter; +} + +template <typename P> +template <typename... Args> +inline auto btree<P>::internal_emplace(iterator iter, Args &&... args) + -> iterator { + if (!iter.node->leaf()) { + // We can't insert on an internal node. Instead, we'll insert after the + // previous value which is guaranteed to be on a leaf node. + --iter; + ++iter.position; + } + const field_type max_count = iter.node->max_count(); + allocator_type *alloc = mutable_allocator(); + if (iter.node->count() == max_count) { + // Make room in the leaf for the new item. + if (max_count < kNodeValues) { + // Insertion into the root where the root is smaller than the full node + // size. Simply grow the size of the root node. + assert(iter.node == root()); + iter.node = + new_leaf_root_node((std::min<int>)(kNodeValues, 2 * max_count)); + // Transfer the values from the old root to the new root. + node_type *old_root = root(); + node_type *new_root = iter.node; + new_root->transfer_n(old_root->count(), new_root->start(), + old_root->start(), old_root, alloc); + new_root->set_finish(old_root->finish()); + old_root->set_finish(old_root->start()); + node_type::clear_and_delete(old_root, alloc); + mutable_root() = rightmost_ = new_root; + } else { + rebalance_or_split(&iter); + } + } + iter.node->emplace_value(iter.position, alloc, std::forward<Args>(args)...); + ++size_; + return iter; +} + +template <typename P> +template <typename K> +inline auto btree<P>::internal_locate(const K &key) const + -> SearchResult<iterator, is_key_compare_to::value> { + iterator iter(const_cast<node_type *>(root())); + for (;;) { + SearchResult<int, is_key_compare_to::value> res = + iter.node->lower_bound(key, key_comp()); + iter.position = res.value; + if (res.IsEq()) { + return {iter, MatchKind::kEq}; + } + // Note: in the non-key-compare-to case, we don't need to walk all the way + // down the tree if the keys are equal, but determining equality would + // require doing an extra comparison on each node on the way down, and we + // will need to go all the way to the leaf node in the expected case. + if (iter.node->leaf()) { + break; + } + iter.node = iter.node->child(iter.position); + } + // Note: in the non-key-compare-to case, the key may actually be equivalent + // here (and the MatchKind::kNe is ignored). + return {iter, MatchKind::kNe}; +} + +template <typename P> +template <typename K> +auto btree<P>::internal_lower_bound(const K &key) const + -> SearchResult<iterator, is_key_compare_to::value> { + iterator iter(const_cast<node_type *>(root())); + SearchResult<int, is_key_compare_to::value> res; + bool seen_eq = false; + for (;;) { + res = iter.node->lower_bound(key, key_comp()); + iter.position = res.value; + // TODO(ezb): we should be able to terminate early on IsEq() if there can't + // be multiple equivalent keys in container for this lookup type. + if (iter.node->leaf()) { + break; + } + seen_eq = seen_eq || res.IsEq(); + iter.node = iter.node->child(iter.position); + } + if (res.IsEq()) return {iter, MatchKind::kEq}; + return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe}; +} + +template <typename P> +template <typename K> +auto btree<P>::internal_upper_bound(const K &key) const -> iterator { + iterator iter(const_cast<node_type *>(root())); + for (;;) { + iter.position = iter.node->upper_bound(key, key_comp()); + if (iter.node->leaf()) { + break; + } + iter.node = iter.node->child(iter.position); + } + return internal_last(iter); +} + +template <typename P> +template <typename K> +auto btree<P>::internal_find(const K &key) const -> iterator { + SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); + if (res.HasMatch()) { + if (res.IsEq()) { + return res.value; + } + } else { + const iterator iter = internal_last(res.value); + if (iter.node != nullptr && !compare_keys(key, iter.key())) { + return iter; + } + } + return {nullptr, 0}; +} + +template <typename P> +int btree<P>::internal_verify(const node_type *node, const key_type *lo, + const key_type *hi) const { + assert(node->count() > 0); + assert(node->count() <= node->max_count()); + if (lo) { + assert(!compare_keys(node->key(node->start()), *lo)); + } + if (hi) { + assert(!compare_keys(*hi, node->key(node->finish() - 1))); + } + for (int i = node->start() + 1; i < node->finish(); ++i) { + assert(!compare_keys(node->key(i), node->key(i - 1))); + } + int count = node->count(); + if (!node->leaf()) { + for (int i = node->start(); i <= node->finish(); ++i) { + assert(node->child(i) != nullptr); + assert(node->child(i)->parent() == node); + assert(node->child(i)->position() == i); + count += internal_verify(node->child(i), + i == node->start() ? lo : &node->key(i - 1), + i == node->finish() ? hi : &node->key(i)); + } + } + return count; +} + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_BTREE_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/btree_container.h b/third_party/abseil_cpp/absl/container/internal/btree_container.h new file mode 100644 index 000000000000..887eda4122f8 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/btree_container.h @@ -0,0 +1,683 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_ +#define ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_ + +#include <algorithm> +#include <initializer_list> +#include <iterator> +#include <utility> + +#include "absl/base/internal/throw_delegate.h" +#include "absl/container/internal/btree.h" // IWYU pragma: export +#include "absl/container/internal/common.h" +#include "absl/memory/memory.h" +#include "absl/meta/type_traits.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +// A common base class for btree_set, btree_map, btree_multiset, and +// btree_multimap. +template <typename Tree> +class btree_container { + using params_type = typename Tree::params_type; + + protected: + // Alias used for heterogeneous lookup functions. + // `key_arg<K>` evaluates to `K` when the functors are transparent and to + // `key_type` otherwise. It permits template argument deduction on `K` for the + // transparent case. + template <class K> + using key_arg = + typename KeyArg<IsTransparent<typename Tree::key_compare>::value>:: + template type<K, typename Tree::key_type>; + + public: + using key_type = typename Tree::key_type; + using value_type = typename Tree::value_type; + using size_type = typename Tree::size_type; + using difference_type = typename Tree::difference_type; + using key_compare = typename Tree::key_compare; + using value_compare = typename Tree::value_compare; + using allocator_type = typename Tree::allocator_type; + using reference = typename Tree::reference; + using const_reference = typename Tree::const_reference; + using pointer = typename Tree::pointer; + using const_pointer = typename Tree::const_pointer; + using iterator = typename Tree::iterator; + using const_iterator = typename Tree::const_iterator; + using reverse_iterator = typename Tree::reverse_iterator; + using const_reverse_iterator = typename Tree::const_reverse_iterator; + using node_type = typename Tree::node_handle_type; + + // Constructors/assignments. + btree_container() : tree_(key_compare(), allocator_type()) {} + explicit btree_container(const key_compare &comp, + const allocator_type &alloc = allocator_type()) + : tree_(comp, alloc) {} + explicit btree_container(const allocator_type &alloc) + : tree_(key_compare(), alloc) {} + + btree_container(const btree_container &other) + : btree_container(other, absl::allocator_traits<allocator_type>:: + select_on_container_copy_construction( + other.get_allocator())) {} + btree_container(const btree_container &other, const allocator_type &alloc) + : tree_(other.tree_, alloc) {} + + btree_container(btree_container &&other) noexcept( + std::is_nothrow_move_constructible<Tree>::value) = default; + btree_container(btree_container &&other, const allocator_type &alloc) + : tree_(std::move(other.tree_), alloc) {} + + btree_container &operator=(const btree_container &other) = default; + btree_container &operator=(btree_container &&other) noexcept( + std::is_nothrow_move_assignable<Tree>::value) = default; + + // Iterator routines. + iterator begin() { return tree_.begin(); } + const_iterator begin() const { return tree_.begin(); } + const_iterator cbegin() const { return tree_.begin(); } + iterator end() { return tree_.end(); } + const_iterator end() const { return tree_.end(); } + const_iterator cend() const { return tree_.end(); } + reverse_iterator rbegin() { return tree_.rbegin(); } + const_reverse_iterator rbegin() const { return tree_.rbegin(); } + const_reverse_iterator crbegin() const { return tree_.rbegin(); } + reverse_iterator rend() { return tree_.rend(); } + const_reverse_iterator rend() const { return tree_.rend(); } + const_reverse_iterator crend() const { return tree_.rend(); } + + // Lookup routines. + template <typename K = key_type> + size_type count(const key_arg<K> &key) const { + auto equal_range = this->equal_range(key); + return std::distance(equal_range.first, equal_range.second); + } + template <typename K = key_type> + iterator find(const key_arg<K> &key) { + return tree_.find(key); + } + template <typename K = key_type> + const_iterator find(const key_arg<K> &key) const { + return tree_.find(key); + } + template <typename K = key_type> + bool contains(const key_arg<K> &key) const { + return find(key) != end(); + } + template <typename K = key_type> + iterator lower_bound(const key_arg<K> &key) { + return tree_.lower_bound(key); + } + template <typename K = key_type> + const_iterator lower_bound(const key_arg<K> &key) const { + return tree_.lower_bound(key); + } + template <typename K = key_type> + iterator upper_bound(const key_arg<K> &key) { + return tree_.upper_bound(key); + } + template <typename K = key_type> + const_iterator upper_bound(const key_arg<K> &key) const { + return tree_.upper_bound(key); + } + template <typename K = key_type> + std::pair<iterator, iterator> equal_range(const key_arg<K> &key) { + return tree_.equal_range(key); + } + template <typename K = key_type> + std::pair<const_iterator, const_iterator> equal_range( + const key_arg<K> &key) const { + return tree_.equal_range(key); + } + + // Deletion routines. Note that there is also a deletion routine that is + // specific to btree_set_container/btree_multiset_container. + + // Erase the specified iterator from the btree. The iterator must be valid + // (i.e. not equal to end()). Return an iterator pointing to the node after + // the one that was erased (or end() if none exists). + iterator erase(const_iterator iter) { return tree_.erase(iterator(iter)); } + iterator erase(iterator iter) { return tree_.erase(iter); } + iterator erase(const_iterator first, const_iterator last) { + return tree_.erase_range(iterator(first), iterator(last)).second; + } + template <typename K = key_type> + size_type erase(const key_arg<K> &key) { + auto equal_range = this->equal_range(key); + return tree_.erase_range(equal_range.first, equal_range.second).first; + } + + // Extract routines. + node_type extract(iterator position) { + // Use Move instead of Transfer, because the rebalancing code expects to + // have a valid object to scribble metadata bits on top of. + auto node = CommonAccess::Move<node_type>(get_allocator(), position.slot()); + erase(position); + return node; + } + node_type extract(const_iterator position) { + return extract(iterator(position)); + } + + // Utility routines. + void clear() { tree_.clear(); } + void swap(btree_container &other) { tree_.swap(other.tree_); } + void verify() const { tree_.verify(); } + + // Size routines. + size_type size() const { return tree_.size(); } + size_type max_size() const { return tree_.max_size(); } + bool empty() const { return tree_.empty(); } + + friend bool operator==(const btree_container &x, const btree_container &y) { + if (x.size() != y.size()) return false; + return std::equal(x.begin(), x.end(), y.begin()); + } + + friend bool operator!=(const btree_container &x, const btree_container &y) { + return !(x == y); + } + + friend bool operator<(const btree_container &x, const btree_container &y) { + return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); + } + + friend bool operator>(const btree_container &x, const btree_container &y) { + return y < x; + } + + friend bool operator<=(const btree_container &x, const btree_container &y) { + return !(y < x); + } + + friend bool operator>=(const btree_container &x, const btree_container &y) { + return !(x < y); + } + + // The allocator used by the btree. + allocator_type get_allocator() const { return tree_.get_allocator(); } + + // The key comparator used by the btree. + key_compare key_comp() const { return tree_.key_comp(); } + value_compare value_comp() const { return tree_.value_comp(); } + + // Support absl::Hash. + template <typename State> + friend State AbslHashValue(State h, const btree_container &b) { + for (const auto &v : b) { + h = State::combine(std::move(h), v); + } + return State::combine(std::move(h), b.size()); + } + + protected: + Tree tree_; +}; + +// A common base class for btree_set and btree_map. +template <typename Tree> +class btree_set_container : public btree_container<Tree> { + using super_type = btree_container<Tree>; + using params_type = typename Tree::params_type; + using init_type = typename params_type::init_type; + using is_key_compare_to = typename params_type::is_key_compare_to; + friend class BtreeNodePeer; + + protected: + template <class K> + using key_arg = typename super_type::template key_arg<K>; + + public: + using key_type = typename Tree::key_type; + using value_type = typename Tree::value_type; + using size_type = typename Tree::size_type; + using key_compare = typename Tree::key_compare; + using allocator_type = typename Tree::allocator_type; + using iterator = typename Tree::iterator; + using const_iterator = typename Tree::const_iterator; + using node_type = typename super_type::node_type; + using insert_return_type = InsertReturnType<iterator, node_type>; + + // Inherit constructors. + using super_type::super_type; + btree_set_container() {} + + // Range constructors. + template <class InputIterator> + btree_set_container(InputIterator b, InputIterator e, + const key_compare &comp = key_compare(), + const allocator_type &alloc = allocator_type()) + : super_type(comp, alloc) { + insert(b, e); + } + template <class InputIterator> + btree_set_container(InputIterator b, InputIterator e, + const allocator_type &alloc) + : btree_set_container(b, e, key_compare(), alloc) {} + + // Initializer list constructors. + btree_set_container(std::initializer_list<init_type> init, + const key_compare &comp = key_compare(), + const allocator_type &alloc = allocator_type()) + : btree_set_container(init.begin(), init.end(), comp, alloc) {} + btree_set_container(std::initializer_list<init_type> init, + const allocator_type &alloc) + : btree_set_container(init.begin(), init.end(), alloc) {} + + // Insertion routines. + std::pair<iterator, bool> insert(const value_type &v) { + return this->tree_.insert_unique(params_type::key(v), v); + } + std::pair<iterator, bool> insert(value_type &&v) { + return this->tree_.insert_unique(params_type::key(v), std::move(v)); + } + template <typename... Args> + std::pair<iterator, bool> emplace(Args &&... args) { + init_type v(std::forward<Args>(args)...); + return this->tree_.insert_unique(params_type::key(v), std::move(v)); + } + iterator insert(const_iterator hint, const value_type &v) { + return this->tree_ + .insert_hint_unique(iterator(hint), params_type::key(v), v) + .first; + } + iterator insert(const_iterator hint, value_type &&v) { + return this->tree_ + .insert_hint_unique(iterator(hint), params_type::key(v), std::move(v)) + .first; + } + template <typename... Args> + iterator emplace_hint(const_iterator hint, Args &&... args) { + init_type v(std::forward<Args>(args)...); + return this->tree_ + .insert_hint_unique(iterator(hint), params_type::key(v), std::move(v)) + .first; + } + template <typename InputIterator> + void insert(InputIterator b, InputIterator e) { + this->tree_.insert_iterator_unique(b, e, 0); + } + void insert(std::initializer_list<init_type> init) { + this->tree_.insert_iterator_unique(init.begin(), init.end(), 0); + } + insert_return_type insert(node_type &&node) { + if (!node) return {this->end(), false, node_type()}; + std::pair<iterator, bool> res = + this->tree_.insert_unique(params_type::key(CommonAccess::GetSlot(node)), + CommonAccess::GetSlot(node)); + if (res.second) { + CommonAccess::Destroy(&node); + return {res.first, true, node_type()}; + } else { + return {res.first, false, std::move(node)}; + } + } + iterator insert(const_iterator hint, node_type &&node) { + if (!node) return this->end(); + std::pair<iterator, bool> res = this->tree_.insert_hint_unique( + iterator(hint), params_type::key(CommonAccess::GetSlot(node)), + CommonAccess::GetSlot(node)); + if (res.second) CommonAccess::Destroy(&node); + return res.first; + } + + // Node extraction routines. + // TODO(ezb): when the comparator is heterogeneous and has different + // equivalence classes for different lookup types, we should extract the first + // equivalent value if there are multiple. + template <typename K = key_type> + node_type extract(const key_arg<K> &key) { + auto it = this->find(key); + return it == this->end() ? node_type() : extract(it); + } + using super_type::extract; + + // Merge routines. + // Moves elements from `src` into `this`. If the element already exists in + // `this`, it is left unmodified in `src`. + template < + typename T, + typename absl::enable_if_t< + absl::conjunction< + std::is_same<value_type, typename T::value_type>, + std::is_same<allocator_type, typename T::allocator_type>, + std::is_same<typename params_type::is_map_container, + typename T::params_type::is_map_container>>::value, + int> = 0> + void merge(btree_container<T> &src) { // NOLINT + for (auto src_it = src.begin(); src_it != src.end();) { + if (insert(std::move(params_type::element(src_it.slot()))).second) { + src_it = src.erase(src_it); + } else { + ++src_it; + } + } + } + + template < + typename T, + typename absl::enable_if_t< + absl::conjunction< + std::is_same<value_type, typename T::value_type>, + std::is_same<allocator_type, typename T::allocator_type>, + std::is_same<typename params_type::is_map_container, + typename T::params_type::is_map_container>>::value, + int> = 0> + void merge(btree_container<T> &&src) { + merge(src); + } +}; + +// Base class for btree_map. +template <typename Tree> +class btree_map_container : public btree_set_container<Tree> { + using super_type = btree_set_container<Tree>; + using params_type = typename Tree::params_type; + friend class BtreeNodePeer; + + private: + template <class K> + using key_arg = typename super_type::template key_arg<K>; + + public: + using key_type = typename Tree::key_type; + using mapped_type = typename params_type::mapped_type; + using value_type = typename Tree::value_type; + using key_compare = typename Tree::key_compare; + using allocator_type = typename Tree::allocator_type; + using iterator = typename Tree::iterator; + using const_iterator = typename Tree::const_iterator; + + // Inherit constructors. + using super_type::super_type; + btree_map_container() {} + + // Insertion routines. + // Note: the nullptr template arguments and extra `const M&` overloads allow + // for supporting bitfield arguments. + template <typename K = key_type, class M> + std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k, + const M &obj) { + return insert_or_assign_impl(k, obj); + } + template <typename K = key_type, class M, K * = nullptr> + std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, const M &obj) { + return insert_or_assign_impl(std::forward<K>(k), obj); + } + template <typename K = key_type, class M, M * = nullptr> + std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k, M &&obj) { + return insert_or_assign_impl(k, std::forward<M>(obj)); + } + template <typename K = key_type, class M, K * = nullptr, M * = nullptr> + std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, M &&obj) { + return insert_or_assign_impl(std::forward<K>(k), std::forward<M>(obj)); + } + template <typename K = key_type, class M> + iterator insert_or_assign(const_iterator hint, const key_arg<K> &k, + const M &obj) { + return insert_or_assign_hint_impl(hint, k, obj); + } + template <typename K = key_type, class M, K * = nullptr> + iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, const M &obj) { + return insert_or_assign_hint_impl(hint, std::forward<K>(k), obj); + } + template <typename K = key_type, class M, M * = nullptr> + iterator insert_or_assign(const_iterator hint, const key_arg<K> &k, M &&obj) { + return insert_or_assign_hint_impl(hint, k, std::forward<M>(obj)); + } + template <typename K = key_type, class M, K * = nullptr, M * = nullptr> + iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, M &&obj) { + return insert_or_assign_hint_impl(hint, std::forward<K>(k), + std::forward<M>(obj)); + } + + template <typename K = key_type, typename... Args, + typename absl::enable_if_t< + !std::is_convertible<K, const_iterator>::value, int> = 0> + std::pair<iterator, bool> try_emplace(const key_arg<K> &k, Args &&... args) { + return try_emplace_impl(k, std::forward<Args>(args)...); + } + template <typename K = key_type, typename... Args, + typename absl::enable_if_t< + !std::is_convertible<K, const_iterator>::value, int> = 0> + std::pair<iterator, bool> try_emplace(key_arg<K> &&k, Args &&... args) { + return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...); + } + template <typename K = key_type, typename... Args> + iterator try_emplace(const_iterator hint, const key_arg<K> &k, + Args &&... args) { + return try_emplace_hint_impl(hint, k, std::forward<Args>(args)...); + } + template <typename K = key_type, typename... Args> + iterator try_emplace(const_iterator hint, key_arg<K> &&k, Args &&... args) { + return try_emplace_hint_impl(hint, std::forward<K>(k), + std::forward<Args>(args)...); + } + + template <typename K = key_type> + mapped_type &operator[](const key_arg<K> &k) { + return try_emplace(k).first->second; + } + template <typename K = key_type> + mapped_type &operator[](key_arg<K> &&k) { + return try_emplace(std::forward<K>(k)).first->second; + } + + template <typename K = key_type> + mapped_type &at(const key_arg<K> &key) { + auto it = this->find(key); + if (it == this->end()) + base_internal::ThrowStdOutOfRange("absl::btree_map::at"); + return it->second; + } + template <typename K = key_type> + const mapped_type &at(const key_arg<K> &key) const { + auto it = this->find(key); + if (it == this->end()) + base_internal::ThrowStdOutOfRange("absl::btree_map::at"); + return it->second; + } + + private: + // Note: when we call `std::forward<M>(obj)` twice, it's safe because + // insert_unique/insert_hint_unique are guaranteed to not consume `obj` when + // `ret.second` is false. + template <class K, class M> + std::pair<iterator, bool> insert_or_assign_impl(K &&k, M &&obj) { + const std::pair<iterator, bool> ret = + this->tree_.insert_unique(k, std::forward<K>(k), std::forward<M>(obj)); + if (!ret.second) ret.first->second = std::forward<M>(obj); + return ret; + } + template <class K, class M> + iterator insert_or_assign_hint_impl(const_iterator hint, K &&k, M &&obj) { + const std::pair<iterator, bool> ret = this->tree_.insert_hint_unique( + iterator(hint), k, std::forward<K>(k), std::forward<M>(obj)); + if (!ret.second) ret.first->second = std::forward<M>(obj); + return ret.first; + } + + template <class K, class... Args> + std::pair<iterator, bool> try_emplace_impl(K &&k, Args &&... args) { + return this->tree_.insert_unique( + k, std::piecewise_construct, std::forward_as_tuple(std::forward<K>(k)), + std::forward_as_tuple(std::forward<Args>(args)...)); + } + template <class K, class... Args> + iterator try_emplace_hint_impl(const_iterator hint, K &&k, Args &&... args) { + return this->tree_ + .insert_hint_unique(iterator(hint), k, std::piecewise_construct, + std::forward_as_tuple(std::forward<K>(k)), + std::forward_as_tuple(std::forward<Args>(args)...)) + .first; + } +}; + +// A common base class for btree_multiset and btree_multimap. +template <typename Tree> +class btree_multiset_container : public btree_container<Tree> { + using super_type = btree_container<Tree>; + using params_type = typename Tree::params_type; + using init_type = typename params_type::init_type; + using is_key_compare_to = typename params_type::is_key_compare_to; + + template <class K> + using key_arg = typename super_type::template key_arg<K>; + + public: + using key_type = typename Tree::key_type; + using value_type = typename Tree::value_type; + using size_type = typename Tree::size_type; + using key_compare = typename Tree::key_compare; + using allocator_type = typename Tree::allocator_type; + using iterator = typename Tree::iterator; + using const_iterator = typename Tree::const_iterator; + using node_type = typename super_type::node_type; + + // Inherit constructors. + using super_type::super_type; + btree_multiset_container() {} + + // Range constructors. + template <class InputIterator> + btree_multiset_container(InputIterator b, InputIterator e, + const key_compare &comp = key_compare(), + const allocator_type &alloc = allocator_type()) + : super_type(comp, alloc) { + insert(b, e); + } + template <class InputIterator> + btree_multiset_container(InputIterator b, InputIterator e, + const allocator_type &alloc) + : btree_multiset_container(b, e, key_compare(), alloc) {} + + // Initializer list constructors. + btree_multiset_container(std::initializer_list<init_type> init, + const key_compare &comp = key_compare(), + const allocator_type &alloc = allocator_type()) + : btree_multiset_container(init.begin(), init.end(), comp, alloc) {} + btree_multiset_container(std::initializer_list<init_type> init, + const allocator_type &alloc) + : btree_multiset_container(init.begin(), init.end(), alloc) {} + + // Insertion routines. + iterator insert(const value_type &v) { return this->tree_.insert_multi(v); } + iterator insert(value_type &&v) { + return this->tree_.insert_multi(std::move(v)); + } + iterator insert(const_iterator hint, const value_type &v) { + return this->tree_.insert_hint_multi(iterator(hint), v); + } + iterator insert(const_iterator hint, value_type &&v) { + return this->tree_.insert_hint_multi(iterator(hint), std::move(v)); + } + template <typename InputIterator> + void insert(InputIterator b, InputIterator e) { + this->tree_.insert_iterator_multi(b, e); + } + void insert(std::initializer_list<init_type> init) { + this->tree_.insert_iterator_multi(init.begin(), init.end()); + } + template <typename... Args> + iterator emplace(Args &&... args) { + return this->tree_.insert_multi(init_type(std::forward<Args>(args)...)); + } + template <typename... Args> + iterator emplace_hint(const_iterator hint, Args &&... args) { + return this->tree_.insert_hint_multi( + iterator(hint), init_type(std::forward<Args>(args)...)); + } + iterator insert(node_type &&node) { + if (!node) return this->end(); + iterator res = + this->tree_.insert_multi(params_type::key(CommonAccess::GetSlot(node)), + CommonAccess::GetSlot(node)); + CommonAccess::Destroy(&node); + return res; + } + iterator insert(const_iterator hint, node_type &&node) { + if (!node) return this->end(); + iterator res = this->tree_.insert_hint_multi( + iterator(hint), + std::move(params_type::element(CommonAccess::GetSlot(node)))); + CommonAccess::Destroy(&node); + return res; + } + + // Node extraction routines. + // TODO(ezb): we are supposed to extract the first equivalent key if there are + // multiple, but this isn't guaranteed to extract the first one. + template <typename K = key_type> + node_type extract(const key_arg<K> &key) { + auto it = this->find(key); + return it == this->end() ? node_type() : extract(it); + } + using super_type::extract; + + // Merge routines. + // Moves all elements from `src` into `this`. + template < + typename T, + typename absl::enable_if_t< + absl::conjunction< + std::is_same<value_type, typename T::value_type>, + std::is_same<allocator_type, typename T::allocator_type>, + std::is_same<typename params_type::is_map_container, + typename T::params_type::is_map_container>>::value, + int> = 0> + void merge(btree_container<T> &src) { // NOLINT + for (auto src_it = src.begin(), end = src.end(); src_it != end; ++src_it) { + insert(std::move(params_type::element(src_it.slot()))); + } + src.clear(); + } + + template < + typename T, + typename absl::enable_if_t< + absl::conjunction< + std::is_same<value_type, typename T::value_type>, + std::is_same<allocator_type, typename T::allocator_type>, + std::is_same<typename params_type::is_map_container, + typename T::params_type::is_map_container>>::value, + int> = 0> + void merge(btree_container<T> &&src) { + merge(src); + } +}; + +// A base class for btree_multimap. +template <typename Tree> +class btree_multimap_container : public btree_multiset_container<Tree> { + using super_type = btree_multiset_container<Tree>; + using params_type = typename Tree::params_type; + + public: + using mapped_type = typename params_type::mapped_type; + + // Inherit constructors. + using super_type::super_type; + btree_multimap_container() {} +}; + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/common.h b/third_party/abseil_cpp/absl/container/internal/common.h new file mode 100644 index 000000000000..030e9d4ab07d --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/common.h @@ -0,0 +1,206 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_H_ +#define ABSL_CONTAINER_INTERNAL_CONTAINER_H_ + +#include <cassert> +#include <type_traits> + +#include "absl/meta/type_traits.h" +#include "absl/types/optional.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <class, class = void> +struct IsTransparent : std::false_type {}; +template <class T> +struct IsTransparent<T, absl::void_t<typename T::is_transparent>> + : std::true_type {}; + +template <bool is_transparent> +struct KeyArg { + // Transparent. Forward `K`. + template <typename K, typename key_type> + using type = K; +}; + +template <> +struct KeyArg<false> { + // Not transparent. Always use `key_type`. + template <typename K, typename key_type> + using type = key_type; +}; + +// The node_handle concept from C++17. +// We specialize node_handle for sets and maps. node_handle_base holds the +// common API of both. +template <typename PolicyTraits, typename Alloc> +class node_handle_base { + protected: + using slot_type = typename PolicyTraits::slot_type; + + public: + using allocator_type = Alloc; + + constexpr node_handle_base() = default; + node_handle_base(node_handle_base&& other) noexcept { + *this = std::move(other); + } + ~node_handle_base() { destroy(); } + node_handle_base& operator=(node_handle_base&& other) noexcept { + destroy(); + if (!other.empty()) { + alloc_ = other.alloc_; + PolicyTraits::transfer(alloc(), slot(), other.slot()); + other.reset(); + } + return *this; + } + + bool empty() const noexcept { return !alloc_; } + explicit operator bool() const noexcept { return !empty(); } + allocator_type get_allocator() const { return *alloc_; } + + protected: + friend struct CommonAccess; + + struct transfer_tag_t {}; + node_handle_base(transfer_tag_t, const allocator_type& a, slot_type* s) + : alloc_(a) { + PolicyTraits::transfer(alloc(), slot(), s); + } + + struct move_tag_t {}; + node_handle_base(move_tag_t, const allocator_type& a, slot_type* s) + : alloc_(a) { + PolicyTraits::construct(alloc(), slot(), s); + } + + void destroy() { + if (!empty()) { + PolicyTraits::destroy(alloc(), slot()); + reset(); + } + } + + void reset() { + assert(alloc_.has_value()); + alloc_ = absl::nullopt; + } + + slot_type* slot() const { + assert(!empty()); + return reinterpret_cast<slot_type*>(std::addressof(slot_space_)); + } + allocator_type* alloc() { return std::addressof(*alloc_); } + + private: + absl::optional<allocator_type> alloc_ = {}; + alignas(slot_type) mutable unsigned char slot_space_[sizeof(slot_type)] = {}; +}; + +// For sets. +template <typename Policy, typename PolicyTraits, typename Alloc, + typename = void> +class node_handle : public node_handle_base<PolicyTraits, Alloc> { + using Base = node_handle_base<PolicyTraits, Alloc>; + + public: + using value_type = typename PolicyTraits::value_type; + + constexpr node_handle() {} + + value_type& value() const { return PolicyTraits::element(this->slot()); } + + private: + friend struct CommonAccess; + + using Base::Base; +}; + +// For maps. +template <typename Policy, typename PolicyTraits, typename Alloc> +class node_handle<Policy, PolicyTraits, Alloc, + absl::void_t<typename Policy::mapped_type>> + : public node_handle_base<PolicyTraits, Alloc> { + using Base = node_handle_base<PolicyTraits, Alloc>; + using slot_type = typename PolicyTraits::slot_type; + + public: + using key_type = typename Policy::key_type; + using mapped_type = typename Policy::mapped_type; + + constexpr node_handle() {} + + // When C++17 is available, we can use std::launder to provide mutable + // access to the key. Otherwise, we provide const access. + auto key() const + -> decltype(PolicyTraits::mutable_key(std::declval<slot_type*>())) { + return PolicyTraits::mutable_key(this->slot()); + } + + mapped_type& mapped() const { + return PolicyTraits::value(&PolicyTraits::element(this->slot())); + } + + private: + friend struct CommonAccess; + + using Base::Base; +}; + +// Provide access to non-public node-handle functions. +struct CommonAccess { + template <typename Node> + static auto GetSlot(const Node& node) -> decltype(node.slot()) { + return node.slot(); + } + + template <typename Node> + static void Destroy(Node* node) { + node->destroy(); + } + + template <typename Node> + static void Reset(Node* node) { + node->reset(); + } + + template <typename T, typename... Args> + static T Transfer(Args&&... args) { + return T(typename T::transfer_tag_t{}, std::forward<Args>(args)...); + } + + template <typename T, typename... Args> + static T Move(Args&&... args) { + return T(typename T::move_tag_t{}, std::forward<Args>(args)...); + } +}; + +// Implement the insert_return_type<> concept of C++17. +template <class Iterator, class NodeType> +struct InsertReturnType { + Iterator position; + bool inserted; + NodeType node; +}; + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_CONTAINER_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/compressed_tuple.h b/third_party/abseil_cpp/absl/container/internal/compressed_tuple.h new file mode 100644 index 000000000000..5ebe16494249 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/compressed_tuple.h @@ -0,0 +1,290 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// Helper class to perform the Empty Base Optimization. +// Ts can contain classes and non-classes, empty or not. For the ones that +// are empty classes, we perform the optimization. If all types in Ts are empty +// classes, then CompressedTuple<Ts...> is itself an empty class. +// +// To access the members, use member get<N>() function. +// +// Eg: +// absl::container_internal::CompressedTuple<int, T1, T2, T3> value(7, t1, t2, +// t3); +// assert(value.get<0>() == 7); +// T1& t1 = value.get<1>(); +// const T2& t2 = value.get<2>(); +// ... +// +// https://en.cppreference.com/w/cpp/language/ebo + +#ifndef ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_ +#define ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_ + +#include <initializer_list> +#include <tuple> +#include <type_traits> +#include <utility> + +#include "absl/utility/utility.h" + +#if defined(_MSC_VER) && !defined(__NVCC__) +// We need to mark these classes with this declspec to ensure that +// CompressedTuple happens. +#define ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC __declspec(empty_bases) +#else +#define ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC +#endif + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <typename... Ts> +class CompressedTuple; + +namespace internal_compressed_tuple { + +template <typename D, size_t I> +struct Elem; +template <typename... B, size_t I> +struct Elem<CompressedTuple<B...>, I> + : std::tuple_element<I, std::tuple<B...>> {}; +template <typename D, size_t I> +using ElemT = typename Elem<D, I>::type; + +// Use the __is_final intrinsic if available. Where it's not available, classes +// declared with the 'final' specifier cannot be used as CompressedTuple +// elements. +// TODO(sbenza): Replace this with std::is_final in C++14. +template <typename T> +constexpr bool IsFinal() { +#if defined(__clang__) || defined(__GNUC__) + return __is_final(T); +#else + return false; +#endif +} + +// We can't use EBCO on other CompressedTuples because that would mean that we +// derive from multiple Storage<> instantiations with the same I parameter, +// and potentially from multiple identical Storage<> instantiations. So anytime +// we use type inheritance rather than encapsulation, we mark +// CompressedTupleImpl, to make this easy to detect. +struct uses_inheritance {}; + +template <typename T> +constexpr bool ShouldUseBase() { + return std::is_class<T>::value && std::is_empty<T>::value && !IsFinal<T>() && + !std::is_base_of<uses_inheritance, T>::value; +} + +// The storage class provides two specializations: +// - For empty classes, it stores T as a base class. +// - For everything else, it stores T as a member. +template <typename T, size_t I, +#if defined(_MSC_VER) + bool UseBase = + ShouldUseBase<typename std::enable_if<true, T>::type>()> +#else + bool UseBase = ShouldUseBase<T>()> +#endif +struct Storage { + T value; + constexpr Storage() = default; + template <typename V> + explicit constexpr Storage(absl::in_place_t, V&& v) + : value(absl::forward<V>(v)) {} + constexpr const T& get() const& { return value; } + T& get() & { return value; } + constexpr const T&& get() const&& { return absl::move(*this).value; } + T&& get() && { return std::move(*this).value; } +}; + +template <typename T, size_t I> +struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC Storage<T, I, true> : T { + constexpr Storage() = default; + + template <typename V> + explicit constexpr Storage(absl::in_place_t, V&& v) + : T(absl::forward<V>(v)) {} + + constexpr const T& get() const& { return *this; } + T& get() & { return *this; } + constexpr const T&& get() const&& { return absl::move(*this); } + T&& get() && { return std::move(*this); } +}; + +template <typename D, typename I, bool ShouldAnyUseBase> +struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl; + +template <typename... Ts, size_t... I, bool ShouldAnyUseBase> +struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl< + CompressedTuple<Ts...>, absl::index_sequence<I...>, ShouldAnyUseBase> + // We use the dummy identity function through std::integral_constant to + // convince MSVC of accepting and expanding I in that context. Without it + // you would get: + // error C3548: 'I': parameter pack cannot be used in this context + : uses_inheritance, + Storage<Ts, std::integral_constant<size_t, I>::value>... { + constexpr CompressedTupleImpl() = default; + template <typename... Vs> + explicit constexpr CompressedTupleImpl(absl::in_place_t, Vs&&... args) + : Storage<Ts, I>(absl::in_place, absl::forward<Vs>(args))... {} + friend CompressedTuple<Ts...>; +}; + +template <typename... Ts, size_t... I> +struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl< + CompressedTuple<Ts...>, absl::index_sequence<I...>, false> + // We use the dummy identity function as above... + : Storage<Ts, std::integral_constant<size_t, I>::value, false>... { + constexpr CompressedTupleImpl() = default; + template <typename... Vs> + explicit constexpr CompressedTupleImpl(absl::in_place_t, Vs&&... args) + : Storage<Ts, I, false>(absl::in_place, absl::forward<Vs>(args))... {} + friend CompressedTuple<Ts...>; +}; + +std::false_type Or(std::initializer_list<std::false_type>); +std::true_type Or(std::initializer_list<bool>); + +// MSVC requires this to be done separately rather than within the declaration +// of CompressedTuple below. +template <typename... Ts> +constexpr bool ShouldAnyUseBase() { + return decltype( + Or({std::integral_constant<bool, ShouldUseBase<Ts>()>()...})){}; +} + +template <typename T, typename V> +using TupleElementMoveConstructible = + typename std::conditional<std::is_reference<T>::value, + std::is_convertible<V, T>, + std::is_constructible<T, V&&>>::type; + +template <bool SizeMatches, class T, class... Vs> +struct TupleMoveConstructible : std::false_type {}; + +template <class... Ts, class... Vs> +struct TupleMoveConstructible<true, CompressedTuple<Ts...>, Vs...> + : std::integral_constant< + bool, absl::conjunction< + TupleElementMoveConstructible<Ts, Vs&&>...>::value> {}; + +template <typename T> +struct compressed_tuple_size; + +template <typename... Es> +struct compressed_tuple_size<CompressedTuple<Es...>> + : public std::integral_constant<std::size_t, sizeof...(Es)> {}; + +template <class T, class... Vs> +struct TupleItemsMoveConstructible + : std::integral_constant< + bool, TupleMoveConstructible<compressed_tuple_size<T>::value == + sizeof...(Vs), + T, Vs...>::value> {}; + +} // namespace internal_compressed_tuple + +// Helper class to perform the Empty Base Class Optimization. +// Ts can contain classes and non-classes, empty or not. For the ones that +// are empty classes, we perform the CompressedTuple. If all types in Ts are +// empty classes, then CompressedTuple<Ts...> is itself an empty class. (This +// does not apply when one or more of those empty classes is itself an empty +// CompressedTuple.) +// +// To access the members, use member .get<N>() function. +// +// Eg: +// absl::container_internal::CompressedTuple<int, T1, T2, T3> value(7, t1, t2, +// t3); +// assert(value.get<0>() == 7); +// T1& t1 = value.get<1>(); +// const T2& t2 = value.get<2>(); +// ... +// +// https://en.cppreference.com/w/cpp/language/ebo +template <typename... Ts> +class ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTuple + : private internal_compressed_tuple::CompressedTupleImpl< + CompressedTuple<Ts...>, absl::index_sequence_for<Ts...>, + internal_compressed_tuple::ShouldAnyUseBase<Ts...>()> { + private: + template <int I> + using ElemT = internal_compressed_tuple::ElemT<CompressedTuple, I>; + + template <int I> + using StorageT = internal_compressed_tuple::Storage<ElemT<I>, I>; + + public: + // There seems to be a bug in MSVC dealing in which using '=default' here will + // cause the compiler to ignore the body of other constructors. The work- + // around is to explicitly implement the default constructor. +#if defined(_MSC_VER) + constexpr CompressedTuple() : CompressedTuple::CompressedTupleImpl() {} +#else + constexpr CompressedTuple() = default; +#endif + explicit constexpr CompressedTuple(const Ts&... base) + : CompressedTuple::CompressedTupleImpl(absl::in_place, base...) {} + + template <typename First, typename... Vs, + absl::enable_if_t< + absl::conjunction< + // Ensure we are not hiding default copy/move constructors. + absl::negation<std::is_same<void(CompressedTuple), + void(absl::decay_t<First>)>>, + internal_compressed_tuple::TupleItemsMoveConstructible< + CompressedTuple<Ts...>, First, Vs...>>::value, + bool> = true> + explicit constexpr CompressedTuple(First&& first, Vs&&... base) + : CompressedTuple::CompressedTupleImpl(absl::in_place, + absl::forward<First>(first), + absl::forward<Vs>(base)...) {} + + template <int I> + ElemT<I>& get() & { + return StorageT<I>::get(); + } + + template <int I> + constexpr const ElemT<I>& get() const& { + return StorageT<I>::get(); + } + + template <int I> + ElemT<I>&& get() && { + return std::move(*this).StorageT<I>::get(); + } + + template <int I> + constexpr const ElemT<I>&& get() const&& { + return absl::move(*this).StorageT<I>::get(); + } +}; + +// Explicit specialization for a zero-element tuple +// (needed to avoid ambiguous overloads for the default constructor). +template <> +class ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTuple<> {}; + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#undef ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC + +#endif // ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/compressed_tuple_test.cc b/third_party/abseil_cpp/absl/container/internal/compressed_tuple_test.cc new file mode 100644 index 000000000000..62a7483ee311 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/compressed_tuple_test.cc @@ -0,0 +1,409 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/compressed_tuple.h" + +#include <memory> +#include <string> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/container/internal/test_instance_tracker.h" +#include "absl/memory/memory.h" +#include "absl/types/any.h" +#include "absl/types/optional.h" +#include "absl/utility/utility.h" + +// These are declared at global scope purely so that error messages +// are smaller and easier to understand. +enum class CallType { kConstRef, kConstMove }; + +template <int> +struct Empty { + constexpr CallType value() const& { return CallType::kConstRef; } + constexpr CallType value() const&& { return CallType::kConstMove; } +}; + +template <typename T> +struct NotEmpty { + T value; +}; + +template <typename T, typename U> +struct TwoValues { + T value1; + U value2; +}; + + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace { + +using absl::test_internal::CopyableMovableInstance; +using absl::test_internal::InstanceTracker; + +TEST(CompressedTupleTest, Sizeof) { + EXPECT_EQ(sizeof(int), sizeof(CompressedTuple<int>)); + EXPECT_EQ(sizeof(int), sizeof(CompressedTuple<int, Empty<0>>)); + EXPECT_EQ(sizeof(int), sizeof(CompressedTuple<int, Empty<0>, Empty<1>>)); + EXPECT_EQ(sizeof(int), + sizeof(CompressedTuple<int, Empty<0>, Empty<1>, Empty<2>>)); + + EXPECT_EQ(sizeof(TwoValues<int, double>), + sizeof(CompressedTuple<int, NotEmpty<double>>)); + EXPECT_EQ(sizeof(TwoValues<int, double>), + sizeof(CompressedTuple<int, Empty<0>, NotEmpty<double>>)); + EXPECT_EQ(sizeof(TwoValues<int, double>), + sizeof(CompressedTuple<int, Empty<0>, NotEmpty<double>, Empty<1>>)); +} + +TEST(CompressedTupleTest, OneMoveOnRValueConstructionTemp) { + InstanceTracker tracker; + CompressedTuple<CopyableMovableInstance> x1(CopyableMovableInstance(1)); + EXPECT_EQ(tracker.instances(), 1); + EXPECT_EQ(tracker.copies(), 0); + EXPECT_LE(tracker.moves(), 1); + EXPECT_EQ(x1.get<0>().value(), 1); +} + +TEST(CompressedTupleTest, OneMoveOnRValueConstructionMove) { + InstanceTracker tracker; + + CopyableMovableInstance i1(1); + CompressedTuple<CopyableMovableInstance> x1(std::move(i1)); + EXPECT_EQ(tracker.instances(), 2); + EXPECT_EQ(tracker.copies(), 0); + EXPECT_LE(tracker.moves(), 1); + EXPECT_EQ(x1.get<0>().value(), 1); +} + +TEST(CompressedTupleTest, OneMoveOnRValueConstructionMixedTypes) { + InstanceTracker tracker; + CopyableMovableInstance i1(1); + CopyableMovableInstance i2(2); + Empty<0> empty; + CompressedTuple<CopyableMovableInstance, CopyableMovableInstance&, Empty<0>> + x1(std::move(i1), i2, empty); + EXPECT_EQ(x1.get<0>().value(), 1); + EXPECT_EQ(x1.get<1>().value(), 2); + EXPECT_EQ(tracker.copies(), 0); + EXPECT_EQ(tracker.moves(), 1); +} + +struct IncompleteType; +CompressedTuple<CopyableMovableInstance, IncompleteType&, Empty<0>> +MakeWithIncomplete(CopyableMovableInstance i1, + IncompleteType& t, // NOLINT + Empty<0> empty) { + return CompressedTuple<CopyableMovableInstance, IncompleteType&, Empty<0>>{ + std::move(i1), t, empty}; +} + +struct IncompleteType {}; +TEST(CompressedTupleTest, OneMoveOnRValueConstructionWithIncompleteType) { + InstanceTracker tracker; + CopyableMovableInstance i1(1); + Empty<0> empty; + struct DerivedType : IncompleteType {int value = 0;}; + DerivedType fd; + fd.value = 7; + + CompressedTuple<CopyableMovableInstance, IncompleteType&, Empty<0>> x1 = + MakeWithIncomplete(std::move(i1), fd, empty); + + EXPECT_EQ(x1.get<0>().value(), 1); + EXPECT_EQ(static_cast<DerivedType&>(x1.get<1>()).value, 7); + + EXPECT_EQ(tracker.copies(), 0); + EXPECT_EQ(tracker.moves(), 2); +} + +TEST(CompressedTupleTest, + OneMoveOnRValueConstructionMixedTypes_BraceInitPoisonPillExpected) { + InstanceTracker tracker; + CopyableMovableInstance i1(1); + CopyableMovableInstance i2(2); + CompressedTuple<CopyableMovableInstance, CopyableMovableInstance&, Empty<0>> + x1(std::move(i1), i2, {}); // NOLINT + EXPECT_EQ(x1.get<0>().value(), 1); + EXPECT_EQ(x1.get<1>().value(), 2); + EXPECT_EQ(tracker.instances(), 3); + // We are forced into the `const Ts&...` constructor (invoking copies) + // because we need it to deduce the type of `{}`. + // std::tuple also has this behavior. + // Note, this test is proof that this is expected behavior, but it is not + // _desired_ behavior. + EXPECT_EQ(tracker.copies(), 1); + EXPECT_EQ(tracker.moves(), 0); +} + +TEST(CompressedTupleTest, OneCopyOnLValueConstruction) { + InstanceTracker tracker; + CopyableMovableInstance i1(1); + + CompressedTuple<CopyableMovableInstance> x1(i1); + EXPECT_EQ(tracker.copies(), 1); + EXPECT_EQ(tracker.moves(), 0); + + tracker.ResetCopiesMovesSwaps(); + + CopyableMovableInstance i2(2); + const CopyableMovableInstance& i2_ref = i2; + CompressedTuple<CopyableMovableInstance> x2(i2_ref); + EXPECT_EQ(tracker.copies(), 1); + EXPECT_EQ(tracker.moves(), 0); +} + +TEST(CompressedTupleTest, OneMoveOnRValueAccess) { + InstanceTracker tracker; + CopyableMovableInstance i1(1); + CompressedTuple<CopyableMovableInstance> x(std::move(i1)); + tracker.ResetCopiesMovesSwaps(); + + CopyableMovableInstance i2 = std::move(x).get<0>(); + EXPECT_EQ(tracker.copies(), 0); + EXPECT_EQ(tracker.moves(), 1); +} + +TEST(CompressedTupleTest, OneCopyOnLValueAccess) { + InstanceTracker tracker; + + CompressedTuple<CopyableMovableInstance> x(CopyableMovableInstance(0)); + EXPECT_EQ(tracker.copies(), 0); + EXPECT_EQ(tracker.moves(), 1); + + CopyableMovableInstance t = x.get<0>(); + EXPECT_EQ(tracker.copies(), 1); + EXPECT_EQ(tracker.moves(), 1); +} + +TEST(CompressedTupleTest, ZeroCopyOnRefAccess) { + InstanceTracker tracker; + + CompressedTuple<CopyableMovableInstance> x(CopyableMovableInstance(0)); + EXPECT_EQ(tracker.copies(), 0); + EXPECT_EQ(tracker.moves(), 1); + + CopyableMovableInstance& t1 = x.get<0>(); + const CopyableMovableInstance& t2 = x.get<0>(); + EXPECT_EQ(tracker.copies(), 0); + EXPECT_EQ(tracker.moves(), 1); + EXPECT_EQ(t1.value(), 0); + EXPECT_EQ(t2.value(), 0); +} + +TEST(CompressedTupleTest, Access) { + struct S { + std::string x; + }; + CompressedTuple<int, Empty<0>, S> x(7, {}, S{"ABC"}); + EXPECT_EQ(sizeof(x), sizeof(TwoValues<int, S>)); + EXPECT_EQ(7, x.get<0>()); + EXPECT_EQ("ABC", x.get<2>().x); +} + +TEST(CompressedTupleTest, NonClasses) { + CompressedTuple<int, const char*> x(7, "ABC"); + EXPECT_EQ(7, x.get<0>()); + EXPECT_STREQ("ABC", x.get<1>()); +} + +TEST(CompressedTupleTest, MixClassAndNonClass) { + CompressedTuple<int, const char*, Empty<0>, NotEmpty<double>> x(7, "ABC", {}, + {1.25}); + struct Mock { + int v; + const char* p; + double d; + }; + EXPECT_EQ(sizeof(x), sizeof(Mock)); + EXPECT_EQ(7, x.get<0>()); + EXPECT_STREQ("ABC", x.get<1>()); + EXPECT_EQ(1.25, x.get<3>().value); +} + +TEST(CompressedTupleTest, Nested) { + CompressedTuple<int, CompressedTuple<int>, + CompressedTuple<int, CompressedTuple<int>>> + x(1, CompressedTuple<int>(2), + CompressedTuple<int, CompressedTuple<int>>(3, CompressedTuple<int>(4))); + EXPECT_EQ(1, x.get<0>()); + EXPECT_EQ(2, x.get<1>().get<0>()); + EXPECT_EQ(3, x.get<2>().get<0>()); + EXPECT_EQ(4, x.get<2>().get<1>().get<0>()); + + CompressedTuple<Empty<0>, Empty<0>, + CompressedTuple<Empty<0>, CompressedTuple<Empty<0>>>> + y; + std::set<Empty<0>*> empties{&y.get<0>(), &y.get<1>(), &y.get<2>().get<0>(), + &y.get<2>().get<1>().get<0>()}; +#ifdef _MSC_VER + // MSVC has a bug where many instances of the same base class are layed out in + // the same address when using __declspec(empty_bases). + // This will be fixed in a future version of MSVC. + int expected = 1; +#else + int expected = 4; +#endif + EXPECT_EQ(expected, sizeof(y)); + EXPECT_EQ(expected, empties.size()); + EXPECT_EQ(sizeof(y), sizeof(Empty<0>) * empties.size()); + + EXPECT_EQ(4 * sizeof(char), + sizeof(CompressedTuple<CompressedTuple<char, char>, + CompressedTuple<char, char>>)); + EXPECT_TRUE((std::is_empty<CompressedTuple<Empty<0>, Empty<1>>>::value)); + + // Make sure everything still works when things are nested. + struct CT_Empty : CompressedTuple<Empty<0>> {}; + CompressedTuple<Empty<0>, CT_Empty> nested_empty; + auto contained = nested_empty.get<0>(); + auto nested = nested_empty.get<1>().get<0>(); + EXPECT_TRUE((std::is_same<decltype(contained), decltype(nested)>::value)); +} + +TEST(CompressedTupleTest, Reference) { + int i = 7; + std::string s = "Very long string that goes in the heap"; + CompressedTuple<int, int&, std::string, std::string&> x(i, i, s, s); + + // Sanity check. We should have not moved from `s` + EXPECT_EQ(s, "Very long string that goes in the heap"); + + EXPECT_EQ(x.get<0>(), x.get<1>()); + EXPECT_NE(&x.get<0>(), &x.get<1>()); + EXPECT_EQ(&x.get<1>(), &i); + + EXPECT_EQ(x.get<2>(), x.get<3>()); + EXPECT_NE(&x.get<2>(), &x.get<3>()); + EXPECT_EQ(&x.get<3>(), &s); +} + +TEST(CompressedTupleTest, NoElements) { + CompressedTuple<> x; + static_cast<void>(x); // Silence -Wunused-variable. + EXPECT_TRUE(std::is_empty<CompressedTuple<>>::value); +} + +TEST(CompressedTupleTest, MoveOnlyElements) { + CompressedTuple<std::unique_ptr<std::string>> str_tup( + absl::make_unique<std::string>("str")); + + CompressedTuple<CompressedTuple<std::unique_ptr<std::string>>, + std::unique_ptr<int>> + x(std::move(str_tup), absl::make_unique<int>(5)); + + EXPECT_EQ(*x.get<0>().get<0>(), "str"); + EXPECT_EQ(*x.get<1>(), 5); + + std::unique_ptr<std::string> x0 = std::move(x.get<0>()).get<0>(); + std::unique_ptr<int> x1 = std::move(x).get<1>(); + + EXPECT_EQ(*x0, "str"); + EXPECT_EQ(*x1, 5); +} + +TEST(CompressedTupleTest, MoveConstructionMoveOnlyElements) { + CompressedTuple<std::unique_ptr<std::string>> base( + absl::make_unique<std::string>("str")); + EXPECT_EQ(*base.get<0>(), "str"); + + CompressedTuple<std::unique_ptr<std::string>> copy(std::move(base)); + EXPECT_EQ(*copy.get<0>(), "str"); +} + +TEST(CompressedTupleTest, AnyElements) { + any a(std::string("str")); + CompressedTuple<any, any&> x(any(5), a); + EXPECT_EQ(absl::any_cast<int>(x.get<0>()), 5); + EXPECT_EQ(absl::any_cast<std::string>(x.get<1>()), "str"); + + a = 0.5f; + EXPECT_EQ(absl::any_cast<float>(x.get<1>()), 0.5); +} + +TEST(CompressedTupleTest, Constexpr) { + struct NonTrivialStruct { + constexpr NonTrivialStruct() = default; + constexpr int value() const { return v; } + int v = 5; + }; + struct TrivialStruct { + TrivialStruct() = default; + constexpr int value() const { return v; } + int v; + }; + constexpr CompressedTuple<int, double, CompressedTuple<int>, Empty<0>> x( + 7, 1.25, CompressedTuple<int>(5), {}); + constexpr int x0 = x.get<0>(); + constexpr double x1 = x.get<1>(); + constexpr int x2 = x.get<2>().get<0>(); + constexpr CallType x3 = x.get<3>().value(); + + EXPECT_EQ(x0, 7); + EXPECT_EQ(x1, 1.25); + EXPECT_EQ(x2, 5); + EXPECT_EQ(x3, CallType::kConstRef); + +#if !defined(__GNUC__) || defined(__clang__) || __GNUC__ > 4 + constexpr CompressedTuple<Empty<0>, TrivialStruct, int> trivial = {}; + constexpr CallType trivial0 = trivial.get<0>().value(); + constexpr int trivial1 = trivial.get<1>().value(); + constexpr int trivial2 = trivial.get<2>(); + + EXPECT_EQ(trivial0, CallType::kConstRef); + EXPECT_EQ(trivial1, 0); + EXPECT_EQ(trivial2, 0); +#endif + + constexpr CompressedTuple<Empty<0>, NonTrivialStruct, absl::optional<int>> + non_trivial = {}; + constexpr CallType non_trivial0 = non_trivial.get<0>().value(); + constexpr int non_trivial1 = non_trivial.get<1>().value(); + constexpr absl::optional<int> non_trivial2 = non_trivial.get<2>(); + + EXPECT_EQ(non_trivial0, CallType::kConstRef); + EXPECT_EQ(non_trivial1, 5); + EXPECT_EQ(non_trivial2, absl::nullopt); + + static constexpr char data[] = "DEF"; + constexpr CompressedTuple<const char*> z(data); + constexpr const char* z1 = z.get<0>(); + EXPECT_EQ(std::string(z1), std::string(data)); + +#if defined(__clang__) + // An apparent bug in earlier versions of gcc claims these are ambiguous. + constexpr int x2m = absl::move(x.get<2>()).get<0>(); + constexpr CallType x3m = absl::move(x).get<3>().value(); + EXPECT_EQ(x2m, 5); + EXPECT_EQ(x3m, CallType::kConstMove); +#endif +} + +#if defined(__clang__) || defined(__GNUC__) +TEST(CompressedTupleTest, EmptyFinalClass) { + struct S final { + int f() const { return 5; } + }; + CompressedTuple<S> x; + EXPECT_EQ(x.get<0>().f(), 5); +} +#endif + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/container_memory.h b/third_party/abseil_cpp/absl/container/internal/container_memory.h new file mode 100644 index 000000000000..e67529ecb6e6 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/container_memory.h @@ -0,0 +1,460 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ +#define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ + +#include <cassert> +#include <cstddef> +#include <memory> +#include <new> +#include <tuple> +#include <type_traits> +#include <utility> + +#include "absl/base/config.h" +#include "absl/memory/memory.h" +#include "absl/meta/type_traits.h" +#include "absl/utility/utility.h" + +#ifdef ABSL_HAVE_ADDRESS_SANITIZER +#include <sanitizer/asan_interface.h> +#endif + +#ifdef ABSL_HAVE_MEMORY_SANITIZER +#include <sanitizer/msan_interface.h> +#endif + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <size_t Alignment> +struct alignas(Alignment) AlignedType {}; + +// Allocates at least n bytes aligned to the specified alignment. +// Alignment must be a power of 2. It must be positive. +// +// Note that many allocators don't honor alignment requirements above certain +// threshold (usually either alignof(std::max_align_t) or alignof(void*)). +// Allocate() doesn't apply alignment corrections. If the underlying allocator +// returns insufficiently alignment pointer, that's what you are going to get. +template <size_t Alignment, class Alloc> +void* Allocate(Alloc* alloc, size_t n) { + static_assert(Alignment > 0, ""); + assert(n && "n must be positive"); + using M = AlignedType<Alignment>; + using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; + using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; + // On macOS, "mem_alloc" is a #define with one argument defined in + // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it + // with the "foo(bar)" syntax. + A my_mem_alloc(*alloc); + void* p = AT::allocate(my_mem_alloc, (n + sizeof(M) - 1) / sizeof(M)); + assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 && + "allocator does not respect alignment"); + return p; +} + +// The pointer must have been previously obtained by calling +// Allocate<Alignment>(alloc, n). +template <size_t Alignment, class Alloc> +void Deallocate(Alloc* alloc, void* p, size_t n) { + static_assert(Alignment > 0, ""); + assert(n && "n must be positive"); + using M = AlignedType<Alignment>; + using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; + using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; + // On macOS, "mem_alloc" is a #define with one argument defined in + // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it + // with the "foo(bar)" syntax. + A my_mem_alloc(*alloc); + AT::deallocate(my_mem_alloc, static_cast<M*>(p), + (n + sizeof(M) - 1) / sizeof(M)); +} + +namespace memory_internal { + +// Constructs T into uninitialized storage pointed by `ptr` using the args +// specified in the tuple. +template <class Alloc, class T, class Tuple, size_t... I> +void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t, + absl::index_sequence<I...>) { + absl::allocator_traits<Alloc>::construct( + *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...); +} + +template <class T, class F> +struct WithConstructedImplF { + template <class... Args> + decltype(std::declval<F>()(std::declval<T>())) operator()( + Args&&... args) const { + return std::forward<F>(f)(T(std::forward<Args>(args)...)); + } + F&& f; +}; + +template <class T, class Tuple, size_t... Is, class F> +decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl( + Tuple&& t, absl::index_sequence<Is...>, F&& f) { + return WithConstructedImplF<T, F>{std::forward<F>(f)}( + std::get<Is>(std::forward<Tuple>(t))...); +} + +template <class T, size_t... Is> +auto TupleRefImpl(T&& t, absl::index_sequence<Is...>) + -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) { + return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...); +} + +// Returns a tuple of references to the elements of the input tuple. T must be a +// tuple. +template <class T> +auto TupleRef(T&& t) -> decltype( + TupleRefImpl(std::forward<T>(t), + absl::make_index_sequence< + std::tuple_size<typename std::decay<T>::type>::value>())) { + return TupleRefImpl( + std::forward<T>(t), + absl::make_index_sequence< + std::tuple_size<typename std::decay<T>::type>::value>()); +} + +template <class F, class K, class V> +decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct, + std::declval<std::tuple<K>>(), std::declval<V>())) +DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) { + const auto& key = std::get<0>(p.first); + return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first), + std::move(p.second)); +} + +} // namespace memory_internal + +// Constructs T into uninitialized storage pointed by `ptr` using the args +// specified in the tuple. +template <class Alloc, class T, class Tuple> +void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) { + memory_internal::ConstructFromTupleImpl( + alloc, ptr, std::forward<Tuple>(t), + absl::make_index_sequence< + std::tuple_size<typename std::decay<Tuple>::type>::value>()); +} + +// Constructs T using the args specified in the tuple and calls F with the +// constructed value. +template <class T, class Tuple, class F> +decltype(std::declval<F>()(std::declval<T>())) WithConstructed( + Tuple&& t, F&& f) { + return memory_internal::WithConstructedImpl<T>( + std::forward<Tuple>(t), + absl::make_index_sequence< + std::tuple_size<typename std::decay<Tuple>::type>::value>(), + std::forward<F>(f)); +} + +// Given arguments of an std::pair's consructor, PairArgs() returns a pair of +// tuples with references to the passed arguments. The tuples contain +// constructor arguments for the first and the second elements of the pair. +// +// The following two snippets are equivalent. +// +// 1. std::pair<F, S> p(args...); +// +// 2. auto a = PairArgs(args...); +// std::pair<F, S> p(std::piecewise_construct, +// std::move(p.first), std::move(p.second)); +inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; } +template <class F, class S> +std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) { + return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)), + std::forward_as_tuple(std::forward<S>(s))}; +} +template <class F, class S> +std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs( + const std::pair<F, S>& p) { + return PairArgs(p.first, p.second); +} +template <class F, class S> +std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) { + return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second)); +} +template <class F, class S> +auto PairArgs(std::piecewise_construct_t, F&& f, S&& s) + -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), + memory_internal::TupleRef(std::forward<S>(s)))) { + return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), + memory_internal::TupleRef(std::forward<S>(s))); +} + +// A helper function for implementing apply() in map policies. +template <class F, class... Args> +auto DecomposePair(F&& f, Args&&... args) + -> decltype(memory_internal::DecomposePairImpl( + std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) { + return memory_internal::DecomposePairImpl( + std::forward<F>(f), PairArgs(std::forward<Args>(args)...)); +} + +// A helper function for implementing apply() in set policies. +template <class F, class Arg> +decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>())) +DecomposeValue(F&& f, Arg&& arg) { + const auto& key = arg; + return std::forward<F>(f)(key, std::forward<Arg>(arg)); +} + +// Helper functions for asan and msan. +inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) { +#ifdef ABSL_HAVE_ADDRESS_SANITIZER + ASAN_POISON_MEMORY_REGION(m, s); +#endif +#ifdef ABSL_HAVE_MEMORY_SANITIZER + __msan_poison(m, s); +#endif + (void)m; + (void)s; +} + +inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) { +#ifdef ABSL_HAVE_ADDRESS_SANITIZER + ASAN_UNPOISON_MEMORY_REGION(m, s); +#endif +#ifdef ABSL_HAVE_MEMORY_SANITIZER + __msan_unpoison(m, s); +#endif + (void)m; + (void)s; +} + +template <typename T> +inline void SanitizerPoisonObject(const T* object) { + SanitizerPoisonMemoryRegion(object, sizeof(T)); +} + +template <typename T> +inline void SanitizerUnpoisonObject(const T* object) { + SanitizerUnpoisonMemoryRegion(object, sizeof(T)); +} + +namespace memory_internal { + +// If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and +// OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and +// offsetof(Pair, second) respectively. Otherwise they are -1. +// +// The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout +// type, which is non-portable. +template <class Pair, class = std::true_type> +struct OffsetOf { + static constexpr size_t kFirst = static_cast<size_t>(-1); + static constexpr size_t kSecond = static_cast<size_t>(-1); +}; + +template <class Pair> +struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> { + static constexpr size_t kFirst = offsetof(Pair, first); + static constexpr size_t kSecond = offsetof(Pair, second); +}; + +template <class K, class V> +struct IsLayoutCompatible { + private: + struct Pair { + K first; + V second; + }; + + // Is P layout-compatible with Pair? + template <class P> + static constexpr bool LayoutCompatible() { + return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) && + alignof(P) == alignof(Pair) && + memory_internal::OffsetOf<P>::kFirst == + memory_internal::OffsetOf<Pair>::kFirst && + memory_internal::OffsetOf<P>::kSecond == + memory_internal::OffsetOf<Pair>::kSecond; + } + + public: + // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are, + // then it is safe to store them in a union and read from either. + static constexpr bool value = std::is_standard_layout<K>() && + std::is_standard_layout<Pair>() && + memory_internal::OffsetOf<Pair>::kFirst == 0 && + LayoutCompatible<std::pair<K, V>>() && + LayoutCompatible<std::pair<const K, V>>(); +}; + +} // namespace memory_internal + +// The internal storage type for key-value containers like flat_hash_map. +// +// It is convenient for the value_type of a flat_hash_map<K, V> to be +// pair<const K, V>; the "const K" prevents accidental modification of the key +// when dealing with the reference returned from find() and similar methods. +// However, this creates other problems; we want to be able to emplace(K, V) +// efficiently with move operations, and similarly be able to move a +// pair<K, V> in insert(). +// +// The solution is this union, which aliases the const and non-const versions +// of the pair. This also allows flat_hash_map<const K, V> to work, even though +// that has the same efficiency issues with move in emplace() and insert() - +// but people do it anyway. +// +// If kMutableKeys is false, only the value member can be accessed. +// +// If kMutableKeys is true, key can be accessed through all slots while value +// and mutable_value must be accessed only via INITIALIZED slots. Slots are +// created and destroyed via mutable_value so that the key can be moved later. +// +// Accessing one of the union fields while the other is active is safe as +// long as they are layout-compatible, which is guaranteed by the definition of +// kMutableKeys. For C++11, the relevant section of the standard is +// https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19) +template <class K, class V> +union map_slot_type { + map_slot_type() {} + ~map_slot_type() = delete; + using value_type = std::pair<const K, V>; + using mutable_value_type = + std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>; + + value_type value; + mutable_value_type mutable_value; + absl::remove_const_t<K> key; +}; + +template <class K, class V> +struct map_slot_policy { + using slot_type = map_slot_type<K, V>; + using value_type = std::pair<const K, V>; + using mutable_value_type = std::pair<K, V>; + + private: + static void emplace(slot_type* slot) { + // The construction of union doesn't do anything at runtime but it allows us + // to access its members without violating aliasing rules. + new (slot) slot_type; + } + // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one + // or the other via slot_type. We are also free to access the key via + // slot_type::key in this case. + using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>; + + public: + static value_type& element(slot_type* slot) { return slot->value; } + static const value_type& element(const slot_type* slot) { + return slot->value; + } + + // When C++17 is available, we can use std::launder to provide mutable + // access to the key for use in node handle. +#if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 + static K& mutable_key(slot_type* slot) { + // Still check for kMutableKeys so that we can avoid calling std::launder + // unless necessary because it can interfere with optimizations. + return kMutableKeys::value ? slot->key + : *std::launder(const_cast<K*>( + std::addressof(slot->value.first))); + } +#else // !(defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606) + static const K& mutable_key(slot_type* slot) { return key(slot); } +#endif + + static const K& key(const slot_type* slot) { + return kMutableKeys::value ? slot->key : slot->value.first; + } + + template <class Allocator, class... Args> + static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { + emplace(slot); + if (kMutableKeys::value) { + absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value, + std::forward<Args>(args)...); + } else { + absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, + std::forward<Args>(args)...); + } + } + + // Construct this slot by moving from another slot. + template <class Allocator> + static void construct(Allocator* alloc, slot_type* slot, slot_type* other) { + emplace(slot); + if (kMutableKeys::value) { + absl::allocator_traits<Allocator>::construct( + *alloc, &slot->mutable_value, std::move(other->mutable_value)); + } else { + absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, + std::move(other->value)); + } + } + + template <class Allocator> + static void destroy(Allocator* alloc, slot_type* slot) { + if (kMutableKeys::value) { + absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value); + } else { + absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value); + } + } + + template <class Allocator> + static void transfer(Allocator* alloc, slot_type* new_slot, + slot_type* old_slot) { + emplace(new_slot); + if (kMutableKeys::value) { + absl::allocator_traits<Allocator>::construct( + *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value)); + } else { + absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value, + std::move(old_slot->value)); + } + destroy(alloc, old_slot); + } + + template <class Allocator> + static void swap(Allocator* alloc, slot_type* a, slot_type* b) { + if (kMutableKeys::value) { + using std::swap; + swap(a->mutable_value, b->mutable_value); + } else { + value_type tmp = std::move(a->value); + absl::allocator_traits<Allocator>::destroy(*alloc, &a->value); + absl::allocator_traits<Allocator>::construct(*alloc, &a->value, + std::move(b->value)); + absl::allocator_traits<Allocator>::destroy(*alloc, &b->value); + absl::allocator_traits<Allocator>::construct(*alloc, &b->value, + std::move(tmp)); + } + } + + template <class Allocator> + static void move(Allocator* alloc, slot_type* src, slot_type* dest) { + if (kMutableKeys::value) { + dest->mutable_value = std::move(src->mutable_value); + } else { + absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value); + absl::allocator_traits<Allocator>::construct(*alloc, &dest->value, + std::move(src->value)); + } + } +}; + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/container_memory_test.cc b/third_party/abseil_cpp/absl/container/internal/container_memory_test.cc new file mode 100644 index 000000000000..6a7fcd29ba90 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/container_memory_test.cc @@ -0,0 +1,256 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/container_memory.h" + +#include <cstdint> +#include <tuple> +#include <typeindex> +#include <typeinfo> +#include <utility> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/container/internal/test_instance_tracker.h" +#include "absl/strings/string_view.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace { + +using ::absl::test_internal::CopyableMovableInstance; +using ::absl::test_internal::InstanceTracker; +using ::testing::_; +using ::testing::ElementsAre; +using ::testing::Gt; +using ::testing::Pair; + +TEST(Memory, AlignmentLargerThanBase) { + std::allocator<int8_t> alloc; + void* mem = Allocate<2>(&alloc, 3); + EXPECT_EQ(0, reinterpret_cast<uintptr_t>(mem) % 2); + memcpy(mem, "abc", 3); + Deallocate<2>(&alloc, mem, 3); +} + +TEST(Memory, AlignmentSmallerThanBase) { + std::allocator<int64_t> alloc; + void* mem = Allocate<2>(&alloc, 3); + EXPECT_EQ(0, reinterpret_cast<uintptr_t>(mem) % 2); + memcpy(mem, "abc", 3); + Deallocate<2>(&alloc, mem, 3); +} + +std::map<std::type_index, int>& AllocationMap() { + static auto* map = new std::map<std::type_index, int>; + return *map; +} + +template <typename T> +struct TypeCountingAllocator { + TypeCountingAllocator() = default; + template <typename U> + TypeCountingAllocator(const TypeCountingAllocator<U>&) {} // NOLINT + + using value_type = T; + + T* allocate(size_t n, const void* = nullptr) { + AllocationMap()[typeid(T)] += n; + return std::allocator<T>().allocate(n); + } + void deallocate(T* p, std::size_t n) { + AllocationMap()[typeid(T)] -= n; + return std::allocator<T>().deallocate(p, n); + } +}; + +TEST(Memory, AllocateDeallocateMatchType) { + TypeCountingAllocator<int> alloc; + void* mem = Allocate<1>(&alloc, 1); + // Verify that it was allocated + EXPECT_THAT(AllocationMap(), ElementsAre(Pair(_, Gt(0)))); + Deallocate<1>(&alloc, mem, 1); + // Verify that the deallocation matched. + EXPECT_THAT(AllocationMap(), ElementsAre(Pair(_, 0))); +} + +class Fixture : public ::testing::Test { + using Alloc = std::allocator<std::string>; + + public: + Fixture() { ptr_ = std::allocator_traits<Alloc>::allocate(*alloc(), 1); } + ~Fixture() override { + std::allocator_traits<Alloc>::destroy(*alloc(), ptr_); + std::allocator_traits<Alloc>::deallocate(*alloc(), ptr_, 1); + } + std::string* ptr() { return ptr_; } + Alloc* alloc() { return &alloc_; } + + private: + Alloc alloc_; + std::string* ptr_; +}; + +TEST_F(Fixture, ConstructNoArgs) { + ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple()); + EXPECT_EQ(*ptr(), ""); +} + +TEST_F(Fixture, ConstructOneArg) { + ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple("abcde")); + EXPECT_EQ(*ptr(), "abcde"); +} + +TEST_F(Fixture, ConstructTwoArg) { + ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple(5, 'a')); + EXPECT_EQ(*ptr(), "aaaaa"); +} + +TEST(PairArgs, NoArgs) { + EXPECT_THAT(PairArgs(), + Pair(std::forward_as_tuple(), std::forward_as_tuple())); +} + +TEST(PairArgs, TwoArgs) { + EXPECT_EQ( + std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')), + PairArgs(1, 'A')); +} + +TEST(PairArgs, Pair) { + EXPECT_EQ( + std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')), + PairArgs(std::make_pair(1, 'A'))); +} + +TEST(PairArgs, Piecewise) { + EXPECT_EQ( + std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')), + PairArgs(std::piecewise_construct, std::forward_as_tuple(1), + std::forward_as_tuple('A'))); +} + +TEST(WithConstructed, Simple) { + EXPECT_EQ(1, WithConstructed<absl::string_view>( + std::make_tuple(std::string("a")), + [](absl::string_view str) { return str.size(); })); +} + +template <class F, class Arg> +decltype(DecomposeValue(std::declval<F>(), std::declval<Arg>())) +DecomposeValueImpl(int, F&& f, Arg&& arg) { + return DecomposeValue(std::forward<F>(f), std::forward<Arg>(arg)); +} + +template <class F, class Arg> +const char* DecomposeValueImpl(char, F&& f, Arg&& arg) { + return "not decomposable"; +} + +template <class F, class Arg> +decltype(DecomposeValueImpl(0, std::declval<F>(), std::declval<Arg>())) +TryDecomposeValue(F&& f, Arg&& arg) { + return DecomposeValueImpl(0, std::forward<F>(f), std::forward<Arg>(arg)); +} + +TEST(DecomposeValue, Decomposable) { + auto f = [](const int& x, int&& y) { + EXPECT_EQ(&x, &y); + EXPECT_EQ(42, x); + return 'A'; + }; + EXPECT_EQ('A', TryDecomposeValue(f, 42)); +} + +TEST(DecomposeValue, NotDecomposable) { + auto f = [](void*) { + ADD_FAILURE() << "Must not be called"; + return 'A'; + }; + EXPECT_STREQ("not decomposable", TryDecomposeValue(f, 42)); +} + +template <class F, class... Args> +decltype(DecomposePair(std::declval<F>(), std::declval<Args>()...)) +DecomposePairImpl(int, F&& f, Args&&... args) { + return DecomposePair(std::forward<F>(f), std::forward<Args>(args)...); +} + +template <class F, class... Args> +const char* DecomposePairImpl(char, F&& f, Args&&... args) { + return "not decomposable"; +} + +template <class F, class... Args> +decltype(DecomposePairImpl(0, std::declval<F>(), std::declval<Args>()...)) +TryDecomposePair(F&& f, Args&&... args) { + return DecomposePairImpl(0, std::forward<F>(f), std::forward<Args>(args)...); +} + +TEST(DecomposePair, Decomposable) { + auto f = [](const int& x, std::piecewise_construct_t, std::tuple<int&&> k, + std::tuple<double>&& v) { + EXPECT_EQ(&x, &std::get<0>(k)); + EXPECT_EQ(42, x); + EXPECT_EQ(0.5, std::get<0>(v)); + return 'A'; + }; + EXPECT_EQ('A', TryDecomposePair(f, 42, 0.5)); + EXPECT_EQ('A', TryDecomposePair(f, std::make_pair(42, 0.5))); + EXPECT_EQ('A', TryDecomposePair(f, std::piecewise_construct, + std::make_tuple(42), std::make_tuple(0.5))); +} + +TEST(DecomposePair, NotDecomposable) { + auto f = [](...) { + ADD_FAILURE() << "Must not be called"; + return 'A'; + }; + EXPECT_STREQ("not decomposable", + TryDecomposePair(f)); + EXPECT_STREQ("not decomposable", + TryDecomposePair(f, std::piecewise_construct, std::make_tuple(), + std::make_tuple(0.5))); +} + +TEST(MapSlotPolicy, ConstKeyAndValue) { + using slot_policy = map_slot_policy<const CopyableMovableInstance, + const CopyableMovableInstance>; + using slot_type = typename slot_policy::slot_type; + + union Slots { + Slots() {} + ~Slots() {} + slot_type slots[100]; + } slots; + + std::allocator< + std::pair<const CopyableMovableInstance, const CopyableMovableInstance>> + alloc; + InstanceTracker tracker; + slot_policy::construct(&alloc, &slots.slots[0], CopyableMovableInstance(1), + CopyableMovableInstance(1)); + for (int i = 0; i < 99; ++i) { + slot_policy::transfer(&alloc, &slots.slots[i + 1], &slots.slots[i]); + } + slot_policy::destroy(&alloc, &slots.slots[99]); + + EXPECT_EQ(tracker.copies(), 0); +} + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/counting_allocator.h b/third_party/abseil_cpp/absl/container/internal/counting_allocator.h new file mode 100644 index 000000000000..927cf0825579 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/counting_allocator.h @@ -0,0 +1,114 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_COUNTING_ALLOCATOR_H_ +#define ABSL_CONTAINER_INTERNAL_COUNTING_ALLOCATOR_H_ + +#include <cstdint> +#include <memory> + +#include "absl/base/config.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +// This is a stateful allocator, but the state lives outside of the +// allocator (in whatever test is using the allocator). This is odd +// but helps in tests where the allocator is propagated into nested +// containers - that chain of allocators uses the same state and is +// thus easier to query for aggregate allocation information. +template <typename T> +class CountingAllocator { + public: + using Allocator = std::allocator<T>; + using AllocatorTraits = std::allocator_traits<Allocator>; + using value_type = typename AllocatorTraits::value_type; + using pointer = typename AllocatorTraits::pointer; + using const_pointer = typename AllocatorTraits::const_pointer; + using size_type = typename AllocatorTraits::size_type; + using difference_type = typename AllocatorTraits::difference_type; + + CountingAllocator() = default; + explicit CountingAllocator(int64_t* bytes_used) : bytes_used_(bytes_used) {} + CountingAllocator(int64_t* bytes_used, int64_t* instance_count) + : bytes_used_(bytes_used), instance_count_(instance_count) {} + + template <typename U> + CountingAllocator(const CountingAllocator<U>& x) + : bytes_used_(x.bytes_used_), instance_count_(x.instance_count_) {} + + pointer allocate( + size_type n, + typename AllocatorTraits::const_void_pointer hint = nullptr) { + Allocator allocator; + pointer ptr = AllocatorTraits::allocate(allocator, n, hint); + if (bytes_used_ != nullptr) { + *bytes_used_ += n * sizeof(T); + } + return ptr; + } + + void deallocate(pointer p, size_type n) { + Allocator allocator; + AllocatorTraits::deallocate(allocator, p, n); + if (bytes_used_ != nullptr) { + *bytes_used_ -= n * sizeof(T); + } + } + + template <typename U, typename... Args> + void construct(U* p, Args&&... args) { + Allocator allocator; + AllocatorTraits::construct(allocator, p, std::forward<Args>(args)...); + if (instance_count_ != nullptr) { + *instance_count_ += 1; + } + } + + template <typename U> + void destroy(U* p) { + Allocator allocator; + AllocatorTraits::destroy(allocator, p); + if (instance_count_ != nullptr) { + *instance_count_ -= 1; + } + } + + template <typename U> + class rebind { + public: + using other = CountingAllocator<U>; + }; + + friend bool operator==(const CountingAllocator& a, + const CountingAllocator& b) { + return a.bytes_used_ == b.bytes_used_ && + a.instance_count_ == b.instance_count_; + } + + friend bool operator!=(const CountingAllocator& a, + const CountingAllocator& b) { + return !(a == b); + } + + int64_t* bytes_used_ = nullptr; + int64_t* instance_count_ = nullptr; +}; + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_COUNTING_ALLOCATOR_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/hash_function_defaults.h b/third_party/abseil_cpp/absl/container/internal/hash_function_defaults.h new file mode 100644 index 000000000000..0683422ad89b --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hash_function_defaults.h @@ -0,0 +1,161 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// Define the default Hash and Eq functions for SwissTable containers. +// +// std::hash<T> and std::equal_to<T> are not appropriate hash and equal +// functions for SwissTable containers. There are two reasons for this. +// +// SwissTable containers are power of 2 sized containers: +// +// This means they use the lower bits of the hash value to find the slot for +// each entry. The typical hash function for integral types is the identity. +// This is a very weak hash function for SwissTable and any power of 2 sized +// hashtable implementation which will lead to excessive collisions. For +// SwissTable we use murmur3 style mixing to reduce collisions to a minimum. +// +// SwissTable containers support heterogeneous lookup: +// +// In order to make heterogeneous lookup work, hash and equal functions must be +// polymorphic. At the same time they have to satisfy the same requirements the +// C++ standard imposes on hash functions and equality operators. That is: +// +// if hash_default_eq<T>(a, b) returns true for any a and b of type T, then +// hash_default_hash<T>(a) must equal hash_default_hash<T>(b) +// +// For SwissTable containers this requirement is relaxed to allow a and b of +// any and possibly different types. Note that like the standard the hash and +// equal functions are still bound to T. This is important because some type U +// can be hashed by/tested for equality differently depending on T. A notable +// example is `const char*`. `const char*` is treated as a c-style string when +// the hash function is hash<std::string> but as a pointer when the hash +// function is hash<void*>. +// +#ifndef ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_ +#define ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_ + +#include <stdint.h> +#include <cstddef> +#include <memory> +#include <string> +#include <type_traits> + +#include "absl/base/config.h" +#include "absl/hash/hash.h" +#include "absl/strings/cord.h" +#include "absl/strings/string_view.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +// The hash of an object of type T is computed by using absl::Hash. +template <class T, class E = void> +struct HashEq { + using Hash = absl::Hash<T>; + using Eq = std::equal_to<T>; +}; + +struct StringHash { + using is_transparent = void; + + size_t operator()(absl::string_view v) const { + return absl::Hash<absl::string_view>{}(v); + } + size_t operator()(const absl::Cord& v) const { + return absl::Hash<absl::Cord>{}(v); + } +}; + +// Supports heterogeneous lookup for string-like elements. +struct StringHashEq { + using Hash = StringHash; + struct Eq { + using is_transparent = void; + bool operator()(absl::string_view lhs, absl::string_view rhs) const { + return lhs == rhs; + } + bool operator()(const absl::Cord& lhs, const absl::Cord& rhs) const { + return lhs == rhs; + } + bool operator()(const absl::Cord& lhs, absl::string_view rhs) const { + return lhs == rhs; + } + bool operator()(absl::string_view lhs, const absl::Cord& rhs) const { + return lhs == rhs; + } + }; +}; + +template <> +struct HashEq<std::string> : StringHashEq {}; +template <> +struct HashEq<absl::string_view> : StringHashEq {}; +template <> +struct HashEq<absl::Cord> : StringHashEq {}; + +// Supports heterogeneous lookup for pointers and smart pointers. +template <class T> +struct HashEq<T*> { + struct Hash { + using is_transparent = void; + template <class U> + size_t operator()(const U& ptr) const { + return absl::Hash<const T*>{}(HashEq::ToPtr(ptr)); + } + }; + struct Eq { + using is_transparent = void; + template <class A, class B> + bool operator()(const A& a, const B& b) const { + return HashEq::ToPtr(a) == HashEq::ToPtr(b); + } + }; + + private: + static const T* ToPtr(const T* ptr) { return ptr; } + template <class U, class D> + static const T* ToPtr(const std::unique_ptr<U, D>& ptr) { + return ptr.get(); + } + template <class U> + static const T* ToPtr(const std::shared_ptr<U>& ptr) { + return ptr.get(); + } +}; + +template <class T, class D> +struct HashEq<std::unique_ptr<T, D>> : HashEq<T*> {}; +template <class T> +struct HashEq<std::shared_ptr<T>> : HashEq<T*> {}; + +// This header's visibility is restricted. If you need to access the default +// hasher please use the container's ::hasher alias instead. +// +// Example: typename Hash = typename absl::flat_hash_map<K, V>::hasher +template <class T> +using hash_default_hash = typename container_internal::HashEq<T>::Hash; + +// This header's visibility is restricted. If you need to access the default +// key equal please use the container's ::key_equal alias instead. +// +// Example: typename Eq = typename absl::flat_hash_map<K, V, Hash>::key_equal +template <class T> +using hash_default_eq = typename container_internal::HashEq<T>::Eq; + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/hash_function_defaults_test.cc b/third_party/abseil_cpp/absl/container/internal/hash_function_defaults_test.cc new file mode 100644 index 000000000000..59576b8edebc --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hash_function_defaults_test.cc @@ -0,0 +1,383 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/hash_function_defaults.h" + +#include <functional> +#include <type_traits> +#include <utility> + +#include "gtest/gtest.h" +#include "absl/random/random.h" +#include "absl/strings/cord.h" +#include "absl/strings/cord_test_helpers.h" +#include "absl/strings/string_view.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace { + +using ::testing::Types; + +TEST(Eq, Int32) { + hash_default_eq<int32_t> eq; + EXPECT_TRUE(eq(1, 1u)); + EXPECT_TRUE(eq(1, char{1})); + EXPECT_TRUE(eq(1, true)); + EXPECT_TRUE(eq(1, double{1.1})); + EXPECT_FALSE(eq(1, char{2})); + EXPECT_FALSE(eq(1, 2u)); + EXPECT_FALSE(eq(1, false)); + EXPECT_FALSE(eq(1, 2.)); +} + +TEST(Hash, Int32) { + hash_default_hash<int32_t> hash; + auto h = hash(1); + EXPECT_EQ(h, hash(1u)); + EXPECT_EQ(h, hash(char{1})); + EXPECT_EQ(h, hash(true)); + EXPECT_EQ(h, hash(double{1.1})); + EXPECT_NE(h, hash(2u)); + EXPECT_NE(h, hash(char{2})); + EXPECT_NE(h, hash(false)); + EXPECT_NE(h, hash(2.)); +} + +enum class MyEnum { A, B, C, D }; + +TEST(Eq, Enum) { + hash_default_eq<MyEnum> eq; + EXPECT_TRUE(eq(MyEnum::A, MyEnum::A)); + EXPECT_FALSE(eq(MyEnum::A, MyEnum::B)); +} + +TEST(Hash, Enum) { + hash_default_hash<MyEnum> hash; + + for (MyEnum e : {MyEnum::A, MyEnum::B, MyEnum::C}) { + auto h = hash(e); + EXPECT_EQ(h, hash_default_hash<int>{}(static_cast<int>(e))); + EXPECT_NE(h, hash(MyEnum::D)); + } +} + +using StringTypes = ::testing::Types<std::string, absl::string_view>; + +template <class T> +struct EqString : ::testing::Test { + hash_default_eq<T> key_eq; +}; + +TYPED_TEST_SUITE(EqString, StringTypes); + +template <class T> +struct HashString : ::testing::Test { + hash_default_hash<T> hasher; +}; + +TYPED_TEST_SUITE(HashString, StringTypes); + +TYPED_TEST(EqString, Works) { + auto eq = this->key_eq; + EXPECT_TRUE(eq("a", "a")); + EXPECT_TRUE(eq("a", absl::string_view("a"))); + EXPECT_TRUE(eq("a", std::string("a"))); + EXPECT_FALSE(eq("a", "b")); + EXPECT_FALSE(eq("a", absl::string_view("b"))); + EXPECT_FALSE(eq("a", std::string("b"))); +} + +TYPED_TEST(HashString, Works) { + auto hash = this->hasher; + auto h = hash("a"); + EXPECT_EQ(h, hash(absl::string_view("a"))); + EXPECT_EQ(h, hash(std::string("a"))); + EXPECT_NE(h, hash(absl::string_view("b"))); + EXPECT_NE(h, hash(std::string("b"))); +} + +struct NoDeleter { + template <class T> + void operator()(const T* ptr) const {} +}; + +using PointerTypes = + ::testing::Types<const int*, int*, std::unique_ptr<const int>, + std::unique_ptr<const int, NoDeleter>, + std::unique_ptr<int>, std::unique_ptr<int, NoDeleter>, + std::shared_ptr<const int>, std::shared_ptr<int>>; + +template <class T> +struct EqPointer : ::testing::Test { + hash_default_eq<T> key_eq; +}; + +TYPED_TEST_SUITE(EqPointer, PointerTypes); + +template <class T> +struct HashPointer : ::testing::Test { + hash_default_hash<T> hasher; +}; + +TYPED_TEST_SUITE(HashPointer, PointerTypes); + +TYPED_TEST(EqPointer, Works) { + int dummy; + auto eq = this->key_eq; + auto sptr = std::make_shared<int>(); + std::shared_ptr<const int> csptr = sptr; + int* ptr = sptr.get(); + const int* cptr = ptr; + std::unique_ptr<int, NoDeleter> uptr(ptr); + std::unique_ptr<const int, NoDeleter> cuptr(ptr); + + EXPECT_TRUE(eq(ptr, cptr)); + EXPECT_TRUE(eq(ptr, sptr)); + EXPECT_TRUE(eq(ptr, uptr)); + EXPECT_TRUE(eq(ptr, csptr)); + EXPECT_TRUE(eq(ptr, cuptr)); + EXPECT_FALSE(eq(&dummy, cptr)); + EXPECT_FALSE(eq(&dummy, sptr)); + EXPECT_FALSE(eq(&dummy, uptr)); + EXPECT_FALSE(eq(&dummy, csptr)); + EXPECT_FALSE(eq(&dummy, cuptr)); +} + +TEST(Hash, DerivedAndBase) { + struct Base {}; + struct Derived : Base {}; + + hash_default_hash<Base*> hasher; + + Base base; + Derived derived; + EXPECT_NE(hasher(&base), hasher(&derived)); + EXPECT_EQ(hasher(static_cast<Base*>(&derived)), hasher(&derived)); + + auto dp = std::make_shared<Derived>(); + EXPECT_EQ(hasher(static_cast<Base*>(dp.get())), hasher(dp)); +} + +TEST(Hash, FunctionPointer) { + using Func = int (*)(); + hash_default_hash<Func> hasher; + hash_default_eq<Func> eq; + + Func p1 = [] { return 1; }, p2 = [] { return 2; }; + EXPECT_EQ(hasher(p1), hasher(p1)); + EXPECT_TRUE(eq(p1, p1)); + + EXPECT_NE(hasher(p1), hasher(p2)); + EXPECT_FALSE(eq(p1, p2)); +} + +TYPED_TEST(HashPointer, Works) { + int dummy; + auto hash = this->hasher; + auto sptr = std::make_shared<int>(); + std::shared_ptr<const int> csptr = sptr; + int* ptr = sptr.get(); + const int* cptr = ptr; + std::unique_ptr<int, NoDeleter> uptr(ptr); + std::unique_ptr<const int, NoDeleter> cuptr(ptr); + + EXPECT_EQ(hash(ptr), hash(cptr)); + EXPECT_EQ(hash(ptr), hash(sptr)); + EXPECT_EQ(hash(ptr), hash(uptr)); + EXPECT_EQ(hash(ptr), hash(csptr)); + EXPECT_EQ(hash(ptr), hash(cuptr)); + EXPECT_NE(hash(&dummy), hash(cptr)); + EXPECT_NE(hash(&dummy), hash(sptr)); + EXPECT_NE(hash(&dummy), hash(uptr)); + EXPECT_NE(hash(&dummy), hash(csptr)); + EXPECT_NE(hash(&dummy), hash(cuptr)); +} + +TEST(EqCord, Works) { + hash_default_eq<absl::Cord> eq; + const absl::string_view a_string_view = "a"; + const absl::Cord a_cord(a_string_view); + const absl::string_view b_string_view = "b"; + const absl::Cord b_cord(b_string_view); + + EXPECT_TRUE(eq(a_cord, a_cord)); + EXPECT_TRUE(eq(a_cord, a_string_view)); + EXPECT_TRUE(eq(a_string_view, a_cord)); + EXPECT_FALSE(eq(a_cord, b_cord)); + EXPECT_FALSE(eq(a_cord, b_string_view)); + EXPECT_FALSE(eq(b_string_view, a_cord)); +} + +TEST(HashCord, Works) { + hash_default_hash<absl::Cord> hash; + const absl::string_view a_string_view = "a"; + const absl::Cord a_cord(a_string_view); + const absl::string_view b_string_view = "b"; + const absl::Cord b_cord(b_string_view); + + EXPECT_EQ(hash(a_cord), hash(a_cord)); + EXPECT_EQ(hash(b_cord), hash(b_cord)); + EXPECT_EQ(hash(a_string_view), hash(a_cord)); + EXPECT_EQ(hash(b_string_view), hash(b_cord)); + EXPECT_EQ(hash(absl::Cord("")), hash("")); + EXPECT_EQ(hash(absl::Cord()), hash(absl::string_view())); + + EXPECT_NE(hash(a_cord), hash(b_cord)); + EXPECT_NE(hash(a_cord), hash(b_string_view)); + EXPECT_NE(hash(a_string_view), hash(b_cord)); + EXPECT_NE(hash(a_string_view), hash(b_string_view)); +} + +void NoOpReleaser(absl::string_view data, void* arg) {} + +TEST(HashCord, FragmentedCordWorks) { + hash_default_hash<absl::Cord> hash; + absl::Cord c = absl::MakeFragmentedCord({"a", "b", "c"}); + EXPECT_FALSE(c.TryFlat().has_value()); + EXPECT_EQ(hash(c), hash("abc")); +} + +TEST(HashCord, FragmentedLongCordWorks) { + hash_default_hash<absl::Cord> hash; + // Crete some large strings which do not fit on the stack. + std::string a(65536, 'a'); + std::string b(65536, 'b'); + absl::Cord c = absl::MakeFragmentedCord({a, b}); + EXPECT_FALSE(c.TryFlat().has_value()); + EXPECT_EQ(hash(c), hash(a + b)); +} + +TEST(HashCord, RandomCord) { + hash_default_hash<absl::Cord> hash; + auto bitgen = absl::BitGen(); + for (int i = 0; i < 1000; ++i) { + const int number_of_segments = absl::Uniform(bitgen, 0, 10); + std::vector<std::string> pieces; + for (size_t s = 0; s < number_of_segments; ++s) { + std::string str; + str.resize(absl::Uniform(bitgen, 0, 4096)); + // MSVC needed the explicit return type in the lambda. + std::generate(str.begin(), str.end(), [&]() -> char { + return static_cast<char>(absl::Uniform<unsigned char>(bitgen)); + }); + pieces.push_back(str); + } + absl::Cord c = absl::MakeFragmentedCord(pieces); + EXPECT_EQ(hash(c), hash(std::string(c))); + } +} + +// Cartesian product of (std::string, absl::string_view) +// with (std::string, absl::string_view, const char*, absl::Cord). +using StringTypesCartesianProduct = Types< + // clang-format off + std::pair<absl::Cord, std::string>, + std::pair<absl::Cord, absl::string_view>, + std::pair<absl::Cord, absl::Cord>, + std::pair<absl::Cord, const char*>, + + std::pair<std::string, absl::Cord>, + std::pair<absl::string_view, absl::Cord>, + + std::pair<absl::string_view, std::string>, + std::pair<absl::string_view, absl::string_view>, + std::pair<absl::string_view, const char*>>; +// clang-format on + +constexpr char kFirstString[] = "abc123"; +constexpr char kSecondString[] = "ijk456"; + +template <typename T> +struct StringLikeTest : public ::testing::Test { + typename T::first_type a1{kFirstString}; + typename T::second_type b1{kFirstString}; + typename T::first_type a2{kSecondString}; + typename T::second_type b2{kSecondString}; + hash_default_eq<typename T::first_type> eq; + hash_default_hash<typename T::first_type> hash; +}; + +TYPED_TEST_CASE_P(StringLikeTest); + +TYPED_TEST_P(StringLikeTest, Eq) { + EXPECT_TRUE(this->eq(this->a1, this->b1)); + EXPECT_TRUE(this->eq(this->b1, this->a1)); +} + +TYPED_TEST_P(StringLikeTest, NotEq) { + EXPECT_FALSE(this->eq(this->a1, this->b2)); + EXPECT_FALSE(this->eq(this->b2, this->a1)); +} + +TYPED_TEST_P(StringLikeTest, HashEq) { + EXPECT_EQ(this->hash(this->a1), this->hash(this->b1)); + EXPECT_EQ(this->hash(this->a2), this->hash(this->b2)); + // It would be a poor hash function which collides on these strings. + EXPECT_NE(this->hash(this->a1), this->hash(this->b2)); +} + +TYPED_TEST_SUITE(StringLikeTest, StringTypesCartesianProduct); + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +enum Hash : size_t { + kStd = 0x1, // std::hash +#ifdef _MSC_VER + kExtension = kStd, // In MSVC, std::hash == ::hash +#else // _MSC_VER + kExtension = 0x2, // ::hash (GCC extension) +#endif // _MSC_VER +}; + +// H is a bitmask of Hash enumerations. +// Hashable<H> is hashable via all means specified in H. +template <int H> +struct Hashable { + static constexpr bool HashableBy(Hash h) { return h & H; } +}; + +namespace std { +template <int H> +struct hash<Hashable<H>> { + template <class E = Hashable<H>, + class = typename std::enable_if<E::HashableBy(kStd)>::type> + size_t operator()(E) const { + return kStd; + } +}; +} // namespace std + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace { + +template <class T> +size_t Hash(const T& v) { + return hash_default_hash<T>()(v); +} + +TEST(Delegate, HashDispatch) { + EXPECT_EQ(Hash(kStd), Hash(Hashable<kStd>())); +} + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/hash_generator_testing.cc b/third_party/abseil_cpp/absl/container/internal/hash_generator_testing.cc new file mode 100644 index 000000000000..59cc5aac7ab8 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hash_generator_testing.cc @@ -0,0 +1,76 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/hash_generator_testing.h" + +#include <deque> + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace hash_internal { +namespace { + +class RandomDeviceSeedSeq { + public: + using result_type = typename std::random_device::result_type; + + template <class Iterator> + void generate(Iterator start, Iterator end) { + while (start != end) { + *start = gen_(); + ++start; + } + } + + private: + std::random_device gen_; +}; + +} // namespace + +std::mt19937_64* GetSharedRng() { + static auto* rng = [] { + RandomDeviceSeedSeq seed_seq; + return new std::mt19937_64(seed_seq); + }(); + return rng; +} + +std::string Generator<std::string>::operator()() const { + // NOLINTNEXTLINE(runtime/int) + std::uniform_int_distribution<short> chars(0x20, 0x7E); + std::string res; + res.resize(32); + std::generate(res.begin(), res.end(), + [&]() { return chars(*GetSharedRng()); }); + return res; +} + +absl::string_view Generator<absl::string_view>::operator()() const { + static auto* arena = new std::deque<std::string>(); + // NOLINTNEXTLINE(runtime/int) + std::uniform_int_distribution<short> chars(0x20, 0x7E); + arena->emplace_back(); + auto& res = arena->back(); + res.resize(32); + std::generate(res.begin(), res.end(), + [&]() { return chars(*GetSharedRng()); }); + return res; +} + +} // namespace hash_internal +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/hash_generator_testing.h b/third_party/abseil_cpp/absl/container/internal/hash_generator_testing.h new file mode 100644 index 000000000000..6869fe45e8c8 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hash_generator_testing.h @@ -0,0 +1,161 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// Generates random values for testing. Specialized only for the few types we +// care about. + +#ifndef ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_ +#define ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_ + +#include <stdint.h> + +#include <algorithm> +#include <iosfwd> +#include <random> +#include <tuple> +#include <type_traits> +#include <utility> + +#include "absl/container/internal/hash_policy_testing.h" +#include "absl/memory/memory.h" +#include "absl/meta/type_traits.h" +#include "absl/strings/string_view.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace hash_internal { +namespace generator_internal { + +template <class Container, class = void> +struct IsMap : std::false_type {}; + +template <class Map> +struct IsMap<Map, absl::void_t<typename Map::mapped_type>> : std::true_type {}; + +} // namespace generator_internal + +std::mt19937_64* GetSharedRng(); + +enum Enum { + kEnumEmpty, + kEnumDeleted, +}; + +enum class EnumClass : uint64_t { + kEmpty, + kDeleted, +}; + +inline std::ostream& operator<<(std::ostream& o, const EnumClass& ec) { + return o << static_cast<uint64_t>(ec); +} + +template <class T, class E = void> +struct Generator; + +template <class T> +struct Generator<T, typename std::enable_if<std::is_integral<T>::value>::type> { + T operator()() const { + std::uniform_int_distribution<T> dist; + return dist(*GetSharedRng()); + } +}; + +template <> +struct Generator<Enum> { + Enum operator()() const { + std::uniform_int_distribution<typename std::underlying_type<Enum>::type> + dist; + while (true) { + auto variate = dist(*GetSharedRng()); + if (variate != kEnumEmpty && variate != kEnumDeleted) + return static_cast<Enum>(variate); + } + } +}; + +template <> +struct Generator<EnumClass> { + EnumClass operator()() const { + std::uniform_int_distribution< + typename std::underlying_type<EnumClass>::type> + dist; + while (true) { + EnumClass variate = static_cast<EnumClass>(dist(*GetSharedRng())); + if (variate != EnumClass::kEmpty && variate != EnumClass::kDeleted) + return static_cast<EnumClass>(variate); + } + } +}; + +template <> +struct Generator<std::string> { + std::string operator()() const; +}; + +template <> +struct Generator<absl::string_view> { + absl::string_view operator()() const; +}; + +template <> +struct Generator<NonStandardLayout> { + NonStandardLayout operator()() const { + return NonStandardLayout(Generator<std::string>()()); + } +}; + +template <class K, class V> +struct Generator<std::pair<K, V>> { + std::pair<K, V> operator()() const { + return std::pair<K, V>(Generator<typename std::decay<K>::type>()(), + Generator<typename std::decay<V>::type>()()); + } +}; + +template <class... Ts> +struct Generator<std::tuple<Ts...>> { + std::tuple<Ts...> operator()() const { + return std::tuple<Ts...>(Generator<typename std::decay<Ts>::type>()()...); + } +}; + +template <class T> +struct Generator<std::unique_ptr<T>> { + std::unique_ptr<T> operator()() const { + return absl::make_unique<T>(Generator<T>()()); + } +}; + +template <class U> +struct Generator<U, absl::void_t<decltype(std::declval<U&>().key()), + decltype(std::declval<U&>().value())>> + : Generator<std::pair< + typename std::decay<decltype(std::declval<U&>().key())>::type, + typename std::decay<decltype(std::declval<U&>().value())>::type>> {}; + +template <class Container> +using GeneratedType = decltype( + std::declval<const Generator< + typename std::conditional<generator_internal::IsMap<Container>::value, + typename Container::value_type, + typename Container::key_type>::type>&>()()); + +} // namespace hash_internal +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/hash_policy_testing.h b/third_party/abseil_cpp/absl/container/internal/hash_policy_testing.h new file mode 100644 index 000000000000..01c40d2e5cff --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hash_policy_testing.h @@ -0,0 +1,184 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// Utilities to help tests verify that hash tables properly handle stateful +// allocators and hash functions. + +#ifndef ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_ +#define ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_ + +#include <cstdlib> +#include <limits> +#include <memory> +#include <ostream> +#include <type_traits> +#include <utility> +#include <vector> + +#include "absl/hash/hash.h" +#include "absl/strings/string_view.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace hash_testing_internal { + +template <class Derived> +struct WithId { + WithId() : id_(next_id<Derived>()) {} + WithId(const WithId& that) : id_(that.id_) {} + WithId(WithId&& that) : id_(that.id_) { that.id_ = 0; } + WithId& operator=(const WithId& that) { + id_ = that.id_; + return *this; + } + WithId& operator=(WithId&& that) { + id_ = that.id_; + that.id_ = 0; + return *this; + } + + size_t id() const { return id_; } + + friend bool operator==(const WithId& a, const WithId& b) { + return a.id_ == b.id_; + } + friend bool operator!=(const WithId& a, const WithId& b) { return !(a == b); } + + protected: + explicit WithId(size_t id) : id_(id) {} + + private: + size_t id_; + + template <class T> + static size_t next_id() { + // 0 is reserved for moved from state. + static size_t gId = 1; + return gId++; + } +}; + +} // namespace hash_testing_internal + +struct NonStandardLayout { + NonStandardLayout() {} + explicit NonStandardLayout(std::string s) : value(std::move(s)) {} + virtual ~NonStandardLayout() {} + + friend bool operator==(const NonStandardLayout& a, + const NonStandardLayout& b) { + return a.value == b.value; + } + friend bool operator!=(const NonStandardLayout& a, + const NonStandardLayout& b) { + return a.value != b.value; + } + + template <typename H> + friend H AbslHashValue(H h, const NonStandardLayout& v) { + return H::combine(std::move(h), v.value); + } + + std::string value; +}; + +struct StatefulTestingHash + : absl::container_internal::hash_testing_internal::WithId< + StatefulTestingHash> { + template <class T> + size_t operator()(const T& t) const { + return absl::Hash<T>{}(t); + } +}; + +struct StatefulTestingEqual + : absl::container_internal::hash_testing_internal::WithId< + StatefulTestingEqual> { + template <class T, class U> + bool operator()(const T& t, const U& u) const { + return t == u; + } +}; + +// It is expected that Alloc() == Alloc() for all allocators so we cannot use +// WithId base. We need to explicitly assign ids. +template <class T = int> +struct Alloc : std::allocator<T> { + using propagate_on_container_swap = std::true_type; + + // Using old paradigm for this to ensure compatibility. + explicit Alloc(size_t id = 0) : id_(id) {} + + Alloc(const Alloc&) = default; + Alloc& operator=(const Alloc&) = default; + + template <class U> + Alloc(const Alloc<U>& that) : std::allocator<T>(that), id_(that.id()) {} + + template <class U> + struct rebind { + using other = Alloc<U>; + }; + + size_t id() const { return id_; } + + friend bool operator==(const Alloc& a, const Alloc& b) { + return a.id_ == b.id_; + } + friend bool operator!=(const Alloc& a, const Alloc& b) { return !(a == b); } + + private: + size_t id_ = (std::numeric_limits<size_t>::max)(); +}; + +template <class Map> +auto items(const Map& m) -> std::vector< + std::pair<typename Map::key_type, typename Map::mapped_type>> { + using std::get; + std::vector<std::pair<typename Map::key_type, typename Map::mapped_type>> res; + res.reserve(m.size()); + for (const auto& v : m) res.emplace_back(get<0>(v), get<1>(v)); + return res; +} + +template <class Set> +auto keys(const Set& s) + -> std::vector<typename std::decay<typename Set::key_type>::type> { + std::vector<typename std::decay<typename Set::key_type>::type> res; + res.reserve(s.size()); + for (const auto& v : s) res.emplace_back(v); + return res; +} + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +// ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS is false for glibcxx versions +// where the unordered containers are missing certain constructors that +// take allocator arguments. This test is defined ad-hoc for the platforms +// we care about (notably Crosstool 17) because libstdcxx's useless +// versioning scheme precludes a more principled solution. +// From GCC-4.9 Changelog: (src: https://gcc.gnu.org/gcc-4.9/changes.html) +// "the unordered associative containers in <unordered_map> and <unordered_set> +// meet the allocator-aware container requirements;" +#if (defined(__GLIBCXX__) && __GLIBCXX__ <= 20140425 ) || \ +( __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 9 )) +#define ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS 0 +#else +#define ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS 1 +#endif + +#endif // ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/hash_policy_testing_test.cc b/third_party/abseil_cpp/absl/container/internal/hash_policy_testing_test.cc new file mode 100644 index 000000000000..f0b20fe345e2 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hash_policy_testing_test.cc @@ -0,0 +1,45 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/hash_policy_testing.h" + +#include "gtest/gtest.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace { + +TEST(_, Hash) { + StatefulTestingHash h1; + EXPECT_EQ(1, h1.id()); + StatefulTestingHash h2; + EXPECT_EQ(2, h2.id()); + StatefulTestingHash h1c(h1); + EXPECT_EQ(1, h1c.id()); + StatefulTestingHash h2m(std::move(h2)); + EXPECT_EQ(2, h2m.id()); + EXPECT_EQ(0, h2.id()); + StatefulTestingHash h3; + EXPECT_EQ(3, h3.id()); + h3 = StatefulTestingHash(); + EXPECT_EQ(4, h3.id()); + h3 = std::move(h1); + EXPECT_EQ(1, h3.id()); +} + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/hash_policy_traits.h b/third_party/abseil_cpp/absl/container/internal/hash_policy_traits.h new file mode 100644 index 000000000000..46c97b18a227 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hash_policy_traits.h @@ -0,0 +1,208 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_ +#define ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_ + +#include <cstddef> +#include <memory> +#include <new> +#include <type_traits> +#include <utility> + +#include "absl/meta/type_traits.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +// Defines how slots are initialized/destroyed/moved. +template <class Policy, class = void> +struct hash_policy_traits { + // The type of the keys stored in the hashtable. + using key_type = typename Policy::key_type; + + private: + struct ReturnKey { + // When C++17 is available, we can use std::launder to provide mutable + // access to the key for use in node handle. +#if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 + template <class Key, + absl::enable_if_t<std::is_lvalue_reference<Key>::value, int> = 0> + static key_type& Impl(Key&& k, int) { + return *std::launder( + const_cast<key_type*>(std::addressof(std::forward<Key>(k)))); + } +#endif + + template <class Key> + static Key Impl(Key&& k, char) { + return std::forward<Key>(k); + } + + // When Key=T&, we forward the lvalue reference. + // When Key=T, we return by value to avoid a dangling reference. + // eg, for string_hash_map. + template <class Key, class... Args> + auto operator()(Key&& k, const Args&...) const + -> decltype(Impl(std::forward<Key>(k), 0)) { + return Impl(std::forward<Key>(k), 0); + } + }; + + template <class P = Policy, class = void> + struct ConstantIteratorsImpl : std::false_type {}; + + template <class P> + struct ConstantIteratorsImpl<P, absl::void_t<typename P::constant_iterators>> + : P::constant_iterators {}; + + public: + // The actual object stored in the hash table. + using slot_type = typename Policy::slot_type; + + // The argument type for insertions into the hashtable. This is different + // from value_type for increased performance. See initializer_list constructor + // and insert() member functions for more details. + using init_type = typename Policy::init_type; + + using reference = decltype(Policy::element(std::declval<slot_type*>())); + using pointer = typename std::remove_reference<reference>::type*; + using value_type = typename std::remove_reference<reference>::type; + + // Policies can set this variable to tell raw_hash_set that all iterators + // should be constant, even `iterator`. This is useful for set-like + // containers. + // Defaults to false if not provided by the policy. + using constant_iterators = ConstantIteratorsImpl<>; + + // PRECONDITION: `slot` is UNINITIALIZED + // POSTCONDITION: `slot` is INITIALIZED + template <class Alloc, class... Args> + static void construct(Alloc* alloc, slot_type* slot, Args&&... args) { + Policy::construct(alloc, slot, std::forward<Args>(args)...); + } + + // PRECONDITION: `slot` is INITIALIZED + // POSTCONDITION: `slot` is UNINITIALIZED + template <class Alloc> + static void destroy(Alloc* alloc, slot_type* slot) { + Policy::destroy(alloc, slot); + } + + // Transfers the `old_slot` to `new_slot`. Any memory allocated by the + // allocator inside `old_slot` to `new_slot` can be transferred. + // + // OPTIONAL: defaults to: + // + // clone(new_slot, std::move(*old_slot)); + // destroy(old_slot); + // + // PRECONDITION: `new_slot` is UNINITIALIZED and `old_slot` is INITIALIZED + // POSTCONDITION: `new_slot` is INITIALIZED and `old_slot` is + // UNINITIALIZED + template <class Alloc> + static void transfer(Alloc* alloc, slot_type* new_slot, slot_type* old_slot) { + transfer_impl(alloc, new_slot, old_slot, 0); + } + + // PRECONDITION: `slot` is INITIALIZED + // POSTCONDITION: `slot` is INITIALIZED + template <class P = Policy> + static auto element(slot_type* slot) -> decltype(P::element(slot)) { + return P::element(slot); + } + + // Returns the amount of memory owned by `slot`, exclusive of `sizeof(*slot)`. + // + // If `slot` is nullptr, returns the constant amount of memory owned by any + // full slot or -1 if slots own variable amounts of memory. + // + // PRECONDITION: `slot` is INITIALIZED or nullptr + template <class P = Policy> + static size_t space_used(const slot_type* slot) { + return P::space_used(slot); + } + + // Provides generalized access to the key for elements, both for elements in + // the table and for elements that have not yet been inserted (or even + // constructed). We would like an API that allows us to say: `key(args...)` + // but we cannot do that for all cases, so we use this more general API that + // can be used for many things, including the following: + // + // - Given an element in a table, get its key. + // - Given an element initializer, get its key. + // - Given `emplace()` arguments, get the element key. + // + // Implementations of this must adhere to a very strict technical + // specification around aliasing and consuming arguments: + // + // Let `value_type` be the result type of `element()` without ref- and + // cv-qualifiers. The first argument is a functor, the rest are constructor + // arguments for `value_type`. Returns `std::forward<F>(f)(k, xs...)`, where + // `k` is the element key, and `xs...` are the new constructor arguments for + // `value_type`. It's allowed for `k` to alias `xs...`, and for both to alias + // `ts...`. The key won't be touched once `xs...` are used to construct an + // element; `ts...` won't be touched at all, which allows `apply()` to consume + // any rvalues among them. + // + // If `value_type` is constructible from `Ts&&...`, `Policy::apply()` must not + // trigger a hard compile error unless it originates from `f`. In other words, + // `Policy::apply()` must be SFINAE-friendly. If `value_type` is not + // constructible from `Ts&&...`, either SFINAE or a hard compile error is OK. + // + // If `Ts...` is `[cv] value_type[&]` or `[cv] init_type[&]`, + // `Policy::apply()` must work. A compile error is not allowed, SFINAE or not. + template <class F, class... Ts, class P = Policy> + static auto apply(F&& f, Ts&&... ts) + -> decltype(P::apply(std::forward<F>(f), std::forward<Ts>(ts)...)) { + return P::apply(std::forward<F>(f), std::forward<Ts>(ts)...); + } + + // Returns the "key" portion of the slot. + // Used for node handle manipulation. + template <class P = Policy> + static auto mutable_key(slot_type* slot) + -> decltype(P::apply(ReturnKey(), element(slot))) { + return P::apply(ReturnKey(), element(slot)); + } + + // Returns the "value" (as opposed to the "key") portion of the element. Used + // by maps to implement `operator[]`, `at()` and `insert_or_assign()`. + template <class T, class P = Policy> + static auto value(T* elem) -> decltype(P::value(elem)) { + return P::value(elem); + } + + private: + // Use auto -> decltype as an enabler. + template <class Alloc, class P = Policy> + static auto transfer_impl(Alloc* alloc, slot_type* new_slot, + slot_type* old_slot, int) + -> decltype((void)P::transfer(alloc, new_slot, old_slot)) { + P::transfer(alloc, new_slot, old_slot); + } + template <class Alloc> + static void transfer_impl(Alloc* alloc, slot_type* new_slot, + slot_type* old_slot, char) { + construct(alloc, new_slot, std::move(element(old_slot))); + destroy(alloc, old_slot); + } +}; + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/hash_policy_traits_test.cc b/third_party/abseil_cpp/absl/container/internal/hash_policy_traits_test.cc new file mode 100644 index 000000000000..6ef8b9e05fb1 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hash_policy_traits_test.cc @@ -0,0 +1,144 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/hash_policy_traits.h" + +#include <functional> +#include <memory> +#include <new> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace { + +using ::testing::MockFunction; +using ::testing::Return; +using ::testing::ReturnRef; + +using Alloc = std::allocator<int>; +using Slot = int; + +struct PolicyWithoutOptionalOps { + using slot_type = Slot; + using key_type = Slot; + using init_type = Slot; + + static std::function<void(void*, Slot*, Slot)> construct; + static std::function<void(void*, Slot*)> destroy; + + static std::function<Slot&(Slot*)> element; + static int apply(int v) { return apply_impl(v); } + static std::function<int(int)> apply_impl; + static std::function<Slot&(Slot*)> value; +}; + +std::function<void(void*, Slot*, Slot)> PolicyWithoutOptionalOps::construct; +std::function<void(void*, Slot*)> PolicyWithoutOptionalOps::destroy; + +std::function<Slot&(Slot*)> PolicyWithoutOptionalOps::element; +std::function<int(int)> PolicyWithoutOptionalOps::apply_impl; +std::function<Slot&(Slot*)> PolicyWithoutOptionalOps::value; + +struct PolicyWithOptionalOps : PolicyWithoutOptionalOps { + static std::function<void(void*, Slot*, Slot*)> transfer; +}; + +std::function<void(void*, Slot*, Slot*)> PolicyWithOptionalOps::transfer; + +struct Test : ::testing::Test { + Test() { + PolicyWithoutOptionalOps::construct = [&](void* a1, Slot* a2, Slot a3) { + construct.Call(a1, a2, std::move(a3)); + }; + PolicyWithoutOptionalOps::destroy = [&](void* a1, Slot* a2) { + destroy.Call(a1, a2); + }; + + PolicyWithoutOptionalOps::element = [&](Slot* a1) -> Slot& { + return element.Call(a1); + }; + PolicyWithoutOptionalOps::apply_impl = [&](int a1) -> int { + return apply.Call(a1); + }; + PolicyWithoutOptionalOps::value = [&](Slot* a1) -> Slot& { + return value.Call(a1); + }; + + PolicyWithOptionalOps::transfer = [&](void* a1, Slot* a2, Slot* a3) { + return transfer.Call(a1, a2, a3); + }; + } + + std::allocator<int> alloc; + int a = 53; + + MockFunction<void(void*, Slot*, Slot)> construct; + MockFunction<void(void*, Slot*)> destroy; + + MockFunction<Slot&(Slot*)> element; + MockFunction<int(int)> apply; + MockFunction<Slot&(Slot*)> value; + + MockFunction<void(void*, Slot*, Slot*)> transfer; +}; + +TEST_F(Test, construct) { + EXPECT_CALL(construct, Call(&alloc, &a, 53)); + hash_policy_traits<PolicyWithoutOptionalOps>::construct(&alloc, &a, 53); +} + +TEST_F(Test, destroy) { + EXPECT_CALL(destroy, Call(&alloc, &a)); + hash_policy_traits<PolicyWithoutOptionalOps>::destroy(&alloc, &a); +} + +TEST_F(Test, element) { + int b = 0; + EXPECT_CALL(element, Call(&a)).WillOnce(ReturnRef(b)); + EXPECT_EQ(&b, &hash_policy_traits<PolicyWithoutOptionalOps>::element(&a)); +} + +TEST_F(Test, apply) { + EXPECT_CALL(apply, Call(42)).WillOnce(Return(1337)); + EXPECT_EQ(1337, (hash_policy_traits<PolicyWithoutOptionalOps>::apply(42))); +} + +TEST_F(Test, value) { + int b = 0; + EXPECT_CALL(value, Call(&a)).WillOnce(ReturnRef(b)); + EXPECT_EQ(&b, &hash_policy_traits<PolicyWithoutOptionalOps>::value(&a)); +} + +TEST_F(Test, without_transfer) { + int b = 42; + EXPECT_CALL(element, Call(&b)).WillOnce(::testing::ReturnRef(b)); + EXPECT_CALL(construct, Call(&alloc, &a, b)); + EXPECT_CALL(destroy, Call(&alloc, &b)); + hash_policy_traits<PolicyWithoutOptionalOps>::transfer(&alloc, &a, &b); +} + +TEST_F(Test, with_transfer) { + int b = 42; + EXPECT_CALL(transfer, Call(&alloc, &a, &b)); + hash_policy_traits<PolicyWithOptionalOps>::transfer(&alloc, &a, &b); +} + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/hashtable_debug.h b/third_party/abseil_cpp/absl/container/internal/hashtable_debug.h new file mode 100644 index 000000000000..19d52121d688 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hashtable_debug.h @@ -0,0 +1,110 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// This library provides APIs to debug the probing behavior of hash tables. +// +// In general, the probing behavior is a black box for users and only the +// side effects can be measured in the form of performance differences. +// These APIs give a glimpse on the actual behavior of the probing algorithms in +// these hashtables given a specified hash function and a set of elements. +// +// The probe count distribution can be used to assess the quality of the hash +// function for that particular hash table. Note that a hash function that +// performs well in one hash table implementation does not necessarily performs +// well in a different one. +// +// This library supports std::unordered_{set,map}, dense_hash_{set,map} and +// absl::{flat,node,string}_hash_{set,map}. + +#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_ +#define ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_ + +#include <cstddef> +#include <algorithm> +#include <type_traits> +#include <vector> + +#include "absl/container/internal/hashtable_debug_hooks.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +// Returns the number of probes required to lookup `key`. Returns 0 for a +// search with no collisions. Higher values mean more hash collisions occurred; +// however, the exact meaning of this number varies according to the container +// type. +template <typename C> +size_t GetHashtableDebugNumProbes( + const C& c, const typename C::key_type& key) { + return absl::container_internal::hashtable_debug_internal:: + HashtableDebugAccess<C>::GetNumProbes(c, key); +} + +// Gets a histogram of the number of probes for each elements in the container. +// The sum of all the values in the vector is equal to container.size(). +template <typename C> +std::vector<size_t> GetHashtableDebugNumProbesHistogram(const C& container) { + std::vector<size_t> v; + for (auto it = container.begin(); it != container.end(); ++it) { + size_t num_probes = GetHashtableDebugNumProbes( + container, + absl::container_internal::hashtable_debug_internal::GetKey<C>(*it, 0)); + v.resize((std::max)(v.size(), num_probes + 1)); + v[num_probes]++; + } + return v; +} + +struct HashtableDebugProbeSummary { + size_t total_elements; + size_t total_num_probes; + double mean; +}; + +// Gets a summary of the probe count distribution for the elements in the +// container. +template <typename C> +HashtableDebugProbeSummary GetHashtableDebugProbeSummary(const C& container) { + auto probes = GetHashtableDebugNumProbesHistogram(container); + HashtableDebugProbeSummary summary = {}; + for (size_t i = 0; i < probes.size(); ++i) { + summary.total_elements += probes[i]; + summary.total_num_probes += probes[i] * i; + } + summary.mean = 1.0 * summary.total_num_probes / summary.total_elements; + return summary; +} + +// Returns the number of bytes requested from the allocator by the container +// and not freed. +template <typename C> +size_t AllocatedByteSize(const C& c) { + return absl::container_internal::hashtable_debug_internal:: + HashtableDebugAccess<C>::AllocatedByteSize(c); +} + +// Returns a tight lower bound for AllocatedByteSize(c) where `c` is of type `C` +// and `c.size()` is equal to `num_elements`. +template <typename C> +size_t LowerBoundAllocatedByteSize(size_t num_elements) { + return absl::container_internal::hashtable_debug_internal:: + HashtableDebugAccess<C>::LowerBoundAllocatedByteSize(num_elements); +} + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/hashtable_debug_hooks.h b/third_party/abseil_cpp/absl/container/internal/hashtable_debug_hooks.h new file mode 100644 index 000000000000..3e9ea5954e0a --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hashtable_debug_hooks.h @@ -0,0 +1,85 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// Provides the internal API for hashtable_debug.h. + +#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_ +#define ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_ + +#include <cstddef> + +#include <algorithm> +#include <type_traits> +#include <vector> + +#include "absl/base/config.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace hashtable_debug_internal { + +// If it is a map, call get<0>(). +using std::get; +template <typename T, typename = typename T::mapped_type> +auto GetKey(const typename T::value_type& pair, int) -> decltype(get<0>(pair)) { + return get<0>(pair); +} + +// If it is not a map, return the value directly. +template <typename T> +const typename T::key_type& GetKey(const typename T::key_type& key, char) { + return key; +} + +// Containers should specialize this to provide debug information for that +// container. +template <class Container, typename Enabler = void> +struct HashtableDebugAccess { + // Returns the number of probes required to find `key` in `c`. The "number of + // probes" is a concept that can vary by container. Implementations should + // return 0 when `key` was found in the minimum number of operations and + // should increment the result for each non-trivial operation required to find + // `key`. + // + // The default implementation uses the bucket api from the standard and thus + // works for `std::unordered_*` containers. + static size_t GetNumProbes(const Container& c, + const typename Container::key_type& key) { + if (!c.bucket_count()) return {}; + size_t num_probes = 0; + size_t bucket = c.bucket(key); + for (auto it = c.begin(bucket), e = c.end(bucket);; ++it, ++num_probes) { + if (it == e) return num_probes; + if (c.key_eq()(key, GetKey<Container>(*it, 0))) return num_probes; + } + } + + // Returns the number of bytes requested from the allocator by the container + // and not freed. + // + // static size_t AllocatedByteSize(const Container& c); + + // Returns a tight lower bound for AllocatedByteSize(c) where `c` is of type + // `Container` and `c.size()` is equal to `num_elements`. + // + // static size_t LowerBoundAllocatedByteSize(size_t num_elements); +}; + +} // namespace hashtable_debug_internal +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/hashtablez_sampler.cc b/third_party/abseil_cpp/absl/container/internal/hashtablez_sampler.cc new file mode 100644 index 000000000000..e4484fbb1b43 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hashtablez_sampler.cc @@ -0,0 +1,270 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/hashtablez_sampler.h" + +#include <atomic> +#include <cassert> +#include <cmath> +#include <functional> +#include <limits> + +#include "absl/base/attributes.h" +#include "absl/base/internal/exponential_biased.h" +#include "absl/container/internal/have_sse.h" +#include "absl/debugging/stacktrace.h" +#include "absl/memory/memory.h" +#include "absl/synchronization/mutex.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +constexpr int HashtablezInfo::kMaxStackDepth; + +namespace { +ABSL_CONST_INIT std::atomic<bool> g_hashtablez_enabled{ + false +}; +ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_sample_parameter{1 << 10}; +ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_max_samples{1 << 20}; + +#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) +ABSL_PER_THREAD_TLS_KEYWORD absl::base_internal::ExponentialBiased + g_exponential_biased_generator; +#endif + +} // namespace + +#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) +ABSL_PER_THREAD_TLS_KEYWORD int64_t global_next_sample = 0; +#endif // defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) + +HashtablezSampler& HashtablezSampler::Global() { + static auto* sampler = new HashtablezSampler(); + return *sampler; +} + +HashtablezSampler::DisposeCallback HashtablezSampler::SetDisposeCallback( + DisposeCallback f) { + return dispose_.exchange(f, std::memory_order_relaxed); +} + +HashtablezInfo::HashtablezInfo() { PrepareForSampling(); } +HashtablezInfo::~HashtablezInfo() = default; + +void HashtablezInfo::PrepareForSampling() { + capacity.store(0, std::memory_order_relaxed); + size.store(0, std::memory_order_relaxed); + num_erases.store(0, std::memory_order_relaxed); + num_rehashes.store(0, std::memory_order_relaxed); + max_probe_length.store(0, std::memory_order_relaxed); + total_probe_length.store(0, std::memory_order_relaxed); + hashes_bitwise_or.store(0, std::memory_order_relaxed); + hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed); + + create_time = absl::Now(); + // The inliner makes hardcoded skip_count difficult (especially when combined + // with LTO). We use the ability to exclude stacks by regex when encoding + // instead. + depth = absl::GetStackTrace(stack, HashtablezInfo::kMaxStackDepth, + /* skip_count= */ 0); + dead = nullptr; +} + +HashtablezSampler::HashtablezSampler() + : dropped_samples_(0), size_estimate_(0), all_(nullptr), dispose_(nullptr) { + absl::MutexLock l(&graveyard_.init_mu); + graveyard_.dead = &graveyard_; +} + +HashtablezSampler::~HashtablezSampler() { + HashtablezInfo* s = all_.load(std::memory_order_acquire); + while (s != nullptr) { + HashtablezInfo* next = s->next; + delete s; + s = next; + } +} + +void HashtablezSampler::PushNew(HashtablezInfo* sample) { + sample->next = all_.load(std::memory_order_relaxed); + while (!all_.compare_exchange_weak(sample->next, sample, + std::memory_order_release, + std::memory_order_relaxed)) { + } +} + +void HashtablezSampler::PushDead(HashtablezInfo* sample) { + if (auto* dispose = dispose_.load(std::memory_order_relaxed)) { + dispose(*sample); + } + + absl::MutexLock graveyard_lock(&graveyard_.init_mu); + absl::MutexLock sample_lock(&sample->init_mu); + sample->dead = graveyard_.dead; + graveyard_.dead = sample; +} + +HashtablezInfo* HashtablezSampler::PopDead() { + absl::MutexLock graveyard_lock(&graveyard_.init_mu); + + // The list is circular, so eventually it collapses down to + // graveyard_.dead == &graveyard_ + // when it is empty. + HashtablezInfo* sample = graveyard_.dead; + if (sample == &graveyard_) return nullptr; + + absl::MutexLock sample_lock(&sample->init_mu); + graveyard_.dead = sample->dead; + sample->PrepareForSampling(); + return sample; +} + +HashtablezInfo* HashtablezSampler::Register() { + int64_t size = size_estimate_.fetch_add(1, std::memory_order_relaxed); + if (size > g_hashtablez_max_samples.load(std::memory_order_relaxed)) { + size_estimate_.fetch_sub(1, std::memory_order_relaxed); + dropped_samples_.fetch_add(1, std::memory_order_relaxed); + return nullptr; + } + + HashtablezInfo* sample = PopDead(); + if (sample == nullptr) { + // Resurrection failed. Hire a new warlock. + sample = new HashtablezInfo(); + PushNew(sample); + } + + return sample; +} + +void HashtablezSampler::Unregister(HashtablezInfo* sample) { + PushDead(sample); + size_estimate_.fetch_sub(1, std::memory_order_relaxed); +} + +int64_t HashtablezSampler::Iterate( + const std::function<void(const HashtablezInfo& stack)>& f) { + HashtablezInfo* s = all_.load(std::memory_order_acquire); + while (s != nullptr) { + absl::MutexLock l(&s->init_mu); + if (s->dead == nullptr) { + f(*s); + } + s = s->next; + } + + return dropped_samples_.load(std::memory_order_relaxed); +} + +static bool ShouldForceSampling() { + enum ForceState { + kDontForce, + kForce, + kUninitialized + }; + ABSL_CONST_INIT static std::atomic<ForceState> global_state{ + kUninitialized}; + ForceState state = global_state.load(std::memory_order_relaxed); + if (ABSL_PREDICT_TRUE(state == kDontForce)) return false; + + if (state == kUninitialized) { + state = AbslContainerInternalSampleEverything() ? kForce : kDontForce; + global_state.store(state, std::memory_order_relaxed); + } + return state == kForce; +} + +HashtablezInfo* SampleSlow(int64_t* next_sample) { + if (ABSL_PREDICT_FALSE(ShouldForceSampling())) { + *next_sample = 1; + return HashtablezSampler::Global().Register(); + } + +#if !defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) + *next_sample = std::numeric_limits<int64_t>::max(); + return nullptr; +#else + bool first = *next_sample < 0; + *next_sample = g_exponential_biased_generator.GetStride( + g_hashtablez_sample_parameter.load(std::memory_order_relaxed)); + // Small values of interval are equivalent to just sampling next time. + ABSL_ASSERT(*next_sample >= 1); + + // g_hashtablez_enabled can be dynamically flipped, we need to set a threshold + // low enough that we will start sampling in a reasonable time, so we just use + // the default sampling rate. + if (!g_hashtablez_enabled.load(std::memory_order_relaxed)) return nullptr; + + // We will only be negative on our first count, so we should just retry in + // that case. + if (first) { + if (ABSL_PREDICT_TRUE(--*next_sample > 0)) return nullptr; + return SampleSlow(next_sample); + } + + return HashtablezSampler::Global().Register(); +#endif +} + +void UnsampleSlow(HashtablezInfo* info) { + HashtablezSampler::Global().Unregister(info); +} + +void RecordInsertSlow(HashtablezInfo* info, size_t hash, + size_t distance_from_desired) { + // SwissTables probe in groups of 16, so scale this to count items probes and + // not offset from desired. + size_t probe_length = distance_from_desired; +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 + probe_length /= 16; +#else + probe_length /= 8; +#endif + + info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed); + info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed); + info->max_probe_length.store( + std::max(info->max_probe_length.load(std::memory_order_relaxed), + probe_length), + std::memory_order_relaxed); + info->total_probe_length.fetch_add(probe_length, std::memory_order_relaxed); + info->size.fetch_add(1, std::memory_order_relaxed); +} + +void SetHashtablezEnabled(bool enabled) { + g_hashtablez_enabled.store(enabled, std::memory_order_release); +} + +void SetHashtablezSampleParameter(int32_t rate) { + if (rate > 0) { + g_hashtablez_sample_parameter.store(rate, std::memory_order_release); + } else { + ABSL_RAW_LOG(ERROR, "Invalid hashtablez sample rate: %lld", + static_cast<long long>(rate)); // NOLINT(runtime/int) + } +} + +void SetHashtablezMaxSamples(int32_t max) { + if (max > 0) { + g_hashtablez_max_samples.store(max, std::memory_order_release); + } else { + ABSL_RAW_LOG(ERROR, "Invalid hashtablez max samples: %lld", + static_cast<long long>(max)); // NOLINT(runtime/int) + } +} + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/hashtablez_sampler.h b/third_party/abseil_cpp/absl/container/internal/hashtablez_sampler.h new file mode 100644 index 000000000000..394348da58f5 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hashtablez_sampler.h @@ -0,0 +1,321 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// ----------------------------------------------------------------------------- +// File: hashtablez_sampler.h +// ----------------------------------------------------------------------------- +// +// This header file defines the API for a low level library to sample hashtables +// and collect runtime statistics about them. +// +// `HashtablezSampler` controls the lifecycle of `HashtablezInfo` objects which +// store information about a single sample. +// +// `Record*` methods store information into samples. +// `Sample()` and `Unsample()` make use of a single global sampler with +// properties controlled by the flags hashtablez_enabled, +// hashtablez_sample_rate, and hashtablez_max_samples. +// +// WARNING +// +// Using this sampling API may cause sampled Swiss tables to use the global +// allocator (operator `new`) in addition to any custom allocator. If you +// are using a table in an unusual circumstance where allocation or calling a +// linux syscall is unacceptable, this could interfere. +// +// This utility is internal-only. Use at your own risk. + +#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLEZ_SAMPLER_H_ +#define ABSL_CONTAINER_INTERNAL_HASHTABLEZ_SAMPLER_H_ + +#include <atomic> +#include <functional> +#include <memory> +#include <vector> + +#include "absl/base/internal/per_thread_tls.h" +#include "absl/base/optimization.h" +#include "absl/container/internal/have_sse.h" +#include "absl/synchronization/mutex.h" +#include "absl/utility/utility.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +// Stores information about a sampled hashtable. All mutations to this *must* +// be made through `Record*` functions below. All reads from this *must* only +// occur in the callback to `HashtablezSampler::Iterate`. +struct HashtablezInfo { + // Constructs the object but does not fill in any fields. + HashtablezInfo(); + ~HashtablezInfo(); + HashtablezInfo(const HashtablezInfo&) = delete; + HashtablezInfo& operator=(const HashtablezInfo&) = delete; + + // Puts the object into a clean state, fills in the logically `const` members, + // blocking for any readers that are currently sampling the object. + void PrepareForSampling() ABSL_EXCLUSIVE_LOCKS_REQUIRED(init_mu); + + // These fields are mutated by the various Record* APIs and need to be + // thread-safe. + std::atomic<size_t> capacity; + std::atomic<size_t> size; + std::atomic<size_t> num_erases; + std::atomic<size_t> num_rehashes; + std::atomic<size_t> max_probe_length; + std::atomic<size_t> total_probe_length; + std::atomic<size_t> hashes_bitwise_or; + std::atomic<size_t> hashes_bitwise_and; + + // `HashtablezSampler` maintains intrusive linked lists for all samples. See + // comments on `HashtablezSampler::all_` for details on these. `init_mu` + // guards the ability to restore the sample to a pristine state. This + // prevents races with sampling and resurrecting an object. + absl::Mutex init_mu; + HashtablezInfo* next; + HashtablezInfo* dead ABSL_GUARDED_BY(init_mu); + + // All of the fields below are set by `PrepareForSampling`, they must not be + // mutated in `Record*` functions. They are logically `const` in that sense. + // These are guarded by init_mu, but that is not externalized to clients, who + // can only read them during `HashtablezSampler::Iterate` which will hold the + // lock. + static constexpr int kMaxStackDepth = 64; + absl::Time create_time; + int32_t depth; + void* stack[kMaxStackDepth]; +}; + +inline void RecordRehashSlow(HashtablezInfo* info, size_t total_probe_length) { +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 + total_probe_length /= 16; +#else + total_probe_length /= 8; +#endif + info->total_probe_length.store(total_probe_length, std::memory_order_relaxed); + info->num_erases.store(0, std::memory_order_relaxed); + // There is only one concurrent writer, so `load` then `store` is sufficient + // instead of using `fetch_add`. + info->num_rehashes.store( + 1 + info->num_rehashes.load(std::memory_order_relaxed), + std::memory_order_relaxed); +} + +inline void RecordStorageChangedSlow(HashtablezInfo* info, size_t size, + size_t capacity) { + info->size.store(size, std::memory_order_relaxed); + info->capacity.store(capacity, std::memory_order_relaxed); + if (size == 0) { + // This is a clear, reset the total/num_erases too. + info->total_probe_length.store(0, std::memory_order_relaxed); + info->num_erases.store(0, std::memory_order_relaxed); + } +} + +void RecordInsertSlow(HashtablezInfo* info, size_t hash, + size_t distance_from_desired); + +inline void RecordEraseSlow(HashtablezInfo* info) { + info->size.fetch_sub(1, std::memory_order_relaxed); + // There is only one concurrent writer, so `load` then `store` is sufficient + // instead of using `fetch_add`. + info->num_erases.store( + 1 + info->num_erases.load(std::memory_order_relaxed), + std::memory_order_relaxed); +} + +HashtablezInfo* SampleSlow(int64_t* next_sample); +void UnsampleSlow(HashtablezInfo* info); + +#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) +#error ABSL_INTERNAL_HASHTABLEZ_SAMPLE cannot be directly set +#endif // defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) + +#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) +class HashtablezInfoHandle { + public: + explicit HashtablezInfoHandle() : info_(nullptr) {} + explicit HashtablezInfoHandle(HashtablezInfo* info) : info_(info) {} + ~HashtablezInfoHandle() { + if (ABSL_PREDICT_TRUE(info_ == nullptr)) return; + UnsampleSlow(info_); + } + + HashtablezInfoHandle(const HashtablezInfoHandle&) = delete; + HashtablezInfoHandle& operator=(const HashtablezInfoHandle&) = delete; + + HashtablezInfoHandle(HashtablezInfoHandle&& o) noexcept + : info_(absl::exchange(o.info_, nullptr)) {} + HashtablezInfoHandle& operator=(HashtablezInfoHandle&& o) noexcept { + if (ABSL_PREDICT_FALSE(info_ != nullptr)) { + UnsampleSlow(info_); + } + info_ = absl::exchange(o.info_, nullptr); + return *this; + } + + inline void RecordStorageChanged(size_t size, size_t capacity) { + if (ABSL_PREDICT_TRUE(info_ == nullptr)) return; + RecordStorageChangedSlow(info_, size, capacity); + } + + inline void RecordRehash(size_t total_probe_length) { + if (ABSL_PREDICT_TRUE(info_ == nullptr)) return; + RecordRehashSlow(info_, total_probe_length); + } + + inline void RecordInsert(size_t hash, size_t distance_from_desired) { + if (ABSL_PREDICT_TRUE(info_ == nullptr)) return; + RecordInsertSlow(info_, hash, distance_from_desired); + } + + inline void RecordErase() { + if (ABSL_PREDICT_TRUE(info_ == nullptr)) return; + RecordEraseSlow(info_); + } + + friend inline void swap(HashtablezInfoHandle& lhs, + HashtablezInfoHandle& rhs) { + std::swap(lhs.info_, rhs.info_); + } + + private: + friend class HashtablezInfoHandlePeer; + HashtablezInfo* info_; +}; +#else +// Ensure that when Hashtablez is turned off at compile time, HashtablezInfo can +// be removed by the linker, in order to reduce the binary size. +class HashtablezInfoHandle { + public: + explicit HashtablezInfoHandle() = default; + explicit HashtablezInfoHandle(std::nullptr_t) {} + + inline void RecordStorageChanged(size_t /*size*/, size_t /*capacity*/) {} + inline void RecordRehash(size_t /*total_probe_length*/) {} + inline void RecordInsert(size_t /*hash*/, size_t /*distance_from_desired*/) {} + inline void RecordErase() {} + + friend inline void swap(HashtablezInfoHandle& /*lhs*/, + HashtablezInfoHandle& /*rhs*/) {} +}; +#endif // defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) + +#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) +extern ABSL_PER_THREAD_TLS_KEYWORD int64_t global_next_sample; +#endif // defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) + +// Returns an RAII sampling handle that manages registration and unregistation +// with the global sampler. +inline HashtablezInfoHandle Sample() { +#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) + if (ABSL_PREDICT_TRUE(--global_next_sample > 0)) { + return HashtablezInfoHandle(nullptr); + } + return HashtablezInfoHandle(SampleSlow(&global_next_sample)); +#else + return HashtablezInfoHandle(nullptr); +#endif // !ABSL_PER_THREAD_TLS +} + +// Holds samples and their associated stack traces with a soft limit of +// `SetHashtablezMaxSamples()`. +// +// Thread safe. +class HashtablezSampler { + public: + // Returns a global Sampler. + static HashtablezSampler& Global(); + + HashtablezSampler(); + ~HashtablezSampler(); + + // Registers for sampling. Returns an opaque registration info. + HashtablezInfo* Register(); + + // Unregisters the sample. + void Unregister(HashtablezInfo* sample); + + // The dispose callback will be called on all samples the moment they are + // being unregistered. Only affects samples that are unregistered after the + // callback has been set. + // Returns the previous callback. + using DisposeCallback = void (*)(const HashtablezInfo&); + DisposeCallback SetDisposeCallback(DisposeCallback f); + + // Iterates over all the registered `StackInfo`s. Returning the number of + // samples that have been dropped. + int64_t Iterate(const std::function<void(const HashtablezInfo& stack)>& f); + + private: + void PushNew(HashtablezInfo* sample); + void PushDead(HashtablezInfo* sample); + HashtablezInfo* PopDead(); + + std::atomic<size_t> dropped_samples_; + std::atomic<size_t> size_estimate_; + + // Intrusive lock free linked lists for tracking samples. + // + // `all_` records all samples (they are never removed from this list) and is + // terminated with a `nullptr`. + // + // `graveyard_.dead` is a circular linked list. When it is empty, + // `graveyard_.dead == &graveyard`. The list is circular so that + // every item on it (even the last) has a non-null dead pointer. This allows + // `Iterate` to determine if a given sample is live or dead using only + // information on the sample itself. + // + // For example, nodes [A, B, C, D, E] with [A, C, E] alive and [B, D] dead + // looks like this (G is the Graveyard): + // + // +---+ +---+ +---+ +---+ +---+ + // all -->| A |--->| B |--->| C |--->| D |--->| E | + // | | | | | | | | | | + // +---+ | | +->| |-+ | | +->| |-+ | | + // | G | +---+ | +---+ | +---+ | +---+ | +---+ + // | | | | | | + // | | --------+ +--------+ | + // +---+ | + // ^ | + // +--------------------------------------+ + // + std::atomic<HashtablezInfo*> all_; + HashtablezInfo graveyard_; + + std::atomic<DisposeCallback> dispose_; +}; + +// Enables or disables sampling for Swiss tables. +void SetHashtablezEnabled(bool enabled); + +// Sets the rate at which Swiss tables will be sampled. +void SetHashtablezSampleParameter(int32_t rate); + +// Sets a soft max for the number of samples that will be kept. +void SetHashtablezMaxSamples(int32_t max); + +// Configuration override. +// This allows process-wide sampling without depending on order of +// initialization of static storage duration objects. +// The definition of this constant is weak, which allows us to inject a +// different value for it at link time. +extern "C" bool AbslContainerInternalSampleEverything(); + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_HASHTABLEZ_SAMPLER_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/hashtablez_sampler_force_weak_definition.cc b/third_party/abseil_cpp/absl/container/internal/hashtablez_sampler_force_weak_definition.cc new file mode 100644 index 000000000000..78b9d362acf3 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hashtablez_sampler_force_weak_definition.cc @@ -0,0 +1,30 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/hashtablez_sampler.h" + +#include "absl/base/attributes.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +// See hashtablez_sampler.h for details. +extern "C" ABSL_ATTRIBUTE_WEAK bool AbslContainerInternalSampleEverything() { + return false; +} + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/hashtablez_sampler_test.cc b/third_party/abseil_cpp/absl/container/internal/hashtablez_sampler_test.cc new file mode 100644 index 000000000000..8d10a1e94030 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/hashtablez_sampler_test.cc @@ -0,0 +1,371 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/hashtablez_sampler.h" + +#include <atomic> +#include <limits> +#include <random> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/base/attributes.h" +#include "absl/container/internal/have_sse.h" +#include "absl/synchronization/blocking_counter.h" +#include "absl/synchronization/internal/thread_pool.h" +#include "absl/synchronization/mutex.h" +#include "absl/synchronization/notification.h" +#include "absl/time/clock.h" +#include "absl/time/time.h" + +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 +constexpr int kProbeLength = 16; +#else +constexpr int kProbeLength = 8; +#endif + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) +class HashtablezInfoHandlePeer { + public: + static bool IsSampled(const HashtablezInfoHandle& h) { + return h.info_ != nullptr; + } + + static HashtablezInfo* GetInfo(HashtablezInfoHandle* h) { return h->info_; } +}; +#else +class HashtablezInfoHandlePeer { + public: + static bool IsSampled(const HashtablezInfoHandle&) { return false; } + static HashtablezInfo* GetInfo(HashtablezInfoHandle*) { return nullptr; } +}; +#endif // defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) + +namespace { +using ::absl::synchronization_internal::ThreadPool; +using ::testing::IsEmpty; +using ::testing::UnorderedElementsAre; + +std::vector<size_t> GetSizes(HashtablezSampler* s) { + std::vector<size_t> res; + s->Iterate([&](const HashtablezInfo& info) { + res.push_back(info.size.load(std::memory_order_acquire)); + }); + return res; +} + +HashtablezInfo* Register(HashtablezSampler* s, size_t size) { + auto* info = s->Register(); + assert(info != nullptr); + info->size.store(size); + return info; +} + +TEST(HashtablezInfoTest, PrepareForSampling) { + absl::Time test_start = absl::Now(); + HashtablezInfo info; + absl::MutexLock l(&info.init_mu); + info.PrepareForSampling(); + + EXPECT_EQ(info.capacity.load(), 0); + EXPECT_EQ(info.size.load(), 0); + EXPECT_EQ(info.num_erases.load(), 0); + EXPECT_EQ(info.num_rehashes.load(), 0); + EXPECT_EQ(info.max_probe_length.load(), 0); + EXPECT_EQ(info.total_probe_length.load(), 0); + EXPECT_EQ(info.hashes_bitwise_or.load(), 0); + EXPECT_EQ(info.hashes_bitwise_and.load(), ~size_t{}); + EXPECT_GE(info.create_time, test_start); + + info.capacity.store(1, std::memory_order_relaxed); + info.size.store(1, std::memory_order_relaxed); + info.num_erases.store(1, std::memory_order_relaxed); + info.max_probe_length.store(1, std::memory_order_relaxed); + info.total_probe_length.store(1, std::memory_order_relaxed); + info.hashes_bitwise_or.store(1, std::memory_order_relaxed); + info.hashes_bitwise_and.store(1, std::memory_order_relaxed); + info.create_time = test_start - absl::Hours(20); + + info.PrepareForSampling(); + EXPECT_EQ(info.capacity.load(), 0); + EXPECT_EQ(info.size.load(), 0); + EXPECT_EQ(info.num_erases.load(), 0); + EXPECT_EQ(info.num_rehashes.load(), 0); + EXPECT_EQ(info.max_probe_length.load(), 0); + EXPECT_EQ(info.total_probe_length.load(), 0); + EXPECT_EQ(info.hashes_bitwise_or.load(), 0); + EXPECT_EQ(info.hashes_bitwise_and.load(), ~size_t{}); + EXPECT_GE(info.create_time, test_start); +} + +TEST(HashtablezInfoTest, RecordStorageChanged) { + HashtablezInfo info; + absl::MutexLock l(&info.init_mu); + info.PrepareForSampling(); + RecordStorageChangedSlow(&info, 17, 47); + EXPECT_EQ(info.size.load(), 17); + EXPECT_EQ(info.capacity.load(), 47); + RecordStorageChangedSlow(&info, 20, 20); + EXPECT_EQ(info.size.load(), 20); + EXPECT_EQ(info.capacity.load(), 20); +} + +TEST(HashtablezInfoTest, RecordInsert) { + HashtablezInfo info; + absl::MutexLock l(&info.init_mu); + info.PrepareForSampling(); + EXPECT_EQ(info.max_probe_length.load(), 0); + RecordInsertSlow(&info, 0x0000FF00, 6 * kProbeLength); + EXPECT_EQ(info.max_probe_length.load(), 6); + EXPECT_EQ(info.hashes_bitwise_and.load(), 0x0000FF00); + EXPECT_EQ(info.hashes_bitwise_or.load(), 0x0000FF00); + RecordInsertSlow(&info, 0x000FF000, 4 * kProbeLength); + EXPECT_EQ(info.max_probe_length.load(), 6); + EXPECT_EQ(info.hashes_bitwise_and.load(), 0x0000F000); + EXPECT_EQ(info.hashes_bitwise_or.load(), 0x000FFF00); + RecordInsertSlow(&info, 0x00FF0000, 12 * kProbeLength); + EXPECT_EQ(info.max_probe_length.load(), 12); + EXPECT_EQ(info.hashes_bitwise_and.load(), 0x00000000); + EXPECT_EQ(info.hashes_bitwise_or.load(), 0x00FFFF00); +} + +TEST(HashtablezInfoTest, RecordErase) { + HashtablezInfo info; + absl::MutexLock l(&info.init_mu); + info.PrepareForSampling(); + EXPECT_EQ(info.num_erases.load(), 0); + EXPECT_EQ(info.size.load(), 0); + RecordInsertSlow(&info, 0x0000FF00, 6 * kProbeLength); + EXPECT_EQ(info.size.load(), 1); + RecordEraseSlow(&info); + EXPECT_EQ(info.size.load(), 0); + EXPECT_EQ(info.num_erases.load(), 1); +} + +TEST(HashtablezInfoTest, RecordRehash) { + HashtablezInfo info; + absl::MutexLock l(&info.init_mu); + info.PrepareForSampling(); + RecordInsertSlow(&info, 0x1, 0); + RecordInsertSlow(&info, 0x2, kProbeLength); + RecordInsertSlow(&info, 0x4, kProbeLength); + RecordInsertSlow(&info, 0x8, 2 * kProbeLength); + EXPECT_EQ(info.size.load(), 4); + EXPECT_EQ(info.total_probe_length.load(), 4); + + RecordEraseSlow(&info); + RecordEraseSlow(&info); + EXPECT_EQ(info.size.load(), 2); + EXPECT_EQ(info.total_probe_length.load(), 4); + EXPECT_EQ(info.num_erases.load(), 2); + + RecordRehashSlow(&info, 3 * kProbeLength); + EXPECT_EQ(info.size.load(), 2); + EXPECT_EQ(info.total_probe_length.load(), 3); + EXPECT_EQ(info.num_erases.load(), 0); + EXPECT_EQ(info.num_rehashes.load(), 1); +} + +#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) +TEST(HashtablezSamplerTest, SmallSampleParameter) { + SetHashtablezEnabled(true); + SetHashtablezSampleParameter(100); + + for (int i = 0; i < 1000; ++i) { + int64_t next_sample = 0; + HashtablezInfo* sample = SampleSlow(&next_sample); + EXPECT_GT(next_sample, 0); + EXPECT_NE(sample, nullptr); + UnsampleSlow(sample); + } +} + +TEST(HashtablezSamplerTest, LargeSampleParameter) { + SetHashtablezEnabled(true); + SetHashtablezSampleParameter(std::numeric_limits<int32_t>::max()); + + for (int i = 0; i < 1000; ++i) { + int64_t next_sample = 0; + HashtablezInfo* sample = SampleSlow(&next_sample); + EXPECT_GT(next_sample, 0); + EXPECT_NE(sample, nullptr); + UnsampleSlow(sample); + } +} + +TEST(HashtablezSamplerTest, Sample) { + SetHashtablezEnabled(true); + SetHashtablezSampleParameter(100); + int64_t num_sampled = 0; + int64_t total = 0; + double sample_rate = 0.0; + for (int i = 0; i < 1000000; ++i) { + HashtablezInfoHandle h = Sample(); + ++total; + if (HashtablezInfoHandlePeer::IsSampled(h)) { + ++num_sampled; + } + sample_rate = static_cast<double>(num_sampled) / total; + if (0.005 < sample_rate && sample_rate < 0.015) break; + } + EXPECT_NEAR(sample_rate, 0.01, 0.005); +} + +TEST(HashtablezSamplerTest, Handle) { + auto& sampler = HashtablezSampler::Global(); + HashtablezInfoHandle h(sampler.Register()); + auto* info = HashtablezInfoHandlePeer::GetInfo(&h); + info->hashes_bitwise_and.store(0x12345678, std::memory_order_relaxed); + + bool found = false; + sampler.Iterate([&](const HashtablezInfo& h) { + if (&h == info) { + EXPECT_EQ(h.hashes_bitwise_and.load(), 0x12345678); + found = true; + } + }); + EXPECT_TRUE(found); + + h = HashtablezInfoHandle(); + found = false; + sampler.Iterate([&](const HashtablezInfo& h) { + if (&h == info) { + // this will only happen if some other thread has resurrected the info + // the old handle was using. + if (h.hashes_bitwise_and.load() == 0x12345678) { + found = true; + } + } + }); + EXPECT_FALSE(found); +} +#endif + + +TEST(HashtablezSamplerTest, Registration) { + HashtablezSampler sampler; + auto* info1 = Register(&sampler, 1); + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(1)); + + auto* info2 = Register(&sampler, 2); + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(1, 2)); + info1->size.store(3); + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(3, 2)); + + sampler.Unregister(info1); + sampler.Unregister(info2); +} + +TEST(HashtablezSamplerTest, Unregistration) { + HashtablezSampler sampler; + std::vector<HashtablezInfo*> infos; + for (size_t i = 0; i < 3; ++i) { + infos.push_back(Register(&sampler, i)); + } + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 1, 2)); + + sampler.Unregister(infos[1]); + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2)); + + infos.push_back(Register(&sampler, 3)); + infos.push_back(Register(&sampler, 4)); + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2, 3, 4)); + sampler.Unregister(infos[3]); + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2, 4)); + + sampler.Unregister(infos[0]); + sampler.Unregister(infos[2]); + sampler.Unregister(infos[4]); + EXPECT_THAT(GetSizes(&sampler), IsEmpty()); +} + +TEST(HashtablezSamplerTest, MultiThreaded) { + HashtablezSampler sampler; + Notification stop; + ThreadPool pool(10); + + for (int i = 0; i < 10; ++i) { + pool.Schedule([&sampler, &stop]() { + std::random_device rd; + std::mt19937 gen(rd()); + + std::vector<HashtablezInfo*> infoz; + while (!stop.HasBeenNotified()) { + if (infoz.empty()) { + infoz.push_back(sampler.Register()); + } + switch (std::uniform_int_distribution<>(0, 2)(gen)) { + case 0: { + infoz.push_back(sampler.Register()); + break; + } + case 1: { + size_t p = + std::uniform_int_distribution<>(0, infoz.size() - 1)(gen); + HashtablezInfo* info = infoz[p]; + infoz[p] = infoz.back(); + infoz.pop_back(); + sampler.Unregister(info); + break; + } + case 2: { + absl::Duration oldest = absl::ZeroDuration(); + sampler.Iterate([&](const HashtablezInfo& info) { + oldest = std::max(oldest, absl::Now() - info.create_time); + }); + ASSERT_GE(oldest, absl::ZeroDuration()); + break; + } + } + } + }); + } + // The threads will hammer away. Give it a little bit of time for tsan to + // spot errors. + absl::SleepFor(absl::Seconds(3)); + stop.Notify(); +} + +TEST(HashtablezSamplerTest, Callback) { + HashtablezSampler sampler; + + auto* info1 = Register(&sampler, 1); + auto* info2 = Register(&sampler, 2); + + static const HashtablezInfo* expected; + + auto callback = [](const HashtablezInfo& info) { + // We can't use `info` outside of this callback because the object will be + // disposed as soon as we return from here. + EXPECT_EQ(&info, expected); + }; + + // Set the callback. + EXPECT_EQ(sampler.SetDisposeCallback(callback), nullptr); + expected = info1; + sampler.Unregister(info1); + + // Unset the callback. + EXPECT_EQ(callback, sampler.SetDisposeCallback(nullptr)); + expected = nullptr; // no more calls. + sampler.Unregister(info2); +} + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/have_sse.h b/third_party/abseil_cpp/absl/container/internal/have_sse.h new file mode 100644 index 000000000000..e75e1a16d327 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/have_sse.h @@ -0,0 +1,50 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// Shared config probing for SSE instructions used in Swiss tables. +#ifndef ABSL_CONTAINER_INTERNAL_HAVE_SSE_H_ +#define ABSL_CONTAINER_INTERNAL_HAVE_SSE_H_ + +#ifndef ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 +#if defined(__SSE2__) || \ + (defined(_MSC_VER) && \ + (defined(_M_X64) || (defined(_M_IX86) && _M_IX86_FP >= 2))) +#define ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 1 +#else +#define ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 0 +#endif +#endif + +#ifndef ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 +#ifdef __SSSE3__ +#define ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 1 +#else +#define ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 0 +#endif +#endif + +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 && \ + !ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 +#error "Bad configuration!" +#endif + +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 +#include <emmintrin.h> +#endif + +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 +#include <tmmintrin.h> +#endif + +#endif // ABSL_CONTAINER_INTERNAL_HAVE_SSE_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/inlined_vector.h b/third_party/abseil_cpp/absl/container/internal/inlined_vector.h new file mode 100644 index 000000000000..c98c25c44221 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/inlined_vector.h @@ -0,0 +1,895 @@ +// Copyright 2019 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_INTERNAL_H_ +#define ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_INTERNAL_H_ + +#include <algorithm> +#include <cstddef> +#include <cstring> +#include <iterator> +#include <limits> +#include <memory> +#include <utility> + +#include "absl/base/macros.h" +#include "absl/container/internal/compressed_tuple.h" +#include "absl/memory/memory.h" +#include "absl/meta/type_traits.h" +#include "absl/types/span.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace inlined_vector_internal { + +template <typename Iterator> +using IsAtLeastForwardIterator = std::is_convertible< + typename std::iterator_traits<Iterator>::iterator_category, + std::forward_iterator_tag>; + +template <typename AllocatorType, + typename ValueType = + typename absl::allocator_traits<AllocatorType>::value_type> +using IsMemcpyOk = + absl::conjunction<std::is_same<AllocatorType, std::allocator<ValueType>>, + absl::is_trivially_copy_constructible<ValueType>, + absl::is_trivially_copy_assignable<ValueType>, + absl::is_trivially_destructible<ValueType>>; + +template <typename AllocatorType, typename Pointer, typename SizeType> +void DestroyElements(AllocatorType* alloc_ptr, Pointer destroy_first, + SizeType destroy_size) { + using AllocatorTraits = absl::allocator_traits<AllocatorType>; + + if (destroy_first != nullptr) { + for (auto i = destroy_size; i != 0;) { + --i; + AllocatorTraits::destroy(*alloc_ptr, destroy_first + i); + } + +#if !defined(NDEBUG) + { + using ValueType = typename AllocatorTraits::value_type; + + // Overwrite unused memory with `0xab` so we can catch uninitialized + // usage. + // + // Cast to `void*` to tell the compiler that we don't care that we might + // be scribbling on a vtable pointer. + void* memory_ptr = destroy_first; + auto memory_size = destroy_size * sizeof(ValueType); + std::memset(memory_ptr, 0xab, memory_size); + } +#endif // !defined(NDEBUG) + } +} + +template <typename AllocatorType, typename Pointer, typename ValueAdapter, + typename SizeType> +void ConstructElements(AllocatorType* alloc_ptr, Pointer construct_first, + ValueAdapter* values_ptr, SizeType construct_size) { + for (SizeType i = 0; i < construct_size; ++i) { + ABSL_INTERNAL_TRY { + values_ptr->ConstructNext(alloc_ptr, construct_first + i); + } + ABSL_INTERNAL_CATCH_ANY { + inlined_vector_internal::DestroyElements(alloc_ptr, construct_first, i); + ABSL_INTERNAL_RETHROW; + } + } +} + +template <typename Pointer, typename ValueAdapter, typename SizeType> +void AssignElements(Pointer assign_first, ValueAdapter* values_ptr, + SizeType assign_size) { + for (SizeType i = 0; i < assign_size; ++i) { + values_ptr->AssignNext(assign_first + i); + } +} + +template <typename AllocatorType> +struct StorageView { + using AllocatorTraits = absl::allocator_traits<AllocatorType>; + using Pointer = typename AllocatorTraits::pointer; + using SizeType = typename AllocatorTraits::size_type; + + Pointer data; + SizeType size; + SizeType capacity; +}; + +template <typename AllocatorType, typename Iterator> +class IteratorValueAdapter { + using AllocatorTraits = absl::allocator_traits<AllocatorType>; + using Pointer = typename AllocatorTraits::pointer; + + public: + explicit IteratorValueAdapter(const Iterator& it) : it_(it) {} + + void ConstructNext(AllocatorType* alloc_ptr, Pointer construct_at) { + AllocatorTraits::construct(*alloc_ptr, construct_at, *it_); + ++it_; + } + + void AssignNext(Pointer assign_at) { + *assign_at = *it_; + ++it_; + } + + private: + Iterator it_; +}; + +template <typename AllocatorType> +class CopyValueAdapter { + using AllocatorTraits = absl::allocator_traits<AllocatorType>; + using ValueType = typename AllocatorTraits::value_type; + using Pointer = typename AllocatorTraits::pointer; + using ConstPointer = typename AllocatorTraits::const_pointer; + + public: + explicit CopyValueAdapter(const ValueType& v) : ptr_(std::addressof(v)) {} + + void ConstructNext(AllocatorType* alloc_ptr, Pointer construct_at) { + AllocatorTraits::construct(*alloc_ptr, construct_at, *ptr_); + } + + void AssignNext(Pointer assign_at) { *assign_at = *ptr_; } + + private: + ConstPointer ptr_; +}; + +template <typename AllocatorType> +class DefaultValueAdapter { + using AllocatorTraits = absl::allocator_traits<AllocatorType>; + using ValueType = typename AllocatorTraits::value_type; + using Pointer = typename AllocatorTraits::pointer; + + public: + explicit DefaultValueAdapter() {} + + void ConstructNext(AllocatorType* alloc_ptr, Pointer construct_at) { + AllocatorTraits::construct(*alloc_ptr, construct_at); + } + + void AssignNext(Pointer assign_at) { *assign_at = ValueType(); } +}; + +template <typename AllocatorType> +class AllocationTransaction { + using AllocatorTraits = absl::allocator_traits<AllocatorType>; + using Pointer = typename AllocatorTraits::pointer; + using SizeType = typename AllocatorTraits::size_type; + + public: + explicit AllocationTransaction(AllocatorType* alloc_ptr) + : alloc_data_(*alloc_ptr, nullptr) {} + + ~AllocationTransaction() { + if (DidAllocate()) { + AllocatorTraits::deallocate(GetAllocator(), GetData(), GetCapacity()); + } + } + + AllocationTransaction(const AllocationTransaction&) = delete; + void operator=(const AllocationTransaction&) = delete; + + AllocatorType& GetAllocator() { return alloc_data_.template get<0>(); } + Pointer& GetData() { return alloc_data_.template get<1>(); } + SizeType& GetCapacity() { return capacity_; } + + bool DidAllocate() { return GetData() != nullptr; } + Pointer Allocate(SizeType capacity) { + GetData() = AllocatorTraits::allocate(GetAllocator(), capacity); + GetCapacity() = capacity; + return GetData(); + } + + void Reset() { + GetData() = nullptr; + GetCapacity() = 0; + } + + private: + container_internal::CompressedTuple<AllocatorType, Pointer> alloc_data_; + SizeType capacity_ = 0; +}; + +template <typename AllocatorType> +class ConstructionTransaction { + using AllocatorTraits = absl::allocator_traits<AllocatorType>; + using Pointer = typename AllocatorTraits::pointer; + using SizeType = typename AllocatorTraits::size_type; + + public: + explicit ConstructionTransaction(AllocatorType* alloc_ptr) + : alloc_data_(*alloc_ptr, nullptr) {} + + ~ConstructionTransaction() { + if (DidConstruct()) { + inlined_vector_internal::DestroyElements(std::addressof(GetAllocator()), + GetData(), GetSize()); + } + } + + ConstructionTransaction(const ConstructionTransaction&) = delete; + void operator=(const ConstructionTransaction&) = delete; + + AllocatorType& GetAllocator() { return alloc_data_.template get<0>(); } + Pointer& GetData() { return alloc_data_.template get<1>(); } + SizeType& GetSize() { return size_; } + + bool DidConstruct() { return GetData() != nullptr; } + template <typename ValueAdapter> + void Construct(Pointer data, ValueAdapter* values_ptr, SizeType size) { + inlined_vector_internal::ConstructElements(std::addressof(GetAllocator()), + data, values_ptr, size); + GetData() = data; + GetSize() = size; + } + void Commit() { + GetData() = nullptr; + GetSize() = 0; + } + + private: + container_internal::CompressedTuple<AllocatorType, Pointer> alloc_data_; + SizeType size_ = 0; +}; + +template <typename T, size_t N, typename A> +class Storage { + public: + using AllocatorTraits = absl::allocator_traits<A>; + using allocator_type = typename AllocatorTraits::allocator_type; + using value_type = typename AllocatorTraits::value_type; + using pointer = typename AllocatorTraits::pointer; + using const_pointer = typename AllocatorTraits::const_pointer; + using size_type = typename AllocatorTraits::size_type; + using difference_type = typename AllocatorTraits::difference_type; + + using reference = value_type&; + using const_reference = const value_type&; + using RValueReference = value_type&&; + using iterator = pointer; + using const_iterator = const_pointer; + using reverse_iterator = std::reverse_iterator<iterator>; + using const_reverse_iterator = std::reverse_iterator<const_iterator>; + using MoveIterator = std::move_iterator<iterator>; + using IsMemcpyOk = inlined_vector_internal::IsMemcpyOk<allocator_type>; + + using StorageView = inlined_vector_internal::StorageView<allocator_type>; + + template <typename Iterator> + using IteratorValueAdapter = + inlined_vector_internal::IteratorValueAdapter<allocator_type, Iterator>; + using CopyValueAdapter = + inlined_vector_internal::CopyValueAdapter<allocator_type>; + using DefaultValueAdapter = + inlined_vector_internal::DefaultValueAdapter<allocator_type>; + + using AllocationTransaction = + inlined_vector_internal::AllocationTransaction<allocator_type>; + using ConstructionTransaction = + inlined_vector_internal::ConstructionTransaction<allocator_type>; + + static size_type NextCapacity(size_type current_capacity) { + return current_capacity * 2; + } + + static size_type ComputeCapacity(size_type current_capacity, + size_type requested_capacity) { + return (std::max)(NextCapacity(current_capacity), requested_capacity); + } + + // --------------------------------------------------------------------------- + // Storage Constructors and Destructor + // --------------------------------------------------------------------------- + + Storage() : metadata_() {} + + explicit Storage(const allocator_type& alloc) : metadata_(alloc, {}) {} + + ~Storage() { + pointer data = GetIsAllocated() ? GetAllocatedData() : GetInlinedData(); + inlined_vector_internal::DestroyElements(GetAllocPtr(), data, GetSize()); + DeallocateIfAllocated(); + } + + // --------------------------------------------------------------------------- + // Storage Member Accessors + // --------------------------------------------------------------------------- + + size_type& GetSizeAndIsAllocated() { return metadata_.template get<1>(); } + + const size_type& GetSizeAndIsAllocated() const { + return metadata_.template get<1>(); + } + + size_type GetSize() const { return GetSizeAndIsAllocated() >> 1; } + + bool GetIsAllocated() const { return GetSizeAndIsAllocated() & 1; } + + pointer GetAllocatedData() { return data_.allocated.allocated_data; } + + const_pointer GetAllocatedData() const { + return data_.allocated.allocated_data; + } + + pointer GetInlinedData() { + return reinterpret_cast<pointer>( + std::addressof(data_.inlined.inlined_data[0])); + } + + const_pointer GetInlinedData() const { + return reinterpret_cast<const_pointer>( + std::addressof(data_.inlined.inlined_data[0])); + } + + size_type GetAllocatedCapacity() const { + return data_.allocated.allocated_capacity; + } + + size_type GetInlinedCapacity() const { return static_cast<size_type>(N); } + + StorageView MakeStorageView() { + return GetIsAllocated() + ? StorageView{GetAllocatedData(), GetSize(), + GetAllocatedCapacity()} + : StorageView{GetInlinedData(), GetSize(), GetInlinedCapacity()}; + } + + allocator_type* GetAllocPtr() { + return std::addressof(metadata_.template get<0>()); + } + + const allocator_type* GetAllocPtr() const { + return std::addressof(metadata_.template get<0>()); + } + + // --------------------------------------------------------------------------- + // Storage Member Mutators + // --------------------------------------------------------------------------- + + template <typename ValueAdapter> + void Initialize(ValueAdapter values, size_type new_size); + + template <typename ValueAdapter> + void Assign(ValueAdapter values, size_type new_size); + + template <typename ValueAdapter> + void Resize(ValueAdapter values, size_type new_size); + + template <typename ValueAdapter> + iterator Insert(const_iterator pos, ValueAdapter values, + size_type insert_count); + + template <typename... Args> + reference EmplaceBack(Args&&... args); + + iterator Erase(const_iterator from, const_iterator to); + + void Reserve(size_type requested_capacity); + + void ShrinkToFit(); + + void Swap(Storage* other_storage_ptr); + + void SetIsAllocated() { + GetSizeAndIsAllocated() |= static_cast<size_type>(1); + } + + void UnsetIsAllocated() { + GetSizeAndIsAllocated() &= ((std::numeric_limits<size_type>::max)() - 1); + } + + void SetSize(size_type size) { + GetSizeAndIsAllocated() = + (size << 1) | static_cast<size_type>(GetIsAllocated()); + } + + void SetAllocatedSize(size_type size) { + GetSizeAndIsAllocated() = (size << 1) | static_cast<size_type>(1); + } + + void SetInlinedSize(size_type size) { + GetSizeAndIsAllocated() = size << static_cast<size_type>(1); + } + + void AddSize(size_type count) { + GetSizeAndIsAllocated() += count << static_cast<size_type>(1); + } + + void SubtractSize(size_type count) { + assert(count <= GetSize()); + + GetSizeAndIsAllocated() -= count << static_cast<size_type>(1); + } + + void SetAllocatedData(pointer data, size_type capacity) { + data_.allocated.allocated_data = data; + data_.allocated.allocated_capacity = capacity; + } + + void AcquireAllocatedData(AllocationTransaction* allocation_tx_ptr) { + SetAllocatedData(allocation_tx_ptr->GetData(), + allocation_tx_ptr->GetCapacity()); + + allocation_tx_ptr->Reset(); + } + + void MemcpyFrom(const Storage& other_storage) { + assert(IsMemcpyOk::value || other_storage.GetIsAllocated()); + + GetSizeAndIsAllocated() = other_storage.GetSizeAndIsAllocated(); + data_ = other_storage.data_; + } + + void DeallocateIfAllocated() { + if (GetIsAllocated()) { + AllocatorTraits::deallocate(*GetAllocPtr(), GetAllocatedData(), + GetAllocatedCapacity()); + } + } + + private: + using Metadata = + container_internal::CompressedTuple<allocator_type, size_type>; + + struct Allocated { + pointer allocated_data; + size_type allocated_capacity; + }; + + struct Inlined { + alignas(value_type) char inlined_data[sizeof(value_type[N])]; + }; + + union Data { + Allocated allocated; + Inlined inlined; + }; + + template <typename... Args> + ABSL_ATTRIBUTE_NOINLINE reference EmplaceBackSlow(Args&&... args); + + Metadata metadata_; + Data data_; +}; + +template <typename T, size_t N, typename A> +template <typename ValueAdapter> +auto Storage<T, N, A>::Initialize(ValueAdapter values, size_type new_size) + -> void { + // Only callable from constructors! + assert(!GetIsAllocated()); + assert(GetSize() == 0); + + pointer construct_data; + if (new_size > GetInlinedCapacity()) { + // Because this is only called from the `InlinedVector` constructors, it's + // safe to take on the allocation with size `0`. If `ConstructElements(...)` + // throws, deallocation will be automatically handled by `~Storage()`. + size_type new_capacity = ComputeCapacity(GetInlinedCapacity(), new_size); + construct_data = AllocatorTraits::allocate(*GetAllocPtr(), new_capacity); + SetAllocatedData(construct_data, new_capacity); + SetIsAllocated(); + } else { + construct_data = GetInlinedData(); + } + + inlined_vector_internal::ConstructElements(GetAllocPtr(), construct_data, + &values, new_size); + + // Since the initial size was guaranteed to be `0` and the allocated bit is + // already correct for either case, *adding* `new_size` gives us the correct + // result faster than setting it directly. + AddSize(new_size); +} + +template <typename T, size_t N, typename A> +template <typename ValueAdapter> +auto Storage<T, N, A>::Assign(ValueAdapter values, size_type new_size) -> void { + StorageView storage_view = MakeStorageView(); + + AllocationTransaction allocation_tx(GetAllocPtr()); + + absl::Span<value_type> assign_loop; + absl::Span<value_type> construct_loop; + absl::Span<value_type> destroy_loop; + + if (new_size > storage_view.capacity) { + size_type new_capacity = ComputeCapacity(storage_view.capacity, new_size); + construct_loop = {allocation_tx.Allocate(new_capacity), new_size}; + destroy_loop = {storage_view.data, storage_view.size}; + } else if (new_size > storage_view.size) { + assign_loop = {storage_view.data, storage_view.size}; + construct_loop = {storage_view.data + storage_view.size, + new_size - storage_view.size}; + } else { + assign_loop = {storage_view.data, new_size}; + destroy_loop = {storage_view.data + new_size, storage_view.size - new_size}; + } + + inlined_vector_internal::AssignElements(assign_loop.data(), &values, + assign_loop.size()); + + inlined_vector_internal::ConstructElements( + GetAllocPtr(), construct_loop.data(), &values, construct_loop.size()); + + inlined_vector_internal::DestroyElements(GetAllocPtr(), destroy_loop.data(), + destroy_loop.size()); + + if (allocation_tx.DidAllocate()) { + DeallocateIfAllocated(); + AcquireAllocatedData(&allocation_tx); + SetIsAllocated(); + } + + SetSize(new_size); +} + +template <typename T, size_t N, typename A> +template <typename ValueAdapter> +auto Storage<T, N, A>::Resize(ValueAdapter values, size_type new_size) -> void { + StorageView storage_view = MakeStorageView(); + auto* const base = storage_view.data; + const size_type size = storage_view.size; + auto* alloc = GetAllocPtr(); + if (new_size <= size) { + // Destroy extra old elements. + inlined_vector_internal::DestroyElements(alloc, base + new_size, + size - new_size); + } else if (new_size <= storage_view.capacity) { + // Construct new elements in place. + inlined_vector_internal::ConstructElements(alloc, base + size, &values, + new_size - size); + } else { + // Steps: + // a. Allocate new backing store. + // b. Construct new elements in new backing store. + // c. Move existing elements from old backing store to now. + // d. Destroy all elements in old backing store. + // Use transactional wrappers for the first two steps so we can roll + // back if necessary due to exceptions. + AllocationTransaction allocation_tx(alloc); + size_type new_capacity = ComputeCapacity(storage_view.capacity, new_size); + pointer new_data = allocation_tx.Allocate(new_capacity); + + ConstructionTransaction construction_tx(alloc); + construction_tx.Construct(new_data + size, &values, new_size - size); + + IteratorValueAdapter<MoveIterator> move_values((MoveIterator(base))); + inlined_vector_internal::ConstructElements(alloc, new_data, &move_values, + size); + + inlined_vector_internal::DestroyElements(alloc, base, size); + construction_tx.Commit(); + DeallocateIfAllocated(); + AcquireAllocatedData(&allocation_tx); + SetIsAllocated(); + } + SetSize(new_size); +} + +template <typename T, size_t N, typename A> +template <typename ValueAdapter> +auto Storage<T, N, A>::Insert(const_iterator pos, ValueAdapter values, + size_type insert_count) -> iterator { + StorageView storage_view = MakeStorageView(); + + size_type insert_index = + std::distance(const_iterator(storage_view.data), pos); + size_type insert_end_index = insert_index + insert_count; + size_type new_size = storage_view.size + insert_count; + + if (new_size > storage_view.capacity) { + AllocationTransaction allocation_tx(GetAllocPtr()); + ConstructionTransaction construction_tx(GetAllocPtr()); + ConstructionTransaction move_construciton_tx(GetAllocPtr()); + + IteratorValueAdapter<MoveIterator> move_values( + MoveIterator(storage_view.data)); + + size_type new_capacity = ComputeCapacity(storage_view.capacity, new_size); + pointer new_data = allocation_tx.Allocate(new_capacity); + + construction_tx.Construct(new_data + insert_index, &values, insert_count); + + move_construciton_tx.Construct(new_data, &move_values, insert_index); + + inlined_vector_internal::ConstructElements( + GetAllocPtr(), new_data + insert_end_index, &move_values, + storage_view.size - insert_index); + + inlined_vector_internal::DestroyElements(GetAllocPtr(), storage_view.data, + storage_view.size); + + construction_tx.Commit(); + move_construciton_tx.Commit(); + DeallocateIfAllocated(); + AcquireAllocatedData(&allocation_tx); + + SetAllocatedSize(new_size); + return iterator(new_data + insert_index); + } else { + size_type move_construction_destination_index = + (std::max)(insert_end_index, storage_view.size); + + ConstructionTransaction move_construction_tx(GetAllocPtr()); + + IteratorValueAdapter<MoveIterator> move_construction_values( + MoveIterator(storage_view.data + + (move_construction_destination_index - insert_count))); + absl::Span<value_type> move_construction = { + storage_view.data + move_construction_destination_index, + new_size - move_construction_destination_index}; + + pointer move_assignment_values = storage_view.data + insert_index; + absl::Span<value_type> move_assignment = { + storage_view.data + insert_end_index, + move_construction_destination_index - insert_end_index}; + + absl::Span<value_type> insert_assignment = {move_assignment_values, + move_construction.size()}; + + absl::Span<value_type> insert_construction = { + insert_assignment.data() + insert_assignment.size(), + insert_count - insert_assignment.size()}; + + move_construction_tx.Construct(move_construction.data(), + &move_construction_values, + move_construction.size()); + + for (pointer destination = move_assignment.data() + move_assignment.size(), + last_destination = move_assignment.data(), + source = move_assignment_values + move_assignment.size(); + ;) { + --destination; + --source; + if (destination < last_destination) break; + *destination = std::move(*source); + } + + inlined_vector_internal::AssignElements(insert_assignment.data(), &values, + insert_assignment.size()); + + inlined_vector_internal::ConstructElements( + GetAllocPtr(), insert_construction.data(), &values, + insert_construction.size()); + + move_construction_tx.Commit(); + + AddSize(insert_count); + return iterator(storage_view.data + insert_index); + } +} + +template <typename T, size_t N, typename A> +template <typename... Args> +auto Storage<T, N, A>::EmplaceBack(Args&&... args) -> reference { + StorageView storage_view = MakeStorageView(); + const auto n = storage_view.size; + if (ABSL_PREDICT_TRUE(n != storage_view.capacity)) { + // Fast path; new element fits. + pointer last_ptr = storage_view.data + n; + AllocatorTraits::construct(*GetAllocPtr(), last_ptr, + std::forward<Args>(args)...); + AddSize(1); + return *last_ptr; + } + // TODO(b/173712035): Annotate with musttail attribute to prevent regression. + return EmplaceBackSlow(std::forward<Args>(args)...); +} + +template <typename T, size_t N, typename A> +template <typename... Args> +auto Storage<T, N, A>::EmplaceBackSlow(Args&&... args) -> reference { + StorageView storage_view = MakeStorageView(); + AllocationTransaction allocation_tx(GetAllocPtr()); + IteratorValueAdapter<MoveIterator> move_values( + MoveIterator(storage_view.data)); + size_type new_capacity = NextCapacity(storage_view.capacity); + pointer construct_data = allocation_tx.Allocate(new_capacity); + pointer last_ptr = construct_data + storage_view.size; + + // Construct new element. + AllocatorTraits::construct(*GetAllocPtr(), last_ptr, + std::forward<Args>(args)...); + // Move elements from old backing store to new backing store. + ABSL_INTERNAL_TRY { + inlined_vector_internal::ConstructElements( + GetAllocPtr(), allocation_tx.GetData(), &move_values, + storage_view.size); + } + ABSL_INTERNAL_CATCH_ANY { + AllocatorTraits::destroy(*GetAllocPtr(), last_ptr); + ABSL_INTERNAL_RETHROW; + } + // Destroy elements in old backing store. + inlined_vector_internal::DestroyElements(GetAllocPtr(), storage_view.data, + storage_view.size); + + DeallocateIfAllocated(); + AcquireAllocatedData(&allocation_tx); + SetIsAllocated(); + AddSize(1); + return *last_ptr; +} + +template <typename T, size_t N, typename A> +auto Storage<T, N, A>::Erase(const_iterator from, const_iterator to) + -> iterator { + StorageView storage_view = MakeStorageView(); + + size_type erase_size = std::distance(from, to); + size_type erase_index = + std::distance(const_iterator(storage_view.data), from); + size_type erase_end_index = erase_index + erase_size; + + IteratorValueAdapter<MoveIterator> move_values( + MoveIterator(storage_view.data + erase_end_index)); + + inlined_vector_internal::AssignElements(storage_view.data + erase_index, + &move_values, + storage_view.size - erase_end_index); + + inlined_vector_internal::DestroyElements( + GetAllocPtr(), storage_view.data + (storage_view.size - erase_size), + erase_size); + + SubtractSize(erase_size); + return iterator(storage_view.data + erase_index); +} + +template <typename T, size_t N, typename A> +auto Storage<T, N, A>::Reserve(size_type requested_capacity) -> void { + StorageView storage_view = MakeStorageView(); + + if (ABSL_PREDICT_FALSE(requested_capacity <= storage_view.capacity)) return; + + AllocationTransaction allocation_tx(GetAllocPtr()); + + IteratorValueAdapter<MoveIterator> move_values( + MoveIterator(storage_view.data)); + + size_type new_capacity = + ComputeCapacity(storage_view.capacity, requested_capacity); + pointer new_data = allocation_tx.Allocate(new_capacity); + + inlined_vector_internal::ConstructElements(GetAllocPtr(), new_data, + &move_values, storage_view.size); + + inlined_vector_internal::DestroyElements(GetAllocPtr(), storage_view.data, + storage_view.size); + + DeallocateIfAllocated(); + AcquireAllocatedData(&allocation_tx); + SetIsAllocated(); +} + +template <typename T, size_t N, typename A> +auto Storage<T, N, A>::ShrinkToFit() -> void { + // May only be called on allocated instances! + assert(GetIsAllocated()); + + StorageView storage_view{GetAllocatedData(), GetSize(), + GetAllocatedCapacity()}; + + if (ABSL_PREDICT_FALSE(storage_view.size == storage_view.capacity)) return; + + AllocationTransaction allocation_tx(GetAllocPtr()); + + IteratorValueAdapter<MoveIterator> move_values( + MoveIterator(storage_view.data)); + + pointer construct_data; + if (storage_view.size > GetInlinedCapacity()) { + size_type new_capacity = storage_view.size; + construct_data = allocation_tx.Allocate(new_capacity); + } else { + construct_data = GetInlinedData(); + } + + ABSL_INTERNAL_TRY { + inlined_vector_internal::ConstructElements(GetAllocPtr(), construct_data, + &move_values, storage_view.size); + } + ABSL_INTERNAL_CATCH_ANY { + SetAllocatedData(storage_view.data, storage_view.capacity); + ABSL_INTERNAL_RETHROW; + } + + inlined_vector_internal::DestroyElements(GetAllocPtr(), storage_view.data, + storage_view.size); + + AllocatorTraits::deallocate(*GetAllocPtr(), storage_view.data, + storage_view.capacity); + + if (allocation_tx.DidAllocate()) { + AcquireAllocatedData(&allocation_tx); + } else { + UnsetIsAllocated(); + } +} + +template <typename T, size_t N, typename A> +auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void { + using std::swap; + assert(this != other_storage_ptr); + + if (GetIsAllocated() && other_storage_ptr->GetIsAllocated()) { + swap(data_.allocated, other_storage_ptr->data_.allocated); + } else if (!GetIsAllocated() && !other_storage_ptr->GetIsAllocated()) { + Storage* small_ptr = this; + Storage* large_ptr = other_storage_ptr; + if (small_ptr->GetSize() > large_ptr->GetSize()) swap(small_ptr, large_ptr); + + for (size_type i = 0; i < small_ptr->GetSize(); ++i) { + swap(small_ptr->GetInlinedData()[i], large_ptr->GetInlinedData()[i]); + } + + IteratorValueAdapter<MoveIterator> move_values( + MoveIterator(large_ptr->GetInlinedData() + small_ptr->GetSize())); + + inlined_vector_internal::ConstructElements( + large_ptr->GetAllocPtr(), + small_ptr->GetInlinedData() + small_ptr->GetSize(), &move_values, + large_ptr->GetSize() - small_ptr->GetSize()); + + inlined_vector_internal::DestroyElements( + large_ptr->GetAllocPtr(), + large_ptr->GetInlinedData() + small_ptr->GetSize(), + large_ptr->GetSize() - small_ptr->GetSize()); + } else { + Storage* allocated_ptr = this; + Storage* inlined_ptr = other_storage_ptr; + if (!allocated_ptr->GetIsAllocated()) swap(allocated_ptr, inlined_ptr); + + StorageView allocated_storage_view{allocated_ptr->GetAllocatedData(), + allocated_ptr->GetSize(), + allocated_ptr->GetAllocatedCapacity()}; + + IteratorValueAdapter<MoveIterator> move_values( + MoveIterator(inlined_ptr->GetInlinedData())); + + ABSL_INTERNAL_TRY { + inlined_vector_internal::ConstructElements( + inlined_ptr->GetAllocPtr(), allocated_ptr->GetInlinedData(), + &move_values, inlined_ptr->GetSize()); + } + ABSL_INTERNAL_CATCH_ANY { + allocated_ptr->SetAllocatedData(allocated_storage_view.data, + allocated_storage_view.capacity); + ABSL_INTERNAL_RETHROW; + } + + inlined_vector_internal::DestroyElements(inlined_ptr->GetAllocPtr(), + inlined_ptr->GetInlinedData(), + inlined_ptr->GetSize()); + + inlined_ptr->SetAllocatedData(allocated_storage_view.data, + allocated_storage_view.capacity); + } + + swap(GetSizeAndIsAllocated(), other_storage_ptr->GetSizeAndIsAllocated()); + swap(*GetAllocPtr(), *other_storage_ptr->GetAllocPtr()); +} + +} // namespace inlined_vector_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_INTERNAL_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/layout.h b/third_party/abseil_cpp/absl/container/internal/layout.h new file mode 100644 index 000000000000..233678331543 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/layout.h @@ -0,0 +1,743 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// MOTIVATION AND TUTORIAL +// +// If you want to put in a single heap allocation N doubles followed by M ints, +// it's easy if N and M are known at compile time. +// +// struct S { +// double a[N]; +// int b[M]; +// }; +// +// S* p = new S; +// +// But what if N and M are known only in run time? Class template Layout to the +// rescue! It's a portable generalization of the technique known as struct hack. +// +// // This object will tell us everything we need to know about the memory +// // layout of double[N] followed by int[M]. It's structurally identical to +// // size_t[2] that stores N and M. It's very cheap to create. +// const Layout<double, int> layout(N, M); +// +// // Allocate enough memory for both arrays. `AllocSize()` tells us how much +// // memory is needed. We are free to use any allocation function we want as +// // long as it returns aligned memory. +// std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]); +// +// // Obtain the pointer to the array of doubles. +// // Equivalent to `reinterpret_cast<double*>(p.get())`. +// // +// // We could have written layout.Pointer<0>(p) instead. If all the types are +// // unique you can use either form, but if some types are repeated you must +// // use the index form. +// double* a = layout.Pointer<double>(p.get()); +// +// // Obtain the pointer to the array of ints. +// // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`. +// int* b = layout.Pointer<int>(p); +// +// If we are unable to specify sizes of all fields, we can pass as many sizes as +// we can to `Partial()`. In return, it'll allow us to access the fields whose +// locations and sizes can be computed from the provided information. +// `Partial()` comes in handy when the array sizes are embedded into the +// allocation. +// +// // size_t[1] containing N, size_t[1] containing M, double[N], int[M]. +// using L = Layout<size_t, size_t, double, int>; +// +// unsigned char* Allocate(size_t n, size_t m) { +// const L layout(1, 1, n, m); +// unsigned char* p = new unsigned char[layout.AllocSize()]; +// *layout.Pointer<0>(p) = n; +// *layout.Pointer<1>(p) = m; +// return p; +// } +// +// void Use(unsigned char* p) { +// // First, extract N and M. +// // Specify that the first array has only one element. Using `prefix` we +// // can access the first two arrays but not more. +// constexpr auto prefix = L::Partial(1); +// size_t n = *prefix.Pointer<0>(p); +// size_t m = *prefix.Pointer<1>(p); +// +// // Now we can get pointers to the payload. +// const L layout(1, 1, n, m); +// double* a = layout.Pointer<double>(p); +// int* b = layout.Pointer<int>(p); +// } +// +// The layout we used above combines fixed-size with dynamically-sized fields. +// This is quite common. Layout is optimized for this use case and generates +// optimal code. All computations that can be performed at compile time are +// indeed performed at compile time. +// +// Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to +// ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no +// padding in between arrays. +// +// You can manually override the alignment of an array by wrapping the type in +// `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API +// and behavior as `Layout<..., T, ...>` except that the first element of the +// array of `T` is aligned to `N` (the rest of the elements follow without +// padding). `N` cannot be less than `alignof(T)`. +// +// `AllocSize()` and `Pointer()` are the most basic methods for dealing with +// memory layouts. Check out the reference or code below to discover more. +// +// EXAMPLE +// +// // Immutable move-only string with sizeof equal to sizeof(void*). The +// // string size and the characters are kept in the same heap allocation. +// class CompactString { +// public: +// CompactString(const char* s = "") { +// const size_t size = strlen(s); +// // size_t[1] followed by char[size + 1]. +// const L layout(1, size + 1); +// p_.reset(new unsigned char[layout.AllocSize()]); +// // If running under ASAN, mark the padding bytes, if any, to catch +// // memory errors. +// layout.PoisonPadding(p_.get()); +// // Store the size in the allocation. +// *layout.Pointer<size_t>(p_.get()) = size; +// // Store the characters in the allocation. +// memcpy(layout.Pointer<char>(p_.get()), s, size + 1); +// } +// +// size_t size() const { +// // Equivalent to reinterpret_cast<size_t&>(*p). +// return *L::Partial().Pointer<size_t>(p_.get()); +// } +// +// const char* c_str() const { +// // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)). +// // The argument in Partial(1) specifies that we have size_t[1] in front +// // of the characters. +// return L::Partial(1).Pointer<char>(p_.get()); +// } +// +// private: +// // Our heap allocation contains a size_t followed by an array of chars. +// using L = Layout<size_t, char>; +// std::unique_ptr<unsigned char[]> p_; +// }; +// +// int main() { +// CompactString s = "hello"; +// assert(s.size() == 5); +// assert(strcmp(s.c_str(), "hello") == 0); +// } +// +// DOCUMENTATION +// +// The interface exported by this file consists of: +// - class `Layout<>` and its public members. +// - The public members of class `internal_layout::LayoutImpl<>`. That class +// isn't intended to be used directly, and its name and template parameter +// list are internal implementation details, but the class itself provides +// most of the functionality in this file. See comments on its members for +// detailed documentation. +// +// `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a +// `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)` +// creates a `Layout` object, which exposes the same functionality by inheriting +// from `LayoutImpl<>`. + +#ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_ +#define ABSL_CONTAINER_INTERNAL_LAYOUT_H_ + +#include <assert.h> +#include <stddef.h> +#include <stdint.h> + +#include <ostream> +#include <string> +#include <tuple> +#include <type_traits> +#include <typeinfo> +#include <utility> + +#include "absl/base/config.h" +#include "absl/meta/type_traits.h" +#include "absl/strings/str_cat.h" +#include "absl/types/span.h" +#include "absl/utility/utility.h" + +#ifdef ABSL_HAVE_ADDRESS_SANITIZER +#include <sanitizer/asan_interface.h> +#endif + +#if defined(__GXX_RTTI) +#define ABSL_INTERNAL_HAS_CXA_DEMANGLE +#endif + +#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE +#include <cxxabi.h> +#endif + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +// A type wrapper that instructs `Layout` to use the specific alignment for the +// array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API +// and behavior as `Layout<..., T, ...>` except that the first element of the +// array of `T` is aligned to `N` (the rest of the elements follow without +// padding). +// +// Requires: `N >= alignof(T)` and `N` is a power of 2. +template <class T, size_t N> +struct Aligned; + +namespace internal_layout { + +template <class T> +struct NotAligned {}; + +template <class T, size_t N> +struct NotAligned<const Aligned<T, N>> { + static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified"); +}; + +template <size_t> +using IntToSize = size_t; + +template <class> +using TypeToSize = size_t; + +template <class T> +struct Type : NotAligned<T> { + using type = T; +}; + +template <class T, size_t N> +struct Type<Aligned<T, N>> { + using type = T; +}; + +template <class T> +struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {}; + +template <class T, size_t N> +struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {}; + +// Note: workaround for https://gcc.gnu.org/PR88115 +template <class T> +struct AlignOf : NotAligned<T> { + static constexpr size_t value = alignof(T); +}; + +template <class T, size_t N> +struct AlignOf<Aligned<T, N>> { + static_assert(N % alignof(T) == 0, + "Custom alignment can't be lower than the type's alignment"); + static constexpr size_t value = N; +}; + +// Does `Ts...` contain `T`? +template <class T, class... Ts> +using Contains = absl::disjunction<std::is_same<T, Ts>...>; + +template <class From, class To> +using CopyConst = + typename std::conditional<std::is_const<From>::value, const To, To>::type; + +// Note: We're not qualifying this with absl:: because it doesn't compile under +// MSVC. +template <class T> +using SliceType = Span<T>; + +// This namespace contains no types. It prevents functions defined in it from +// being found by ADL. +namespace adl_barrier { + +template <class Needle, class... Ts> +constexpr size_t Find(Needle, Needle, Ts...) { + static_assert(!Contains<Needle, Ts...>(), "Duplicate element type"); + return 0; +} + +template <class Needle, class T, class... Ts> +constexpr size_t Find(Needle, T, Ts...) { + return adl_barrier::Find(Needle(), Ts()...) + 1; +} + +constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); } + +// Returns `q * m` for the smallest `q` such that `q * m >= n`. +// Requires: `m` is a power of two. It's enforced by IsLegalElementType below. +constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); } + +constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; } + +constexpr size_t Max(size_t a) { return a; } + +template <class... Ts> +constexpr size_t Max(size_t a, size_t b, Ts... rest) { + return adl_barrier::Max(b < a ? a : b, rest...); +} + +template <class T> +std::string TypeName() { + std::string out; + int status = 0; + char* demangled = nullptr; +#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE + demangled = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, &status); +#endif + if (status == 0 && demangled != nullptr) { // Demangling succeeded. + absl::StrAppend(&out, "<", demangled, ">"); + free(demangled); + } else { +#if defined(__GXX_RTTI) || defined(_CPPRTTI) + absl::StrAppend(&out, "<", typeid(T).name(), ">"); +#endif + } + return out; +} + +} // namespace adl_barrier + +template <bool C> +using EnableIf = typename std::enable_if<C, int>::type; + +// Can `T` be a template argument of `Layout`? +template <class T> +using IsLegalElementType = std::integral_constant< + bool, !std::is_reference<T>::value && !std::is_volatile<T>::value && + !std::is_reference<typename Type<T>::type>::value && + !std::is_volatile<typename Type<T>::type>::value && + adl_barrier::IsPow2(AlignOf<T>::value)>; + +template <class Elements, class SizeSeq, class OffsetSeq> +class LayoutImpl; + +// Public base class of `Layout` and the result type of `Layout::Partial()`. +// +// `Elements...` contains all template arguments of `Layout` that created this +// instance. +// +// `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is the number of arguments +// passed to `Layout::Partial()` or `Layout::Layout()`. +// +// `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is +// `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we +// can compute offsets). +template <class... Elements, size_t... SizeSeq, size_t... OffsetSeq> +class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>, + absl::index_sequence<OffsetSeq...>> { + private: + static_assert(sizeof...(Elements) > 0, "At least one field is required"); + static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value, + "Invalid element type (see IsLegalElementType)"); + + enum { + NumTypes = sizeof...(Elements), + NumSizes = sizeof...(SizeSeq), + NumOffsets = sizeof...(OffsetSeq), + }; + + // These are guaranteed by `Layout`. + static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1), + "Internal error"); + static_assert(NumTypes > 0, "Internal error"); + + // Returns the index of `T` in `Elements...`. Results in a compilation error + // if `Elements...` doesn't contain exactly one instance of `T`. + template <class T> + static constexpr size_t ElementIndex() { + static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(), + "Type not found"); + return adl_barrier::Find(Type<T>(), + Type<typename Type<Elements>::type>()...); + } + + template <size_t N> + using ElementAlignment = + AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>; + + public: + // Element types of all arrays packed in a tuple. + using ElementTypes = std::tuple<typename Type<Elements>::type...>; + + // Element type of the Nth array. + template <size_t N> + using ElementType = typename std::tuple_element<N, ElementTypes>::type; + + constexpr explicit LayoutImpl(IntToSize<SizeSeq>... sizes) + : size_{sizes...} {} + + // Alignment of the layout, equal to the strictest alignment of all elements. + // All pointers passed to the methods of layout must be aligned to this value. + static constexpr size_t Alignment() { + return adl_barrier::Max(AlignOf<Elements>::value...); + } + + // Offset in bytes of the Nth array. + // + // // int[3], 4 bytes of padding, double[4]. + // Layout<int, double> x(3, 4); + // assert(x.Offset<0>() == 0); // The ints starts from 0. + // assert(x.Offset<1>() == 16); // The doubles starts from 16. + // + // Requires: `N <= NumSizes && N < sizeof...(Ts)`. + template <size_t N, EnableIf<N == 0> = 0> + constexpr size_t Offset() const { + return 0; + } + + template <size_t N, EnableIf<N != 0> = 0> + constexpr size_t Offset() const { + static_assert(N < NumOffsets, "Index out of bounds"); + return adl_barrier::Align( + Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1], + ElementAlignment<N>::value); + } + + // Offset in bytes of the array with the specified element type. There must + // be exactly one such array and its zero-based index must be at most + // `NumSizes`. + // + // // int[3], 4 bytes of padding, double[4]. + // Layout<int, double> x(3, 4); + // assert(x.Offset<int>() == 0); // The ints starts from 0. + // assert(x.Offset<double>() == 16); // The doubles starts from 16. + template <class T> + constexpr size_t Offset() const { + return Offset<ElementIndex<T>()>(); + } + + // Offsets in bytes of all arrays for which the offsets are known. + constexpr std::array<size_t, NumOffsets> Offsets() const { + return {{Offset<OffsetSeq>()...}}; + } + + // The number of elements in the Nth array. This is the Nth argument of + // `Layout::Partial()` or `Layout::Layout()` (zero-based). + // + // // int[3], 4 bytes of padding, double[4]. + // Layout<int, double> x(3, 4); + // assert(x.Size<0>() == 3); + // assert(x.Size<1>() == 4); + // + // Requires: `N < NumSizes`. + template <size_t N> + constexpr size_t Size() const { + static_assert(N < NumSizes, "Index out of bounds"); + return size_[N]; + } + + // The number of elements in the array with the specified element type. + // There must be exactly one such array and its zero-based index must be + // at most `NumSizes`. + // + // // int[3], 4 bytes of padding, double[4]. + // Layout<int, double> x(3, 4); + // assert(x.Size<int>() == 3); + // assert(x.Size<double>() == 4); + template <class T> + constexpr size_t Size() const { + return Size<ElementIndex<T>()>(); + } + + // The number of elements of all arrays for which they are known. + constexpr std::array<size_t, NumSizes> Sizes() const { + return {{Size<SizeSeq>()...}}; + } + + // Pointer to the beginning of the Nth array. + // + // `Char` must be `[const] [signed|unsigned] char`. + // + // // int[3], 4 bytes of padding, double[4]. + // Layout<int, double> x(3, 4); + // unsigned char* p = new unsigned char[x.AllocSize()]; + // int* ints = x.Pointer<0>(p); + // double* doubles = x.Pointer<1>(p); + // + // Requires: `N <= NumSizes && N < sizeof...(Ts)`. + // Requires: `p` is aligned to `Alignment()`. + template <size_t N, class Char> + CopyConst<Char, ElementType<N>>* Pointer(Char* p) const { + using C = typename std::remove_const<Char>::type; + static_assert( + std::is_same<C, char>() || std::is_same<C, unsigned char>() || + std::is_same<C, signed char>(), + "The argument must be a pointer to [const] [signed|unsigned] char"); + constexpr size_t alignment = Alignment(); + (void)alignment; + assert(reinterpret_cast<uintptr_t>(p) % alignment == 0); + return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>()); + } + + // Pointer to the beginning of the array with the specified element type. + // There must be exactly one such array and its zero-based index must be at + // most `NumSizes`. + // + // `Char` must be `[const] [signed|unsigned] char`. + // + // // int[3], 4 bytes of padding, double[4]. + // Layout<int, double> x(3, 4); + // unsigned char* p = new unsigned char[x.AllocSize()]; + // int* ints = x.Pointer<int>(p); + // double* doubles = x.Pointer<double>(p); + // + // Requires: `p` is aligned to `Alignment()`. + template <class T, class Char> + CopyConst<Char, T>* Pointer(Char* p) const { + return Pointer<ElementIndex<T>()>(p); + } + + // Pointers to all arrays for which pointers are known. + // + // `Char` must be `[const] [signed|unsigned] char`. + // + // // int[3], 4 bytes of padding, double[4]. + // Layout<int, double> x(3, 4); + // unsigned char* p = new unsigned char[x.AllocSize()]; + // + // int* ints; + // double* doubles; + // std::tie(ints, doubles) = x.Pointers(p); + // + // Requires: `p` is aligned to `Alignment()`. + // + // Note: We're not using ElementType alias here because it does not compile + // under MSVC. + template <class Char> + std::tuple<CopyConst< + Char, typename std::tuple_element<OffsetSeq, ElementTypes>::type>*...> + Pointers(Char* p) const { + return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>( + Pointer<OffsetSeq>(p)...); + } + + // The Nth array. + // + // `Char` must be `[const] [signed|unsigned] char`. + // + // // int[3], 4 bytes of padding, double[4]. + // Layout<int, double> x(3, 4); + // unsigned char* p = new unsigned char[x.AllocSize()]; + // Span<int> ints = x.Slice<0>(p); + // Span<double> doubles = x.Slice<1>(p); + // + // Requires: `N < NumSizes`. + // Requires: `p` is aligned to `Alignment()`. + template <size_t N, class Char> + SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const { + return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>()); + } + + // The array with the specified element type. There must be exactly one + // such array and its zero-based index must be less than `NumSizes`. + // + // `Char` must be `[const] [signed|unsigned] char`. + // + // // int[3], 4 bytes of padding, double[4]. + // Layout<int, double> x(3, 4); + // unsigned char* p = new unsigned char[x.AllocSize()]; + // Span<int> ints = x.Slice<int>(p); + // Span<double> doubles = x.Slice<double>(p); + // + // Requires: `p` is aligned to `Alignment()`. + template <class T, class Char> + SliceType<CopyConst<Char, T>> Slice(Char* p) const { + return Slice<ElementIndex<T>()>(p); + } + + // All arrays with known sizes. + // + // `Char` must be `[const] [signed|unsigned] char`. + // + // // int[3], 4 bytes of padding, double[4]. + // Layout<int, double> x(3, 4); + // unsigned char* p = new unsigned char[x.AllocSize()]; + // + // Span<int> ints; + // Span<double> doubles; + // std::tie(ints, doubles) = x.Slices(p); + // + // Requires: `p` is aligned to `Alignment()`. + // + // Note: We're not using ElementType alias here because it does not compile + // under MSVC. + template <class Char> + std::tuple<SliceType<CopyConst< + Char, typename std::tuple_element<SizeSeq, ElementTypes>::type>>...> + Slices(Char* p) const { + // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63875 (fixed + // in 6.1). + (void)p; + return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>( + Slice<SizeSeq>(p)...); + } + + // The size of the allocation that fits all arrays. + // + // // int[3], 4 bytes of padding, double[4]. + // Layout<int, double> x(3, 4); + // unsigned char* p = new unsigned char[x.AllocSize()]; // 48 bytes + // + // Requires: `NumSizes == sizeof...(Ts)`. + constexpr size_t AllocSize() const { + static_assert(NumTypes == NumSizes, "You must specify sizes of all fields"); + return Offset<NumTypes - 1>() + + SizeOf<ElementType<NumTypes - 1>>() * size_[NumTypes - 1]; + } + + // If built with --config=asan, poisons padding bytes (if any) in the + // allocation. The pointer must point to a memory block at least + // `AllocSize()` bytes in length. + // + // `Char` must be `[const] [signed|unsigned] char`. + // + // Requires: `p` is aligned to `Alignment()`. + template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0> + void PoisonPadding(const Char* p) const { + Pointer<0>(p); // verify the requirements on `Char` and `p` + } + + template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0> + void PoisonPadding(const Char* p) const { + static_assert(N < NumOffsets, "Index out of bounds"); + (void)p; +#ifdef ABSL_HAVE_ADDRESS_SANITIZER + PoisonPadding<Char, N - 1>(p); + // The `if` is an optimization. It doesn't affect the observable behaviour. + if (ElementAlignment<N - 1>::value % ElementAlignment<N>::value) { + size_t start = + Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1]; + ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start); + } +#endif + } + + // Human-readable description of the memory layout. Useful for debugging. + // Slow. + // + // // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed + // // by an unknown number of doubles. + // auto x = Layout<char, int, double>::Partial(5, 3); + // assert(x.DebugString() == + // "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)"); + // + // Each field is in the following format: @offset<type>(sizeof)[size] (<type> + // may be missing depending on the target platform). For example, + // @8<int>(4)[3] means that at offset 8 we have an array of ints, where each + // int is 4 bytes, and we have 3 of those ints. The size of the last field may + // be missing (as in the example above). Only fields with known offsets are + // described. Type names may differ across platforms: one compiler might + // produce "unsigned*" where another produces "unsigned int *". + std::string DebugString() const { + const auto offsets = Offsets(); + const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>()...}; + const std::string types[] = { + adl_barrier::TypeName<ElementType<OffsetSeq>>()...}; + std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")"); + for (size_t i = 0; i != NumOffsets - 1; ++i) { + absl::StrAppend(&res, "[", size_[i], "]; @", offsets[i + 1], types[i + 1], + "(", sizes[i + 1], ")"); + } + // NumSizes is a constant that may be zero. Some compilers cannot see that + // inside the if statement "size_[NumSizes - 1]" must be valid. + int last = static_cast<int>(NumSizes) - 1; + if (NumTypes == NumSizes && last >= 0) { + absl::StrAppend(&res, "[", size_[last], "]"); + } + return res; + } + + private: + // Arguments of `Layout::Partial()` or `Layout::Layout()`. + size_t size_[NumSizes > 0 ? NumSizes : 1]; +}; + +template <size_t NumSizes, class... Ts> +using LayoutType = LayoutImpl< + std::tuple<Ts...>, absl::make_index_sequence<NumSizes>, + absl::make_index_sequence<adl_barrier::Min(sizeof...(Ts), NumSizes + 1)>>; + +} // namespace internal_layout + +// Descriptor of arrays of various types and sizes laid out in memory one after +// another. See the top of the file for documentation. +// +// Check out the public API of internal_layout::LayoutImpl above. The type is +// internal to the library but its methods are public, and they are inherited +// by `Layout`. +template <class... Ts> +class Layout : public internal_layout::LayoutType<sizeof...(Ts), Ts...> { + public: + static_assert(sizeof...(Ts) > 0, "At least one field is required"); + static_assert( + absl::conjunction<internal_layout::IsLegalElementType<Ts>...>::value, + "Invalid element type (see IsLegalElementType)"); + + // The result type of `Partial()` with `NumSizes` arguments. + template <size_t NumSizes> + using PartialType = internal_layout::LayoutType<NumSizes, Ts...>; + + // `Layout` knows the element types of the arrays we want to lay out in + // memory but not the number of elements in each array. + // `Partial(size1, ..., sizeN)` allows us to specify the latter. The + // resulting immutable object can be used to obtain pointers to the + // individual arrays. + // + // It's allowed to pass fewer array sizes than the number of arrays. E.g., + // if all you need is to the offset of the second array, you only need to + // pass one argument -- the number of elements in the first array. + // + // // int[3] followed by 4 bytes of padding and an unknown number of + // // doubles. + // auto x = Layout<int, double>::Partial(3); + // // doubles start at byte 16. + // assert(x.Offset<1>() == 16); + // + // If you know the number of elements in all arrays, you can still call + // `Partial()` but it's more convenient to use the constructor of `Layout`. + // + // Layout<int, double> x(3, 5); + // + // Note: The sizes of the arrays must be specified in number of elements, + // not in bytes. + // + // Requires: `sizeof...(Sizes) <= sizeof...(Ts)`. + // Requires: all arguments are convertible to `size_t`. + template <class... Sizes> + static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) { + static_assert(sizeof...(Sizes) <= sizeof...(Ts), ""); + return PartialType<sizeof...(Sizes)>(absl::forward<Sizes>(sizes)...); + } + + // Creates a layout with the sizes of all arrays specified. If you know + // only the sizes of the first N arrays (where N can be zero), you can use + // `Partial()` defined above. The constructor is essentially equivalent to + // calling `Partial()` and passing in all array sizes; the constructor is + // provided as a convenient abbreviation. + // + // Note: The sizes of the arrays must be specified in number of elements, + // not in bytes. + constexpr explicit Layout(internal_layout::TypeToSize<Ts>... sizes) + : internal_layout::LayoutType<sizeof...(Ts), Ts...>(sizes...) {} +}; + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_LAYOUT_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/layout_test.cc b/third_party/abseil_cpp/absl/container/internal/layout_test.cc new file mode 100644 index 000000000000..1d7158ffc0b9 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/layout_test.cc @@ -0,0 +1,1635 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/layout.h" + +// We need ::max_align_t because some libstdc++ versions don't provide +// std::max_align_t +#include <stddef.h> + +#include <cstdint> +#include <memory> +#include <sstream> +#include <type_traits> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/base/config.h" +#include "absl/base/internal/raw_logging.h" +#include "absl/types/span.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace { + +using ::absl::Span; +using ::testing::ElementsAre; + +size_t Distance(const void* from, const void* to) { + ABSL_RAW_CHECK(from <= to, "Distance must be non-negative"); + return static_cast<const char*>(to) - static_cast<const char*>(from); +} + +template <class Expected, class Actual> +Expected Type(Actual val) { + static_assert(std::is_same<Expected, Actual>(), ""); + return val; +} + +// Helper classes to test different size and alignments. +struct alignas(8) Int128 { + uint64_t a, b; + friend bool operator==(Int128 lhs, Int128 rhs) { + return std::tie(lhs.a, lhs.b) == std::tie(rhs.a, rhs.b); + } + + static std::string Name() { + return internal_layout::adl_barrier::TypeName<Int128>(); + } +}; + +// int64_t is *not* 8-byte aligned on all platforms! +struct alignas(8) Int64 { + int64_t a; + friend bool operator==(Int64 lhs, Int64 rhs) { + return lhs.a == rhs.a; + } +}; + +// Properties of types that this test relies on. +static_assert(sizeof(int8_t) == 1, ""); +static_assert(alignof(int8_t) == 1, ""); +static_assert(sizeof(int16_t) == 2, ""); +static_assert(alignof(int16_t) == 2, ""); +static_assert(sizeof(int32_t) == 4, ""); +static_assert(alignof(int32_t) == 4, ""); +static_assert(sizeof(Int64) == 8, ""); +static_assert(alignof(Int64) == 8, ""); +static_assert(sizeof(Int128) == 16, ""); +static_assert(alignof(Int128) == 8, ""); + +template <class Expected, class Actual> +void SameType() { + static_assert(std::is_same<Expected, Actual>(), ""); +} + +TEST(Layout, ElementType) { + { + using L = Layout<int32_t>; + SameType<int32_t, L::ElementType<0>>(); + SameType<int32_t, decltype(L::Partial())::ElementType<0>>(); + SameType<int32_t, decltype(L::Partial(0))::ElementType<0>>(); + } + { + using L = Layout<int32_t, int32_t>; + SameType<int32_t, L::ElementType<0>>(); + SameType<int32_t, L::ElementType<1>>(); + SameType<int32_t, decltype(L::Partial())::ElementType<0>>(); + SameType<int32_t, decltype(L::Partial())::ElementType<1>>(); + SameType<int32_t, decltype(L::Partial(0))::ElementType<0>>(); + SameType<int32_t, decltype(L::Partial(0))::ElementType<1>>(); + } + { + using L = Layout<int8_t, int32_t, Int128>; + SameType<int8_t, L::ElementType<0>>(); + SameType<int32_t, L::ElementType<1>>(); + SameType<Int128, L::ElementType<2>>(); + SameType<int8_t, decltype(L::Partial())::ElementType<0>>(); + SameType<int8_t, decltype(L::Partial(0))::ElementType<0>>(); + SameType<int32_t, decltype(L::Partial(0))::ElementType<1>>(); + SameType<int8_t, decltype(L::Partial(0, 0))::ElementType<0>>(); + SameType<int32_t, decltype(L::Partial(0, 0))::ElementType<1>>(); + SameType<Int128, decltype(L::Partial(0, 0))::ElementType<2>>(); + SameType<int8_t, decltype(L::Partial(0, 0, 0))::ElementType<0>>(); + SameType<int32_t, decltype(L::Partial(0, 0, 0))::ElementType<1>>(); + SameType<Int128, decltype(L::Partial(0, 0, 0))::ElementType<2>>(); + } +} + +TEST(Layout, ElementTypes) { + { + using L = Layout<int32_t>; + SameType<std::tuple<int32_t>, L::ElementTypes>(); + SameType<std::tuple<int32_t>, decltype(L::Partial())::ElementTypes>(); + SameType<std::tuple<int32_t>, decltype(L::Partial(0))::ElementTypes>(); + } + { + using L = Layout<int32_t, int32_t>; + SameType<std::tuple<int32_t, int32_t>, L::ElementTypes>(); + SameType<std::tuple<int32_t, int32_t>, + decltype(L::Partial())::ElementTypes>(); + SameType<std::tuple<int32_t, int32_t>, + decltype(L::Partial(0))::ElementTypes>(); + } + { + using L = Layout<int8_t, int32_t, Int128>; + SameType<std::tuple<int8_t, int32_t, Int128>, L::ElementTypes>(); + SameType<std::tuple<int8_t, int32_t, Int128>, + decltype(L::Partial())::ElementTypes>(); + SameType<std::tuple<int8_t, int32_t, Int128>, + decltype(L::Partial(0))::ElementTypes>(); + SameType<std::tuple<int8_t, int32_t, Int128>, + decltype(L::Partial(0, 0))::ElementTypes>(); + SameType<std::tuple<int8_t, int32_t, Int128>, + decltype(L::Partial(0, 0, 0))::ElementTypes>(); + } +} + +TEST(Layout, OffsetByIndex) { + { + using L = Layout<int32_t>; + EXPECT_EQ(0, L::Partial().Offset<0>()); + EXPECT_EQ(0, L::Partial(3).Offset<0>()); + EXPECT_EQ(0, L(3).Offset<0>()); + } + { + using L = Layout<int32_t, int32_t>; + EXPECT_EQ(0, L::Partial().Offset<0>()); + EXPECT_EQ(0, L::Partial(3).Offset<0>()); + EXPECT_EQ(12, L::Partial(3).Offset<1>()); + EXPECT_EQ(0, L::Partial(3, 5).Offset<0>()); + EXPECT_EQ(12, L::Partial(3, 5).Offset<1>()); + EXPECT_EQ(0, L(3, 5).Offset<0>()); + EXPECT_EQ(12, L(3, 5).Offset<1>()); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ(0, L::Partial().Offset<0>()); + EXPECT_EQ(0, L::Partial(0).Offset<0>()); + EXPECT_EQ(0, L::Partial(0).Offset<1>()); + EXPECT_EQ(0, L::Partial(1).Offset<0>()); + EXPECT_EQ(4, L::Partial(1).Offset<1>()); + EXPECT_EQ(0, L::Partial(5).Offset<0>()); + EXPECT_EQ(8, L::Partial(5).Offset<1>()); + EXPECT_EQ(0, L::Partial(0, 0).Offset<0>()); + EXPECT_EQ(0, L::Partial(0, 0).Offset<1>()); + EXPECT_EQ(0, L::Partial(0, 0).Offset<2>()); + EXPECT_EQ(0, L::Partial(1, 0).Offset<0>()); + EXPECT_EQ(4, L::Partial(1, 0).Offset<1>()); + EXPECT_EQ(8, L::Partial(1, 0).Offset<2>()); + EXPECT_EQ(0, L::Partial(5, 3).Offset<0>()); + EXPECT_EQ(8, L::Partial(5, 3).Offset<1>()); + EXPECT_EQ(24, L::Partial(5, 3).Offset<2>()); + EXPECT_EQ(0, L::Partial(0, 0, 0).Offset<0>()); + EXPECT_EQ(0, L::Partial(0, 0, 0).Offset<1>()); + EXPECT_EQ(0, L::Partial(0, 0, 0).Offset<2>()); + EXPECT_EQ(0, L::Partial(1, 0, 0).Offset<0>()); + EXPECT_EQ(4, L::Partial(1, 0, 0).Offset<1>()); + EXPECT_EQ(8, L::Partial(1, 0, 0).Offset<2>()); + EXPECT_EQ(0, L::Partial(5, 3, 1).Offset<0>()); + EXPECT_EQ(24, L::Partial(5, 3, 1).Offset<2>()); + EXPECT_EQ(8, L::Partial(5, 3, 1).Offset<1>()); + EXPECT_EQ(0, L(5, 3, 1).Offset<0>()); + EXPECT_EQ(24, L(5, 3, 1).Offset<2>()); + EXPECT_EQ(8, L(5, 3, 1).Offset<1>()); + } +} + +TEST(Layout, OffsetByType) { + { + using L = Layout<int32_t>; + EXPECT_EQ(0, L::Partial().Offset<int32_t>()); + EXPECT_EQ(0, L::Partial(3).Offset<int32_t>()); + EXPECT_EQ(0, L(3).Offset<int32_t>()); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ(0, L::Partial().Offset<int8_t>()); + EXPECT_EQ(0, L::Partial(0).Offset<int8_t>()); + EXPECT_EQ(0, L::Partial(0).Offset<int32_t>()); + EXPECT_EQ(0, L::Partial(1).Offset<int8_t>()); + EXPECT_EQ(4, L::Partial(1).Offset<int32_t>()); + EXPECT_EQ(0, L::Partial(5).Offset<int8_t>()); + EXPECT_EQ(8, L::Partial(5).Offset<int32_t>()); + EXPECT_EQ(0, L::Partial(0, 0).Offset<int8_t>()); + EXPECT_EQ(0, L::Partial(0, 0).Offset<int32_t>()); + EXPECT_EQ(0, L::Partial(0, 0).Offset<Int128>()); + EXPECT_EQ(0, L::Partial(1, 0).Offset<int8_t>()); + EXPECT_EQ(4, L::Partial(1, 0).Offset<int32_t>()); + EXPECT_EQ(8, L::Partial(1, 0).Offset<Int128>()); + EXPECT_EQ(0, L::Partial(5, 3).Offset<int8_t>()); + EXPECT_EQ(8, L::Partial(5, 3).Offset<int32_t>()); + EXPECT_EQ(24, L::Partial(5, 3).Offset<Int128>()); + EXPECT_EQ(0, L::Partial(0, 0, 0).Offset<int8_t>()); + EXPECT_EQ(0, L::Partial(0, 0, 0).Offset<int32_t>()); + EXPECT_EQ(0, L::Partial(0, 0, 0).Offset<Int128>()); + EXPECT_EQ(0, L::Partial(1, 0, 0).Offset<int8_t>()); + EXPECT_EQ(4, L::Partial(1, 0, 0).Offset<int32_t>()); + EXPECT_EQ(8, L::Partial(1, 0, 0).Offset<Int128>()); + EXPECT_EQ(0, L::Partial(5, 3, 1).Offset<int8_t>()); + EXPECT_EQ(24, L::Partial(5, 3, 1).Offset<Int128>()); + EXPECT_EQ(8, L::Partial(5, 3, 1).Offset<int32_t>()); + EXPECT_EQ(0, L(5, 3, 1).Offset<int8_t>()); + EXPECT_EQ(24, L(5, 3, 1).Offset<Int128>()); + EXPECT_EQ(8, L(5, 3, 1).Offset<int32_t>()); + } +} + +TEST(Layout, Offsets) { + { + using L = Layout<int32_t>; + EXPECT_THAT(L::Partial().Offsets(), ElementsAre(0)); + EXPECT_THAT(L::Partial(3).Offsets(), ElementsAre(0)); + EXPECT_THAT(L(3).Offsets(), ElementsAre(0)); + } + { + using L = Layout<int32_t, int32_t>; + EXPECT_THAT(L::Partial().Offsets(), ElementsAre(0)); + EXPECT_THAT(L::Partial(3).Offsets(), ElementsAre(0, 12)); + EXPECT_THAT(L::Partial(3, 5).Offsets(), ElementsAre(0, 12)); + EXPECT_THAT(L(3, 5).Offsets(), ElementsAre(0, 12)); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_THAT(L::Partial().Offsets(), ElementsAre(0)); + EXPECT_THAT(L::Partial(1).Offsets(), ElementsAre(0, 4)); + EXPECT_THAT(L::Partial(5).Offsets(), ElementsAre(0, 8)); + EXPECT_THAT(L::Partial(0, 0).Offsets(), ElementsAre(0, 0, 0)); + EXPECT_THAT(L::Partial(1, 0).Offsets(), ElementsAre(0, 4, 8)); + EXPECT_THAT(L::Partial(5, 3).Offsets(), ElementsAre(0, 8, 24)); + EXPECT_THAT(L::Partial(0, 0, 0).Offsets(), ElementsAre(0, 0, 0)); + EXPECT_THAT(L::Partial(1, 0, 0).Offsets(), ElementsAre(0, 4, 8)); + EXPECT_THAT(L::Partial(5, 3, 1).Offsets(), ElementsAre(0, 8, 24)); + EXPECT_THAT(L(5, 3, 1).Offsets(), ElementsAre(0, 8, 24)); + } +} + +TEST(Layout, AllocSize) { + { + using L = Layout<int32_t>; + EXPECT_EQ(0, L::Partial(0).AllocSize()); + EXPECT_EQ(12, L::Partial(3).AllocSize()); + EXPECT_EQ(12, L(3).AllocSize()); + } + { + using L = Layout<int32_t, int32_t>; + EXPECT_EQ(32, L::Partial(3, 5).AllocSize()); + EXPECT_EQ(32, L(3, 5).AllocSize()); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ(0, L::Partial(0, 0, 0).AllocSize()); + EXPECT_EQ(8, L::Partial(1, 0, 0).AllocSize()); + EXPECT_EQ(8, L::Partial(0, 1, 0).AllocSize()); + EXPECT_EQ(16, L::Partial(0, 0, 1).AllocSize()); + EXPECT_EQ(24, L::Partial(1, 1, 1).AllocSize()); + EXPECT_EQ(136, L::Partial(3, 5, 7).AllocSize()); + EXPECT_EQ(136, L(3, 5, 7).AllocSize()); + } +} + +TEST(Layout, SizeByIndex) { + { + using L = Layout<int32_t>; + EXPECT_EQ(0, L::Partial(0).Size<0>()); + EXPECT_EQ(3, L::Partial(3).Size<0>()); + EXPECT_EQ(3, L(3).Size<0>()); + } + { + using L = Layout<int32_t, int32_t>; + EXPECT_EQ(0, L::Partial(0).Size<0>()); + EXPECT_EQ(3, L::Partial(3).Size<0>()); + EXPECT_EQ(3, L::Partial(3, 5).Size<0>()); + EXPECT_EQ(5, L::Partial(3, 5).Size<1>()); + EXPECT_EQ(3, L(3, 5).Size<0>()); + EXPECT_EQ(5, L(3, 5).Size<1>()); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ(3, L::Partial(3).Size<0>()); + EXPECT_EQ(3, L::Partial(3, 5).Size<0>()); + EXPECT_EQ(5, L::Partial(3, 5).Size<1>()); + EXPECT_EQ(3, L::Partial(3, 5, 7).Size<0>()); + EXPECT_EQ(5, L::Partial(3, 5, 7).Size<1>()); + EXPECT_EQ(7, L::Partial(3, 5, 7).Size<2>()); + EXPECT_EQ(3, L(3, 5, 7).Size<0>()); + EXPECT_EQ(5, L(3, 5, 7).Size<1>()); + EXPECT_EQ(7, L(3, 5, 7).Size<2>()); + } +} + +TEST(Layout, SizeByType) { + { + using L = Layout<int32_t>; + EXPECT_EQ(0, L::Partial(0).Size<int32_t>()); + EXPECT_EQ(3, L::Partial(3).Size<int32_t>()); + EXPECT_EQ(3, L(3).Size<int32_t>()); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ(3, L::Partial(3).Size<int8_t>()); + EXPECT_EQ(3, L::Partial(3, 5).Size<int8_t>()); + EXPECT_EQ(5, L::Partial(3, 5).Size<int32_t>()); + EXPECT_EQ(3, L::Partial(3, 5, 7).Size<int8_t>()); + EXPECT_EQ(5, L::Partial(3, 5, 7).Size<int32_t>()); + EXPECT_EQ(7, L::Partial(3, 5, 7).Size<Int128>()); + EXPECT_EQ(3, L(3, 5, 7).Size<int8_t>()); + EXPECT_EQ(5, L(3, 5, 7).Size<int32_t>()); + EXPECT_EQ(7, L(3, 5, 7).Size<Int128>()); + } +} + +TEST(Layout, Sizes) { + { + using L = Layout<int32_t>; + EXPECT_THAT(L::Partial().Sizes(), ElementsAre()); + EXPECT_THAT(L::Partial(3).Sizes(), ElementsAre(3)); + EXPECT_THAT(L(3).Sizes(), ElementsAre(3)); + } + { + using L = Layout<int32_t, int32_t>; + EXPECT_THAT(L::Partial().Sizes(), ElementsAre()); + EXPECT_THAT(L::Partial(3).Sizes(), ElementsAre(3)); + EXPECT_THAT(L::Partial(3, 5).Sizes(), ElementsAre(3, 5)); + EXPECT_THAT(L(3, 5).Sizes(), ElementsAre(3, 5)); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_THAT(L::Partial().Sizes(), ElementsAre()); + EXPECT_THAT(L::Partial(3).Sizes(), ElementsAre(3)); + EXPECT_THAT(L::Partial(3, 5).Sizes(), ElementsAre(3, 5)); + EXPECT_THAT(L::Partial(3, 5, 7).Sizes(), ElementsAre(3, 5, 7)); + EXPECT_THAT(L(3, 5, 7).Sizes(), ElementsAre(3, 5, 7)); + } +} + +TEST(Layout, PointerByIndex) { + alignas(max_align_t) const unsigned char p[100] = {}; + { + using L = Layout<int32_t>; + EXPECT_EQ(0, Distance(p, Type<const int32_t*>(L::Partial().Pointer<0>(p)))); + EXPECT_EQ(0, + Distance(p, Type<const int32_t*>(L::Partial(3).Pointer<0>(p)))); + EXPECT_EQ(0, Distance(p, Type<const int32_t*>(L(3).Pointer<0>(p)))); + } + { + using L = Layout<int32_t, int32_t>; + EXPECT_EQ(0, Distance(p, Type<const int32_t*>(L::Partial().Pointer<0>(p)))); + EXPECT_EQ(0, + Distance(p, Type<const int32_t*>(L::Partial(3).Pointer<0>(p)))); + EXPECT_EQ(12, + Distance(p, Type<const int32_t*>(L::Partial(3).Pointer<1>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<const int32_t*>(L::Partial(3, 5).Pointer<0>(p)))); + EXPECT_EQ( + 12, Distance(p, Type<const int32_t*>(L::Partial(3, 5).Pointer<1>(p)))); + EXPECT_EQ(0, Distance(p, Type<const int32_t*>(L(3, 5).Pointer<0>(p)))); + EXPECT_EQ(12, Distance(p, Type<const int32_t*>(L(3, 5).Pointer<1>(p)))); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ(0, Distance(p, Type<const int8_t*>(L::Partial().Pointer<0>(p)))); + EXPECT_EQ(0, Distance(p, Type<const int8_t*>(L::Partial(0).Pointer<0>(p)))); + EXPECT_EQ(0, + Distance(p, Type<const int32_t*>(L::Partial(0).Pointer<1>(p)))); + EXPECT_EQ(0, Distance(p, Type<const int8_t*>(L::Partial(1).Pointer<0>(p)))); + EXPECT_EQ(4, + Distance(p, Type<const int32_t*>(L::Partial(1).Pointer<1>(p)))); + EXPECT_EQ(0, Distance(p, Type<const int8_t*>(L::Partial(5).Pointer<0>(p)))); + EXPECT_EQ(8, + Distance(p, Type<const int32_t*>(L::Partial(5).Pointer<1>(p)))); + EXPECT_EQ(0, + Distance(p, Type<const int8_t*>(L::Partial(0, 0).Pointer<0>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<const int32_t*>(L::Partial(0, 0).Pointer<1>(p)))); + EXPECT_EQ(0, + Distance(p, Type<const Int128*>(L::Partial(0, 0).Pointer<2>(p)))); + EXPECT_EQ(0, + Distance(p, Type<const int8_t*>(L::Partial(1, 0).Pointer<0>(p)))); + EXPECT_EQ( + 4, Distance(p, Type<const int32_t*>(L::Partial(1, 0).Pointer<1>(p)))); + EXPECT_EQ(8, + Distance(p, Type<const Int128*>(L::Partial(1, 0).Pointer<2>(p)))); + EXPECT_EQ(0, + Distance(p, Type<const int8_t*>(L::Partial(5, 3).Pointer<0>(p)))); + EXPECT_EQ( + 8, Distance(p, Type<const int32_t*>(L::Partial(5, 3).Pointer<1>(p)))); + EXPECT_EQ(24, + Distance(p, Type<const Int128*>(L::Partial(5, 3).Pointer<2>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<const int8_t*>(L::Partial(0, 0, 0).Pointer<0>(p)))); + EXPECT_EQ( + 0, + Distance(p, Type<const int32_t*>(L::Partial(0, 0, 0).Pointer<1>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<const Int128*>(L::Partial(0, 0, 0).Pointer<2>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<const int8_t*>(L::Partial(1, 0, 0).Pointer<0>(p)))); + EXPECT_EQ( + 4, + Distance(p, Type<const int32_t*>(L::Partial(1, 0, 0).Pointer<1>(p)))); + EXPECT_EQ( + 8, Distance(p, Type<const Int128*>(L::Partial(1, 0, 0).Pointer<2>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<const int8_t*>(L::Partial(5, 3, 1).Pointer<0>(p)))); + EXPECT_EQ( + 24, + Distance(p, Type<const Int128*>(L::Partial(5, 3, 1).Pointer<2>(p)))); + EXPECT_EQ( + 8, + Distance(p, Type<const int32_t*>(L::Partial(5, 3, 1).Pointer<1>(p)))); + EXPECT_EQ(0, Distance(p, Type<const int8_t*>(L(5, 3, 1).Pointer<0>(p)))); + EXPECT_EQ(24, Distance(p, Type<const Int128*>(L(5, 3, 1).Pointer<2>(p)))); + EXPECT_EQ(8, Distance(p, Type<const int32_t*>(L(5, 3, 1).Pointer<1>(p)))); + } +} + +TEST(Layout, PointerByType) { + alignas(max_align_t) const unsigned char p[100] = {}; + { + using L = Layout<int32_t>; + EXPECT_EQ( + 0, Distance(p, Type<const int32_t*>(L::Partial().Pointer<int32_t>(p)))); + EXPECT_EQ( + 0, + Distance(p, Type<const int32_t*>(L::Partial(3).Pointer<int32_t>(p)))); + EXPECT_EQ(0, Distance(p, Type<const int32_t*>(L(3).Pointer<int32_t>(p)))); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ( + 0, Distance(p, Type<const int8_t*>(L::Partial().Pointer<int8_t>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<const int8_t*>(L::Partial(0).Pointer<int8_t>(p)))); + EXPECT_EQ( + 0, + Distance(p, Type<const int32_t*>(L::Partial(0).Pointer<int32_t>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<const int8_t*>(L::Partial(1).Pointer<int8_t>(p)))); + EXPECT_EQ( + 4, + Distance(p, Type<const int32_t*>(L::Partial(1).Pointer<int32_t>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<const int8_t*>(L::Partial(5).Pointer<int8_t>(p)))); + EXPECT_EQ( + 8, + Distance(p, Type<const int32_t*>(L::Partial(5).Pointer<int32_t>(p)))); + EXPECT_EQ( + 0, + Distance(p, Type<const int8_t*>(L::Partial(0, 0).Pointer<int8_t>(p)))); + EXPECT_EQ(0, Distance(p, Type<const int32_t*>( + L::Partial(0, 0).Pointer<int32_t>(p)))); + EXPECT_EQ( + 0, + Distance(p, Type<const Int128*>(L::Partial(0, 0).Pointer<Int128>(p)))); + EXPECT_EQ( + 0, + Distance(p, Type<const int8_t*>(L::Partial(1, 0).Pointer<int8_t>(p)))); + EXPECT_EQ(4, Distance(p, Type<const int32_t*>( + L::Partial(1, 0).Pointer<int32_t>(p)))); + EXPECT_EQ( + 8, + Distance(p, Type<const Int128*>(L::Partial(1, 0).Pointer<Int128>(p)))); + EXPECT_EQ( + 0, + Distance(p, Type<const int8_t*>(L::Partial(5, 3).Pointer<int8_t>(p)))); + EXPECT_EQ(8, Distance(p, Type<const int32_t*>( + L::Partial(5, 3).Pointer<int32_t>(p)))); + EXPECT_EQ( + 24, + Distance(p, Type<const Int128*>(L::Partial(5, 3).Pointer<Int128>(p)))); + EXPECT_EQ(0, Distance(p, Type<const int8_t*>( + L::Partial(0, 0, 0).Pointer<int8_t>(p)))); + EXPECT_EQ(0, Distance(p, Type<const int32_t*>( + L::Partial(0, 0, 0).Pointer<int32_t>(p)))); + EXPECT_EQ(0, Distance(p, Type<const Int128*>( + L::Partial(0, 0, 0).Pointer<Int128>(p)))); + EXPECT_EQ(0, Distance(p, Type<const int8_t*>( + L::Partial(1, 0, 0).Pointer<int8_t>(p)))); + EXPECT_EQ(4, Distance(p, Type<const int32_t*>( + L::Partial(1, 0, 0).Pointer<int32_t>(p)))); + EXPECT_EQ(8, Distance(p, Type<const Int128*>( + L::Partial(1, 0, 0).Pointer<Int128>(p)))); + EXPECT_EQ(0, Distance(p, Type<const int8_t*>( + L::Partial(5, 3, 1).Pointer<int8_t>(p)))); + EXPECT_EQ(24, Distance(p, Type<const Int128*>( + L::Partial(5, 3, 1).Pointer<Int128>(p)))); + EXPECT_EQ(8, Distance(p, Type<const int32_t*>( + L::Partial(5, 3, 1).Pointer<int32_t>(p)))); + EXPECT_EQ(24, + Distance(p, Type<const Int128*>(L(5, 3, 1).Pointer<Int128>(p)))); + EXPECT_EQ( + 8, Distance(p, Type<const int32_t*>(L(5, 3, 1).Pointer<int32_t>(p)))); + } +} + +TEST(Layout, MutablePointerByIndex) { + alignas(max_align_t) unsigned char p[100]; + { + using L = Layout<int32_t>; + EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial().Pointer<0>(p)))); + EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(3).Pointer<0>(p)))); + EXPECT_EQ(0, Distance(p, Type<int32_t*>(L(3).Pointer<0>(p)))); + } + { + using L = Layout<int32_t, int32_t>; + EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial().Pointer<0>(p)))); + EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(3).Pointer<0>(p)))); + EXPECT_EQ(12, Distance(p, Type<int32_t*>(L::Partial(3).Pointer<1>(p)))); + EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(3, 5).Pointer<0>(p)))); + EXPECT_EQ(12, Distance(p, Type<int32_t*>(L::Partial(3, 5).Pointer<1>(p)))); + EXPECT_EQ(0, Distance(p, Type<int32_t*>(L(3, 5).Pointer<0>(p)))); + EXPECT_EQ(12, Distance(p, Type<int32_t*>(L(3, 5).Pointer<1>(p)))); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial().Pointer<0>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(0).Pointer<0>(p)))); + EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(0).Pointer<1>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(1).Pointer<0>(p)))); + EXPECT_EQ(4, Distance(p, Type<int32_t*>(L::Partial(1).Pointer<1>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(5).Pointer<0>(p)))); + EXPECT_EQ(8, Distance(p, Type<int32_t*>(L::Partial(5).Pointer<1>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(0, 0).Pointer<0>(p)))); + EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(0, 0).Pointer<1>(p)))); + EXPECT_EQ(0, Distance(p, Type<Int128*>(L::Partial(0, 0).Pointer<2>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(1, 0).Pointer<0>(p)))); + EXPECT_EQ(4, Distance(p, Type<int32_t*>(L::Partial(1, 0).Pointer<1>(p)))); + EXPECT_EQ(8, Distance(p, Type<Int128*>(L::Partial(1, 0).Pointer<2>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(5, 3).Pointer<0>(p)))); + EXPECT_EQ(8, Distance(p, Type<int32_t*>(L::Partial(5, 3).Pointer<1>(p)))); + EXPECT_EQ(24, Distance(p, Type<Int128*>(L::Partial(5, 3).Pointer<2>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(0, 0, 0).Pointer<0>(p)))); + EXPECT_EQ(0, + Distance(p, Type<int32_t*>(L::Partial(0, 0, 0).Pointer<1>(p)))); + EXPECT_EQ(0, Distance(p, Type<Int128*>(L::Partial(0, 0, 0).Pointer<2>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(1, 0, 0).Pointer<0>(p)))); + EXPECT_EQ(4, + Distance(p, Type<int32_t*>(L::Partial(1, 0, 0).Pointer<1>(p)))); + EXPECT_EQ(8, Distance(p, Type<Int128*>(L::Partial(1, 0, 0).Pointer<2>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(5, 3, 1).Pointer<0>(p)))); + EXPECT_EQ(24, + Distance(p, Type<Int128*>(L::Partial(5, 3, 1).Pointer<2>(p)))); + EXPECT_EQ(8, + Distance(p, Type<int32_t*>(L::Partial(5, 3, 1).Pointer<1>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L(5, 3, 1).Pointer<0>(p)))); + EXPECT_EQ(24, Distance(p, Type<Int128*>(L(5, 3, 1).Pointer<2>(p)))); + EXPECT_EQ(8, Distance(p, Type<int32_t*>(L(5, 3, 1).Pointer<1>(p)))); + } +} + +TEST(Layout, MutablePointerByType) { + alignas(max_align_t) unsigned char p[100]; + { + using L = Layout<int32_t>; + EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial().Pointer<int32_t>(p)))); + EXPECT_EQ(0, + Distance(p, Type<int32_t*>(L::Partial(3).Pointer<int32_t>(p)))); + EXPECT_EQ(0, Distance(p, Type<int32_t*>(L(3).Pointer<int32_t>(p)))); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial().Pointer<int8_t>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(0).Pointer<int8_t>(p)))); + EXPECT_EQ(0, + Distance(p, Type<int32_t*>(L::Partial(0).Pointer<int32_t>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(1).Pointer<int8_t>(p)))); + EXPECT_EQ(4, + Distance(p, Type<int32_t*>(L::Partial(1).Pointer<int32_t>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(5).Pointer<int8_t>(p)))); + EXPECT_EQ(8, + Distance(p, Type<int32_t*>(L::Partial(5).Pointer<int32_t>(p)))); + EXPECT_EQ(0, + Distance(p, Type<int8_t*>(L::Partial(0, 0).Pointer<int8_t>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<int32_t*>(L::Partial(0, 0).Pointer<int32_t>(p)))); + EXPECT_EQ(0, + Distance(p, Type<Int128*>(L::Partial(0, 0).Pointer<Int128>(p)))); + EXPECT_EQ(0, + Distance(p, Type<int8_t*>(L::Partial(1, 0).Pointer<int8_t>(p)))); + EXPECT_EQ( + 4, Distance(p, Type<int32_t*>(L::Partial(1, 0).Pointer<int32_t>(p)))); + EXPECT_EQ(8, + Distance(p, Type<Int128*>(L::Partial(1, 0).Pointer<Int128>(p)))); + EXPECT_EQ(0, + Distance(p, Type<int8_t*>(L::Partial(5, 3).Pointer<int8_t>(p)))); + EXPECT_EQ( + 8, Distance(p, Type<int32_t*>(L::Partial(5, 3).Pointer<int32_t>(p)))); + EXPECT_EQ(24, + Distance(p, Type<Int128*>(L::Partial(5, 3).Pointer<Int128>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<int8_t*>(L::Partial(0, 0, 0).Pointer<int8_t>(p)))); + EXPECT_EQ( + 0, + Distance(p, Type<int32_t*>(L::Partial(0, 0, 0).Pointer<int32_t>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<Int128*>(L::Partial(0, 0, 0).Pointer<Int128>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<int8_t*>(L::Partial(1, 0, 0).Pointer<int8_t>(p)))); + EXPECT_EQ( + 4, + Distance(p, Type<int32_t*>(L::Partial(1, 0, 0).Pointer<int32_t>(p)))); + EXPECT_EQ( + 8, Distance(p, Type<Int128*>(L::Partial(1, 0, 0).Pointer<Int128>(p)))); + EXPECT_EQ( + 0, Distance(p, Type<int8_t*>(L::Partial(5, 3, 1).Pointer<int8_t>(p)))); + EXPECT_EQ( + 24, Distance(p, Type<Int128*>(L::Partial(5, 3, 1).Pointer<Int128>(p)))); + EXPECT_EQ( + 8, + Distance(p, Type<int32_t*>(L::Partial(5, 3, 1).Pointer<int32_t>(p)))); + EXPECT_EQ(0, Distance(p, Type<int8_t*>(L(5, 3, 1).Pointer<int8_t>(p)))); + EXPECT_EQ(24, Distance(p, Type<Int128*>(L(5, 3, 1).Pointer<Int128>(p)))); + EXPECT_EQ(8, Distance(p, Type<int32_t*>(L(5, 3, 1).Pointer<int32_t>(p)))); + } +} + +TEST(Layout, Pointers) { + alignas(max_align_t) const unsigned char p[100] = {}; + using L = Layout<int8_t, int8_t, Int128>; + { + const auto x = L::Partial(); + EXPECT_EQ(std::make_tuple(x.Pointer<0>(p)), + Type<std::tuple<const int8_t*>>(x.Pointers(p))); + } + { + const auto x = L::Partial(1); + EXPECT_EQ(std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p)), + (Type<std::tuple<const int8_t*, const int8_t*>>(x.Pointers(p)))); + } + { + const auto x = L::Partial(1, 2); + EXPECT_EQ( + std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p), x.Pointer<2>(p)), + (Type<std::tuple<const int8_t*, const int8_t*, const Int128*>>( + x.Pointers(p)))); + } + { + const auto x = L::Partial(1, 2, 3); + EXPECT_EQ( + std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p), x.Pointer<2>(p)), + (Type<std::tuple<const int8_t*, const int8_t*, const Int128*>>( + x.Pointers(p)))); + } + { + const L x(1, 2, 3); + EXPECT_EQ( + std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p), x.Pointer<2>(p)), + (Type<std::tuple<const int8_t*, const int8_t*, const Int128*>>( + x.Pointers(p)))); + } +} + +TEST(Layout, MutablePointers) { + alignas(max_align_t) unsigned char p[100]; + using L = Layout<int8_t, int8_t, Int128>; + { + const auto x = L::Partial(); + EXPECT_EQ(std::make_tuple(x.Pointer<0>(p)), + Type<std::tuple<int8_t*>>(x.Pointers(p))); + } + { + const auto x = L::Partial(1); + EXPECT_EQ(std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p)), + (Type<std::tuple<int8_t*, int8_t*>>(x.Pointers(p)))); + } + { + const auto x = L::Partial(1, 2); + EXPECT_EQ( + std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p), x.Pointer<2>(p)), + (Type<std::tuple<int8_t*, int8_t*, Int128*>>(x.Pointers(p)))); + } + { + const auto x = L::Partial(1, 2, 3); + EXPECT_EQ( + std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p), x.Pointer<2>(p)), + (Type<std::tuple<int8_t*, int8_t*, Int128*>>(x.Pointers(p)))); + } + { + const L x(1, 2, 3); + EXPECT_EQ( + std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p), x.Pointer<2>(p)), + (Type<std::tuple<int8_t*, int8_t*, Int128*>>(x.Pointers(p)))); + } +} + +TEST(Layout, SliceByIndexSize) { + alignas(max_align_t) const unsigned char p[100] = {}; + { + using L = Layout<int32_t>; + EXPECT_EQ(0, L::Partial(0).Slice<0>(p).size()); + EXPECT_EQ(3, L::Partial(3).Slice<0>(p).size()); + EXPECT_EQ(3, L(3).Slice<0>(p).size()); + } + { + using L = Layout<int32_t, int32_t>; + EXPECT_EQ(3, L::Partial(3).Slice<0>(p).size()); + EXPECT_EQ(5, L::Partial(3, 5).Slice<1>(p).size()); + EXPECT_EQ(5, L(3, 5).Slice<1>(p).size()); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ(3, L::Partial(3).Slice<0>(p).size()); + EXPECT_EQ(3, L::Partial(3, 5).Slice<0>(p).size()); + EXPECT_EQ(5, L::Partial(3, 5).Slice<1>(p).size()); + EXPECT_EQ(3, L::Partial(3, 5, 7).Slice<0>(p).size()); + EXPECT_EQ(5, L::Partial(3, 5, 7).Slice<1>(p).size()); + EXPECT_EQ(7, L::Partial(3, 5, 7).Slice<2>(p).size()); + EXPECT_EQ(3, L(3, 5, 7).Slice<0>(p).size()); + EXPECT_EQ(5, L(3, 5, 7).Slice<1>(p).size()); + EXPECT_EQ(7, L(3, 5, 7).Slice<2>(p).size()); + } +} + +TEST(Layout, SliceByTypeSize) { + alignas(max_align_t) const unsigned char p[100] = {}; + { + using L = Layout<int32_t>; + EXPECT_EQ(0, L::Partial(0).Slice<int32_t>(p).size()); + EXPECT_EQ(3, L::Partial(3).Slice<int32_t>(p).size()); + EXPECT_EQ(3, L(3).Slice<int32_t>(p).size()); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ(3, L::Partial(3).Slice<int8_t>(p).size()); + EXPECT_EQ(3, L::Partial(3, 5).Slice<int8_t>(p).size()); + EXPECT_EQ(5, L::Partial(3, 5).Slice<int32_t>(p).size()); + EXPECT_EQ(3, L::Partial(3, 5, 7).Slice<int8_t>(p).size()); + EXPECT_EQ(5, L::Partial(3, 5, 7).Slice<int32_t>(p).size()); + EXPECT_EQ(7, L::Partial(3, 5, 7).Slice<Int128>(p).size()); + EXPECT_EQ(3, L(3, 5, 7).Slice<int8_t>(p).size()); + EXPECT_EQ(5, L(3, 5, 7).Slice<int32_t>(p).size()); + EXPECT_EQ(7, L(3, 5, 7).Slice<Int128>(p).size()); + } +} + +TEST(Layout, MutableSliceByIndexSize) { + alignas(max_align_t) unsigned char p[100]; + { + using L = Layout<int32_t>; + EXPECT_EQ(0, L::Partial(0).Slice<0>(p).size()); + EXPECT_EQ(3, L::Partial(3).Slice<0>(p).size()); + EXPECT_EQ(3, L(3).Slice<0>(p).size()); + } + { + using L = Layout<int32_t, int32_t>; + EXPECT_EQ(3, L::Partial(3).Slice<0>(p).size()); + EXPECT_EQ(5, L::Partial(3, 5).Slice<1>(p).size()); + EXPECT_EQ(5, L(3, 5).Slice<1>(p).size()); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ(3, L::Partial(3).Slice<0>(p).size()); + EXPECT_EQ(3, L::Partial(3, 5).Slice<0>(p).size()); + EXPECT_EQ(5, L::Partial(3, 5).Slice<1>(p).size()); + EXPECT_EQ(3, L::Partial(3, 5, 7).Slice<0>(p).size()); + EXPECT_EQ(5, L::Partial(3, 5, 7).Slice<1>(p).size()); + EXPECT_EQ(7, L::Partial(3, 5, 7).Slice<2>(p).size()); + EXPECT_EQ(3, L(3, 5, 7).Slice<0>(p).size()); + EXPECT_EQ(5, L(3, 5, 7).Slice<1>(p).size()); + EXPECT_EQ(7, L(3, 5, 7).Slice<2>(p).size()); + } +} + +TEST(Layout, MutableSliceByTypeSize) { + alignas(max_align_t) unsigned char p[100]; + { + using L = Layout<int32_t>; + EXPECT_EQ(0, L::Partial(0).Slice<int32_t>(p).size()); + EXPECT_EQ(3, L::Partial(3).Slice<int32_t>(p).size()); + EXPECT_EQ(3, L(3).Slice<int32_t>(p).size()); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ(3, L::Partial(3).Slice<int8_t>(p).size()); + EXPECT_EQ(3, L::Partial(3, 5).Slice<int8_t>(p).size()); + EXPECT_EQ(5, L::Partial(3, 5).Slice<int32_t>(p).size()); + EXPECT_EQ(3, L::Partial(3, 5, 7).Slice<int8_t>(p).size()); + EXPECT_EQ(5, L::Partial(3, 5, 7).Slice<int32_t>(p).size()); + EXPECT_EQ(7, L::Partial(3, 5, 7).Slice<Int128>(p).size()); + EXPECT_EQ(3, L(3, 5, 7).Slice<int8_t>(p).size()); + EXPECT_EQ(5, L(3, 5, 7).Slice<int32_t>(p).size()); + EXPECT_EQ(7, L(3, 5, 7).Slice<Int128>(p).size()); + } +} + +TEST(Layout, SliceByIndexData) { + alignas(max_align_t) const unsigned char p[100] = {}; + { + using L = Layout<int32_t>; + EXPECT_EQ( + 0, Distance( + p, Type<Span<const int32_t>>(L::Partial(0).Slice<0>(p)).data())); + EXPECT_EQ( + 0, Distance( + p, Type<Span<const int32_t>>(L::Partial(3).Slice<0>(p)).data())); + EXPECT_EQ(0, + Distance(p, Type<Span<const int32_t>>(L(3).Slice<0>(p)).data())); + } + { + using L = Layout<int32_t, int32_t>; + EXPECT_EQ( + 0, Distance( + p, Type<Span<const int32_t>>(L::Partial(3).Slice<0>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, Type<Span<const int32_t>>(L::Partial(3, 5).Slice<0>(p)).data())); + EXPECT_EQ( + 12, + Distance( + p, Type<Span<const int32_t>>(L::Partial(3, 5).Slice<1>(p)).data())); + EXPECT_EQ( + 0, Distance(p, Type<Span<const int32_t>>(L(3, 5).Slice<0>(p)).data())); + EXPECT_EQ( + 12, Distance(p, Type<Span<const int32_t>>(L(3, 5).Slice<1>(p)).data())); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ( + 0, Distance( + p, Type<Span<const int8_t>>(L::Partial(0).Slice<0>(p)).data())); + EXPECT_EQ( + 0, Distance( + p, Type<Span<const int8_t>>(L::Partial(1).Slice<0>(p)).data())); + EXPECT_EQ( + 0, Distance( + p, Type<Span<const int8_t>>(L::Partial(5).Slice<0>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, Type<Span<const int8_t>>(L::Partial(0, 0).Slice<0>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, Type<Span<const int32_t>>(L::Partial(0, 0).Slice<1>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, Type<Span<const int8_t>>(L::Partial(1, 0).Slice<0>(p)).data())); + EXPECT_EQ( + 4, + Distance( + p, Type<Span<const int32_t>>(L::Partial(1, 0).Slice<1>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, Type<Span<const int8_t>>(L::Partial(5, 3).Slice<0>(p)).data())); + EXPECT_EQ( + 8, + Distance( + p, Type<Span<const int32_t>>(L::Partial(5, 3).Slice<1>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<const int8_t>>(L::Partial(0, 0, 0).Slice<0>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<const int32_t>>(L::Partial(0, 0, 0).Slice<1>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<const Int128>>(L::Partial(0, 0, 0).Slice<2>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<const int8_t>>(L::Partial(1, 0, 0).Slice<0>(p)).data())); + EXPECT_EQ( + 4, + Distance( + p, + Type<Span<const int32_t>>(L::Partial(1, 0, 0).Slice<1>(p)).data())); + EXPECT_EQ( + 8, + Distance( + p, + Type<Span<const Int128>>(L::Partial(1, 0, 0).Slice<2>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<const int8_t>>(L::Partial(5, 3, 1).Slice<0>(p)).data())); + EXPECT_EQ( + 24, + Distance( + p, + Type<Span<const Int128>>(L::Partial(5, 3, 1).Slice<2>(p)).data())); + EXPECT_EQ( + 8, + Distance( + p, + Type<Span<const int32_t>>(L::Partial(5, 3, 1).Slice<1>(p)).data())); + EXPECT_EQ( + 0, + Distance(p, Type<Span<const int8_t>>(L(5, 3, 1).Slice<0>(p)).data())); + EXPECT_EQ( + 24, + Distance(p, Type<Span<const Int128>>(L(5, 3, 1).Slice<2>(p)).data())); + EXPECT_EQ( + 8, + Distance(p, Type<Span<const int32_t>>(L(5, 3, 1).Slice<1>(p)).data())); + } +} + +TEST(Layout, SliceByTypeData) { + alignas(max_align_t) const unsigned char p[100] = {}; + { + using L = Layout<int32_t>; + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<const int32_t>>(L::Partial(0).Slice<int32_t>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<const int32_t>>(L::Partial(3).Slice<int32_t>(p)).data())); + EXPECT_EQ( + 0, + Distance(p, Type<Span<const int32_t>>(L(3).Slice<int32_t>(p)).data())); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<const int8_t>>(L::Partial(0).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<const int8_t>>(L::Partial(1).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<const int8_t>>(L::Partial(5).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 0, + Distance(p, Type<Span<const int8_t>>(L::Partial(0, 0).Slice<int8_t>(p)) + .data())); + EXPECT_EQ(0, Distance(p, Type<Span<const int32_t>>( + L::Partial(0, 0).Slice<int32_t>(p)) + .data())); + EXPECT_EQ( + 0, + Distance(p, Type<Span<const int8_t>>(L::Partial(1, 0).Slice<int8_t>(p)) + .data())); + EXPECT_EQ(4, Distance(p, Type<Span<const int32_t>>( + L::Partial(1, 0).Slice<int32_t>(p)) + .data())); + EXPECT_EQ( + 0, + Distance(p, Type<Span<const int8_t>>(L::Partial(5, 3).Slice<int8_t>(p)) + .data())); + EXPECT_EQ(8, Distance(p, Type<Span<const int32_t>>( + L::Partial(5, 3).Slice<int32_t>(p)) + .data())); + EXPECT_EQ(0, Distance(p, Type<Span<const int8_t>>( + L::Partial(0, 0, 0).Slice<int8_t>(p)) + .data())); + EXPECT_EQ(0, Distance(p, Type<Span<const int32_t>>( + L::Partial(0, 0, 0).Slice<int32_t>(p)) + .data())); + EXPECT_EQ(0, Distance(p, Type<Span<const Int128>>( + L::Partial(0, 0, 0).Slice<Int128>(p)) + .data())); + EXPECT_EQ(0, Distance(p, Type<Span<const int8_t>>( + L::Partial(1, 0, 0).Slice<int8_t>(p)) + .data())); + EXPECT_EQ(4, Distance(p, Type<Span<const int32_t>>( + L::Partial(1, 0, 0).Slice<int32_t>(p)) + .data())); + EXPECT_EQ(8, Distance(p, Type<Span<const Int128>>( + L::Partial(1, 0, 0).Slice<Int128>(p)) + .data())); + EXPECT_EQ(0, Distance(p, Type<Span<const int8_t>>( + L::Partial(5, 3, 1).Slice<int8_t>(p)) + .data())); + EXPECT_EQ(24, Distance(p, Type<Span<const Int128>>( + L::Partial(5, 3, 1).Slice<Int128>(p)) + .data())); + EXPECT_EQ(8, Distance(p, Type<Span<const int32_t>>( + L::Partial(5, 3, 1).Slice<int32_t>(p)) + .data())); + EXPECT_EQ( + 0, + Distance(p, + Type<Span<const int8_t>>(L(5, 3, 1).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 24, + Distance(p, + Type<Span<const Int128>>(L(5, 3, 1).Slice<Int128>(p)).data())); + EXPECT_EQ( + 8, + Distance( + p, Type<Span<const int32_t>>(L(5, 3, 1).Slice<int32_t>(p)).data())); + } +} + +TEST(Layout, MutableSliceByIndexData) { + alignas(max_align_t) unsigned char p[100]; + { + using L = Layout<int32_t>; + EXPECT_EQ( + 0, Distance(p, Type<Span<int32_t>>(L::Partial(0).Slice<0>(p)).data())); + EXPECT_EQ( + 0, Distance(p, Type<Span<int32_t>>(L::Partial(3).Slice<0>(p)).data())); + EXPECT_EQ(0, Distance(p, Type<Span<int32_t>>(L(3).Slice<0>(p)).data())); + } + { + using L = Layout<int32_t, int32_t>; + EXPECT_EQ( + 0, Distance(p, Type<Span<int32_t>>(L::Partial(3).Slice<0>(p)).data())); + EXPECT_EQ( + 0, + Distance(p, Type<Span<int32_t>>(L::Partial(3, 5).Slice<0>(p)).data())); + EXPECT_EQ( + 12, + Distance(p, Type<Span<int32_t>>(L::Partial(3, 5).Slice<1>(p)).data())); + EXPECT_EQ(0, Distance(p, Type<Span<int32_t>>(L(3, 5).Slice<0>(p)).data())); + EXPECT_EQ(12, Distance(p, Type<Span<int32_t>>(L(3, 5).Slice<1>(p)).data())); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ( + 0, Distance(p, Type<Span<int8_t>>(L::Partial(0).Slice<0>(p)).data())); + EXPECT_EQ( + 0, Distance(p, Type<Span<int8_t>>(L::Partial(1).Slice<0>(p)).data())); + EXPECT_EQ( + 0, Distance(p, Type<Span<int8_t>>(L::Partial(5).Slice<0>(p)).data())); + EXPECT_EQ( + 0, + Distance(p, Type<Span<int8_t>>(L::Partial(0, 0).Slice<0>(p)).data())); + EXPECT_EQ( + 0, + Distance(p, Type<Span<int32_t>>(L::Partial(0, 0).Slice<1>(p)).data())); + EXPECT_EQ( + 0, + Distance(p, Type<Span<int8_t>>(L::Partial(1, 0).Slice<0>(p)).data())); + EXPECT_EQ( + 4, + Distance(p, Type<Span<int32_t>>(L::Partial(1, 0).Slice<1>(p)).data())); + EXPECT_EQ( + 0, + Distance(p, Type<Span<int8_t>>(L::Partial(5, 3).Slice<0>(p)).data())); + EXPECT_EQ( + 8, + Distance(p, Type<Span<int32_t>>(L::Partial(5, 3).Slice<1>(p)).data())); + EXPECT_EQ( + 0, Distance( + p, Type<Span<int8_t>>(L::Partial(0, 0, 0).Slice<0>(p)).data())); + EXPECT_EQ( + 0, Distance( + p, Type<Span<int32_t>>(L::Partial(0, 0, 0).Slice<1>(p)).data())); + EXPECT_EQ( + 0, Distance( + p, Type<Span<Int128>>(L::Partial(0, 0, 0).Slice<2>(p)).data())); + EXPECT_EQ( + 0, Distance( + p, Type<Span<int8_t>>(L::Partial(1, 0, 0).Slice<0>(p)).data())); + EXPECT_EQ( + 4, Distance( + p, Type<Span<int32_t>>(L::Partial(1, 0, 0).Slice<1>(p)).data())); + EXPECT_EQ( + 8, Distance( + p, Type<Span<Int128>>(L::Partial(1, 0, 0).Slice<2>(p)).data())); + EXPECT_EQ( + 0, Distance( + p, Type<Span<int8_t>>(L::Partial(5, 3, 1).Slice<0>(p)).data())); + EXPECT_EQ( + 24, Distance( + p, Type<Span<Int128>>(L::Partial(5, 3, 1).Slice<2>(p)).data())); + EXPECT_EQ( + 8, Distance( + p, Type<Span<int32_t>>(L::Partial(5, 3, 1).Slice<1>(p)).data())); + EXPECT_EQ(0, + Distance(p, Type<Span<int8_t>>(L(5, 3, 1).Slice<0>(p)).data())); + EXPECT_EQ(24, + Distance(p, Type<Span<Int128>>(L(5, 3, 1).Slice<2>(p)).data())); + EXPECT_EQ(8, + Distance(p, Type<Span<int32_t>>(L(5, 3, 1).Slice<1>(p)).data())); + } +} + +TEST(Layout, MutableSliceByTypeData) { + alignas(max_align_t) unsigned char p[100]; + { + using L = Layout<int32_t>; + EXPECT_EQ( + 0, Distance( + p, Type<Span<int32_t>>(L::Partial(0).Slice<int32_t>(p)).data())); + EXPECT_EQ( + 0, Distance( + p, Type<Span<int32_t>>(L::Partial(3).Slice<int32_t>(p)).data())); + EXPECT_EQ(0, + Distance(p, Type<Span<int32_t>>(L(3).Slice<int32_t>(p)).data())); + } + { + using L = Layout<int8_t, int32_t, Int128>; + EXPECT_EQ( + 0, + Distance(p, Type<Span<int8_t>>(L::Partial(0).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 0, + Distance(p, Type<Span<int8_t>>(L::Partial(1).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 0, + Distance(p, Type<Span<int8_t>>(L::Partial(5).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 0, + Distance(p, + Type<Span<int8_t>>(L::Partial(0, 0).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, Type<Span<int32_t>>(L::Partial(0, 0).Slice<int32_t>(p)).data())); + EXPECT_EQ( + 0, + Distance(p, + Type<Span<int8_t>>(L::Partial(1, 0).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 4, + Distance( + p, Type<Span<int32_t>>(L::Partial(1, 0).Slice<int32_t>(p)).data())); + EXPECT_EQ( + 0, + Distance(p, + Type<Span<int8_t>>(L::Partial(5, 3).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 8, + Distance( + p, Type<Span<int32_t>>(L::Partial(5, 3).Slice<int32_t>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<int8_t>>(L::Partial(0, 0, 0).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<int32_t>>(L::Partial(0, 0, 0).Slice<int32_t>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<Int128>>(L::Partial(0, 0, 0).Slice<Int128>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<int8_t>>(L::Partial(1, 0, 0).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 4, + Distance( + p, + Type<Span<int32_t>>(L::Partial(1, 0, 0).Slice<int32_t>(p)).data())); + EXPECT_EQ( + 8, + Distance( + p, + Type<Span<Int128>>(L::Partial(1, 0, 0).Slice<Int128>(p)).data())); + EXPECT_EQ( + 0, + Distance( + p, + Type<Span<int8_t>>(L::Partial(5, 3, 1).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 24, + Distance( + p, + Type<Span<Int128>>(L::Partial(5, 3, 1).Slice<Int128>(p)).data())); + EXPECT_EQ( + 8, + Distance( + p, + Type<Span<int32_t>>(L::Partial(5, 3, 1).Slice<int32_t>(p)).data())); + EXPECT_EQ( + 0, Distance(p, Type<Span<int8_t>>(L(5, 3, 1).Slice<int8_t>(p)).data())); + EXPECT_EQ( + 24, + Distance(p, Type<Span<Int128>>(L(5, 3, 1).Slice<Int128>(p)).data())); + EXPECT_EQ( + 8, + Distance(p, Type<Span<int32_t>>(L(5, 3, 1).Slice<int32_t>(p)).data())); + } +} + +MATCHER_P(IsSameSlice, slice, "") { + return arg.size() == slice.size() && arg.data() == slice.data(); +} + +template <typename... M> +class TupleMatcher { + public: + explicit TupleMatcher(M... matchers) : matchers_(std::move(matchers)...) {} + + template <typename Tuple> + bool MatchAndExplain(const Tuple& p, + testing::MatchResultListener* /* listener */) const { + static_assert(std::tuple_size<Tuple>::value == sizeof...(M), ""); + return MatchAndExplainImpl( + p, absl::make_index_sequence<std::tuple_size<Tuple>::value>{}); + } + + // For the matcher concept. Left empty as we don't really need the diagnostics + // right now. + void DescribeTo(::std::ostream* os) const {} + void DescribeNegationTo(::std::ostream* os) const {} + + private: + template <typename Tuple, size_t... Is> + bool MatchAndExplainImpl(const Tuple& p, absl::index_sequence<Is...>) const { + // Using std::min as a simple variadic "and". + return std::min( + {true, testing::SafeMatcherCast< + const typename std::tuple_element<Is, Tuple>::type&>( + std::get<Is>(matchers_)) + .Matches(std::get<Is>(p))...}); + } + + std::tuple<M...> matchers_; +}; + +template <typename... M> +testing::PolymorphicMatcher<TupleMatcher<M...>> Tuple(M... matchers) { + return testing::MakePolymorphicMatcher( + TupleMatcher<M...>(std::move(matchers)...)); +} + +TEST(Layout, Slices) { + alignas(max_align_t) const unsigned char p[100] = {}; + using L = Layout<int8_t, int8_t, Int128>; + { + const auto x = L::Partial(); + EXPECT_THAT(Type<std::tuple<>>(x.Slices(p)), Tuple()); + } + { + const auto x = L::Partial(1); + EXPECT_THAT(Type<std::tuple<Span<const int8_t>>>(x.Slices(p)), + Tuple(IsSameSlice(x.Slice<0>(p)))); + } + { + const auto x = L::Partial(1, 2); + EXPECT_THAT( + (Type<std::tuple<Span<const int8_t>, Span<const int8_t>>>(x.Slices(p))), + Tuple(IsSameSlice(x.Slice<0>(p)), IsSameSlice(x.Slice<1>(p)))); + } + { + const auto x = L::Partial(1, 2, 3); + EXPECT_THAT((Type<std::tuple<Span<const int8_t>, Span<const int8_t>, + Span<const Int128>>>(x.Slices(p))), + Tuple(IsSameSlice(x.Slice<0>(p)), IsSameSlice(x.Slice<1>(p)), + IsSameSlice(x.Slice<2>(p)))); + } + { + const L x(1, 2, 3); + EXPECT_THAT((Type<std::tuple<Span<const int8_t>, Span<const int8_t>, + Span<const Int128>>>(x.Slices(p))), + Tuple(IsSameSlice(x.Slice<0>(p)), IsSameSlice(x.Slice<1>(p)), + IsSameSlice(x.Slice<2>(p)))); + } +} + +TEST(Layout, MutableSlices) { + alignas(max_align_t) unsigned char p[100] = {}; + using L = Layout<int8_t, int8_t, Int128>; + { + const auto x = L::Partial(); + EXPECT_THAT(Type<std::tuple<>>(x.Slices(p)), Tuple()); + } + { + const auto x = L::Partial(1); + EXPECT_THAT(Type<std::tuple<Span<int8_t>>>(x.Slices(p)), + Tuple(IsSameSlice(x.Slice<0>(p)))); + } + { + const auto x = L::Partial(1, 2); + EXPECT_THAT((Type<std::tuple<Span<int8_t>, Span<int8_t>>>(x.Slices(p))), + Tuple(IsSameSlice(x.Slice<0>(p)), IsSameSlice(x.Slice<1>(p)))); + } + { + const auto x = L::Partial(1, 2, 3); + EXPECT_THAT((Type<std::tuple<Span<int8_t>, Span<int8_t>, Span<Int128>>>( + x.Slices(p))), + Tuple(IsSameSlice(x.Slice<0>(p)), IsSameSlice(x.Slice<1>(p)), + IsSameSlice(x.Slice<2>(p)))); + } + { + const L x(1, 2, 3); + EXPECT_THAT((Type<std::tuple<Span<int8_t>, Span<int8_t>, Span<Int128>>>( + x.Slices(p))), + Tuple(IsSameSlice(x.Slice<0>(p)), IsSameSlice(x.Slice<1>(p)), + IsSameSlice(x.Slice<2>(p)))); + } +} + +TEST(Layout, UnalignedTypes) { + constexpr Layout<unsigned char, unsigned char, unsigned char> x(1, 2, 3); + alignas(max_align_t) unsigned char p[x.AllocSize() + 1]; + EXPECT_THAT(x.Pointers(p + 1), Tuple(p + 1, p + 2, p + 4)); +} + +TEST(Layout, CustomAlignment) { + constexpr Layout<unsigned char, Aligned<unsigned char, 8>> x(1, 2); + alignas(max_align_t) unsigned char p[x.AllocSize()]; + EXPECT_EQ(10, x.AllocSize()); + EXPECT_THAT(x.Pointers(p), Tuple(p + 0, p + 8)); +} + +TEST(Layout, OverAligned) { + constexpr size_t M = alignof(max_align_t); + constexpr Layout<unsigned char, Aligned<unsigned char, 2 * M>> x(1, 3); + alignas(2 * M) unsigned char p[x.AllocSize()]; + EXPECT_EQ(2 * M + 3, x.AllocSize()); + EXPECT_THAT(x.Pointers(p), Tuple(p + 0, p + 2 * M)); +} + +TEST(Layout, Alignment) { + static_assert(Layout<int8_t>::Alignment() == 1, ""); + static_assert(Layout<int32_t>::Alignment() == 4, ""); + static_assert(Layout<Int64>::Alignment() == 8, ""); + static_assert(Layout<Aligned<int8_t, 64>>::Alignment() == 64, ""); + static_assert(Layout<int8_t, int32_t, Int64>::Alignment() == 8, ""); + static_assert(Layout<int8_t, Int64, int32_t>::Alignment() == 8, ""); + static_assert(Layout<int32_t, int8_t, Int64>::Alignment() == 8, ""); + static_assert(Layout<int32_t, Int64, int8_t>::Alignment() == 8, ""); + static_assert(Layout<Int64, int8_t, int32_t>::Alignment() == 8, ""); + static_assert(Layout<Int64, int32_t, int8_t>::Alignment() == 8, ""); +} + +TEST(Layout, ConstexprPartial) { + constexpr size_t M = alignof(max_align_t); + constexpr Layout<unsigned char, Aligned<unsigned char, 2 * M>> x(1, 3); + static_assert(x.Partial(1).template Offset<1>() == 2 * M, ""); +} +// [from, to) +struct Region { + size_t from; + size_t to; +}; + +void ExpectRegionPoisoned(const unsigned char* p, size_t n, bool poisoned) { +#ifdef ABSL_HAVE_ADDRESS_SANITIZER + for (size_t i = 0; i != n; ++i) { + EXPECT_EQ(poisoned, __asan_address_is_poisoned(p + i)); + } +#endif +} + +template <size_t N> +void ExpectPoisoned(const unsigned char (&buf)[N], + std::initializer_list<Region> reg) { + size_t prev = 0; + for (const Region& r : reg) { + ExpectRegionPoisoned(buf + prev, r.from - prev, false); + ExpectRegionPoisoned(buf + r.from, r.to - r.from, true); + prev = r.to; + } + ExpectRegionPoisoned(buf + prev, N - prev, false); +} + +TEST(Layout, PoisonPadding) { + using L = Layout<int8_t, Int64, int32_t, Int128>; + + constexpr size_t n = L::Partial(1, 2, 3, 4).AllocSize(); + { + constexpr auto x = L::Partial(); + alignas(max_align_t) const unsigned char c[n] = {}; + x.PoisonPadding(c); + EXPECT_EQ(x.Slices(c), x.Slices(c)); + ExpectPoisoned(c, {}); + } + { + constexpr auto x = L::Partial(1); + alignas(max_align_t) const unsigned char c[n] = {}; + x.PoisonPadding(c); + EXPECT_EQ(x.Slices(c), x.Slices(c)); + ExpectPoisoned(c, {{1, 8}}); + } + { + constexpr auto x = L::Partial(1, 2); + alignas(max_align_t) const unsigned char c[n] = {}; + x.PoisonPadding(c); + EXPECT_EQ(x.Slices(c), x.Slices(c)); + ExpectPoisoned(c, {{1, 8}}); + } + { + constexpr auto x = L::Partial(1, 2, 3); + alignas(max_align_t) const unsigned char c[n] = {}; + x.PoisonPadding(c); + EXPECT_EQ(x.Slices(c), x.Slices(c)); + ExpectPoisoned(c, {{1, 8}, {36, 40}}); + } + { + constexpr auto x = L::Partial(1, 2, 3, 4); + alignas(max_align_t) const unsigned char c[n] = {}; + x.PoisonPadding(c); + EXPECT_EQ(x.Slices(c), x.Slices(c)); + ExpectPoisoned(c, {{1, 8}, {36, 40}}); + } + { + constexpr L x(1, 2, 3, 4); + alignas(max_align_t) const unsigned char c[n] = {}; + x.PoisonPadding(c); + EXPECT_EQ(x.Slices(c), x.Slices(c)); + ExpectPoisoned(c, {{1, 8}, {36, 40}}); + } +} + +TEST(Layout, DebugString) { + { + constexpr auto x = Layout<int8_t, int32_t, int8_t, Int128>::Partial(); + EXPECT_EQ("@0<signed char>(1)", x.DebugString()); + } + { + constexpr auto x = Layout<int8_t, int32_t, int8_t, Int128>::Partial(1); + EXPECT_EQ("@0<signed char>(1)[1]; @4<int>(4)", x.DebugString()); + } + { + constexpr auto x = Layout<int8_t, int32_t, int8_t, Int128>::Partial(1, 2); + EXPECT_EQ("@0<signed char>(1)[1]; @4<int>(4)[2]; @12<signed char>(1)", + x.DebugString()); + } + { + constexpr auto x = + Layout<int8_t, int32_t, int8_t, Int128>::Partial(1, 2, 3); + EXPECT_EQ( + "@0<signed char>(1)[1]; @4<int>(4)[2]; @12<signed char>(1)[3]; " + "@16" + + Int128::Name() + "(16)", + x.DebugString()); + } + { + constexpr auto x = + Layout<int8_t, int32_t, int8_t, Int128>::Partial(1, 2, 3, 4); + EXPECT_EQ( + "@0<signed char>(1)[1]; @4<int>(4)[2]; @12<signed char>(1)[3]; " + "@16" + + Int128::Name() + "(16)[4]", + x.DebugString()); + } + { + constexpr Layout<int8_t, int32_t, int8_t, Int128> x(1, 2, 3, 4); + EXPECT_EQ( + "@0<signed char>(1)[1]; @4<int>(4)[2]; @12<signed char>(1)[3]; " + "@16" + + Int128::Name() + "(16)[4]", + x.DebugString()); + } +} + +TEST(Layout, CharTypes) { + constexpr Layout<int32_t> x(1); + alignas(max_align_t) char c[x.AllocSize()] = {}; + alignas(max_align_t) unsigned char uc[x.AllocSize()] = {}; + alignas(max_align_t) signed char sc[x.AllocSize()] = {}; + alignas(max_align_t) const char cc[x.AllocSize()] = {}; + alignas(max_align_t) const unsigned char cuc[x.AllocSize()] = {}; + alignas(max_align_t) const signed char csc[x.AllocSize()] = {}; + + Type<int32_t*>(x.Pointer<0>(c)); + Type<int32_t*>(x.Pointer<0>(uc)); + Type<int32_t*>(x.Pointer<0>(sc)); + Type<const int32_t*>(x.Pointer<0>(cc)); + Type<const int32_t*>(x.Pointer<0>(cuc)); + Type<const int32_t*>(x.Pointer<0>(csc)); + + Type<int32_t*>(x.Pointer<int32_t>(c)); + Type<int32_t*>(x.Pointer<int32_t>(uc)); + Type<int32_t*>(x.Pointer<int32_t>(sc)); + Type<const int32_t*>(x.Pointer<int32_t>(cc)); + Type<const int32_t*>(x.Pointer<int32_t>(cuc)); + Type<const int32_t*>(x.Pointer<int32_t>(csc)); + + Type<std::tuple<int32_t*>>(x.Pointers(c)); + Type<std::tuple<int32_t*>>(x.Pointers(uc)); + Type<std::tuple<int32_t*>>(x.Pointers(sc)); + Type<std::tuple<const int32_t*>>(x.Pointers(cc)); + Type<std::tuple<const int32_t*>>(x.Pointers(cuc)); + Type<std::tuple<const int32_t*>>(x.Pointers(csc)); + + Type<Span<int32_t>>(x.Slice<0>(c)); + Type<Span<int32_t>>(x.Slice<0>(uc)); + Type<Span<int32_t>>(x.Slice<0>(sc)); + Type<Span<const int32_t>>(x.Slice<0>(cc)); + Type<Span<const int32_t>>(x.Slice<0>(cuc)); + Type<Span<const int32_t>>(x.Slice<0>(csc)); + + Type<std::tuple<Span<int32_t>>>(x.Slices(c)); + Type<std::tuple<Span<int32_t>>>(x.Slices(uc)); + Type<std::tuple<Span<int32_t>>>(x.Slices(sc)); + Type<std::tuple<Span<const int32_t>>>(x.Slices(cc)); + Type<std::tuple<Span<const int32_t>>>(x.Slices(cuc)); + Type<std::tuple<Span<const int32_t>>>(x.Slices(csc)); +} + +TEST(Layout, ConstElementType) { + constexpr Layout<const int32_t> x(1); + alignas(int32_t) char c[x.AllocSize()] = {}; + const char* cc = c; + const int32_t* p = reinterpret_cast<const int32_t*>(cc); + + EXPECT_EQ(alignof(int32_t), x.Alignment()); + + EXPECT_EQ(0, x.Offset<0>()); + EXPECT_EQ(0, x.Offset<const int32_t>()); + + EXPECT_THAT(x.Offsets(), ElementsAre(0)); + + EXPECT_EQ(1, x.Size<0>()); + EXPECT_EQ(1, x.Size<const int32_t>()); + + EXPECT_THAT(x.Sizes(), ElementsAre(1)); + + EXPECT_EQ(sizeof(int32_t), x.AllocSize()); + + EXPECT_EQ(p, Type<const int32_t*>(x.Pointer<0>(c))); + EXPECT_EQ(p, Type<const int32_t*>(x.Pointer<0>(cc))); + + EXPECT_EQ(p, Type<const int32_t*>(x.Pointer<const int32_t>(c))); + EXPECT_EQ(p, Type<const int32_t*>(x.Pointer<const int32_t>(cc))); + + EXPECT_THAT(Type<std::tuple<const int32_t*>>(x.Pointers(c)), Tuple(p)); + EXPECT_THAT(Type<std::tuple<const int32_t*>>(x.Pointers(cc)), Tuple(p)); + + EXPECT_THAT(Type<Span<const int32_t>>(x.Slice<0>(c)), + IsSameSlice(Span<const int32_t>(p, 1))); + EXPECT_THAT(Type<Span<const int32_t>>(x.Slice<0>(cc)), + IsSameSlice(Span<const int32_t>(p, 1))); + + EXPECT_THAT(Type<Span<const int32_t>>(x.Slice<const int32_t>(c)), + IsSameSlice(Span<const int32_t>(p, 1))); + EXPECT_THAT(Type<Span<const int32_t>>(x.Slice<const int32_t>(cc)), + IsSameSlice(Span<const int32_t>(p, 1))); + + EXPECT_THAT(Type<std::tuple<Span<const int32_t>>>(x.Slices(c)), + Tuple(IsSameSlice(Span<const int32_t>(p, 1)))); + EXPECT_THAT(Type<std::tuple<Span<const int32_t>>>(x.Slices(cc)), + Tuple(IsSameSlice(Span<const int32_t>(p, 1)))); +} + +namespace example { + +// Immutable move-only string with sizeof equal to sizeof(void*). The string +// size and the characters are kept in the same heap allocation. +class CompactString { + public: + CompactString(const char* s = "") { // NOLINT + const size_t size = strlen(s); + // size_t[1], followed by char[size + 1]. + // This statement doesn't allocate memory. + const L layout(1, size + 1); + // AllocSize() tells us how much memory we need to allocate for all our + // data. + p_.reset(new unsigned char[layout.AllocSize()]); + // If running under ASAN, mark the padding bytes, if any, to catch memory + // errors. + layout.PoisonPadding(p_.get()); + // Store the size in the allocation. + // Pointer<size_t>() is a synonym for Pointer<0>(). + *layout.Pointer<size_t>(p_.get()) = size; + // Store the characters in the allocation. + memcpy(layout.Pointer<char>(p_.get()), s, size + 1); + } + + size_t size() const { + // Equivalent to reinterpret_cast<size_t&>(*p). + return *L::Partial().Pointer<size_t>(p_.get()); + } + + const char* c_str() const { + // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)). + // The argument in Partial(1) specifies that we have size_t[1] in front of + // the characters. + return L::Partial(1).Pointer<char>(p_.get()); + } + + private: + // Our heap allocation contains a size_t followed by an array of chars. + using L = Layout<size_t, char>; + std::unique_ptr<unsigned char[]> p_; +}; + +TEST(CompactString, Works) { + CompactString s = "hello"; + EXPECT_EQ(5, s.size()); + EXPECT_STREQ("hello", s.c_str()); +} + +} // namespace example + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/node_hash_policy.h b/third_party/abseil_cpp/absl/container/internal/node_hash_policy.h new file mode 100644 index 000000000000..4617162f0b32 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/node_hash_policy.h @@ -0,0 +1,92 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// Adapts a policy for nodes. +// +// The node policy should model: +// +// struct Policy { +// // Returns a new node allocated and constructed using the allocator, using +// // the specified arguments. +// template <class Alloc, class... Args> +// value_type* new_element(Alloc* alloc, Args&&... args) const; +// +// // Destroys and deallocates node using the allocator. +// template <class Alloc> +// void delete_element(Alloc* alloc, value_type* node) const; +// }; +// +// It may also optionally define `value()` and `apply()`. For documentation on +// these, see hash_policy_traits.h. + +#ifndef ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_ +#define ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_ + +#include <cassert> +#include <cstddef> +#include <memory> +#include <type_traits> +#include <utility> + +#include "absl/base/config.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <class Reference, class Policy> +struct node_hash_policy { + static_assert(std::is_lvalue_reference<Reference>::value, ""); + + using slot_type = typename std::remove_cv< + typename std::remove_reference<Reference>::type>::type*; + + template <class Alloc, class... Args> + static void construct(Alloc* alloc, slot_type* slot, Args&&... args) { + *slot = Policy::new_element(alloc, std::forward<Args>(args)...); + } + + template <class Alloc> + static void destroy(Alloc* alloc, slot_type* slot) { + Policy::delete_element(alloc, *slot); + } + + template <class Alloc> + static void transfer(Alloc*, slot_type* new_slot, slot_type* old_slot) { + *new_slot = *old_slot; + } + + static size_t space_used(const slot_type* slot) { + if (slot == nullptr) return Policy::element_space_used(nullptr); + return Policy::element_space_used(*slot); + } + + static Reference element(slot_type* slot) { return **slot; } + + template <class T, class P = Policy> + static auto value(T* elem) -> decltype(P::value(elem)) { + return P::value(elem); + } + + template <class... Ts, class P = Policy> + static auto apply(Ts&&... ts) -> decltype(P::apply(std::forward<Ts>(ts)...)) { + return P::apply(std::forward<Ts>(ts)...); + } +}; + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/node_hash_policy_test.cc b/third_party/abseil_cpp/absl/container/internal/node_hash_policy_test.cc new file mode 100644 index 000000000000..84aabba96830 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/node_hash_policy_test.cc @@ -0,0 +1,69 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/node_hash_policy.h" + +#include <memory> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/container/internal/hash_policy_traits.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace { + +using ::testing::Pointee; + +struct Policy : node_hash_policy<int&, Policy> { + using key_type = int; + using init_type = int; + + template <class Alloc> + static int* new_element(Alloc* alloc, int value) { + return new int(value); + } + + template <class Alloc> + static void delete_element(Alloc* alloc, int* elem) { + delete elem; + } +}; + +using NodePolicy = hash_policy_traits<Policy>; + +struct NodeTest : ::testing::Test { + std::allocator<int> alloc; + int n = 53; + int* a = &n; +}; + +TEST_F(NodeTest, ConstructDestroy) { + NodePolicy::construct(&alloc, &a, 42); + EXPECT_THAT(a, Pointee(42)); + NodePolicy::destroy(&alloc, &a); +} + +TEST_F(NodeTest, transfer) { + int s = 42; + int* b = &s; + NodePolicy::transfer(&alloc, &a, &b); + EXPECT_EQ(&s, a); +} + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/raw_hash_map.h b/third_party/abseil_cpp/absl/container/internal/raw_hash_map.h new file mode 100644 index 000000000000..0a02757ddfb4 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/raw_hash_map.h @@ -0,0 +1,197 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_ +#define ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_ + +#include <tuple> +#include <type_traits> +#include <utility> + +#include "absl/base/internal/throw_delegate.h" +#include "absl/container/internal/container_memory.h" +#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <class Policy, class Hash, class Eq, class Alloc> +class raw_hash_map : public raw_hash_set<Policy, Hash, Eq, Alloc> { + // P is Policy. It's passed as a template argument to support maps that have + // incomplete types as values, as in unordered_map<K, IncompleteType>. + // MappedReference<> may be a non-reference type. + template <class P> + using MappedReference = decltype(P::value( + std::addressof(std::declval<typename raw_hash_map::reference>()))); + + // MappedConstReference<> may be a non-reference type. + template <class P> + using MappedConstReference = decltype(P::value( + std::addressof(std::declval<typename raw_hash_map::const_reference>()))); + + using KeyArgImpl = + KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>; + + public: + using key_type = typename Policy::key_type; + using mapped_type = typename Policy::mapped_type; + template <class K> + using key_arg = typename KeyArgImpl::template type<K, key_type>; + + static_assert(!std::is_reference<key_type>::value, ""); + // TODO(alkis): remove this assertion and verify that reference mapped_type is + // supported. + static_assert(!std::is_reference<mapped_type>::value, ""); + + using iterator = typename raw_hash_map::raw_hash_set::iterator; + using const_iterator = typename raw_hash_map::raw_hash_set::const_iterator; + + raw_hash_map() {} + using raw_hash_map::raw_hash_set::raw_hash_set; + + // The last two template parameters ensure that both arguments are rvalues + // (lvalue arguments are handled by the overloads below). This is necessary + // for supporting bitfield arguments. + // + // union { int n : 1; }; + // flat_hash_map<int, int> m; + // m.insert_or_assign(n, n); + template <class K = key_type, class V = mapped_type, K* = nullptr, + V* = nullptr> + std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, V&& v) { + return insert_or_assign_impl(std::forward<K>(k), std::forward<V>(v)); + } + + template <class K = key_type, class V = mapped_type, K* = nullptr> + std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, const V& v) { + return insert_or_assign_impl(std::forward<K>(k), v); + } + + template <class K = key_type, class V = mapped_type, V* = nullptr> + std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, V&& v) { + return insert_or_assign_impl(k, std::forward<V>(v)); + } + + template <class K = key_type, class V = mapped_type> + std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, const V& v) { + return insert_or_assign_impl(k, v); + } + + template <class K = key_type, class V = mapped_type, K* = nullptr, + V* = nullptr> + iterator insert_or_assign(const_iterator, key_arg<K>&& k, V&& v) { + return insert_or_assign(std::forward<K>(k), std::forward<V>(v)).first; + } + + template <class K = key_type, class V = mapped_type, K* = nullptr> + iterator insert_or_assign(const_iterator, key_arg<K>&& k, const V& v) { + return insert_or_assign(std::forward<K>(k), v).first; + } + + template <class K = key_type, class V = mapped_type, V* = nullptr> + iterator insert_or_assign(const_iterator, const key_arg<K>& k, V&& v) { + return insert_or_assign(k, std::forward<V>(v)).first; + } + + template <class K = key_type, class V = mapped_type> + iterator insert_or_assign(const_iterator, const key_arg<K>& k, const V& v) { + return insert_or_assign(k, v).first; + } + + // All `try_emplace()` overloads make the same guarantees regarding rvalue + // arguments as `std::unordered_map::try_emplace()`, namely that these + // functions will not move from rvalue arguments if insertions do not happen. + template <class K = key_type, class... Args, + typename std::enable_if< + !std::is_convertible<K, const_iterator>::value, int>::type = 0, + K* = nullptr> + std::pair<iterator, bool> try_emplace(key_arg<K>&& k, Args&&... args) { + return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...); + } + + template <class K = key_type, class... Args, + typename std::enable_if< + !std::is_convertible<K, const_iterator>::value, int>::type = 0> + std::pair<iterator, bool> try_emplace(const key_arg<K>& k, Args&&... args) { + return try_emplace_impl(k, std::forward<Args>(args)...); + } + + template <class K = key_type, class... Args, K* = nullptr> + iterator try_emplace(const_iterator, key_arg<K>&& k, Args&&... args) { + return try_emplace(std::forward<K>(k), std::forward<Args>(args)...).first; + } + + template <class K = key_type, class... Args> + iterator try_emplace(const_iterator, const key_arg<K>& k, Args&&... args) { + return try_emplace(k, std::forward<Args>(args)...).first; + } + + template <class K = key_type, class P = Policy> + MappedReference<P> at(const key_arg<K>& key) { + auto it = this->find(key); + if (it == this->end()) { + base_internal::ThrowStdOutOfRange( + "absl::container_internal::raw_hash_map<>::at"); + } + return Policy::value(&*it); + } + + template <class K = key_type, class P = Policy> + MappedConstReference<P> at(const key_arg<K>& key) const { + auto it = this->find(key); + if (it == this->end()) { + base_internal::ThrowStdOutOfRange( + "absl::container_internal::raw_hash_map<>::at"); + } + return Policy::value(&*it); + } + + template <class K = key_type, class P = Policy, K* = nullptr> + MappedReference<P> operator[](key_arg<K>&& key) { + return Policy::value(&*try_emplace(std::forward<K>(key)).first); + } + + template <class K = key_type, class P = Policy> + MappedReference<P> operator[](const key_arg<K>& key) { + return Policy::value(&*try_emplace(key).first); + } + + private: + template <class K, class V> + std::pair<iterator, bool> insert_or_assign_impl(K&& k, V&& v) { + auto res = this->find_or_prepare_insert(k); + if (res.second) + this->emplace_at(res.first, std::forward<K>(k), std::forward<V>(v)); + else + Policy::value(&*this->iterator_at(res.first)) = std::forward<V>(v); + return {this->iterator_at(res.first), res.second}; + } + + template <class K = key_type, class... Args> + std::pair<iterator, bool> try_emplace_impl(K&& k, Args&&... args) { + auto res = this->find_or_prepare_insert(k); + if (res.second) + this->emplace_at(res.first, std::piecewise_construct, + std::forward_as_tuple(std::forward<K>(k)), + std::forward_as_tuple(std::forward<Args>(args)...)); + return {this->iterator_at(res.first), res.second}; + } +}; + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/raw_hash_set.cc b/third_party/abseil_cpp/absl/container/internal/raw_hash_set.cc new file mode 100644 index 000000000000..bfef071f29e6 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/raw_hash_set.cc @@ -0,0 +1,61 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/raw_hash_set.h" + +#include <atomic> +#include <cstddef> + +#include "absl/base/config.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +constexpr size_t Group::kWidth; + +// Returns "random" seed. +inline size_t RandomSeed() { +#ifdef ABSL_HAVE_THREAD_LOCAL + static thread_local size_t counter = 0; + size_t value = ++counter; +#else // ABSL_HAVE_THREAD_LOCAL + static std::atomic<size_t> counter(0); + size_t value = counter.fetch_add(1, std::memory_order_relaxed); +#endif // ABSL_HAVE_THREAD_LOCAL + return value ^ static_cast<size_t>(reinterpret_cast<uintptr_t>(&counter)); +} + +bool ShouldInsertBackwards(size_t hash, ctrl_t* ctrl) { + // To avoid problems with weak hashes and single bit tests, we use % 13. + // TODO(kfm,sbenza): revisit after we do unconditional mixing + return (H1(hash, ctrl) ^ RandomSeed()) % 13 > 6; +} + +void ConvertDeletedToEmptyAndFullToDeleted( + ctrl_t* ctrl, size_t capacity) { + assert(ctrl[capacity] == kSentinel); + assert(IsValidCapacity(capacity)); + for (ctrl_t* pos = ctrl; pos != ctrl + capacity + 1; pos += Group::kWidth) { + Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos); + } + // Copy the cloned ctrl bytes. + std::memcpy(ctrl + capacity + 1, ctrl, Group::kWidth); + ctrl[capacity] = kSentinel; +} + + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/raw_hash_set.h b/third_party/abseil_cpp/absl/container/internal/raw_hash_set.h new file mode 100644 index 000000000000..02158c4e0886 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/raw_hash_set.h @@ -0,0 +1,1903 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// An open-addressing +// hashtable with quadratic probing. +// +// This is a low level hashtable on top of which different interfaces can be +// implemented, like flat_hash_set, node_hash_set, string_hash_set, etc. +// +// The table interface is similar to that of std::unordered_set. Notable +// differences are that most member functions support heterogeneous keys when +// BOTH the hash and eq functions are marked as transparent. They do so by +// providing a typedef called `is_transparent`. +// +// When heterogeneous lookup is enabled, functions that take key_type act as if +// they have an overload set like: +// +// iterator find(const key_type& key); +// template <class K> +// iterator find(const K& key); +// +// size_type erase(const key_type& key); +// template <class K> +// size_type erase(const K& key); +// +// std::pair<iterator, iterator> equal_range(const key_type& key); +// template <class K> +// std::pair<iterator, iterator> equal_range(const K& key); +// +// When heterogeneous lookup is disabled, only the explicit `key_type` overloads +// exist. +// +// find() also supports passing the hash explicitly: +// +// iterator find(const key_type& key, size_t hash); +// template <class U> +// iterator find(const U& key, size_t hash); +// +// In addition the pointer to element and iterator stability guarantees are +// weaker: all iterators and pointers are invalidated after a new element is +// inserted. +// +// IMPLEMENTATION DETAILS +// +// The table stores elements inline in a slot array. In addition to the slot +// array the table maintains some control state per slot. The extra state is one +// byte per slot and stores empty or deleted marks, or alternatively 7 bits from +// the hash of an occupied slot. The table is split into logical groups of +// slots, like so: +// +// Group 1 Group 2 Group 3 +// +---------------+---------------+---------------+ +// | | | | | | | | | | | | | | | | | | | | | | | | | +// +---------------+---------------+---------------+ +// +// On lookup the hash is split into two parts: +// - H2: 7 bits (those stored in the control bytes) +// - H1: the rest of the bits +// The groups are probed using H1. For each group the slots are matched to H2 in +// parallel. Because H2 is 7 bits (128 states) and the number of slots per group +// is low (8 or 16) in almost all cases a match in H2 is also a lookup hit. +// +// On insert, once the right group is found (as in lookup), its slots are +// filled in order. +// +// On erase a slot is cleared. In case the group did not have any empty slots +// before the erase, the erased slot is marked as deleted. +// +// Groups without empty slots (but maybe with deleted slots) extend the probe +// sequence. The probing algorithm is quadratic. Given N the number of groups, +// the probing function for the i'th probe is: +// +// P(0) = H1 % N +// +// P(i) = (P(i - 1) + i) % N +// +// This probing function guarantees that after N probes, all the groups of the +// table will be probed exactly once. + +#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ +#define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ + +#include <algorithm> +#include <cmath> +#include <cstdint> +#include <cstring> +#include <iterator> +#include <limits> +#include <memory> +#include <tuple> +#include <type_traits> +#include <utility> + +#include "absl/base/internal/bits.h" +#include "absl/base/internal/endian.h" +#include "absl/base/optimization.h" +#include "absl/base/port.h" +#include "absl/container/internal/common.h" +#include "absl/container/internal/compressed_tuple.h" +#include "absl/container/internal/container_memory.h" +#include "absl/container/internal/hash_policy_traits.h" +#include "absl/container/internal/hashtable_debug_hooks.h" +#include "absl/container/internal/hashtablez_sampler.h" +#include "absl/container/internal/have_sse.h" +#include "absl/container/internal/layout.h" +#include "absl/memory/memory.h" +#include "absl/meta/type_traits.h" +#include "absl/utility/utility.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <typename AllocType> +void SwapAlloc(AllocType& lhs, AllocType& rhs, + std::true_type /* propagate_on_container_swap */) { + using std::swap; + swap(lhs, rhs); +} +template <typename AllocType> +void SwapAlloc(AllocType& /*lhs*/, AllocType& /*rhs*/, + std::false_type /* propagate_on_container_swap */) {} + +template <size_t Width> +class probe_seq { + public: + probe_seq(size_t hash, size_t mask) { + assert(((mask + 1) & mask) == 0 && "not a mask"); + mask_ = mask; + offset_ = hash & mask_; + } + size_t offset() const { return offset_; } + size_t offset(size_t i) const { return (offset_ + i) & mask_; } + + void next() { + index_ += Width; + offset_ += index_; + offset_ &= mask_; + } + // 0-based probe index. The i-th probe in the probe sequence. + size_t index() const { return index_; } + + private: + size_t mask_; + size_t offset_; + size_t index_ = 0; +}; + +template <class ContainerKey, class Hash, class Eq> +struct RequireUsableKey { + template <class PassedKey, class... Args> + std::pair< + decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())), + decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(), + std::declval<const PassedKey&>()))>* + operator()(const PassedKey&, const Args&...) const; +}; + +template <class E, class Policy, class Hash, class Eq, class... Ts> +struct IsDecomposable : std::false_type {}; + +template <class Policy, class Hash, class Eq, class... Ts> +struct IsDecomposable< + absl::void_t<decltype( + Policy::apply(RequireUsableKey<typename Policy::key_type, Hash, Eq>(), + std::declval<Ts>()...))>, + Policy, Hash, Eq, Ts...> : std::true_type {}; + +// TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it. +template <class T> +constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) { + using std::swap; + return noexcept(swap(std::declval<T&>(), std::declval<T&>())); +} +template <class T> +constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) { + return false; +} + +template <typename T> +int TrailingZeros(T x) { + return sizeof(T) == 8 ? base_internal::CountTrailingZerosNonZero64( + static_cast<uint64_t>(x)) + : base_internal::CountTrailingZerosNonZero32( + static_cast<uint32_t>(x)); +} + +template <typename T> +int LeadingZeros(T x) { + return sizeof(T) == 8 + ? base_internal::CountLeadingZeros64(static_cast<uint64_t>(x)) + : base_internal::CountLeadingZeros32(static_cast<uint32_t>(x)); +} + +// An abstraction over a bitmask. It provides an easy way to iterate through the +// indexes of the set bits of a bitmask. When Shift=0 (platforms with SSE), +// this is a true bitmask. On non-SSE, platforms the arithematic used to +// emulate the SSE behavior works in bytes (Shift=3) and leaves each bytes as +// either 0x00 or 0x80. +// +// For example: +// for (int i : BitMask<uint32_t, 16>(0x5)) -> yields 0, 2 +// for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3 +template <class T, int SignificantBits, int Shift = 0> +class BitMask { + static_assert(std::is_unsigned<T>::value, ""); + static_assert(Shift == 0 || Shift == 3, ""); + + public: + // These are useful for unit tests (gunit). + using value_type = int; + using iterator = BitMask; + using const_iterator = BitMask; + + explicit BitMask(T mask) : mask_(mask) {} + BitMask& operator++() { + mask_ &= (mask_ - 1); + return *this; + } + explicit operator bool() const { return mask_ != 0; } + int operator*() const { return LowestBitSet(); } + int LowestBitSet() const { + return container_internal::TrailingZeros(mask_) >> Shift; + } + int HighestBitSet() const { + return (sizeof(T) * CHAR_BIT - container_internal::LeadingZeros(mask_) - + 1) >> + Shift; + } + + BitMask begin() const { return *this; } + BitMask end() const { return BitMask(0); } + + int TrailingZeros() const { + return container_internal::TrailingZeros(mask_) >> Shift; + } + + int LeadingZeros() const { + constexpr int total_significant_bits = SignificantBits << Shift; + constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits; + return container_internal::LeadingZeros(mask_ << extra_bits) >> Shift; + } + + private: + friend bool operator==(const BitMask& a, const BitMask& b) { + return a.mask_ == b.mask_; + } + friend bool operator!=(const BitMask& a, const BitMask& b) { + return a.mask_ != b.mask_; + } + + T mask_; +}; + +using ctrl_t = signed char; +using h2_t = uint8_t; + +// The values here are selected for maximum performance. See the static asserts +// below for details. +enum Ctrl : ctrl_t { + kEmpty = -128, // 0b10000000 + kDeleted = -2, // 0b11111110 + kSentinel = -1, // 0b11111111 +}; +static_assert( + kEmpty & kDeleted & kSentinel & 0x80, + "Special markers need to have the MSB to make checking for them efficient"); +static_assert(kEmpty < kSentinel && kDeleted < kSentinel, + "kEmpty and kDeleted must be smaller than kSentinel to make the " + "SIMD test of IsEmptyOrDeleted() efficient"); +static_assert(kSentinel == -1, + "kSentinel must be -1 to elide loading it from memory into SIMD " + "registers (pcmpeqd xmm, xmm)"); +static_assert(kEmpty == -128, + "kEmpty must be -128 to make the SIMD check for its " + "existence efficient (psignb xmm, xmm)"); +static_assert(~kEmpty & ~kDeleted & kSentinel & 0x7F, + "kEmpty and kDeleted must share an unset bit that is not shared " + "by kSentinel to make the scalar test for MatchEmptyOrDeleted() " + "efficient"); +static_assert(kDeleted == -2, + "kDeleted must be -2 to make the implementation of " + "ConvertSpecialToEmptyAndFullToDeleted efficient"); + +// A single block of empty control bytes for tables without any slots allocated. +// This enables removing a branch in the hot path of find(). +inline ctrl_t* EmptyGroup() { + alignas(16) static constexpr ctrl_t empty_group[] = { + kSentinel, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, + kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty}; + return const_cast<ctrl_t*>(empty_group); +} + +// Mixes a randomly generated per-process seed with `hash` and `ctrl` to +// randomize insertion order within groups. +bool ShouldInsertBackwards(size_t hash, ctrl_t* ctrl); + +// Returns a hash seed. +// +// The seed consists of the ctrl_ pointer, which adds enough entropy to ensure +// non-determinism of iteration order in most cases. +inline size_t HashSeed(const ctrl_t* ctrl) { + // The low bits of the pointer have little or no entropy because of + // alignment. We shift the pointer to try to use higher entropy bits. A + // good number seems to be 12 bits, because that aligns with page size. + return reinterpret_cast<uintptr_t>(ctrl) >> 12; +} + +inline size_t H1(size_t hash, const ctrl_t* ctrl) { + return (hash >> 7) ^ HashSeed(ctrl); +} +inline ctrl_t H2(size_t hash) { return hash & 0x7F; } + +inline bool IsEmpty(ctrl_t c) { return c == kEmpty; } +inline bool IsFull(ctrl_t c) { return c >= 0; } +inline bool IsDeleted(ctrl_t c) { return c == kDeleted; } +inline bool IsEmptyOrDeleted(ctrl_t c) { return c < kSentinel; } + +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 + +// https://github.com/abseil/abseil-cpp/issues/209 +// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853 +// _mm_cmpgt_epi8 is broken under GCC with -funsigned-char +// Work around this by using the portable implementation of Group +// when using -funsigned-char under GCC. +inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) { +#if defined(__GNUC__) && !defined(__clang__) + if (std::is_unsigned<char>::value) { + const __m128i mask = _mm_set1_epi8(0x80); + const __m128i diff = _mm_subs_epi8(b, a); + return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask); + } +#endif + return _mm_cmpgt_epi8(a, b); +} + +struct GroupSse2Impl { + static constexpr size_t kWidth = 16; // the number of slots per group + + explicit GroupSse2Impl(const ctrl_t* pos) { + ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos)); + } + + // Returns a bitmask representing the positions of slots that match hash. + BitMask<uint32_t, kWidth> Match(h2_t hash) const { + auto match = _mm_set1_epi8(hash); + return BitMask<uint32_t, kWidth>( + _mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))); + } + + // Returns a bitmask representing the positions of empty slots. + BitMask<uint32_t, kWidth> MatchEmpty() const { +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 + // This only works because kEmpty is -128. + return BitMask<uint32_t, kWidth>( + _mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl))); +#else + return Match(static_cast<h2_t>(kEmpty)); +#endif + } + + // Returns a bitmask representing the positions of empty or deleted slots. + BitMask<uint32_t, kWidth> MatchEmptyOrDeleted() const { + auto special = _mm_set1_epi8(kSentinel); + return BitMask<uint32_t, kWidth>( + _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl))); + } + + // Returns the number of trailing empty or deleted elements in the group. + uint32_t CountLeadingEmptyOrDeleted() const { + auto special = _mm_set1_epi8(kSentinel); + return TrailingZeros( + _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1); + } + + void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { + auto msbs = _mm_set1_epi8(static_cast<char>(-128)); + auto x126 = _mm_set1_epi8(126); +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 + auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs); +#else + auto zero = _mm_setzero_si128(); + auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl); + auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126)); +#endif + _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res); + } + + __m128i ctrl; +}; +#endif // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 + +struct GroupPortableImpl { + static constexpr size_t kWidth = 8; + + explicit GroupPortableImpl(const ctrl_t* pos) + : ctrl(little_endian::Load64(pos)) {} + + BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const { + // For the technique, see: + // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord + // (Determine if a word has a byte equal to n). + // + // Caveat: there are false positives but: + // - they only occur if there is a real match + // - they never occur on kEmpty, kDeleted, kSentinel + // - they will be handled gracefully by subsequent checks in code + // + // Example: + // v = 0x1716151413121110 + // hash = 0x12 + // retval = (v - lsbs) & ~v & msbs = 0x0000000080800000 + constexpr uint64_t msbs = 0x8080808080808080ULL; + constexpr uint64_t lsbs = 0x0101010101010101ULL; + auto x = ctrl ^ (lsbs * hash); + return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs); + } + + BitMask<uint64_t, kWidth, 3> MatchEmpty() const { + constexpr uint64_t msbs = 0x8080808080808080ULL; + return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 6)) & msbs); + } + + BitMask<uint64_t, kWidth, 3> MatchEmptyOrDeleted() const { + constexpr uint64_t msbs = 0x8080808080808080ULL; + return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 7)) & msbs); + } + + uint32_t CountLeadingEmptyOrDeleted() const { + constexpr uint64_t gaps = 0x00FEFEFEFEFEFEFEULL; + return (TrailingZeros(((~ctrl & (ctrl >> 7)) | gaps) + 1) + 7) >> 3; + } + + void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { + constexpr uint64_t msbs = 0x8080808080808080ULL; + constexpr uint64_t lsbs = 0x0101010101010101ULL; + auto x = ctrl & msbs; + auto res = (~x + (x >> 7)) & ~lsbs; + little_endian::Store64(dst, res); + } + + uint64_t ctrl; +}; + +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 +using Group = GroupSse2Impl; +#else +using Group = GroupPortableImpl; +#endif + +template <class Policy, class Hash, class Eq, class Alloc> +class raw_hash_set; + +inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; } + +// PRECONDITION: +// IsValidCapacity(capacity) +// ctrl[capacity] == kSentinel +// ctrl[i] != kSentinel for all i < capacity +// Applies mapping for every byte in ctrl: +// DELETED -> EMPTY +// EMPTY -> EMPTY +// FULL -> DELETED +void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity); + +// Rounds up the capacity to the next power of 2 minus 1, with a minimum of 1. +inline size_t NormalizeCapacity(size_t n) { + return n ? ~size_t{} >> LeadingZeros(n) : 1; +} + +// We use 7/8th as maximum load factor. +// For 16-wide groups, that gives an average of two empty slots per group. +inline size_t CapacityToGrowth(size_t capacity) { + assert(IsValidCapacity(capacity)); + // `capacity*7/8` + if (Group::kWidth == 8 && capacity == 7) { + // x-x/8 does not work when x==7. + return 6; + } + return capacity - capacity / 8; +} +// From desired "growth" to a lowerbound of the necessary capacity. +// Might not be a valid one and required NormalizeCapacity(). +inline size_t GrowthToLowerboundCapacity(size_t growth) { + // `growth*8/7` + if (Group::kWidth == 8 && growth == 7) { + // x+(x-1)/7 does not work when x==7. + return 8; + } + return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7); +} + +inline void AssertIsFull(ctrl_t* ctrl) { + ABSL_HARDENING_ASSERT((ctrl != nullptr && IsFull(*ctrl)) && + "Invalid operation on iterator. The element might have " + "been erased, or the table might have rehashed."); +} + +inline void AssertIsValid(ctrl_t* ctrl) { + ABSL_HARDENING_ASSERT((ctrl == nullptr || IsFull(*ctrl)) && + "Invalid operation on iterator. The element might have " + "been erased, or the table might have rehashed."); +} + +struct FindInfo { + size_t offset; + size_t probe_length; +}; + +// The representation of the object has two modes: +// - small: For capacities < kWidth-1 +// - large: For the rest. +// +// Differences: +// - In small mode we are able to use the whole capacity. The extra control +// bytes give us at least one "empty" control byte to stop the iteration. +// This is important to make 1 a valid capacity. +// +// - In small mode only the first `capacity()` control bytes after the +// sentinel are valid. The rest contain dummy kEmpty values that do not +// represent a real slot. This is important to take into account on +// find_first_non_full(), where we never try ShouldInsertBackwards() for +// small tables. +inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; } + +inline probe_seq<Group::kWidth> probe(ctrl_t* ctrl, size_t hash, + size_t capacity) { + return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity); +} + +// Probes the raw_hash_set with the probe sequence for hash and returns the +// pointer to the first empty or deleted slot. +// NOTE: this function must work with tables having both kEmpty and kDelete +// in one group. Such tables appears during drop_deletes_without_resize. +// +// This function is very useful when insertions happen and: +// - the input is already a set +// - there are enough slots +// - the element with the hash is not in the table +inline FindInfo find_first_non_full(ctrl_t* ctrl, size_t hash, + size_t capacity) { + auto seq = probe(ctrl, hash, capacity); + while (true) { + Group g{ctrl + seq.offset()}; + auto mask = g.MatchEmptyOrDeleted(); + if (mask) { +#if !defined(NDEBUG) + // We want to add entropy even when ASLR is not enabled. + // In debug build we will randomly insert in either the front or back of + // the group. + // TODO(kfm,sbenza): revisit after we do unconditional mixing + if (!is_small(capacity) && ShouldInsertBackwards(hash, ctrl)) { + return {seq.offset(mask.HighestBitSet()), seq.index()}; + } +#endif + return {seq.offset(mask.LowestBitSet()), seq.index()}; + } + seq.next(); + assert(seq.index() < capacity && "full table!"); + } +} + +// Policy: a policy defines how to perform different operations on +// the slots of the hashtable (see hash_policy_traits.h for the full interface +// of policy). +// +// Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The +// functor should accept a key and return size_t as hash. For best performance +// it is important that the hash function provides high entropy across all bits +// of the hash. +// +// Eq: a (possibly polymorphic) functor that compares two keys for equality. It +// should accept two (of possibly different type) keys and return a bool: true +// if they are equal, false if they are not. If two keys compare equal, then +// their hash values as defined by Hash MUST be equal. +// +// Allocator: an Allocator +// [https://en.cppreference.com/w/cpp/named_req/Allocator] with which +// the storage of the hashtable will be allocated and the elements will be +// constructed and destroyed. +template <class Policy, class Hash, class Eq, class Alloc> +class raw_hash_set { + using PolicyTraits = hash_policy_traits<Policy>; + using KeyArgImpl = + KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>; + + public: + using init_type = typename PolicyTraits::init_type; + using key_type = typename PolicyTraits::key_type; + // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user + // code fixes! + using slot_type = typename PolicyTraits::slot_type; + using allocator_type = Alloc; + using size_type = size_t; + using difference_type = ptrdiff_t; + using hasher = Hash; + using key_equal = Eq; + using policy_type = Policy; + using value_type = typename PolicyTraits::value_type; + using reference = value_type&; + using const_reference = const value_type&; + using pointer = typename absl::allocator_traits< + allocator_type>::template rebind_traits<value_type>::pointer; + using const_pointer = typename absl::allocator_traits< + allocator_type>::template rebind_traits<value_type>::const_pointer; + + // Alias used for heterogeneous lookup functions. + // `key_arg<K>` evaluates to `K` when the functors are transparent and to + // `key_type` otherwise. It permits template argument deduction on `K` for the + // transparent case. + template <class K> + using key_arg = typename KeyArgImpl::template type<K, key_type>; + + private: + // Give an early error when key_type is not hashable/eq. + auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k)); + auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k)); + + using Layout = absl::container_internal::Layout<ctrl_t, slot_type>; + + static Layout MakeLayout(size_t capacity) { + assert(IsValidCapacity(capacity)); + return Layout(capacity + Group::kWidth + 1, capacity); + } + + using AllocTraits = absl::allocator_traits<allocator_type>; + using SlotAlloc = typename absl::allocator_traits< + allocator_type>::template rebind_alloc<slot_type>; + using SlotAllocTraits = typename absl::allocator_traits< + allocator_type>::template rebind_traits<slot_type>; + + static_assert(std::is_lvalue_reference<reference>::value, + "Policy::element() must return a reference"); + + template <typename T> + struct SameAsElementReference + : std::is_same<typename std::remove_cv< + typename std::remove_reference<reference>::type>::type, + typename std::remove_cv< + typename std::remove_reference<T>::type>::type> {}; + + // An enabler for insert(T&&): T must be convertible to init_type or be the + // same as [cv] value_type [ref]. + // Note: we separate SameAsElementReference into its own type to avoid using + // reference unless we need to. MSVC doesn't seem to like it in some + // cases. + template <class T> + using RequiresInsertable = typename std::enable_if< + absl::disjunction<std::is_convertible<T, init_type>, + SameAsElementReference<T>>::value, + int>::type; + + // RequiresNotInit is a workaround for gcc prior to 7.1. + // See https://godbolt.org/g/Y4xsUh. + template <class T> + using RequiresNotInit = + typename std::enable_if<!std::is_same<T, init_type>::value, int>::type; + + template <class... Ts> + using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>; + + public: + static_assert(std::is_same<pointer, value_type*>::value, + "Allocators with custom pointer types are not supported"); + static_assert(std::is_same<const_pointer, const value_type*>::value, + "Allocators with custom pointer types are not supported"); + + class iterator { + friend class raw_hash_set; + + public: + using iterator_category = std::forward_iterator_tag; + using value_type = typename raw_hash_set::value_type; + using reference = + absl::conditional_t<PolicyTraits::constant_iterators::value, + const value_type&, value_type&>; + using pointer = absl::remove_reference_t<reference>*; + using difference_type = typename raw_hash_set::difference_type; + + iterator() {} + + // PRECONDITION: not an end() iterator. + reference operator*() const { + AssertIsFull(ctrl_); + return PolicyTraits::element(slot_); + } + + // PRECONDITION: not an end() iterator. + pointer operator->() const { return &operator*(); } + + // PRECONDITION: not an end() iterator. + iterator& operator++() { + AssertIsFull(ctrl_); + ++ctrl_; + ++slot_; + skip_empty_or_deleted(); + return *this; + } + // PRECONDITION: not an end() iterator. + iterator operator++(int) { + auto tmp = *this; + ++*this; + return tmp; + } + + friend bool operator==(const iterator& a, const iterator& b) { + AssertIsValid(a.ctrl_); + AssertIsValid(b.ctrl_); + return a.ctrl_ == b.ctrl_; + } + friend bool operator!=(const iterator& a, const iterator& b) { + return !(a == b); + } + + private: + iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) { + // This assumption helps the compiler know that any non-end iterator is + // not equal to any end iterator. + ABSL_INTERNAL_ASSUME(ctrl != nullptr); + } + + void skip_empty_or_deleted() { + while (IsEmptyOrDeleted(*ctrl_)) { + uint32_t shift = Group{ctrl_}.CountLeadingEmptyOrDeleted(); + ctrl_ += shift; + slot_ += shift; + } + if (ABSL_PREDICT_FALSE(*ctrl_ == kSentinel)) ctrl_ = nullptr; + } + + ctrl_t* ctrl_ = nullptr; + // To avoid uninitialized member warnings, put slot_ in an anonymous union. + // The member is not initialized on singleton and end iterators. + union { + slot_type* slot_; + }; + }; + + class const_iterator { + friend class raw_hash_set; + + public: + using iterator_category = typename iterator::iterator_category; + using value_type = typename raw_hash_set::value_type; + using reference = typename raw_hash_set::const_reference; + using pointer = typename raw_hash_set::const_pointer; + using difference_type = typename raw_hash_set::difference_type; + + const_iterator() {} + // Implicit construction from iterator. + const_iterator(iterator i) : inner_(std::move(i)) {} + + reference operator*() const { return *inner_; } + pointer operator->() const { return inner_.operator->(); } + + const_iterator& operator++() { + ++inner_; + return *this; + } + const_iterator operator++(int) { return inner_++; } + + friend bool operator==(const const_iterator& a, const const_iterator& b) { + return a.inner_ == b.inner_; + } + friend bool operator!=(const const_iterator& a, const const_iterator& b) { + return !(a == b); + } + + private: + const_iterator(const ctrl_t* ctrl, const slot_type* slot) + : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot)) {} + + iterator inner_; + }; + + using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>; + using insert_return_type = InsertReturnType<iterator, node_type>; + + raw_hash_set() noexcept( + std::is_nothrow_default_constructible<hasher>::value&& + std::is_nothrow_default_constructible<key_equal>::value&& + std::is_nothrow_default_constructible<allocator_type>::value) {} + + explicit raw_hash_set(size_t bucket_count, const hasher& hash = hasher(), + const key_equal& eq = key_equal(), + const allocator_type& alloc = allocator_type()) + : ctrl_(EmptyGroup()), settings_(0, hash, eq, alloc) { + if (bucket_count) { + capacity_ = NormalizeCapacity(bucket_count); + initialize_slots(); + } + } + + raw_hash_set(size_t bucket_count, const hasher& hash, + const allocator_type& alloc) + : raw_hash_set(bucket_count, hash, key_equal(), alloc) {} + + raw_hash_set(size_t bucket_count, const allocator_type& alloc) + : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {} + + explicit raw_hash_set(const allocator_type& alloc) + : raw_hash_set(0, hasher(), key_equal(), alloc) {} + + template <class InputIter> + raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0, + const hasher& hash = hasher(), const key_equal& eq = key_equal(), + const allocator_type& alloc = allocator_type()) + : raw_hash_set(bucket_count, hash, eq, alloc) { + insert(first, last); + } + + template <class InputIter> + raw_hash_set(InputIter first, InputIter last, size_t bucket_count, + const hasher& hash, const allocator_type& alloc) + : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {} + + template <class InputIter> + raw_hash_set(InputIter first, InputIter last, size_t bucket_count, + const allocator_type& alloc) + : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {} + + template <class InputIter> + raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc) + : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {} + + // Instead of accepting std::initializer_list<value_type> as the first + // argument like std::unordered_set<value_type> does, we have two overloads + // that accept std::initializer_list<T> and std::initializer_list<init_type>. + // This is advantageous for performance. + // + // // Turns {"abc", "def"} into std::initializer_list<std::string>, then + // // copies the strings into the set. + // std::unordered_set<std::string> s = {"abc", "def"}; + // + // // Turns {"abc", "def"} into std::initializer_list<const char*>, then + // // copies the strings into the set. + // absl::flat_hash_set<std::string> s = {"abc", "def"}; + // + // The same trick is used in insert(). + // + // The enabler is necessary to prevent this constructor from triggering where + // the copy constructor is meant to be called. + // + // absl::flat_hash_set<int> a, b{a}; + // + // RequiresNotInit<T> is a workaround for gcc prior to 7.1. + template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> + raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0, + const hasher& hash = hasher(), const key_equal& eq = key_equal(), + const allocator_type& alloc = allocator_type()) + : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} + + raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0, + const hasher& hash = hasher(), const key_equal& eq = key_equal(), + const allocator_type& alloc = allocator_type()) + : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} + + template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> + raw_hash_set(std::initializer_list<T> init, size_t bucket_count, + const hasher& hash, const allocator_type& alloc) + : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} + + raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count, + const hasher& hash, const allocator_type& alloc) + : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} + + template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> + raw_hash_set(std::initializer_list<T> init, size_t bucket_count, + const allocator_type& alloc) + : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} + + raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count, + const allocator_type& alloc) + : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} + + template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> + raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc) + : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} + + raw_hash_set(std::initializer_list<init_type> init, + const allocator_type& alloc) + : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} + + raw_hash_set(const raw_hash_set& that) + : raw_hash_set(that, AllocTraits::select_on_container_copy_construction( + that.alloc_ref())) {} + + raw_hash_set(const raw_hash_set& that, const allocator_type& a) + : raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) { + reserve(that.size()); + // Because the table is guaranteed to be empty, we can do something faster + // than a full `insert`. + for (const auto& v : that) { + const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v); + auto target = find_first_non_full(ctrl_, hash, capacity_); + set_ctrl(target.offset, H2(hash)); + emplace_at(target.offset, v); + infoz_.RecordInsert(hash, target.probe_length); + } + size_ = that.size(); + growth_left() -= that.size(); + } + + raw_hash_set(raw_hash_set&& that) noexcept( + std::is_nothrow_copy_constructible<hasher>::value&& + std::is_nothrow_copy_constructible<key_equal>::value&& + std::is_nothrow_copy_constructible<allocator_type>::value) + : ctrl_(absl::exchange(that.ctrl_, EmptyGroup())), + slots_(absl::exchange(that.slots_, nullptr)), + size_(absl::exchange(that.size_, 0)), + capacity_(absl::exchange(that.capacity_, 0)), + infoz_(absl::exchange(that.infoz_, HashtablezInfoHandle())), + // Hash, equality and allocator are copied instead of moved because + // `that` must be left valid. If Hash is std::function<Key>, moving it + // would create a nullptr functor that cannot be called. + settings_(that.settings_) { + // growth_left was copied above, reset the one from `that`. + that.growth_left() = 0; + } + + raw_hash_set(raw_hash_set&& that, const allocator_type& a) + : ctrl_(EmptyGroup()), + slots_(nullptr), + size_(0), + capacity_(0), + settings_(0, that.hash_ref(), that.eq_ref(), a) { + if (a == that.alloc_ref()) { + std::swap(ctrl_, that.ctrl_); + std::swap(slots_, that.slots_); + std::swap(size_, that.size_); + std::swap(capacity_, that.capacity_); + std::swap(growth_left(), that.growth_left()); + std::swap(infoz_, that.infoz_); + } else { + reserve(that.size()); + // Note: this will copy elements of dense_set and unordered_set instead of + // moving them. This can be fixed if it ever becomes an issue. + for (auto& elem : that) insert(std::move(elem)); + } + } + + raw_hash_set& operator=(const raw_hash_set& that) { + raw_hash_set tmp(that, + AllocTraits::propagate_on_container_copy_assignment::value + ? that.alloc_ref() + : alloc_ref()); + swap(tmp); + return *this; + } + + raw_hash_set& operator=(raw_hash_set&& that) noexcept( + absl::allocator_traits<allocator_type>::is_always_equal::value&& + std::is_nothrow_move_assignable<hasher>::value&& + std::is_nothrow_move_assignable<key_equal>::value) { + // TODO(sbenza): We should only use the operations from the noexcept clause + // to make sure we actually adhere to that contract. + return move_assign( + std::move(that), + typename AllocTraits::propagate_on_container_move_assignment()); + } + + ~raw_hash_set() { destroy_slots(); } + + iterator begin() { + auto it = iterator_at(0); + it.skip_empty_or_deleted(); + return it; + } + iterator end() { return {}; } + + const_iterator begin() const { + return const_cast<raw_hash_set*>(this)->begin(); + } + const_iterator end() const { return {}; } + const_iterator cbegin() const { return begin(); } + const_iterator cend() const { return end(); } + + bool empty() const { return !size(); } + size_t size() const { return size_; } + size_t capacity() const { return capacity_; } + size_t max_size() const { return (std::numeric_limits<size_t>::max)(); } + + ABSL_ATTRIBUTE_REINITIALIZES void clear() { + // Iterating over this container is O(bucket_count()). When bucket_count() + // is much greater than size(), iteration becomes prohibitively expensive. + // For clear() it is more important to reuse the allocated array when the + // container is small because allocation takes comparatively long time + // compared to destruction of the elements of the container. So we pick the + // largest bucket_count() threshold for which iteration is still fast and + // past that we simply deallocate the array. + if (capacity_ > 127) { + destroy_slots(); + } else if (capacity_) { + for (size_t i = 0; i != capacity_; ++i) { + if (IsFull(ctrl_[i])) { + PolicyTraits::destroy(&alloc_ref(), slots_ + i); + } + } + size_ = 0; + reset_ctrl(); + reset_growth_left(); + } + assert(empty()); + infoz_.RecordStorageChanged(0, capacity_); + } + + // This overload kicks in when the argument is an rvalue of insertable and + // decomposable type other than init_type. + // + // flat_hash_map<std::string, int> m; + // m.insert(std::make_pair("abc", 42)); + // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc + // bug. + template <class T, RequiresInsertable<T> = 0, + class T2 = T, + typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0, + T* = nullptr> + std::pair<iterator, bool> insert(T&& value) { + return emplace(std::forward<T>(value)); + } + + // This overload kicks in when the argument is a bitfield or an lvalue of + // insertable and decomposable type. + // + // union { int n : 1; }; + // flat_hash_set<int> s; + // s.insert(n); + // + // flat_hash_set<std::string> s; + // const char* p = "hello"; + // s.insert(p); + // + // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace + // RequiresInsertable<T> with RequiresInsertable<const T&>. + // We are hitting this bug: https://godbolt.org/g/1Vht4f. + template < + class T, RequiresInsertable<T> = 0, + typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0> + std::pair<iterator, bool> insert(const T& value) { + return emplace(value); + } + + // This overload kicks in when the argument is an rvalue of init_type. Its + // purpose is to handle brace-init-list arguments. + // + // flat_hash_map<std::string, int> s; + // s.insert({"abc", 42}); + std::pair<iterator, bool> insert(init_type&& value) { + return emplace(std::move(value)); + } + + // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc + // bug. + template <class T, RequiresInsertable<T> = 0, class T2 = T, + typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0, + T* = nullptr> + iterator insert(const_iterator, T&& value) { + return insert(std::forward<T>(value)).first; + } + + // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace + // RequiresInsertable<T> with RequiresInsertable<const T&>. + // We are hitting this bug: https://godbolt.org/g/1Vht4f. + template < + class T, RequiresInsertable<T> = 0, + typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0> + iterator insert(const_iterator, const T& value) { + return insert(value).first; + } + + iterator insert(const_iterator, init_type&& value) { + return insert(std::move(value)).first; + } + + template <class InputIt> + void insert(InputIt first, InputIt last) { + for (; first != last; ++first) insert(*first); + } + + template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0> + void insert(std::initializer_list<T> ilist) { + insert(ilist.begin(), ilist.end()); + } + + void insert(std::initializer_list<init_type> ilist) { + insert(ilist.begin(), ilist.end()); + } + + insert_return_type insert(node_type&& node) { + if (!node) return {end(), false, node_type()}; + const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node)); + auto res = PolicyTraits::apply( + InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))}, + elem); + if (res.second) { + CommonAccess::Reset(&node); + return {res.first, true, node_type()}; + } else { + return {res.first, false, std::move(node)}; + } + } + + iterator insert(const_iterator, node_type&& node) { + auto res = insert(std::move(node)); + node = std::move(res.node); + return res.position; + } + + // This overload kicks in if we can deduce the key from args. This enables us + // to avoid constructing value_type if an entry with the same key already + // exists. + // + // For example: + // + // flat_hash_map<std::string, std::string> m = {{"abc", "def"}}; + // // Creates no std::string copies and makes no heap allocations. + // m.emplace("abc", "xyz"); + template <class... Args, typename std::enable_if< + IsDecomposable<Args...>::value, int>::type = 0> + std::pair<iterator, bool> emplace(Args&&... args) { + return PolicyTraits::apply(EmplaceDecomposable{*this}, + std::forward<Args>(args)...); + } + + // This overload kicks in if we cannot deduce the key from args. It constructs + // value_type unconditionally and then either moves it into the table or + // destroys. + template <class... Args, typename std::enable_if< + !IsDecomposable<Args...>::value, int>::type = 0> + std::pair<iterator, bool> emplace(Args&&... args) { + alignas(slot_type) unsigned char raw[sizeof(slot_type)]; + slot_type* slot = reinterpret_cast<slot_type*>(&raw); + + PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...); + const auto& elem = PolicyTraits::element(slot); + return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem); + } + + template <class... Args> + iterator emplace_hint(const_iterator, Args&&... args) { + return emplace(std::forward<Args>(args)...).first; + } + + // Extension API: support for lazy emplace. + // + // Looks up key in the table. If found, returns the iterator to the element. + // Otherwise calls `f` with one argument of type `raw_hash_set::constructor`. + // + // `f` must abide by several restrictions: + // - it MUST call `raw_hash_set::constructor` with arguments as if a + // `raw_hash_set::value_type` is constructed, + // - it MUST NOT access the container before the call to + // `raw_hash_set::constructor`, and + // - it MUST NOT erase the lazily emplaced element. + // Doing any of these is undefined behavior. + // + // For example: + // + // std::unordered_set<ArenaString> s; + // // Makes ArenaStr even if "abc" is in the map. + // s.insert(ArenaString(&arena, "abc")); + // + // flat_hash_set<ArenaStr> s; + // // Makes ArenaStr only if "abc" is not in the map. + // s.lazy_emplace("abc", [&](const constructor& ctor) { + // ctor(&arena, "abc"); + // }); + // + // WARNING: This API is currently experimental. If there is a way to implement + // the same thing with the rest of the API, prefer that. + class constructor { + friend class raw_hash_set; + + public: + template <class... Args> + void operator()(Args&&... args) const { + assert(*slot_); + PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...); + *slot_ = nullptr; + } + + private: + constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {} + + allocator_type* alloc_; + slot_type** slot_; + }; + + template <class K = key_type, class F> + iterator lazy_emplace(const key_arg<K>& key, F&& f) { + auto res = find_or_prepare_insert(key); + if (res.second) { + slot_type* slot = slots_ + res.first; + std::forward<F>(f)(constructor(&alloc_ref(), &slot)); + assert(!slot); + } + return iterator_at(res.first); + } + + // Extension API: support for heterogeneous keys. + // + // std::unordered_set<std::string> s; + // // Turns "abc" into std::string. + // s.erase("abc"); + // + // flat_hash_set<std::string> s; + // // Uses "abc" directly without copying it into std::string. + // s.erase("abc"); + template <class K = key_type> + size_type erase(const key_arg<K>& key) { + auto it = find(key); + if (it == end()) return 0; + erase(it); + return 1; + } + + // Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`, + // this method returns void to reduce algorithmic complexity to O(1). The + // iterator is invalidated, so any increment should be done before calling + // erase. In order to erase while iterating across a map, use the following + // idiom (which also works for standard containers): + // + // for (auto it = m.begin(), end = m.end(); it != end;) { + // // `erase()` will invalidate `it`, so advance `it` first. + // auto copy_it = it++; + // if (<pred>) { + // m.erase(copy_it); + // } + // } + void erase(const_iterator cit) { erase(cit.inner_); } + + // This overload is necessary because otherwise erase<K>(const K&) would be + // a better match if non-const iterator is passed as an argument. + void erase(iterator it) { + AssertIsFull(it.ctrl_); + PolicyTraits::destroy(&alloc_ref(), it.slot_); + erase_meta_only(it); + } + + iterator erase(const_iterator first, const_iterator last) { + while (first != last) { + erase(first++); + } + return last.inner_; + } + + // Moves elements from `src` into `this`. + // If the element already exists in `this`, it is left unmodified in `src`. + template <typename H, typename E> + void merge(raw_hash_set<Policy, H, E, Alloc>& src) { // NOLINT + assert(this != &src); + for (auto it = src.begin(), e = src.end(); it != e;) { + auto next = std::next(it); + if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)}, + PolicyTraits::element(it.slot_)) + .second) { + src.erase_meta_only(it); + } + it = next; + } + } + + template <typename H, typename E> + void merge(raw_hash_set<Policy, H, E, Alloc>&& src) { + merge(src); + } + + node_type extract(const_iterator position) { + AssertIsFull(position.inner_.ctrl_); + auto node = + CommonAccess::Transfer<node_type>(alloc_ref(), position.inner_.slot_); + erase_meta_only(position); + return node; + } + + template < + class K = key_type, + typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0> + node_type extract(const key_arg<K>& key) { + auto it = find(key); + return it == end() ? node_type() : extract(const_iterator{it}); + } + + void swap(raw_hash_set& that) noexcept( + IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() && + IsNoThrowSwappable<allocator_type>( + typename AllocTraits::propagate_on_container_swap{})) { + using std::swap; + swap(ctrl_, that.ctrl_); + swap(slots_, that.slots_); + swap(size_, that.size_); + swap(capacity_, that.capacity_); + swap(growth_left(), that.growth_left()); + swap(hash_ref(), that.hash_ref()); + swap(eq_ref(), that.eq_ref()); + swap(infoz_, that.infoz_); + SwapAlloc(alloc_ref(), that.alloc_ref(), + typename AllocTraits::propagate_on_container_swap{}); + } + + void rehash(size_t n) { + if (n == 0 && capacity_ == 0) return; + if (n == 0 && size_ == 0) { + destroy_slots(); + infoz_.RecordStorageChanged(0, 0); + return; + } + // bitor is a faster way of doing `max` here. We will round up to the next + // power-of-2-minus-1, so bitor is good enough. + auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size())); + // n == 0 unconditionally rehashes as per the standard. + if (n == 0 || m > capacity_) { + resize(m); + } + } + + void reserve(size_t n) { + size_t m = GrowthToLowerboundCapacity(n); + if (m > capacity_) { + resize(NormalizeCapacity(m)); + } + } + + // Extension API: support for heterogeneous keys. + // + // std::unordered_set<std::string> s; + // // Turns "abc" into std::string. + // s.count("abc"); + // + // ch_set<std::string> s; + // // Uses "abc" directly without copying it into std::string. + // s.count("abc"); + template <class K = key_type> + size_t count(const key_arg<K>& key) const { + return find(key) == end() ? 0 : 1; + } + + // Issues CPU prefetch instructions for the memory needed to find or insert + // a key. Like all lookup functions, this support heterogeneous keys. + // + // NOTE: This is a very low level operation and should not be used without + // specific benchmarks indicating its importance. + template <class K = key_type> + void prefetch(const key_arg<K>& key) const { + (void)key; +#if defined(__GNUC__) + auto seq = probe(ctrl_, hash_ref()(key), capacity_); + __builtin_prefetch(static_cast<const void*>(ctrl_ + seq.offset())); + __builtin_prefetch(static_cast<const void*>(slots_ + seq.offset())); +#endif // __GNUC__ + } + + // The API of find() has two extensions. + // + // 1. The hash can be passed by the user. It must be equal to the hash of the + // key. + // + // 2. The type of the key argument doesn't have to be key_type. This is so + // called heterogeneous key support. + template <class K = key_type> + iterator find(const key_arg<K>& key, size_t hash) { + auto seq = probe(ctrl_, hash, capacity_); + while (true) { + Group g{ctrl_ + seq.offset()}; + for (int i : g.Match(H2(hash))) { + if (ABSL_PREDICT_TRUE(PolicyTraits::apply( + EqualElement<K>{key, eq_ref()}, + PolicyTraits::element(slots_ + seq.offset(i))))) + return iterator_at(seq.offset(i)); + } + if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return end(); + seq.next(); + assert(seq.index() < capacity_ && "full table!"); + } + } + template <class K = key_type> + iterator find(const key_arg<K>& key) { + return find(key, hash_ref()(key)); + } + + template <class K = key_type> + const_iterator find(const key_arg<K>& key, size_t hash) const { + return const_cast<raw_hash_set*>(this)->find(key, hash); + } + template <class K = key_type> + const_iterator find(const key_arg<K>& key) const { + return find(key, hash_ref()(key)); + } + + template <class K = key_type> + bool contains(const key_arg<K>& key) const { + return find(key) != end(); + } + + template <class K = key_type> + std::pair<iterator, iterator> equal_range(const key_arg<K>& key) { + auto it = find(key); + if (it != end()) return {it, std::next(it)}; + return {it, it}; + } + template <class K = key_type> + std::pair<const_iterator, const_iterator> equal_range( + const key_arg<K>& key) const { + auto it = find(key); + if (it != end()) return {it, std::next(it)}; + return {it, it}; + } + + size_t bucket_count() const { return capacity_; } + float load_factor() const { + return capacity_ ? static_cast<double>(size()) / capacity_ : 0.0; + } + float max_load_factor() const { return 1.0f; } + void max_load_factor(float) { + // Does nothing. + } + + hasher hash_function() const { return hash_ref(); } + key_equal key_eq() const { return eq_ref(); } + allocator_type get_allocator() const { return alloc_ref(); } + + friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) { + if (a.size() != b.size()) return false; + const raw_hash_set* outer = &a; + const raw_hash_set* inner = &b; + if (outer->capacity() > inner->capacity()) std::swap(outer, inner); + for (const value_type& elem : *outer) + if (!inner->has_element(elem)) return false; + return true; + } + + friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) { + return !(a == b); + } + + friend void swap(raw_hash_set& a, + raw_hash_set& b) noexcept(noexcept(a.swap(b))) { + a.swap(b); + } + + private: + template <class Container, typename Enabler> + friend struct absl::container_internal::hashtable_debug_internal:: + HashtableDebugAccess; + + struct FindElement { + template <class K, class... Args> + const_iterator operator()(const K& key, Args&&...) const { + return s.find(key); + } + const raw_hash_set& s; + }; + + struct HashElement { + template <class K, class... Args> + size_t operator()(const K& key, Args&&...) const { + return h(key); + } + const hasher& h; + }; + + template <class K1> + struct EqualElement { + template <class K2, class... Args> + bool operator()(const K2& lhs, Args&&...) const { + return eq(lhs, rhs); + } + const K1& rhs; + const key_equal& eq; + }; + + struct EmplaceDecomposable { + template <class K, class... Args> + std::pair<iterator, bool> operator()(const K& key, Args&&... args) const { + auto res = s.find_or_prepare_insert(key); + if (res.second) { + s.emplace_at(res.first, std::forward<Args>(args)...); + } + return {s.iterator_at(res.first), res.second}; + } + raw_hash_set& s; + }; + + template <bool do_destroy> + struct InsertSlot { + template <class K, class... Args> + std::pair<iterator, bool> operator()(const K& key, Args&&...) && { + auto res = s.find_or_prepare_insert(key); + if (res.second) { + PolicyTraits::transfer(&s.alloc_ref(), s.slots_ + res.first, &slot); + } else if (do_destroy) { + PolicyTraits::destroy(&s.alloc_ref(), &slot); + } + return {s.iterator_at(res.first), res.second}; + } + raw_hash_set& s; + // Constructed slot. Either moved into place or destroyed. + slot_type&& slot; + }; + + // "erases" the object from the container, except that it doesn't actually + // destroy the object. It only updates all the metadata of the class. + // This can be used in conjunction with Policy::transfer to move the object to + // another place. + void erase_meta_only(const_iterator it) { + assert(IsFull(*it.inner_.ctrl_) && "erasing a dangling iterator"); + --size_; + const size_t index = it.inner_.ctrl_ - ctrl_; + const size_t index_before = (index - Group::kWidth) & capacity_; + const auto empty_after = Group(it.inner_.ctrl_).MatchEmpty(); + const auto empty_before = Group(ctrl_ + index_before).MatchEmpty(); + + // We count how many consecutive non empties we have to the right and to the + // left of `it`. If the sum is >= kWidth then there is at least one probe + // window that might have seen a full group. + bool was_never_full = + empty_before && empty_after && + static_cast<size_t>(empty_after.TrailingZeros() + + empty_before.LeadingZeros()) < Group::kWidth; + + set_ctrl(index, was_never_full ? kEmpty : kDeleted); + growth_left() += was_never_full; + infoz_.RecordErase(); + } + + void initialize_slots() { + assert(capacity_); + // Folks with custom allocators often make unwarranted assumptions about the + // behavior of their classes vis-a-vis trivial destructability and what + // calls they will or wont make. Avoid sampling for people with custom + // allocators to get us out of this mess. This is not a hard guarantee but + // a workaround while we plan the exact guarantee we want to provide. + // + // People are often sloppy with the exact type of their allocator (sometimes + // it has an extra const or is missing the pair, but rebinds made it work + // anyway). To avoid the ambiguity, we work off SlotAlloc which we have + // bound more carefully. + if (std::is_same<SlotAlloc, std::allocator<slot_type>>::value && + slots_ == nullptr) { + infoz_ = Sample(); + } + + auto layout = MakeLayout(capacity_); + char* mem = static_cast<char*>( + Allocate<Layout::Alignment()>(&alloc_ref(), layout.AllocSize())); + ctrl_ = reinterpret_cast<ctrl_t*>(layout.template Pointer<0>(mem)); + slots_ = layout.template Pointer<1>(mem); + reset_ctrl(); + reset_growth_left(); + infoz_.RecordStorageChanged(size_, capacity_); + } + + void destroy_slots() { + if (!capacity_) return; + for (size_t i = 0; i != capacity_; ++i) { + if (IsFull(ctrl_[i])) { + PolicyTraits::destroy(&alloc_ref(), slots_ + i); + } + } + auto layout = MakeLayout(capacity_); + // Unpoison before returning the memory to the allocator. + SanitizerUnpoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_); + Deallocate<Layout::Alignment()>(&alloc_ref(), ctrl_, layout.AllocSize()); + ctrl_ = EmptyGroup(); + slots_ = nullptr; + size_ = 0; + capacity_ = 0; + growth_left() = 0; + } + + void resize(size_t new_capacity) { + assert(IsValidCapacity(new_capacity)); + auto* old_ctrl = ctrl_; + auto* old_slots = slots_; + const size_t old_capacity = capacity_; + capacity_ = new_capacity; + initialize_slots(); + + size_t total_probe_length = 0; + for (size_t i = 0; i != old_capacity; ++i) { + if (IsFull(old_ctrl[i])) { + size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, + PolicyTraits::element(old_slots + i)); + auto target = find_first_non_full(ctrl_, hash, capacity_); + size_t new_i = target.offset; + total_probe_length += target.probe_length; + set_ctrl(new_i, H2(hash)); + PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i); + } + } + if (old_capacity) { + SanitizerUnpoisonMemoryRegion(old_slots, + sizeof(slot_type) * old_capacity); + auto layout = MakeLayout(old_capacity); + Deallocate<Layout::Alignment()>(&alloc_ref(), old_ctrl, + layout.AllocSize()); + } + infoz_.RecordRehash(total_probe_length); + } + + void drop_deletes_without_resize() ABSL_ATTRIBUTE_NOINLINE { + assert(IsValidCapacity(capacity_)); + assert(!is_small(capacity_)); + // Algorithm: + // - mark all DELETED slots as EMPTY + // - mark all FULL slots as DELETED + // - for each slot marked as DELETED + // hash = Hash(element) + // target = find_first_non_full(hash) + // if target is in the same group + // mark slot as FULL + // else if target is EMPTY + // transfer element to target + // mark slot as EMPTY + // mark target as FULL + // else if target is DELETED + // swap current element with target element + // mark target as FULL + // repeat procedure for current slot with moved from element (target) + ConvertDeletedToEmptyAndFullToDeleted(ctrl_, capacity_); + alignas(slot_type) unsigned char raw[sizeof(slot_type)]; + size_t total_probe_length = 0; + slot_type* slot = reinterpret_cast<slot_type*>(&raw); + for (size_t i = 0; i != capacity_; ++i) { + if (!IsDeleted(ctrl_[i])) continue; + size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, + PolicyTraits::element(slots_ + i)); + auto target = find_first_non_full(ctrl_, hash, capacity_); + size_t new_i = target.offset; + total_probe_length += target.probe_length; + + // Verify if the old and new i fall within the same group wrt the hash. + // If they do, we don't need to move the object as it falls already in the + // best probe we can. + const auto probe_index = [&](size_t pos) { + return ((pos - probe(ctrl_, hash, capacity_).offset()) & capacity_) / + Group::kWidth; + }; + + // Element doesn't move. + if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) { + set_ctrl(i, H2(hash)); + continue; + } + if (IsEmpty(ctrl_[new_i])) { + // Transfer element to the empty spot. + // set_ctrl poisons/unpoisons the slots so we have to call it at the + // right time. + set_ctrl(new_i, H2(hash)); + PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slots_ + i); + set_ctrl(i, kEmpty); + } else { + assert(IsDeleted(ctrl_[new_i])); + set_ctrl(new_i, H2(hash)); + // Until we are done rehashing, DELETED marks previously FULL slots. + // Swap i and new_i elements. + PolicyTraits::transfer(&alloc_ref(), slot, slots_ + i); + PolicyTraits::transfer(&alloc_ref(), slots_ + i, slots_ + new_i); + PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slot); + --i; // repeat + } + } + reset_growth_left(); + infoz_.RecordRehash(total_probe_length); + } + + void rehash_and_grow_if_necessary() { + if (capacity_ == 0) { + resize(1); + } else if (size() <= CapacityToGrowth(capacity()) / 2) { + // Squash DELETED without growing if there is enough capacity. + drop_deletes_without_resize(); + } else { + // Otherwise grow the container. + resize(capacity_ * 2 + 1); + } + } + + bool has_element(const value_type& elem) const { + size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem); + auto seq = probe(ctrl_, hash, capacity_); + while (true) { + Group g{ctrl_ + seq.offset()}; + for (int i : g.Match(H2(hash))) { + if (ABSL_PREDICT_TRUE(PolicyTraits::element(slots_ + seq.offset(i)) == + elem)) + return true; + } + if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return false; + seq.next(); + assert(seq.index() < capacity_ && "full table!"); + } + return false; + } + + // TODO(alkis): Optimize this assuming *this and that don't overlap. + raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) { + raw_hash_set tmp(std::move(that)); + swap(tmp); + return *this; + } + raw_hash_set& move_assign(raw_hash_set&& that, std::false_type) { + raw_hash_set tmp(std::move(that), alloc_ref()); + swap(tmp); + return *this; + } + + protected: + template <class K> + std::pair<size_t, bool> find_or_prepare_insert(const K& key) { + auto hash = hash_ref()(key); + auto seq = probe(ctrl_, hash, capacity_); + while (true) { + Group g{ctrl_ + seq.offset()}; + for (int i : g.Match(H2(hash))) { + if (ABSL_PREDICT_TRUE(PolicyTraits::apply( + EqualElement<K>{key, eq_ref()}, + PolicyTraits::element(slots_ + seq.offset(i))))) + return {seq.offset(i), false}; + } + if (ABSL_PREDICT_TRUE(g.MatchEmpty())) break; + seq.next(); + assert(seq.index() < capacity_ && "full table!"); + } + return {prepare_insert(hash), true}; + } + + size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE { + auto target = find_first_non_full(ctrl_, hash, capacity_); + if (ABSL_PREDICT_FALSE(growth_left() == 0 && + !IsDeleted(ctrl_[target.offset]))) { + rehash_and_grow_if_necessary(); + target = find_first_non_full(ctrl_, hash, capacity_); + } + ++size_; + growth_left() -= IsEmpty(ctrl_[target.offset]); + set_ctrl(target.offset, H2(hash)); + infoz_.RecordInsert(hash, target.probe_length); + return target.offset; + } + + // Constructs the value in the space pointed by the iterator. This only works + // after an unsuccessful find_or_prepare_insert() and before any other + // modifications happen in the raw_hash_set. + // + // PRECONDITION: i is an index returned from find_or_prepare_insert(k), where + // k is the key decomposed from `forward<Args>(args)...`, and the bool + // returned by find_or_prepare_insert(k) was true. + // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...). + template <class... Args> + void emplace_at(size_t i, Args&&... args) { + PolicyTraits::construct(&alloc_ref(), slots_ + i, + std::forward<Args>(args)...); + + assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) == + iterator_at(i) && + "constructed value does not match the lookup key"); + } + + iterator iterator_at(size_t i) { return {ctrl_ + i, slots_ + i}; } + const_iterator iterator_at(size_t i) const { return {ctrl_ + i, slots_ + i}; } + + private: + friend struct RawHashSetTestOnlyAccess; + + // Reset all ctrl bytes back to kEmpty, except the sentinel. + void reset_ctrl() { + std::memset(ctrl_, kEmpty, capacity_ + Group::kWidth); + ctrl_[capacity_] = kSentinel; + SanitizerPoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_); + } + + void reset_growth_left() { + growth_left() = CapacityToGrowth(capacity()) - size_; + } + + // Sets the control byte, and if `i < Group::kWidth`, set the cloned byte at + // the end too. + void set_ctrl(size_t i, ctrl_t h) { + assert(i < capacity_); + + if (IsFull(h)) { + SanitizerUnpoisonObject(slots_ + i); + } else { + SanitizerPoisonObject(slots_ + i); + } + + ctrl_[i] = h; + ctrl_[((i - Group::kWidth) & capacity_) + 1 + + ((Group::kWidth - 1) & capacity_)] = h; + } + + size_t& growth_left() { return settings_.template get<0>(); } + + hasher& hash_ref() { return settings_.template get<1>(); } + const hasher& hash_ref() const { return settings_.template get<1>(); } + key_equal& eq_ref() { return settings_.template get<2>(); } + const key_equal& eq_ref() const { return settings_.template get<2>(); } + allocator_type& alloc_ref() { return settings_.template get<3>(); } + const allocator_type& alloc_ref() const { + return settings_.template get<3>(); + } + + // TODO(alkis): Investigate removing some of these fields: + // - ctrl/slots can be derived from each other + // - size can be moved into the slot array + ctrl_t* ctrl_ = EmptyGroup(); // [(capacity + 1) * ctrl_t] + slot_type* slots_ = nullptr; // [capacity * slot_type] + size_t size_ = 0; // number of full slots + size_t capacity_ = 0; // total number of slots + HashtablezInfoHandle infoz_; + absl::container_internal::CompressedTuple<size_t /* growth_left */, hasher, + key_equal, allocator_type> + settings_{0, hasher{}, key_equal{}, allocator_type{}}; +}; + +// Erases all elements that satisfy the predicate `pred` from the container `c`. +template <typename P, typename H, typename E, typename A, typename Predicate> +void EraseIf(Predicate pred, raw_hash_set<P, H, E, A>* c) { + for (auto it = c->begin(), last = c->end(); it != last;) { + auto copy_it = it++; + if (pred(*copy_it)) { + c->erase(copy_it); + } + } +} + +namespace hashtable_debug_internal { +template <typename Set> +struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> { + using Traits = typename Set::PolicyTraits; + using Slot = typename Traits::slot_type; + + static size_t GetNumProbes(const Set& set, + const typename Set::key_type& key) { + size_t num_probes = 0; + size_t hash = set.hash_ref()(key); + auto seq = probe(set.ctrl_, hash, set.capacity_); + while (true) { + container_internal::Group g{set.ctrl_ + seq.offset()}; + for (int i : g.Match(container_internal::H2(hash))) { + if (Traits::apply( + typename Set::template EqualElement<typename Set::key_type>{ + key, set.eq_ref()}, + Traits::element(set.slots_ + seq.offset(i)))) + return num_probes; + ++num_probes; + } + if (g.MatchEmpty()) return num_probes; + seq.next(); + ++num_probes; + } + } + + static size_t AllocatedByteSize(const Set& c) { + size_t capacity = c.capacity_; + if (capacity == 0) return 0; + auto layout = Set::MakeLayout(capacity); + size_t m = layout.AllocSize(); + + size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr)); + if (per_slot != ~size_t{}) { + m += per_slot * c.size(); + } else { + for (size_t i = 0; i != capacity; ++i) { + if (container_internal::IsFull(c.ctrl_[i])) { + m += Traits::space_used(c.slots_ + i); + } + } + } + return m; + } + + static size_t LowerBoundAllocatedByteSize(size_t size) { + size_t capacity = GrowthToLowerboundCapacity(size); + if (capacity == 0) return 0; + auto layout = Set::MakeLayout(NormalizeCapacity(capacity)); + size_t m = layout.AllocSize(); + size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr)); + if (per_slot != ~size_t{}) { + m += per_slot * size; + } + return m; + } +}; + +} // namespace hashtable_debug_internal +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/raw_hash_set_allocator_test.cc b/third_party/abseil_cpp/absl/container/internal/raw_hash_set_allocator_test.cc new file mode 100644 index 000000000000..e73f53fd637b --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/raw_hash_set_allocator_test.cc @@ -0,0 +1,505 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include <limits> +#include <scoped_allocator> + +#include "gtest/gtest.h" +#include "absl/container/internal/raw_hash_set.h" +#include "absl/container/internal/tracked.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace { + +enum AllocSpec { + kPropagateOnCopy = 1, + kPropagateOnMove = 2, + kPropagateOnSwap = 4, +}; + +struct AllocState { + size_t num_allocs = 0; + std::set<void*> owned; +}; + +template <class T, + int Spec = kPropagateOnCopy | kPropagateOnMove | kPropagateOnSwap> +class CheckedAlloc { + public: + template <class, int> + friend class CheckedAlloc; + + using value_type = T; + + CheckedAlloc() {} + explicit CheckedAlloc(size_t id) : id_(id) {} + CheckedAlloc(const CheckedAlloc&) = default; + CheckedAlloc& operator=(const CheckedAlloc&) = default; + + template <class U> + CheckedAlloc(const CheckedAlloc<U, Spec>& that) + : id_(that.id_), state_(that.state_) {} + + template <class U> + struct rebind { + using other = CheckedAlloc<U, Spec>; + }; + + using propagate_on_container_copy_assignment = + std::integral_constant<bool, (Spec & kPropagateOnCopy) != 0>; + + using propagate_on_container_move_assignment = + std::integral_constant<bool, (Spec & kPropagateOnMove) != 0>; + + using propagate_on_container_swap = + std::integral_constant<bool, (Spec & kPropagateOnSwap) != 0>; + + CheckedAlloc select_on_container_copy_construction() const { + if (Spec & kPropagateOnCopy) return *this; + return {}; + } + + T* allocate(size_t n) { + T* ptr = std::allocator<T>().allocate(n); + track_alloc(ptr); + return ptr; + } + void deallocate(T* ptr, size_t n) { + memset(ptr, 0, n * sizeof(T)); // The freed memory must be unpoisoned. + track_dealloc(ptr); + return std::allocator<T>().deallocate(ptr, n); + } + + friend bool operator==(const CheckedAlloc& a, const CheckedAlloc& b) { + return a.id_ == b.id_; + } + friend bool operator!=(const CheckedAlloc& a, const CheckedAlloc& b) { + return !(a == b); + } + + size_t num_allocs() const { return state_->num_allocs; } + + void swap(CheckedAlloc& that) { + using std::swap; + swap(id_, that.id_); + swap(state_, that.state_); + } + + friend void swap(CheckedAlloc& a, CheckedAlloc& b) { a.swap(b); } + + friend std::ostream& operator<<(std::ostream& o, const CheckedAlloc& a) { + return o << "alloc(" << a.id_ << ")"; + } + + private: + void track_alloc(void* ptr) { + AllocState* state = state_.get(); + ++state->num_allocs; + if (!state->owned.insert(ptr).second) + ADD_FAILURE() << *this << " got previously allocated memory: " << ptr; + } + void track_dealloc(void* ptr) { + if (state_->owned.erase(ptr) != 1) + ADD_FAILURE() << *this + << " deleting memory owned by another allocator: " << ptr; + } + + size_t id_ = std::numeric_limits<size_t>::max(); + + std::shared_ptr<AllocState> state_ = std::make_shared<AllocState>(); +}; + +struct Identity { + int32_t operator()(int32_t v) const { return v; } +}; + +struct Policy { + using slot_type = Tracked<int32_t>; + using init_type = Tracked<int32_t>; + using key_type = int32_t; + + template <class allocator_type, class... Args> + static void construct(allocator_type* alloc, slot_type* slot, + Args&&... args) { + std::allocator_traits<allocator_type>::construct( + *alloc, slot, std::forward<Args>(args)...); + } + + template <class allocator_type> + static void destroy(allocator_type* alloc, slot_type* slot) { + std::allocator_traits<allocator_type>::destroy(*alloc, slot); + } + + template <class allocator_type> + static void transfer(allocator_type* alloc, slot_type* new_slot, + slot_type* old_slot) { + construct(alloc, new_slot, std::move(*old_slot)); + destroy(alloc, old_slot); + } + + template <class F> + static auto apply(F&& f, int32_t v) -> decltype(std::forward<F>(f)(v, v)) { + return std::forward<F>(f)(v, v); + } + + template <class F> + static auto apply(F&& f, const slot_type& v) + -> decltype(std::forward<F>(f)(v.val(), v)) { + return std::forward<F>(f)(v.val(), v); + } + + template <class F> + static auto apply(F&& f, slot_type&& v) + -> decltype(std::forward<F>(f)(v.val(), std::move(v))) { + return std::forward<F>(f)(v.val(), std::move(v)); + } + + static slot_type& element(slot_type* slot) { return *slot; } +}; + +template <int Spec> +struct PropagateTest : public ::testing::Test { + using Alloc = CheckedAlloc<Tracked<int32_t>, Spec>; + + using Table = raw_hash_set<Policy, Identity, std::equal_to<int32_t>, Alloc>; + + PropagateTest() { + EXPECT_EQ(a1, t1.get_allocator()); + EXPECT_NE(a2, t1.get_allocator()); + } + + Alloc a1 = Alloc(1); + Table t1 = Table(0, a1); + Alloc a2 = Alloc(2); +}; + +using PropagateOnAll = + PropagateTest<kPropagateOnCopy | kPropagateOnMove | kPropagateOnSwap>; +using NoPropagateOnCopy = PropagateTest<kPropagateOnMove | kPropagateOnSwap>; +using NoPropagateOnMove = PropagateTest<kPropagateOnCopy | kPropagateOnSwap>; + +TEST_F(PropagateOnAll, Empty) { EXPECT_EQ(0, a1.num_allocs()); } + +TEST_F(PropagateOnAll, InsertAllocates) { + auto it = t1.insert(0).first; + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +TEST_F(PropagateOnAll, InsertDecomposes) { + auto it = t1.insert(0).first; + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); + + EXPECT_FALSE(t1.insert(0).second); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +TEST_F(PropagateOnAll, RehashMoves) { + auto it = t1.insert(0).first; + EXPECT_EQ(0, it->num_moves()); + t1.rehash(2 * t1.capacity()); + EXPECT_EQ(2, a1.num_allocs()); + it = t1.find(0); + EXPECT_EQ(1, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +TEST_F(PropagateOnAll, CopyConstructor) { + auto it = t1.insert(0).first; + Table u(t1); + EXPECT_EQ(2, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(1, it->num_copies()); +} + +TEST_F(NoPropagateOnCopy, CopyConstructor) { + auto it = t1.insert(0).first; + Table u(t1); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(1, u.get_allocator().num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(1, it->num_copies()); +} + +TEST_F(PropagateOnAll, CopyConstructorWithSameAlloc) { + auto it = t1.insert(0).first; + Table u(t1, a1); + EXPECT_EQ(2, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(1, it->num_copies()); +} + +TEST_F(NoPropagateOnCopy, CopyConstructorWithSameAlloc) { + auto it = t1.insert(0).first; + Table u(t1, a1); + EXPECT_EQ(2, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(1, it->num_copies()); +} + +TEST_F(PropagateOnAll, CopyConstructorWithDifferentAlloc) { + auto it = t1.insert(0).first; + Table u(t1, a2); + EXPECT_EQ(a2, u.get_allocator()); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(1, a2.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(1, it->num_copies()); +} + +TEST_F(NoPropagateOnCopy, CopyConstructorWithDifferentAlloc) { + auto it = t1.insert(0).first; + Table u(t1, a2); + EXPECT_EQ(a2, u.get_allocator()); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(1, a2.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(1, it->num_copies()); +} + +TEST_F(PropagateOnAll, MoveConstructor) { + auto it = t1.insert(0).first; + Table u(std::move(t1)); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +TEST_F(NoPropagateOnMove, MoveConstructor) { + auto it = t1.insert(0).first; + Table u(std::move(t1)); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +TEST_F(PropagateOnAll, MoveConstructorWithSameAlloc) { + auto it = t1.insert(0).first; + Table u(std::move(t1), a1); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +TEST_F(NoPropagateOnMove, MoveConstructorWithSameAlloc) { + auto it = t1.insert(0).first; + Table u(std::move(t1), a1); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +TEST_F(PropagateOnAll, MoveConstructorWithDifferentAlloc) { + auto it = t1.insert(0).first; + Table u(std::move(t1), a2); + it = u.find(0); + EXPECT_EQ(a2, u.get_allocator()); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(1, a2.num_allocs()); + EXPECT_EQ(1, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +TEST_F(NoPropagateOnMove, MoveConstructorWithDifferentAlloc) { + auto it = t1.insert(0).first; + Table u(std::move(t1), a2); + it = u.find(0); + EXPECT_EQ(a2, u.get_allocator()); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(1, a2.num_allocs()); + EXPECT_EQ(1, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +TEST_F(PropagateOnAll, CopyAssignmentWithSameAlloc) { + auto it = t1.insert(0).first; + Table u(0, a1); + u = t1; + EXPECT_EQ(2, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(1, it->num_copies()); +} + +TEST_F(NoPropagateOnCopy, CopyAssignmentWithSameAlloc) { + auto it = t1.insert(0).first; + Table u(0, a1); + u = t1; + EXPECT_EQ(2, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(1, it->num_copies()); +} + +TEST_F(PropagateOnAll, CopyAssignmentWithDifferentAlloc) { + auto it = t1.insert(0).first; + Table u(0, a2); + u = t1; + EXPECT_EQ(a1, u.get_allocator()); + EXPECT_EQ(2, a1.num_allocs()); + EXPECT_EQ(0, a2.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(1, it->num_copies()); +} + +TEST_F(NoPropagateOnCopy, CopyAssignmentWithDifferentAlloc) { + auto it = t1.insert(0).first; + Table u(0, a2); + u = t1; + EXPECT_EQ(a2, u.get_allocator()); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(1, a2.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(1, it->num_copies()); +} + +TEST_F(PropagateOnAll, MoveAssignmentWithSameAlloc) { + auto it = t1.insert(0).first; + Table u(0, a1); + u = std::move(t1); + EXPECT_EQ(a1, u.get_allocator()); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +TEST_F(NoPropagateOnMove, MoveAssignmentWithSameAlloc) { + auto it = t1.insert(0).first; + Table u(0, a1); + u = std::move(t1); + EXPECT_EQ(a1, u.get_allocator()); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +TEST_F(PropagateOnAll, MoveAssignmentWithDifferentAlloc) { + auto it = t1.insert(0).first; + Table u(0, a2); + u = std::move(t1); + EXPECT_EQ(a1, u.get_allocator()); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(0, a2.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +TEST_F(NoPropagateOnMove, MoveAssignmentWithDifferentAlloc) { + auto it = t1.insert(0).first; + Table u(0, a2); + u = std::move(t1); + it = u.find(0); + EXPECT_EQ(a2, u.get_allocator()); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(1, a2.num_allocs()); + EXPECT_EQ(1, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +TEST_F(PropagateOnAll, Swap) { + auto it = t1.insert(0).first; + Table u(0, a2); + u.swap(t1); + EXPECT_EQ(a1, u.get_allocator()); + EXPECT_EQ(a2, t1.get_allocator()); + EXPECT_EQ(1, a1.num_allocs()); + EXPECT_EQ(0, a2.num_allocs()); + EXPECT_EQ(0, it->num_moves()); + EXPECT_EQ(0, it->num_copies()); +} + +// This allocator is similar to std::pmr::polymorphic_allocator. +// Note the disabled assignment. +template <class T> +class PAlloc { + template <class> + friend class PAlloc; + + public: + // types + using value_type = T; + + // traits + using propagate_on_container_swap = std::false_type; + + PAlloc() noexcept = default; + explicit PAlloc(size_t id) noexcept : id_(id) {} + PAlloc(const PAlloc&) noexcept = default; + PAlloc& operator=(const PAlloc&) noexcept = delete; + + template <class U> + PAlloc(const PAlloc<U>& that) noexcept : id_(that.id_) {} // NOLINT + + template <class U> + struct rebind { + using other = PAlloc<U>; + }; + + constexpr PAlloc select_on_container_copy_construction() const { return {}; } + + // public member functions + T* allocate(size_t) { return new T; } + void deallocate(T* p, size_t) { delete p; } + + friend bool operator==(const PAlloc& a, const PAlloc& b) { + return a.id_ == b.id_; + } + friend bool operator!=(const PAlloc& a, const PAlloc& b) { return !(a == b); } + + private: + size_t id_ = std::numeric_limits<size_t>::max(); +}; + +// This doesn't compile with GCC 5.4 and 5.5 due to a bug in noexcept handing. +#if !defined(__GNUC__) || __GNUC__ != 5 || (__GNUC_MINOR__ != 4 && \ + __GNUC_MINOR__ != 5) +TEST(NoPropagateOn, Swap) { + using PA = PAlloc<char>; + using Table = raw_hash_set<Policy, Identity, std::equal_to<int32_t>, PA>; + + Table t1(PA{1}), t2(PA{2}); + swap(t1, t2); + EXPECT_EQ(t1.get_allocator(), PA(1)); + EXPECT_EQ(t2.get_allocator(), PA(2)); +} +#endif + +TEST(NoPropagateOn, CopyConstruct) { + using PA = PAlloc<char>; + using Table = raw_hash_set<Policy, Identity, std::equal_to<int32_t>, PA>; + + Table t1(PA{1}), t2(t1); + EXPECT_EQ(t1.get_allocator(), PA(1)); + EXPECT_EQ(t2.get_allocator(), PA()); +} + +TEST(NoPropagateOn, Assignment) { + using PA = PAlloc<char>; + using Table = raw_hash_set<Policy, Identity, std::equal_to<int32_t>, PA>; + + Table t1(PA{1}), t2(PA{2}); + t1 = t2; + EXPECT_EQ(t1.get_allocator(), PA(1)); + EXPECT_EQ(t2.get_allocator(), PA(2)); +} + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/raw_hash_set_test.cc b/third_party/abseil_cpp/absl/container/internal/raw_hash_set_test.cc new file mode 100644 index 000000000000..33d2773de302 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/raw_hash_set_test.cc @@ -0,0 +1,1893 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/raw_hash_set.h" + +#include <cmath> +#include <cstdint> +#include <deque> +#include <functional> +#include <memory> +#include <numeric> +#include <random> +#include <string> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/base/attributes.h" +#include "absl/base/config.h" +#include "absl/base/internal/cycleclock.h" +#include "absl/base/internal/raw_logging.h" +#include "absl/container/internal/container_memory.h" +#include "absl/container/internal/hash_function_defaults.h" +#include "absl/container/internal/hash_policy_testing.h" +#include "absl/container/internal/hashtable_debug.h" +#include "absl/strings/string_view.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +struct RawHashSetTestOnlyAccess { + template <typename C> + static auto GetSlots(const C& c) -> decltype(c.slots_) { + return c.slots_; + } +}; + +namespace { + +using ::testing::DoubleNear; +using ::testing::ElementsAre; +using ::testing::Ge; +using ::testing::Lt; +using ::testing::Optional; +using ::testing::Pair; +using ::testing::UnorderedElementsAre; + +TEST(Util, NormalizeCapacity) { + EXPECT_EQ(1, NormalizeCapacity(0)); + EXPECT_EQ(1, NormalizeCapacity(1)); + EXPECT_EQ(3, NormalizeCapacity(2)); + EXPECT_EQ(3, NormalizeCapacity(3)); + EXPECT_EQ(7, NormalizeCapacity(4)); + EXPECT_EQ(7, NormalizeCapacity(7)); + EXPECT_EQ(15, NormalizeCapacity(8)); + EXPECT_EQ(15, NormalizeCapacity(15)); + EXPECT_EQ(15 * 2 + 1, NormalizeCapacity(15 + 1)); + EXPECT_EQ(15 * 2 + 1, NormalizeCapacity(15 + 2)); +} + +TEST(Util, GrowthAndCapacity) { + // Verify that GrowthToCapacity gives the minimum capacity that has enough + // growth. + for (size_t growth = 0; growth < 10000; ++growth) { + SCOPED_TRACE(growth); + size_t capacity = NormalizeCapacity(GrowthToLowerboundCapacity(growth)); + // The capacity is large enough for `growth` + EXPECT_THAT(CapacityToGrowth(capacity), Ge(growth)); + if (growth != 0 && capacity > 1) { + // There is no smaller capacity that works. + EXPECT_THAT(CapacityToGrowth(capacity / 2), Lt(growth)); + } + } + + for (size_t capacity = Group::kWidth - 1; capacity < 10000; + capacity = 2 * capacity + 1) { + SCOPED_TRACE(capacity); + size_t growth = CapacityToGrowth(capacity); + EXPECT_THAT(growth, Lt(capacity)); + EXPECT_LE(GrowthToLowerboundCapacity(growth), capacity); + EXPECT_EQ(NormalizeCapacity(GrowthToLowerboundCapacity(growth)), capacity); + } +} + +TEST(Util, probe_seq) { + probe_seq<16> seq(0, 127); + auto gen = [&]() { + size_t res = seq.offset(); + seq.next(); + return res; + }; + std::vector<size_t> offsets(8); + std::generate_n(offsets.begin(), 8, gen); + EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64)); + seq = probe_seq<16>(128, 127); + std::generate_n(offsets.begin(), 8, gen); + EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64)); +} + +TEST(BitMask, Smoke) { + EXPECT_FALSE((BitMask<uint8_t, 8>(0))); + EXPECT_TRUE((BitMask<uint8_t, 8>(5))); + + EXPECT_THAT((BitMask<uint8_t, 8>(0)), ElementsAre()); + EXPECT_THAT((BitMask<uint8_t, 8>(0x1)), ElementsAre(0)); + EXPECT_THAT((BitMask<uint8_t, 8>(0x2)), ElementsAre(1)); + EXPECT_THAT((BitMask<uint8_t, 8>(0x3)), ElementsAre(0, 1)); + EXPECT_THAT((BitMask<uint8_t, 8>(0x4)), ElementsAre(2)); + EXPECT_THAT((BitMask<uint8_t, 8>(0x5)), ElementsAre(0, 2)); + EXPECT_THAT((BitMask<uint8_t, 8>(0x55)), ElementsAre(0, 2, 4, 6)); + EXPECT_THAT((BitMask<uint8_t, 8>(0xAA)), ElementsAre(1, 3, 5, 7)); +} + +TEST(BitMask, WithShift) { + // See the non-SSE version of Group for details on what this math is for. + uint64_t ctrl = 0x1716151413121110; + uint64_t hash = 0x12; + constexpr uint64_t msbs = 0x8080808080808080ULL; + constexpr uint64_t lsbs = 0x0101010101010101ULL; + auto x = ctrl ^ (lsbs * hash); + uint64_t mask = (x - lsbs) & ~x & msbs; + EXPECT_EQ(0x0000000080800000, mask); + + BitMask<uint64_t, 8, 3> b(mask); + EXPECT_EQ(*b, 2); +} + +TEST(BitMask, LeadingTrailing) { + EXPECT_EQ((BitMask<uint32_t, 16>(0x00001a40).LeadingZeros()), 3); + EXPECT_EQ((BitMask<uint32_t, 16>(0x00001a40).TrailingZeros()), 6); + + EXPECT_EQ((BitMask<uint32_t, 16>(0x00000001).LeadingZeros()), 15); + EXPECT_EQ((BitMask<uint32_t, 16>(0x00000001).TrailingZeros()), 0); + + EXPECT_EQ((BitMask<uint32_t, 16>(0x00008000).LeadingZeros()), 0); + EXPECT_EQ((BitMask<uint32_t, 16>(0x00008000).TrailingZeros()), 15); + + EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).LeadingZeros()), 3); + EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).TrailingZeros()), 1); + + EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).LeadingZeros()), 7); + EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).TrailingZeros()), 0); + + EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).LeadingZeros()), 0); + EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).TrailingZeros()), 7); +} + +TEST(Group, EmptyGroup) { + for (h2_t h = 0; h != 128; ++h) EXPECT_FALSE(Group{EmptyGroup()}.Match(h)); +} + +TEST(Group, Match) { + if (Group::kWidth == 16) { + ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7, + 7, 5, 3, 1, 1, 1, 1, 1}; + EXPECT_THAT(Group{group}.Match(0), ElementsAre()); + EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 11, 12, 13, 14, 15)); + EXPECT_THAT(Group{group}.Match(3), ElementsAre(3, 10)); + EXPECT_THAT(Group{group}.Match(5), ElementsAre(5, 9)); + EXPECT_THAT(Group{group}.Match(7), ElementsAre(7, 8)); + } else if (Group::kWidth == 8) { + ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1}; + EXPECT_THAT(Group{group}.Match(0), ElementsAre()); + EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 5, 7)); + EXPECT_THAT(Group{group}.Match(2), ElementsAre(2, 4)); + } else { + FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth; + } +} + +TEST(Group, MatchEmpty) { + if (Group::kWidth == 16) { + ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7, + 7, 5, 3, 1, 1, 1, 1, 1}; + EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0, 4)); + } else if (Group::kWidth == 8) { + ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1}; + EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0)); + } else { + FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth; + } +} + +TEST(Group, MatchEmptyOrDeleted) { + if (Group::kWidth == 16) { + ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7, + 7, 5, 3, 1, 1, 1, 1, 1}; + EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 2, 4)); + } else if (Group::kWidth == 8) { + ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1}; + EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 3)); + } else { + FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth; + } +} + +TEST(Batch, DropDeletes) { + constexpr size_t kCapacity = 63; + constexpr size_t kGroupWidth = container_internal::Group::kWidth; + std::vector<ctrl_t> ctrl(kCapacity + 1 + kGroupWidth); + ctrl[kCapacity] = kSentinel; + std::vector<ctrl_t> pattern = {kEmpty, 2, kDeleted, 2, kEmpty, 1, kDeleted}; + for (size_t i = 0; i != kCapacity; ++i) { + ctrl[i] = pattern[i % pattern.size()]; + if (i < kGroupWidth - 1) + ctrl[i + kCapacity + 1] = pattern[i % pattern.size()]; + } + ConvertDeletedToEmptyAndFullToDeleted(ctrl.data(), kCapacity); + ASSERT_EQ(ctrl[kCapacity], kSentinel); + for (size_t i = 0; i < kCapacity + 1 + kGroupWidth; ++i) { + ctrl_t expected = pattern[i % (kCapacity + 1) % pattern.size()]; + if (i == kCapacity) expected = kSentinel; + if (expected == kDeleted) expected = kEmpty; + if (IsFull(expected)) expected = kDeleted; + EXPECT_EQ(ctrl[i], expected) + << i << " " << int{pattern[i % pattern.size()]}; + } +} + +TEST(Group, CountLeadingEmptyOrDeleted) { + const std::vector<ctrl_t> empty_examples = {kEmpty, kDeleted}; + const std::vector<ctrl_t> full_examples = {0, 1, 2, 3, 5, 9, 127, kSentinel}; + + for (ctrl_t empty : empty_examples) { + std::vector<ctrl_t> e(Group::kWidth, empty); + EXPECT_EQ(Group::kWidth, Group{e.data()}.CountLeadingEmptyOrDeleted()); + for (ctrl_t full : full_examples) { + for (size_t i = 0; i != Group::kWidth; ++i) { + std::vector<ctrl_t> f(Group::kWidth, empty); + f[i] = full; + EXPECT_EQ(i, Group{f.data()}.CountLeadingEmptyOrDeleted()); + } + std::vector<ctrl_t> f(Group::kWidth, empty); + f[Group::kWidth * 2 / 3] = full; + f[Group::kWidth / 2] = full; + EXPECT_EQ( + Group::kWidth / 2, Group{f.data()}.CountLeadingEmptyOrDeleted()); + } + } +} + +struct IntPolicy { + using slot_type = int64_t; + using key_type = int64_t; + using init_type = int64_t; + + static void construct(void*, int64_t* slot, int64_t v) { *slot = v; } + static void destroy(void*, int64_t*) {} + static void transfer(void*, int64_t* new_slot, int64_t* old_slot) { + *new_slot = *old_slot; + } + + static int64_t& element(slot_type* slot) { return *slot; } + + template <class F> + static auto apply(F&& f, int64_t x) -> decltype(std::forward<F>(f)(x, x)) { + return std::forward<F>(f)(x, x); + } +}; + +class StringPolicy { + template <class F, class K, class V, + class = typename std::enable_if< + std::is_convertible<const K&, absl::string_view>::value>::type> + decltype(std::declval<F>()( + std::declval<const absl::string_view&>(), std::piecewise_construct, + std::declval<std::tuple<K>>(), + std::declval<V>())) static apply_impl(F&& f, + std::pair<std::tuple<K>, V> p) { + const absl::string_view& key = std::get<0>(p.first); + return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first), + std::move(p.second)); + } + + public: + struct slot_type { + struct ctor {}; + + template <class... Ts> + slot_type(ctor, Ts&&... ts) : pair(std::forward<Ts>(ts)...) {} + + std::pair<std::string, std::string> pair; + }; + + using key_type = std::string; + using init_type = std::pair<std::string, std::string>; + + template <class allocator_type, class... Args> + static void construct(allocator_type* alloc, slot_type* slot, Args... args) { + std::allocator_traits<allocator_type>::construct( + *alloc, slot, typename slot_type::ctor(), std::forward<Args>(args)...); + } + + template <class allocator_type> + static void destroy(allocator_type* alloc, slot_type* slot) { + std::allocator_traits<allocator_type>::destroy(*alloc, slot); + } + + template <class allocator_type> + static void transfer(allocator_type* alloc, slot_type* new_slot, + slot_type* old_slot) { + construct(alloc, new_slot, std::move(old_slot->pair)); + destroy(alloc, old_slot); + } + + static std::pair<std::string, std::string>& element(slot_type* slot) { + return slot->pair; + } + + template <class F, class... Args> + static auto apply(F&& f, Args&&... args) + -> decltype(apply_impl(std::forward<F>(f), + PairArgs(std::forward<Args>(args)...))) { + return apply_impl(std::forward<F>(f), + PairArgs(std::forward<Args>(args)...)); + } +}; + +struct StringHash : absl::Hash<absl::string_view> { + using is_transparent = void; +}; +struct StringEq : std::equal_to<absl::string_view> { + using is_transparent = void; +}; + +struct StringTable + : raw_hash_set<StringPolicy, StringHash, StringEq, std::allocator<int>> { + using Base = typename StringTable::raw_hash_set; + StringTable() {} + using Base::Base; +}; + +struct IntTable + : raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>, + std::equal_to<int64_t>, std::allocator<int64_t>> { + using Base = typename IntTable::raw_hash_set; + using Base::Base; +}; + +template <typename T> +struct CustomAlloc : std::allocator<T> { + CustomAlloc() {} + + template <typename U> + CustomAlloc(const CustomAlloc<U>& other) {} + + template<class U> struct rebind { + using other = CustomAlloc<U>; + }; +}; + +struct CustomAllocIntTable + : raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>, + std::equal_to<int64_t>, CustomAlloc<int64_t>> { + using Base = typename CustomAllocIntTable::raw_hash_set; + using Base::Base; +}; + +struct BadFastHash { + template <class T> + size_t operator()(const T&) const { + return 0; + } +}; + +struct BadTable : raw_hash_set<IntPolicy, BadFastHash, std::equal_to<int>, + std::allocator<int>> { + using Base = typename BadTable::raw_hash_set; + BadTable() {} + using Base::Base; +}; + +TEST(Table, EmptyFunctorOptimization) { + static_assert(std::is_empty<std::equal_to<absl::string_view>>::value, ""); + static_assert(std::is_empty<std::allocator<int>>::value, ""); + + struct MockTable { + void* ctrl; + void* slots; + size_t size; + size_t capacity; + size_t growth_left; + void* infoz; + }; + struct StatelessHash { + size_t operator()(absl::string_view) const { return 0; } + }; + struct StatefulHash : StatelessHash { + size_t dummy; + }; + + EXPECT_EQ( + sizeof(MockTable), + sizeof( + raw_hash_set<StringPolicy, StatelessHash, + std::equal_to<absl::string_view>, std::allocator<int>>)); + + EXPECT_EQ( + sizeof(MockTable) + sizeof(StatefulHash), + sizeof( + raw_hash_set<StringPolicy, StatefulHash, + std::equal_to<absl::string_view>, std::allocator<int>>)); +} + +TEST(Table, Empty) { + IntTable t; + EXPECT_EQ(0, t.size()); + EXPECT_TRUE(t.empty()); +} + +TEST(Table, LookupEmpty) { + IntTable t; + auto it = t.find(0); + EXPECT_TRUE(it == t.end()); +} + +TEST(Table, Insert1) { + IntTable t; + EXPECT_TRUE(t.find(0) == t.end()); + auto res = t.emplace(0); + EXPECT_TRUE(res.second); + EXPECT_THAT(*res.first, 0); + EXPECT_EQ(1, t.size()); + EXPECT_THAT(*t.find(0), 0); +} + +TEST(Table, Insert2) { + IntTable t; + EXPECT_TRUE(t.find(0) == t.end()); + auto res = t.emplace(0); + EXPECT_TRUE(res.second); + EXPECT_THAT(*res.first, 0); + EXPECT_EQ(1, t.size()); + EXPECT_TRUE(t.find(1) == t.end()); + res = t.emplace(1); + EXPECT_TRUE(res.second); + EXPECT_THAT(*res.first, 1); + EXPECT_EQ(2, t.size()); + EXPECT_THAT(*t.find(0), 0); + EXPECT_THAT(*t.find(1), 1); +} + +TEST(Table, InsertCollision) { + BadTable t; + EXPECT_TRUE(t.find(1) == t.end()); + auto res = t.emplace(1); + EXPECT_TRUE(res.second); + EXPECT_THAT(*res.first, 1); + EXPECT_EQ(1, t.size()); + + EXPECT_TRUE(t.find(2) == t.end()); + res = t.emplace(2); + EXPECT_THAT(*res.first, 2); + EXPECT_TRUE(res.second); + EXPECT_EQ(2, t.size()); + + EXPECT_THAT(*t.find(1), 1); + EXPECT_THAT(*t.find(2), 2); +} + +// Test that we do not add existent element in case we need to search through +// many groups with deleted elements +TEST(Table, InsertCollisionAndFindAfterDelete) { + BadTable t; // all elements go to the same group. + // Have at least 2 groups with Group::kWidth collisions + // plus some extra collisions in the last group. + constexpr size_t kNumInserts = Group::kWidth * 2 + 5; + for (size_t i = 0; i < kNumInserts; ++i) { + auto res = t.emplace(i); + EXPECT_TRUE(res.second); + EXPECT_THAT(*res.first, i); + EXPECT_EQ(i + 1, t.size()); + } + + // Remove elements one by one and check + // that we still can find all other elements. + for (size_t i = 0; i < kNumInserts; ++i) { + EXPECT_EQ(1, t.erase(i)) << i; + for (size_t j = i + 1; j < kNumInserts; ++j) { + EXPECT_THAT(*t.find(j), j); + auto res = t.emplace(j); + EXPECT_FALSE(res.second) << i << " " << j; + EXPECT_THAT(*res.first, j); + EXPECT_EQ(kNumInserts - i - 1, t.size()); + } + } + EXPECT_TRUE(t.empty()); +} + +TEST(Table, LazyEmplace) { + StringTable t; + bool called = false; + auto it = t.lazy_emplace("abc", [&](const StringTable::constructor& f) { + called = true; + f("abc", "ABC"); + }); + EXPECT_TRUE(called); + EXPECT_THAT(*it, Pair("abc", "ABC")); + called = false; + it = t.lazy_emplace("abc", [&](const StringTable::constructor& f) { + called = true; + f("abc", "DEF"); + }); + EXPECT_FALSE(called); + EXPECT_THAT(*it, Pair("abc", "ABC")); +} + +TEST(Table, ContainsEmpty) { + IntTable t; + + EXPECT_FALSE(t.contains(0)); +} + +TEST(Table, Contains1) { + IntTable t; + + EXPECT_TRUE(t.insert(0).second); + EXPECT_TRUE(t.contains(0)); + EXPECT_FALSE(t.contains(1)); + + EXPECT_EQ(1, t.erase(0)); + EXPECT_FALSE(t.contains(0)); +} + +TEST(Table, Contains2) { + IntTable t; + + EXPECT_TRUE(t.insert(0).second); + EXPECT_TRUE(t.contains(0)); + EXPECT_FALSE(t.contains(1)); + + t.clear(); + EXPECT_FALSE(t.contains(0)); +} + +int decompose_constructed; +struct DecomposeType { + DecomposeType(int i) : i(i) { // NOLINT + ++decompose_constructed; + } + + explicit DecomposeType(const char* d) : DecomposeType(*d) {} + + int i; +}; + +struct DecomposeHash { + using is_transparent = void; + size_t operator()(DecomposeType a) const { return a.i; } + size_t operator()(int a) const { return a; } + size_t operator()(const char* a) const { return *a; } +}; + +struct DecomposeEq { + using is_transparent = void; + bool operator()(DecomposeType a, DecomposeType b) const { return a.i == b.i; } + bool operator()(DecomposeType a, int b) const { return a.i == b; } + bool operator()(DecomposeType a, const char* b) const { return a.i == *b; } +}; + +struct DecomposePolicy { + using slot_type = DecomposeType; + using key_type = DecomposeType; + using init_type = DecomposeType; + + template <typename T> + static void construct(void*, DecomposeType* slot, T&& v) { + *slot = DecomposeType(std::forward<T>(v)); + } + static void destroy(void*, DecomposeType*) {} + static DecomposeType& element(slot_type* slot) { return *slot; } + + template <class F, class T> + static auto apply(F&& f, const T& x) -> decltype(std::forward<F>(f)(x, x)) { + return std::forward<F>(f)(x, x); + } +}; + +template <typename Hash, typename Eq> +void TestDecompose(bool construct_three) { + DecomposeType elem{0}; + const int one = 1; + const char* three_p = "3"; + const auto& three = three_p; + + raw_hash_set<DecomposePolicy, Hash, Eq, std::allocator<int>> set1; + + decompose_constructed = 0; + int expected_constructed = 0; + EXPECT_EQ(expected_constructed, decompose_constructed); + set1.insert(elem); + EXPECT_EQ(expected_constructed, decompose_constructed); + set1.insert(1); + EXPECT_EQ(++expected_constructed, decompose_constructed); + set1.emplace("3"); + EXPECT_EQ(++expected_constructed, decompose_constructed); + EXPECT_EQ(expected_constructed, decompose_constructed); + + { // insert(T&&) + set1.insert(1); + EXPECT_EQ(expected_constructed, decompose_constructed); + } + + { // insert(const T&) + set1.insert(one); + EXPECT_EQ(expected_constructed, decompose_constructed); + } + + { // insert(hint, T&&) + set1.insert(set1.begin(), 1); + EXPECT_EQ(expected_constructed, decompose_constructed); + } + + { // insert(hint, const T&) + set1.insert(set1.begin(), one); + EXPECT_EQ(expected_constructed, decompose_constructed); + } + + { // emplace(...) + set1.emplace(1); + EXPECT_EQ(expected_constructed, decompose_constructed); + set1.emplace("3"); + expected_constructed += construct_three; + EXPECT_EQ(expected_constructed, decompose_constructed); + set1.emplace(one); + EXPECT_EQ(expected_constructed, decompose_constructed); + set1.emplace(three); + expected_constructed += construct_three; + EXPECT_EQ(expected_constructed, decompose_constructed); + } + + { // emplace_hint(...) + set1.emplace_hint(set1.begin(), 1); + EXPECT_EQ(expected_constructed, decompose_constructed); + set1.emplace_hint(set1.begin(), "3"); + expected_constructed += construct_three; + EXPECT_EQ(expected_constructed, decompose_constructed); + set1.emplace_hint(set1.begin(), one); + EXPECT_EQ(expected_constructed, decompose_constructed); + set1.emplace_hint(set1.begin(), three); + expected_constructed += construct_three; + EXPECT_EQ(expected_constructed, decompose_constructed); + } +} + +TEST(Table, Decompose) { + TestDecompose<DecomposeHash, DecomposeEq>(false); + + struct TransparentHashIntOverload { + size_t operator()(DecomposeType a) const { return a.i; } + size_t operator()(int a) const { return a; } + }; + struct TransparentEqIntOverload { + bool operator()(DecomposeType a, DecomposeType b) const { + return a.i == b.i; + } + bool operator()(DecomposeType a, int b) const { return a.i == b; } + }; + TestDecompose<TransparentHashIntOverload, DecomposeEq>(true); + TestDecompose<TransparentHashIntOverload, TransparentEqIntOverload>(true); + TestDecompose<DecomposeHash, TransparentEqIntOverload>(true); +} + +// Returns the largest m such that a table with m elements has the same number +// of buckets as a table with n elements. +size_t MaxDensitySize(size_t n) { + IntTable t; + t.reserve(n); + for (size_t i = 0; i != n; ++i) t.emplace(i); + const size_t c = t.bucket_count(); + while (c == t.bucket_count()) t.emplace(n++); + return t.size() - 1; +} + +struct Modulo1000Hash { + size_t operator()(int x) const { return x % 1000; } +}; + +struct Modulo1000HashTable + : public raw_hash_set<IntPolicy, Modulo1000Hash, std::equal_to<int>, + std::allocator<int>> {}; + +// Test that rehash with no resize happen in case of many deleted slots. +TEST(Table, RehashWithNoResize) { + Modulo1000HashTable t; + // Adding the same length (and the same hash) strings + // to have at least kMinFullGroups groups + // with Group::kWidth collisions. Then fill up to MaxDensitySize; + const size_t kMinFullGroups = 7; + std::vector<int> keys; + for (size_t i = 0; i < MaxDensitySize(Group::kWidth * kMinFullGroups); ++i) { + int k = i * 1000; + t.emplace(k); + keys.push_back(k); + } + const size_t capacity = t.capacity(); + + // Remove elements from all groups except the first and the last one. + // All elements removed from full groups will be marked as kDeleted. + const size_t erase_begin = Group::kWidth / 2; + const size_t erase_end = (t.size() / Group::kWidth - 1) * Group::kWidth; + for (size_t i = erase_begin; i < erase_end; ++i) { + EXPECT_EQ(1, t.erase(keys[i])) << i; + } + keys.erase(keys.begin() + erase_begin, keys.begin() + erase_end); + + auto last_key = keys.back(); + size_t last_key_num_probes = GetHashtableDebugNumProbes(t, last_key); + + // Make sure that we have to make a lot of probes for last key. + ASSERT_GT(last_key_num_probes, kMinFullGroups); + + int x = 1; + // Insert and erase one element, before inplace rehash happen. + while (last_key_num_probes == GetHashtableDebugNumProbes(t, last_key)) { + t.emplace(x); + ASSERT_EQ(capacity, t.capacity()); + // All elements should be there. + ASSERT_TRUE(t.find(x) != t.end()) << x; + for (const auto& k : keys) { + ASSERT_TRUE(t.find(k) != t.end()) << k; + } + t.erase(x); + ++x; + } +} + +TEST(Table, InsertEraseStressTest) { + IntTable t; + const size_t kMinElementCount = 250; + std::deque<int> keys; + size_t i = 0; + for (; i < MaxDensitySize(kMinElementCount); ++i) { + t.emplace(i); + keys.push_back(i); + } + const size_t kNumIterations = 1000000; + for (; i < kNumIterations; ++i) { + ASSERT_EQ(1, t.erase(keys.front())); + keys.pop_front(); + t.emplace(i); + keys.push_back(i); + } +} + +TEST(Table, InsertOverloads) { + StringTable t; + // These should all trigger the insert(init_type) overload. + t.insert({{}, {}}); + t.insert({"ABC", {}}); + t.insert({"DEF", "!!!"}); + + EXPECT_THAT(t, UnorderedElementsAre(Pair("", ""), Pair("ABC", ""), + Pair("DEF", "!!!"))); +} + +TEST(Table, LargeTable) { + IntTable t; + for (int64_t i = 0; i != 100000; ++i) t.emplace(i << 40); + for (int64_t i = 0; i != 100000; ++i) ASSERT_EQ(i << 40, *t.find(i << 40)); +} + +// Timeout if copy is quadratic as it was in Rust. +TEST(Table, EnsureNonQuadraticAsInRust) { + static const size_t kLargeSize = 1 << 15; + + IntTable t; + for (size_t i = 0; i != kLargeSize; ++i) { + t.insert(i); + } + + // If this is quadratic, the test will timeout. + IntTable t2; + for (const auto& entry : t) t2.insert(entry); +} + +TEST(Table, ClearBug) { + IntTable t; + constexpr size_t capacity = container_internal::Group::kWidth - 1; + constexpr size_t max_size = capacity / 2 + 1; + for (size_t i = 0; i < max_size; ++i) { + t.insert(i); + } + ASSERT_EQ(capacity, t.capacity()); + intptr_t original = reinterpret_cast<intptr_t>(&*t.find(2)); + t.clear(); + ASSERT_EQ(capacity, t.capacity()); + for (size_t i = 0; i < max_size; ++i) { + t.insert(i); + } + ASSERT_EQ(capacity, t.capacity()); + intptr_t second = reinterpret_cast<intptr_t>(&*t.find(2)); + // We are checking that original and second are close enough to each other + // that they are probably still in the same group. This is not strictly + // guaranteed. + EXPECT_LT(std::abs(original - second), + capacity * sizeof(IntTable::value_type)); +} + +TEST(Table, Erase) { + IntTable t; + EXPECT_TRUE(t.find(0) == t.end()); + auto res = t.emplace(0); + EXPECT_TRUE(res.second); + EXPECT_EQ(1, t.size()); + t.erase(res.first); + EXPECT_EQ(0, t.size()); + EXPECT_TRUE(t.find(0) == t.end()); +} + +TEST(Table, EraseMaintainsValidIterator) { + IntTable t; + const int kNumElements = 100; + for (int i = 0; i < kNumElements; i ++) { + EXPECT_TRUE(t.emplace(i).second); + } + EXPECT_EQ(t.size(), kNumElements); + + int num_erase_calls = 0; + auto it = t.begin(); + while (it != t.end()) { + t.erase(it++); + num_erase_calls++; + } + + EXPECT_TRUE(t.empty()); + EXPECT_EQ(num_erase_calls, kNumElements); +} + +// Collect N bad keys by following algorithm: +// 1. Create an empty table and reserve it to 2 * N. +// 2. Insert N random elements. +// 3. Take first Group::kWidth - 1 to bad_keys array. +// 4. Clear the table without resize. +// 5. Go to point 2 while N keys not collected +std::vector<int64_t> CollectBadMergeKeys(size_t N) { + static constexpr int kGroupSize = Group::kWidth - 1; + + auto topk_range = [](size_t b, size_t e, + IntTable* t) -> std::vector<int64_t> { + for (size_t i = b; i != e; ++i) { + t->emplace(i); + } + std::vector<int64_t> res; + res.reserve(kGroupSize); + auto it = t->begin(); + for (size_t i = b; i != e && i != b + kGroupSize; ++i, ++it) { + res.push_back(*it); + } + return res; + }; + + std::vector<int64_t> bad_keys; + bad_keys.reserve(N); + IntTable t; + t.reserve(N * 2); + + for (size_t b = 0; bad_keys.size() < N; b += N) { + auto keys = topk_range(b, b + N, &t); + bad_keys.insert(bad_keys.end(), keys.begin(), keys.end()); + t.erase(t.begin(), t.end()); + EXPECT_TRUE(t.empty()); + } + return bad_keys; +} + +struct ProbeStats { + // Number of elements with specific probe length over all tested tables. + std::vector<size_t> all_probes_histogram; + // Ratios total_probe_length/size for every tested table. + std::vector<double> single_table_ratios; + + friend ProbeStats operator+(const ProbeStats& a, const ProbeStats& b) { + ProbeStats res = a; + res.all_probes_histogram.resize(std::max(res.all_probes_histogram.size(), + b.all_probes_histogram.size())); + std::transform(b.all_probes_histogram.begin(), b.all_probes_histogram.end(), + res.all_probes_histogram.begin(), + res.all_probes_histogram.begin(), std::plus<size_t>()); + res.single_table_ratios.insert(res.single_table_ratios.end(), + b.single_table_ratios.begin(), + b.single_table_ratios.end()); + return res; + } + + // Average ratio total_probe_length/size over tables. + double AvgRatio() const { + return std::accumulate(single_table_ratios.begin(), + single_table_ratios.end(), 0.0) / + single_table_ratios.size(); + } + + // Maximum ratio total_probe_length/size over tables. + double MaxRatio() const { + return *std::max_element(single_table_ratios.begin(), + single_table_ratios.end()); + } + + // Percentile ratio total_probe_length/size over tables. + double PercentileRatio(double Percentile = 0.95) const { + auto r = single_table_ratios; + auto mid = r.begin() + static_cast<size_t>(r.size() * Percentile); + if (mid != r.end()) { + std::nth_element(r.begin(), mid, r.end()); + return *mid; + } else { + return MaxRatio(); + } + } + + // Maximum probe length over all elements and all tables. + size_t MaxProbe() const { return all_probes_histogram.size(); } + + // Fraction of elements with specified probe length. + std::vector<double> ProbeNormalizedHistogram() const { + double total_elements = std::accumulate(all_probes_histogram.begin(), + all_probes_histogram.end(), 0ull); + std::vector<double> res; + for (size_t p : all_probes_histogram) { + res.push_back(p / total_elements); + } + return res; + } + + size_t PercentileProbe(double Percentile = 0.99) const { + size_t idx = 0; + for (double p : ProbeNormalizedHistogram()) { + if (Percentile > p) { + Percentile -= p; + ++idx; + } else { + return idx; + } + } + return idx; + } + + friend std::ostream& operator<<(std::ostream& out, const ProbeStats& s) { + out << "{AvgRatio:" << s.AvgRatio() << ", MaxRatio:" << s.MaxRatio() + << ", PercentileRatio:" << s.PercentileRatio() + << ", MaxProbe:" << s.MaxProbe() << ", Probes=["; + for (double p : s.ProbeNormalizedHistogram()) { + out << p << ","; + } + out << "]}"; + + return out; + } +}; + +struct ExpectedStats { + double avg_ratio; + double max_ratio; + std::vector<std::pair<double, double>> pecentile_ratios; + std::vector<std::pair<double, double>> pecentile_probes; + + friend std::ostream& operator<<(std::ostream& out, const ExpectedStats& s) { + out << "{AvgRatio:" << s.avg_ratio << ", MaxRatio:" << s.max_ratio + << ", PercentileRatios: ["; + for (auto el : s.pecentile_ratios) { + out << el.first << ":" << el.second << ", "; + } + out << "], PercentileProbes: ["; + for (auto el : s.pecentile_probes) { + out << el.first << ":" << el.second << ", "; + } + out << "]}"; + + return out; + } +}; + +void VerifyStats(size_t size, const ExpectedStats& exp, + const ProbeStats& stats) { + EXPECT_LT(stats.AvgRatio(), exp.avg_ratio) << size << " " << stats; + EXPECT_LT(stats.MaxRatio(), exp.max_ratio) << size << " " << stats; + for (auto pr : exp.pecentile_ratios) { + EXPECT_LE(stats.PercentileRatio(pr.first), pr.second) + << size << " " << pr.first << " " << stats; + } + + for (auto pr : exp.pecentile_probes) { + EXPECT_LE(stats.PercentileProbe(pr.first), pr.second) + << size << " " << pr.first << " " << stats; + } +} + +using ProbeStatsPerSize = std::map<size_t, ProbeStats>; + +// Collect total ProbeStats on num_iters iterations of the following algorithm: +// 1. Create new table and reserve it to keys.size() * 2 +// 2. Insert all keys xored with seed +// 3. Collect ProbeStats from final table. +ProbeStats CollectProbeStatsOnKeysXoredWithSeed( + const std::vector<int64_t>& keys, size_t num_iters) { + const size_t reserve_size = keys.size() * 2; + + ProbeStats stats; + + int64_t seed = 0x71b1a19b907d6e33; + while (num_iters--) { + seed = static_cast<int64_t>(static_cast<uint64_t>(seed) * 17 + 13); + IntTable t1; + t1.reserve(reserve_size); + for (const auto& key : keys) { + t1.emplace(key ^ seed); + } + + auto probe_histogram = GetHashtableDebugNumProbesHistogram(t1); + stats.all_probes_histogram.resize( + std::max(stats.all_probes_histogram.size(), probe_histogram.size())); + std::transform(probe_histogram.begin(), probe_histogram.end(), + stats.all_probes_histogram.begin(), + stats.all_probes_histogram.begin(), std::plus<size_t>()); + + size_t total_probe_seq_length = 0; + for (size_t i = 0; i < probe_histogram.size(); ++i) { + total_probe_seq_length += i * probe_histogram[i]; + } + stats.single_table_ratios.push_back(total_probe_seq_length * 1.0 / + keys.size()); + t1.erase(t1.begin(), t1.end()); + } + return stats; +} + +ExpectedStats XorSeedExpectedStats() { + constexpr bool kRandomizesInserts = +#ifdef NDEBUG + false; +#else // NDEBUG + true; +#endif // NDEBUG + + // The effective load factor is larger in non-opt mode because we insert + // elements out of order. + switch (container_internal::Group::kWidth) { + case 8: + if (kRandomizesInserts) { + return {0.05, + 1.0, + {{0.95, 0.5}}, + {{0.95, 0}, {0.99, 2}, {0.999, 4}, {0.9999, 10}}}; + } else { + return {0.05, + 2.0, + {{0.95, 0.1}}, + {{0.95, 0}, {0.99, 2}, {0.999, 4}, {0.9999, 10}}}; + } + case 16: + if (kRandomizesInserts) { + return {0.1, + 1.0, + {{0.95, 0.1}}, + {{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}}; + } else { + return {0.05, + 1.0, + {{0.95, 0.05}}, + {{0.95, 0}, {0.99, 1}, {0.999, 4}, {0.9999, 10}}}; + } + } + ABSL_RAW_LOG(FATAL, "%s", "Unknown Group width"); + return {}; +} + +TEST(Table, DISABLED_EnsureNonQuadraticTopNXorSeedByProbeSeqLength) { + ProbeStatsPerSize stats; + std::vector<size_t> sizes = {Group::kWidth << 5, Group::kWidth << 10}; + for (size_t size : sizes) { + stats[size] = + CollectProbeStatsOnKeysXoredWithSeed(CollectBadMergeKeys(size), 200); + } + auto expected = XorSeedExpectedStats(); + for (size_t size : sizes) { + auto& stat = stats[size]; + VerifyStats(size, expected, stat); + } +} + +// Collect total ProbeStats on num_iters iterations of the following algorithm: +// 1. Create new table +// 2. Select 10% of keys and insert 10 elements key * 17 + j * 13 +// 3. Collect ProbeStats from final table +ProbeStats CollectProbeStatsOnLinearlyTransformedKeys( + const std::vector<int64_t>& keys, size_t num_iters) { + ProbeStats stats; + + std::random_device rd; + std::mt19937 rng(rd()); + auto linear_transform = [](size_t x, size_t y) { return x * 17 + y * 13; }; + std::uniform_int_distribution<size_t> dist(0, keys.size()-1); + while (num_iters--) { + IntTable t1; + size_t num_keys = keys.size() / 10; + size_t start = dist(rng); + for (size_t i = 0; i != num_keys; ++i) { + for (size_t j = 0; j != 10; ++j) { + t1.emplace(linear_transform(keys[(i + start) % keys.size()], j)); + } + } + + auto probe_histogram = GetHashtableDebugNumProbesHistogram(t1); + stats.all_probes_histogram.resize( + std::max(stats.all_probes_histogram.size(), probe_histogram.size())); + std::transform(probe_histogram.begin(), probe_histogram.end(), + stats.all_probes_histogram.begin(), + stats.all_probes_histogram.begin(), std::plus<size_t>()); + + size_t total_probe_seq_length = 0; + for (size_t i = 0; i < probe_histogram.size(); ++i) { + total_probe_seq_length += i * probe_histogram[i]; + } + stats.single_table_ratios.push_back(total_probe_seq_length * 1.0 / + t1.size()); + t1.erase(t1.begin(), t1.end()); + } + return stats; +} + +ExpectedStats LinearTransformExpectedStats() { + constexpr bool kRandomizesInserts = +#ifdef NDEBUG + false; +#else // NDEBUG + true; +#endif // NDEBUG + + // The effective load factor is larger in non-opt mode because we insert + // elements out of order. + switch (container_internal::Group::kWidth) { + case 8: + if (kRandomizesInserts) { + return {0.1, + 0.5, + {{0.95, 0.3}}, + {{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}}; + } else { + return {0.15, + 0.5, + {{0.95, 0.3}}, + {{0.95, 0}, {0.99, 3}, {0.999, 15}, {0.9999, 25}}}; + } + case 16: + if (kRandomizesInserts) { + return {0.1, + 0.4, + {{0.95, 0.3}}, + {{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}}; + } else { + return {0.05, + 0.2, + {{0.95, 0.1}}, + {{0.95, 0}, {0.99, 1}, {0.999, 6}, {0.9999, 10}}}; + } + } + ABSL_RAW_LOG(FATAL, "%s", "Unknown Group width"); + return {}; +} + +TEST(Table, DISABLED_EnsureNonQuadraticTopNLinearTransformByProbeSeqLength) { + ProbeStatsPerSize stats; + std::vector<size_t> sizes = {Group::kWidth << 5, Group::kWidth << 10}; + for (size_t size : sizes) { + stats[size] = CollectProbeStatsOnLinearlyTransformedKeys( + CollectBadMergeKeys(size), 300); + } + auto expected = LinearTransformExpectedStats(); + for (size_t size : sizes) { + auto& stat = stats[size]; + VerifyStats(size, expected, stat); + } +} + +TEST(Table, EraseCollision) { + BadTable t; + + // 1 2 3 + t.emplace(1); + t.emplace(2); + t.emplace(3); + EXPECT_THAT(*t.find(1), 1); + EXPECT_THAT(*t.find(2), 2); + EXPECT_THAT(*t.find(3), 3); + EXPECT_EQ(3, t.size()); + + // 1 DELETED 3 + t.erase(t.find(2)); + EXPECT_THAT(*t.find(1), 1); + EXPECT_TRUE(t.find(2) == t.end()); + EXPECT_THAT(*t.find(3), 3); + EXPECT_EQ(2, t.size()); + + // DELETED DELETED 3 + t.erase(t.find(1)); + EXPECT_TRUE(t.find(1) == t.end()); + EXPECT_TRUE(t.find(2) == t.end()); + EXPECT_THAT(*t.find(3), 3); + EXPECT_EQ(1, t.size()); + + // DELETED DELETED DELETED + t.erase(t.find(3)); + EXPECT_TRUE(t.find(1) == t.end()); + EXPECT_TRUE(t.find(2) == t.end()); + EXPECT_TRUE(t.find(3) == t.end()); + EXPECT_EQ(0, t.size()); +} + +TEST(Table, EraseInsertProbing) { + BadTable t(100); + + // 1 2 3 4 + t.emplace(1); + t.emplace(2); + t.emplace(3); + t.emplace(4); + + // 1 DELETED 3 DELETED + t.erase(t.find(2)); + t.erase(t.find(4)); + + // 1 10 3 11 12 + t.emplace(10); + t.emplace(11); + t.emplace(12); + + EXPECT_EQ(5, t.size()); + EXPECT_THAT(t, UnorderedElementsAre(1, 10, 3, 11, 12)); +} + +TEST(Table, Clear) { + IntTable t; + EXPECT_TRUE(t.find(0) == t.end()); + t.clear(); + EXPECT_TRUE(t.find(0) == t.end()); + auto res = t.emplace(0); + EXPECT_TRUE(res.second); + EXPECT_EQ(1, t.size()); + t.clear(); + EXPECT_EQ(0, t.size()); + EXPECT_TRUE(t.find(0) == t.end()); +} + +TEST(Table, Swap) { + IntTable t; + EXPECT_TRUE(t.find(0) == t.end()); + auto res = t.emplace(0); + EXPECT_TRUE(res.second); + EXPECT_EQ(1, t.size()); + IntTable u; + t.swap(u); + EXPECT_EQ(0, t.size()); + EXPECT_EQ(1, u.size()); + EXPECT_TRUE(t.find(0) == t.end()); + EXPECT_THAT(*u.find(0), 0); +} + +TEST(Table, Rehash) { + IntTable t; + EXPECT_TRUE(t.find(0) == t.end()); + t.emplace(0); + t.emplace(1); + EXPECT_EQ(2, t.size()); + t.rehash(128); + EXPECT_EQ(2, t.size()); + EXPECT_THAT(*t.find(0), 0); + EXPECT_THAT(*t.find(1), 1); +} + +TEST(Table, RehashDoesNotRehashWhenNotNecessary) { + IntTable t; + t.emplace(0); + t.emplace(1); + auto* p = &*t.find(0); + t.rehash(1); + EXPECT_EQ(p, &*t.find(0)); +} + +TEST(Table, RehashZeroDoesNotAllocateOnEmptyTable) { + IntTable t; + t.rehash(0); + EXPECT_EQ(0, t.bucket_count()); +} + +TEST(Table, RehashZeroDeallocatesEmptyTable) { + IntTable t; + t.emplace(0); + t.clear(); + EXPECT_NE(0, t.bucket_count()); + t.rehash(0); + EXPECT_EQ(0, t.bucket_count()); +} + +TEST(Table, RehashZeroForcesRehash) { + IntTable t; + t.emplace(0); + t.emplace(1); + auto* p = &*t.find(0); + t.rehash(0); + EXPECT_NE(p, &*t.find(0)); +} + +TEST(Table, ConstructFromInitList) { + using P = std::pair<std::string, std::string>; + struct Q { + operator P() const { return {}; } + }; + StringTable t = {P(), Q(), {}, {{}, {}}}; +} + +TEST(Table, CopyConstruct) { + IntTable t; + t.emplace(0); + EXPECT_EQ(1, t.size()); + { + IntTable u(t); + EXPECT_EQ(1, u.size()); + EXPECT_THAT(*u.find(0), 0); + } + { + IntTable u{t}; + EXPECT_EQ(1, u.size()); + EXPECT_THAT(*u.find(0), 0); + } + { + IntTable u = t; + EXPECT_EQ(1, u.size()); + EXPECT_THAT(*u.find(0), 0); + } +} + +TEST(Table, CopyConstructWithAlloc) { + StringTable t; + t.emplace("a", "b"); + EXPECT_EQ(1, t.size()); + StringTable u(t, Alloc<std::pair<std::string, std::string>>()); + EXPECT_EQ(1, u.size()); + EXPECT_THAT(*u.find("a"), Pair("a", "b")); +} + +struct ExplicitAllocIntTable + : raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>, + std::equal_to<int64_t>, Alloc<int64_t>> { + ExplicitAllocIntTable() {} +}; + +TEST(Table, AllocWithExplicitCtor) { + ExplicitAllocIntTable t; + EXPECT_EQ(0, t.size()); +} + +TEST(Table, MoveConstruct) { + { + StringTable t; + t.emplace("a", "b"); + EXPECT_EQ(1, t.size()); + + StringTable u(std::move(t)); + EXPECT_EQ(1, u.size()); + EXPECT_THAT(*u.find("a"), Pair("a", "b")); + } + { + StringTable t; + t.emplace("a", "b"); + EXPECT_EQ(1, t.size()); + + StringTable u{std::move(t)}; + EXPECT_EQ(1, u.size()); + EXPECT_THAT(*u.find("a"), Pair("a", "b")); + } + { + StringTable t; + t.emplace("a", "b"); + EXPECT_EQ(1, t.size()); + + StringTable u = std::move(t); + EXPECT_EQ(1, u.size()); + EXPECT_THAT(*u.find("a"), Pair("a", "b")); + } +} + +TEST(Table, MoveConstructWithAlloc) { + StringTable t; + t.emplace("a", "b"); + EXPECT_EQ(1, t.size()); + StringTable u(std::move(t), Alloc<std::pair<std::string, std::string>>()); + EXPECT_EQ(1, u.size()); + EXPECT_THAT(*u.find("a"), Pair("a", "b")); +} + +TEST(Table, CopyAssign) { + StringTable t; + t.emplace("a", "b"); + EXPECT_EQ(1, t.size()); + StringTable u; + u = t; + EXPECT_EQ(1, u.size()); + EXPECT_THAT(*u.find("a"), Pair("a", "b")); +} + +TEST(Table, CopySelfAssign) { + StringTable t; + t.emplace("a", "b"); + EXPECT_EQ(1, t.size()); + t = *&t; + EXPECT_EQ(1, t.size()); + EXPECT_THAT(*t.find("a"), Pair("a", "b")); +} + +TEST(Table, MoveAssign) { + StringTable t; + t.emplace("a", "b"); + EXPECT_EQ(1, t.size()); + StringTable u; + u = std::move(t); + EXPECT_EQ(1, u.size()); + EXPECT_THAT(*u.find("a"), Pair("a", "b")); +} + +TEST(Table, Equality) { + StringTable t; + std::vector<std::pair<std::string, std::string>> v = {{"a", "b"}, + {"aa", "bb"}}; + t.insert(std::begin(v), std::end(v)); + StringTable u = t; + EXPECT_EQ(u, t); +} + +TEST(Table, Equality2) { + StringTable t; + std::vector<std::pair<std::string, std::string>> v1 = {{"a", "b"}, + {"aa", "bb"}}; + t.insert(std::begin(v1), std::end(v1)); + StringTable u; + std::vector<std::pair<std::string, std::string>> v2 = {{"a", "a"}, + {"aa", "aa"}}; + u.insert(std::begin(v2), std::end(v2)); + EXPECT_NE(u, t); +} + +TEST(Table, Equality3) { + StringTable t; + std::vector<std::pair<std::string, std::string>> v1 = {{"b", "b"}, + {"bb", "bb"}}; + t.insert(std::begin(v1), std::end(v1)); + StringTable u; + std::vector<std::pair<std::string, std::string>> v2 = {{"a", "a"}, + {"aa", "aa"}}; + u.insert(std::begin(v2), std::end(v2)); + EXPECT_NE(u, t); +} + +TEST(Table, NumDeletedRegression) { + IntTable t; + t.emplace(0); + t.erase(t.find(0)); + // construct over a deleted slot. + t.emplace(0); + t.clear(); +} + +TEST(Table, FindFullDeletedRegression) { + IntTable t; + for (int i = 0; i < 1000; ++i) { + t.emplace(i); + t.erase(t.find(i)); + } + EXPECT_EQ(0, t.size()); +} + +TEST(Table, ReplacingDeletedSlotDoesNotRehash) { + size_t n; + { + // Compute n such that n is the maximum number of elements before rehash. + IntTable t; + t.emplace(0); + size_t c = t.bucket_count(); + for (n = 1; c == t.bucket_count(); ++n) t.emplace(n); + --n; + } + IntTable t; + t.rehash(n); + const size_t c = t.bucket_count(); + for (size_t i = 0; i != n; ++i) t.emplace(i); + EXPECT_EQ(c, t.bucket_count()) << "rehashing threshold = " << n; + t.erase(0); + t.emplace(0); + EXPECT_EQ(c, t.bucket_count()) << "rehashing threshold = " << n; +} + +TEST(Table, NoThrowMoveConstruct) { + ASSERT_TRUE( + std::is_nothrow_copy_constructible<absl::Hash<absl::string_view>>::value); + ASSERT_TRUE(std::is_nothrow_copy_constructible< + std::equal_to<absl::string_view>>::value); + ASSERT_TRUE(std::is_nothrow_copy_constructible<std::allocator<int>>::value); + EXPECT_TRUE(std::is_nothrow_move_constructible<StringTable>::value); +} + +TEST(Table, NoThrowMoveAssign) { + ASSERT_TRUE( + std::is_nothrow_move_assignable<absl::Hash<absl::string_view>>::value); + ASSERT_TRUE( + std::is_nothrow_move_assignable<std::equal_to<absl::string_view>>::value); + ASSERT_TRUE(std::is_nothrow_move_assignable<std::allocator<int>>::value); + ASSERT_TRUE( + absl::allocator_traits<std::allocator<int>>::is_always_equal::value); + EXPECT_TRUE(std::is_nothrow_move_assignable<StringTable>::value); +} + +TEST(Table, NoThrowSwappable) { + ASSERT_TRUE( + container_internal::IsNoThrowSwappable<absl::Hash<absl::string_view>>()); + ASSERT_TRUE(container_internal::IsNoThrowSwappable< + std::equal_to<absl::string_view>>()); + ASSERT_TRUE(container_internal::IsNoThrowSwappable<std::allocator<int>>()); + EXPECT_TRUE(container_internal::IsNoThrowSwappable<StringTable>()); +} + +TEST(Table, HeterogeneousLookup) { + struct Hash { + size_t operator()(int64_t i) const { return i; } + size_t operator()(double i) const { + ADD_FAILURE(); + return i; + } + }; + struct Eq { + bool operator()(int64_t a, int64_t b) const { return a == b; } + bool operator()(double a, int64_t b) const { + ADD_FAILURE(); + return a == b; + } + bool operator()(int64_t a, double b) const { + ADD_FAILURE(); + return a == b; + } + bool operator()(double a, double b) const { + ADD_FAILURE(); + return a == b; + } + }; + + struct THash { + using is_transparent = void; + size_t operator()(int64_t i) const { return i; } + size_t operator()(double i) const { return i; } + }; + struct TEq { + using is_transparent = void; + bool operator()(int64_t a, int64_t b) const { return a == b; } + bool operator()(double a, int64_t b) const { return a == b; } + bool operator()(int64_t a, double b) const { return a == b; } + bool operator()(double a, double b) const { return a == b; } + }; + + raw_hash_set<IntPolicy, Hash, Eq, Alloc<int64_t>> s{0, 1, 2}; + // It will convert to int64_t before the query. + EXPECT_EQ(1, *s.find(double{1.1})); + + raw_hash_set<IntPolicy, THash, TEq, Alloc<int64_t>> ts{0, 1, 2}; + // It will try to use the double, and fail to find the object. + EXPECT_TRUE(ts.find(1.1) == ts.end()); +} + +template <class Table> +using CallFind = decltype(std::declval<Table&>().find(17)); + +template <class Table> +using CallErase = decltype(std::declval<Table&>().erase(17)); + +template <class Table> +using CallExtract = decltype(std::declval<Table&>().extract(17)); + +template <class Table> +using CallPrefetch = decltype(std::declval<Table&>().prefetch(17)); + +template <class Table> +using CallCount = decltype(std::declval<Table&>().count(17)); + +template <template <typename> class C, class Table, class = void> +struct VerifyResultOf : std::false_type {}; + +template <template <typename> class C, class Table> +struct VerifyResultOf<C, Table, absl::void_t<C<Table>>> : std::true_type {}; + +TEST(Table, HeterogeneousLookupOverloads) { + using NonTransparentTable = + raw_hash_set<StringPolicy, absl::Hash<absl::string_view>, + std::equal_to<absl::string_view>, std::allocator<int>>; + + EXPECT_FALSE((VerifyResultOf<CallFind, NonTransparentTable>())); + EXPECT_FALSE((VerifyResultOf<CallErase, NonTransparentTable>())); + EXPECT_FALSE((VerifyResultOf<CallExtract, NonTransparentTable>())); + EXPECT_FALSE((VerifyResultOf<CallPrefetch, NonTransparentTable>())); + EXPECT_FALSE((VerifyResultOf<CallCount, NonTransparentTable>())); + + using TransparentTable = raw_hash_set< + StringPolicy, + absl::container_internal::hash_default_hash<absl::string_view>, + absl::container_internal::hash_default_eq<absl::string_view>, + std::allocator<int>>; + + EXPECT_TRUE((VerifyResultOf<CallFind, TransparentTable>())); + EXPECT_TRUE((VerifyResultOf<CallErase, TransparentTable>())); + EXPECT_TRUE((VerifyResultOf<CallExtract, TransparentTable>())); + EXPECT_TRUE((VerifyResultOf<CallPrefetch, TransparentTable>())); + EXPECT_TRUE((VerifyResultOf<CallCount, TransparentTable>())); +} + +// TODO(alkis): Expand iterator tests. +TEST(Iterator, IsDefaultConstructible) { + StringTable::iterator i; + EXPECT_TRUE(i == StringTable::iterator()); +} + +TEST(ConstIterator, IsDefaultConstructible) { + StringTable::const_iterator i; + EXPECT_TRUE(i == StringTable::const_iterator()); +} + +TEST(Iterator, ConvertsToConstIterator) { + StringTable::iterator i; + EXPECT_TRUE(i == StringTable::const_iterator()); +} + +TEST(Iterator, Iterates) { + IntTable t; + for (size_t i = 3; i != 6; ++i) EXPECT_TRUE(t.emplace(i).second); + EXPECT_THAT(t, UnorderedElementsAre(3, 4, 5)); +} + +TEST(Table, Merge) { + StringTable t1, t2; + t1.emplace("0", "-0"); + t1.emplace("1", "-1"); + t2.emplace("0", "~0"); + t2.emplace("2", "~2"); + + EXPECT_THAT(t1, UnorderedElementsAre(Pair("0", "-0"), Pair("1", "-1"))); + EXPECT_THAT(t2, UnorderedElementsAre(Pair("0", "~0"), Pair("2", "~2"))); + + t1.merge(t2); + EXPECT_THAT(t1, UnorderedElementsAre(Pair("0", "-0"), Pair("1", "-1"), + Pair("2", "~2"))); + EXPECT_THAT(t2, UnorderedElementsAre(Pair("0", "~0"))); +} + +TEST(Nodes, EmptyNodeType) { + using node_type = StringTable::node_type; + node_type n; + EXPECT_FALSE(n); + EXPECT_TRUE(n.empty()); + + EXPECT_TRUE((std::is_same<node_type::allocator_type, + StringTable::allocator_type>::value)); +} + +TEST(Nodes, ExtractInsert) { + constexpr char k0[] = "Very long string zero."; + constexpr char k1[] = "Very long string one."; + constexpr char k2[] = "Very long string two."; + StringTable t = {{k0, ""}, {k1, ""}, {k2, ""}}; + EXPECT_THAT(t, + UnorderedElementsAre(Pair(k0, ""), Pair(k1, ""), Pair(k2, ""))); + + auto node = t.extract(k0); + EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, ""))); + EXPECT_TRUE(node); + EXPECT_FALSE(node.empty()); + + StringTable t2; + StringTable::insert_return_type res = t2.insert(std::move(node)); + EXPECT_TRUE(res.inserted); + EXPECT_THAT(*res.position, Pair(k0, "")); + EXPECT_FALSE(res.node); + EXPECT_THAT(t2, UnorderedElementsAre(Pair(k0, ""))); + + // Not there. + EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, ""))); + node = t.extract("Not there!"); + EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, ""))); + EXPECT_FALSE(node); + + // Inserting nothing. + res = t2.insert(std::move(node)); + EXPECT_FALSE(res.inserted); + EXPECT_EQ(res.position, t2.end()); + EXPECT_FALSE(res.node); + EXPECT_THAT(t2, UnorderedElementsAre(Pair(k0, ""))); + + t.emplace(k0, "1"); + node = t.extract(k0); + + // Insert duplicate. + res = t2.insert(std::move(node)); + EXPECT_FALSE(res.inserted); + EXPECT_THAT(*res.position, Pair(k0, "")); + EXPECT_TRUE(res.node); + EXPECT_FALSE(node); +} + +TEST(Nodes, HintInsert) { + IntTable t = {1, 2, 3}; + auto node = t.extract(1); + EXPECT_THAT(t, UnorderedElementsAre(2, 3)); + auto it = t.insert(t.begin(), std::move(node)); + EXPECT_THAT(t, UnorderedElementsAre(1, 2, 3)); + EXPECT_EQ(*it, 1); + EXPECT_FALSE(node); + + node = t.extract(2); + EXPECT_THAT(t, UnorderedElementsAre(1, 3)); + // reinsert 2 to make the next insert fail. + t.insert(2); + EXPECT_THAT(t, UnorderedElementsAre(1, 2, 3)); + it = t.insert(t.begin(), std::move(node)); + EXPECT_EQ(*it, 2); + // The node was not emptied by the insert call. + EXPECT_TRUE(node); +} + +IntTable MakeSimpleTable(size_t size) { + IntTable t; + while (t.size() < size) t.insert(t.size()); + return t; +} + +std::vector<int> OrderOfIteration(const IntTable& t) { + return {t.begin(), t.end()}; +} + +// These IterationOrderChanges tests depend on non-deterministic behavior. +// We are injecting non-determinism from the pointer of the table, but do so in +// a way that only the page matters. We have to retry enough times to make sure +// we are touching different memory pages to cause the ordering to change. +// We also need to keep the old tables around to avoid getting the same memory +// blocks over and over. +TEST(Table, IterationOrderChangesByInstance) { + for (size_t size : {2, 6, 12, 20}) { + const auto reference_table = MakeSimpleTable(size); + const auto reference = OrderOfIteration(reference_table); + + std::vector<IntTable> tables; + bool found_difference = false; + for (int i = 0; !found_difference && i < 5000; ++i) { + tables.push_back(MakeSimpleTable(size)); + found_difference = OrderOfIteration(tables.back()) != reference; + } + if (!found_difference) { + FAIL() + << "Iteration order remained the same across many attempts with size " + << size; + } + } +} + +TEST(Table, IterationOrderChangesOnRehash) { + std::vector<IntTable> garbage; + for (int i = 0; i < 5000; ++i) { + auto t = MakeSimpleTable(20); + const auto reference = OrderOfIteration(t); + // Force rehash to the same size. + t.rehash(0); + auto trial = OrderOfIteration(t); + if (trial != reference) { + // We are done. + return; + } + garbage.push_back(std::move(t)); + } + FAIL() << "Iteration order remained the same across many attempts."; +} + +// Verify that pointers are invalidated as soon as a second element is inserted. +// This prevents dependency on pointer stability on small tables. +TEST(Table, UnstablePointers) { + IntTable table; + + const auto addr = [&](int i) { + return reinterpret_cast<uintptr_t>(&*table.find(i)); + }; + + table.insert(0); + const uintptr_t old_ptr = addr(0); + + // This causes a rehash. + table.insert(1); + + EXPECT_NE(old_ptr, addr(0)); +} + +// Confirm that we assert if we try to erase() end(). +TEST(TableDeathTest, EraseOfEndAsserts) { + // Use an assert with side-effects to figure out if they are actually enabled. + bool assert_enabled = false; + assert([&]() { + assert_enabled = true; + return true; + }()); + if (!assert_enabled) return; + + IntTable t; + // Extra simple "regexp" as regexp support is highly varied across platforms. + constexpr char kDeathMsg[] = "Invalid operation on iterator"; + EXPECT_DEATH_IF_SUPPORTED(t.erase(t.end()), kDeathMsg); +} + +#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) +TEST(RawHashSamplerTest, Sample) { + // Enable the feature even if the prod default is off. + SetHashtablezEnabled(true); + SetHashtablezSampleParameter(100); + + auto& sampler = HashtablezSampler::Global(); + size_t start_size = 0; + start_size += sampler.Iterate([&](const HashtablezInfo&) { ++start_size; }); + + std::vector<IntTable> tables; + for (int i = 0; i < 1000000; ++i) { + tables.emplace_back(); + tables.back().insert(1); + } + size_t end_size = 0; + end_size += sampler.Iterate([&](const HashtablezInfo&) { ++end_size; }); + + EXPECT_NEAR((end_size - start_size) / static_cast<double>(tables.size()), + 0.01, 0.005); +} +#endif // ABSL_INTERNAL_HASHTABLEZ_SAMPLE + +TEST(RawHashSamplerTest, DoNotSampleCustomAllocators) { + // Enable the feature even if the prod default is off. + SetHashtablezEnabled(true); + SetHashtablezSampleParameter(100); + + auto& sampler = HashtablezSampler::Global(); + size_t start_size = 0; + start_size += sampler.Iterate([&](const HashtablezInfo&) { ++start_size; }); + + std::vector<CustomAllocIntTable> tables; + for (int i = 0; i < 1000000; ++i) { + tables.emplace_back(); + tables.back().insert(1); + } + size_t end_size = 0; + end_size += sampler.Iterate([&](const HashtablezInfo&) { ++end_size; }); + + EXPECT_NEAR((end_size - start_size) / static_cast<double>(tables.size()), + 0.00, 0.001); +} + +#ifdef ABSL_HAVE_ADDRESS_SANITIZER +TEST(Sanitizer, PoisoningUnused) { + IntTable t; + t.reserve(5); + // Insert something to force an allocation. + int64_t& v1 = *t.insert(0).first; + + // Make sure there is something to test. + ASSERT_GT(t.capacity(), 1); + + int64_t* slots = RawHashSetTestOnlyAccess::GetSlots(t); + for (size_t i = 0; i < t.capacity(); ++i) { + EXPECT_EQ(slots + i != &v1, __asan_address_is_poisoned(slots + i)); + } +} + +TEST(Sanitizer, PoisoningOnErase) { + IntTable t; + int64_t& v = *t.insert(0).first; + + EXPECT_FALSE(__asan_address_is_poisoned(&v)); + t.erase(0); + EXPECT_TRUE(__asan_address_is_poisoned(&v)); +} +#endif // ABSL_HAVE_ADDRESS_SANITIZER + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/test_instance_tracker.cc b/third_party/abseil_cpp/absl/container/internal/test_instance_tracker.cc new file mode 100644 index 000000000000..f9947f0475d2 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/test_instance_tracker.cc @@ -0,0 +1,29 @@ +// Copyright 2017 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/test_instance_tracker.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace test_internal { +int BaseCountedInstance::num_instances_ = 0; +int BaseCountedInstance::num_live_instances_ = 0; +int BaseCountedInstance::num_moves_ = 0; +int BaseCountedInstance::num_copies_ = 0; +int BaseCountedInstance::num_swaps_ = 0; +int BaseCountedInstance::num_comparisons_ = 0; + +} // namespace test_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/test_instance_tracker.h b/third_party/abseil_cpp/absl/container/internal/test_instance_tracker.h new file mode 100644 index 000000000000..5ff6fd714e2b --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/test_instance_tracker.h @@ -0,0 +1,274 @@ +// Copyright 2017 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_TEST_INSTANCE_TRACKER_H_ +#define ABSL_CONTAINER_INTERNAL_TEST_INSTANCE_TRACKER_H_ + +#include <cstdlib> +#include <ostream> + +#include "absl/types/compare.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace test_internal { + +// A type that counts number of occurrences of the type, the live occurrences of +// the type, as well as the number of copies, moves, swaps, and comparisons that +// have occurred on the type. This is used as a base class for the copyable, +// copyable+movable, and movable types below that are used in actual tests. Use +// InstanceTracker in tests to track the number of instances. +class BaseCountedInstance { + public: + explicit BaseCountedInstance(int x) : value_(x) { + ++num_instances_; + ++num_live_instances_; + } + BaseCountedInstance(const BaseCountedInstance& x) + : value_(x.value_), is_live_(x.is_live_) { + ++num_instances_; + if (is_live_) ++num_live_instances_; + ++num_copies_; + } + BaseCountedInstance(BaseCountedInstance&& x) + : value_(x.value_), is_live_(x.is_live_) { + x.is_live_ = false; + ++num_instances_; + ++num_moves_; + } + ~BaseCountedInstance() { + --num_instances_; + if (is_live_) --num_live_instances_; + } + + BaseCountedInstance& operator=(const BaseCountedInstance& x) { + value_ = x.value_; + if (is_live_) --num_live_instances_; + is_live_ = x.is_live_; + if (is_live_) ++num_live_instances_; + ++num_copies_; + return *this; + } + BaseCountedInstance& operator=(BaseCountedInstance&& x) { + value_ = x.value_; + if (is_live_) --num_live_instances_; + is_live_ = x.is_live_; + x.is_live_ = false; + ++num_moves_; + return *this; + } + + bool operator==(const BaseCountedInstance& x) const { + ++num_comparisons_; + return value_ == x.value_; + } + + bool operator!=(const BaseCountedInstance& x) const { + ++num_comparisons_; + return value_ != x.value_; + } + + bool operator<(const BaseCountedInstance& x) const { + ++num_comparisons_; + return value_ < x.value_; + } + + bool operator>(const BaseCountedInstance& x) const { + ++num_comparisons_; + return value_ > x.value_; + } + + bool operator<=(const BaseCountedInstance& x) const { + ++num_comparisons_; + return value_ <= x.value_; + } + + bool operator>=(const BaseCountedInstance& x) const { + ++num_comparisons_; + return value_ >= x.value_; + } + + absl::weak_ordering compare(const BaseCountedInstance& x) const { + ++num_comparisons_; + return value_ < x.value_ + ? absl::weak_ordering::less + : value_ == x.value_ ? absl::weak_ordering::equivalent + : absl::weak_ordering::greater; + } + + int value() const { + if (!is_live_) std::abort(); + return value_; + } + + friend std::ostream& operator<<(std::ostream& o, + const BaseCountedInstance& v) { + return o << "[value:" << v.value() << "]"; + } + + // Implementation of efficient swap() that counts swaps. + static void SwapImpl( + BaseCountedInstance& lhs, // NOLINT(runtime/references) + BaseCountedInstance& rhs) { // NOLINT(runtime/references) + using std::swap; + swap(lhs.value_, rhs.value_); + swap(lhs.is_live_, rhs.is_live_); + ++BaseCountedInstance::num_swaps_; + } + + private: + friend class InstanceTracker; + + int value_; + + // Indicates if the value is live, ie it hasn't been moved away from. + bool is_live_ = true; + + // Number of instances. + static int num_instances_; + + // Number of live instances (those that have not been moved away from.) + static int num_live_instances_; + + // Number of times that BaseCountedInstance objects were moved. + static int num_moves_; + + // Number of times that BaseCountedInstance objects were copied. + static int num_copies_; + + // Number of times that BaseCountedInstance objects were swapped. + static int num_swaps_; + + // Number of times that BaseCountedInstance objects were compared. + static int num_comparisons_; +}; + +// Helper to track the BaseCountedInstance instance counters. Expects that the +// number of instances and live_instances are the same when it is constructed +// and when it is destructed. +class InstanceTracker { + public: + InstanceTracker() + : start_instances_(BaseCountedInstance::num_instances_), + start_live_instances_(BaseCountedInstance::num_live_instances_) { + ResetCopiesMovesSwaps(); + } + ~InstanceTracker() { + if (instances() != 0) std::abort(); + if (live_instances() != 0) std::abort(); + } + + // Returns the number of BaseCountedInstance instances both containing valid + // values and those moved away from compared to when the InstanceTracker was + // constructed + int instances() const { + return BaseCountedInstance::num_instances_ - start_instances_; + } + + // Returns the number of live BaseCountedInstance instances compared to when + // the InstanceTracker was constructed + int live_instances() const { + return BaseCountedInstance::num_live_instances_ - start_live_instances_; + } + + // Returns the number of moves on BaseCountedInstance objects since + // construction or since the last call to ResetCopiesMovesSwaps(). + int moves() const { return BaseCountedInstance::num_moves_ - start_moves_; } + + // Returns the number of copies on BaseCountedInstance objects since + // construction or the last call to ResetCopiesMovesSwaps(). + int copies() const { + return BaseCountedInstance::num_copies_ - start_copies_; + } + + // Returns the number of swaps on BaseCountedInstance objects since + // construction or the last call to ResetCopiesMovesSwaps(). + int swaps() const { return BaseCountedInstance::num_swaps_ - start_swaps_; } + + // Returns the number of comparisons on BaseCountedInstance objects since + // construction or the last call to ResetCopiesMovesSwaps(). + int comparisons() const { + return BaseCountedInstance::num_comparisons_ - start_comparisons_; + } + + // Resets the base values for moves, copies, comparisons, and swaps to the + // current values, so that subsequent Get*() calls for moves, copies, + // comparisons, and swaps will compare to the situation at the point of this + // call. + void ResetCopiesMovesSwaps() { + start_moves_ = BaseCountedInstance::num_moves_; + start_copies_ = BaseCountedInstance::num_copies_; + start_swaps_ = BaseCountedInstance::num_swaps_; + start_comparisons_ = BaseCountedInstance::num_comparisons_; + } + + private: + int start_instances_; + int start_live_instances_; + int start_moves_; + int start_copies_; + int start_swaps_; + int start_comparisons_; +}; + +// Copyable, not movable. +class CopyableOnlyInstance : public BaseCountedInstance { + public: + explicit CopyableOnlyInstance(int x) : BaseCountedInstance(x) {} + CopyableOnlyInstance(const CopyableOnlyInstance& rhs) = default; + CopyableOnlyInstance& operator=(const CopyableOnlyInstance& rhs) = default; + + friend void swap(CopyableOnlyInstance& lhs, CopyableOnlyInstance& rhs) { + BaseCountedInstance::SwapImpl(lhs, rhs); + } + + static bool supports_move() { return false; } +}; + +// Copyable and movable. +class CopyableMovableInstance : public BaseCountedInstance { + public: + explicit CopyableMovableInstance(int x) : BaseCountedInstance(x) {} + CopyableMovableInstance(const CopyableMovableInstance& rhs) = default; + CopyableMovableInstance(CopyableMovableInstance&& rhs) = default; + CopyableMovableInstance& operator=(const CopyableMovableInstance& rhs) = + default; + CopyableMovableInstance& operator=(CopyableMovableInstance&& rhs) = default; + + friend void swap(CopyableMovableInstance& lhs, CopyableMovableInstance& rhs) { + BaseCountedInstance::SwapImpl(lhs, rhs); + } + + static bool supports_move() { return true; } +}; + +// Only movable, not default-constructible. +class MovableOnlyInstance : public BaseCountedInstance { + public: + explicit MovableOnlyInstance(int x) : BaseCountedInstance(x) {} + MovableOnlyInstance(MovableOnlyInstance&& other) = default; + MovableOnlyInstance& operator=(MovableOnlyInstance&& other) = default; + + friend void swap(MovableOnlyInstance& lhs, MovableOnlyInstance& rhs) { + BaseCountedInstance::SwapImpl(lhs, rhs); + } + + static bool supports_move() { return true; } +}; + +} // namespace test_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_TEST_INSTANCE_TRACKER_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/test_instance_tracker_test.cc b/third_party/abseil_cpp/absl/container/internal/test_instance_tracker_test.cc new file mode 100644 index 000000000000..1c6a4fa7150d --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/test_instance_tracker_test.cc @@ -0,0 +1,184 @@ +// Copyright 2017 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/test_instance_tracker.h" + +#include "gtest/gtest.h" + +namespace { + +using absl::test_internal::CopyableMovableInstance; +using absl::test_internal::CopyableOnlyInstance; +using absl::test_internal::InstanceTracker; +using absl::test_internal::MovableOnlyInstance; + +TEST(TestInstanceTracker, CopyableMovable) { + InstanceTracker tracker; + CopyableMovableInstance src(1); + EXPECT_EQ(1, src.value()) << src; + CopyableMovableInstance copy(src); + CopyableMovableInstance move(std::move(src)); + EXPECT_EQ(1, tracker.copies()); + EXPECT_EQ(1, tracker.moves()); + EXPECT_EQ(0, tracker.swaps()); + EXPECT_EQ(3, tracker.instances()); + EXPECT_EQ(2, tracker.live_instances()); + tracker.ResetCopiesMovesSwaps(); + + CopyableMovableInstance copy_assign(1); + copy_assign = copy; + CopyableMovableInstance move_assign(1); + move_assign = std::move(move); + EXPECT_EQ(1, tracker.copies()); + EXPECT_EQ(1, tracker.moves()); + EXPECT_EQ(0, tracker.swaps()); + EXPECT_EQ(5, tracker.instances()); + EXPECT_EQ(3, tracker.live_instances()); + tracker.ResetCopiesMovesSwaps(); + + { + using std::swap; + swap(move_assign, copy); + swap(copy, move_assign); + EXPECT_EQ(2, tracker.swaps()); + EXPECT_EQ(0, tracker.copies()); + EXPECT_EQ(0, tracker.moves()); + EXPECT_EQ(5, tracker.instances()); + EXPECT_EQ(3, tracker.live_instances()); + } +} + +TEST(TestInstanceTracker, CopyableOnly) { + InstanceTracker tracker; + CopyableOnlyInstance src(1); + EXPECT_EQ(1, src.value()) << src; + CopyableOnlyInstance copy(src); + CopyableOnlyInstance copy2(std::move(src)); // NOLINT + EXPECT_EQ(2, tracker.copies()); + EXPECT_EQ(0, tracker.moves()); + EXPECT_EQ(3, tracker.instances()); + EXPECT_EQ(3, tracker.live_instances()); + tracker.ResetCopiesMovesSwaps(); + + CopyableOnlyInstance copy_assign(1); + copy_assign = copy; + CopyableOnlyInstance copy_assign2(1); + copy_assign2 = std::move(copy2); // NOLINT + EXPECT_EQ(2, tracker.copies()); + EXPECT_EQ(0, tracker.moves()); + EXPECT_EQ(5, tracker.instances()); + EXPECT_EQ(5, tracker.live_instances()); + tracker.ResetCopiesMovesSwaps(); + + { + using std::swap; + swap(src, copy); + swap(copy, src); + EXPECT_EQ(2, tracker.swaps()); + EXPECT_EQ(0, tracker.copies()); + EXPECT_EQ(0, tracker.moves()); + EXPECT_EQ(5, tracker.instances()); + EXPECT_EQ(5, tracker.live_instances()); + } +} + +TEST(TestInstanceTracker, MovableOnly) { + InstanceTracker tracker; + MovableOnlyInstance src(1); + EXPECT_EQ(1, src.value()) << src; + MovableOnlyInstance move(std::move(src)); + MovableOnlyInstance move_assign(2); + move_assign = std::move(move); + EXPECT_EQ(3, tracker.instances()); + EXPECT_EQ(1, tracker.live_instances()); + EXPECT_EQ(2, tracker.moves()); + EXPECT_EQ(0, tracker.copies()); + tracker.ResetCopiesMovesSwaps(); + + { + using std::swap; + MovableOnlyInstance other(2); + swap(move_assign, other); + swap(other, move_assign); + EXPECT_EQ(2, tracker.swaps()); + EXPECT_EQ(0, tracker.copies()); + EXPECT_EQ(0, tracker.moves()); + EXPECT_EQ(4, tracker.instances()); + EXPECT_EQ(2, tracker.live_instances()); + } +} + +TEST(TestInstanceTracker, ExistingInstances) { + CopyableMovableInstance uncounted_instance(1); + CopyableMovableInstance uncounted_live_instance( + std::move(uncounted_instance)); + InstanceTracker tracker; + EXPECT_EQ(0, tracker.instances()); + EXPECT_EQ(0, tracker.live_instances()); + EXPECT_EQ(0, tracker.copies()); + { + CopyableMovableInstance instance1(1); + EXPECT_EQ(1, tracker.instances()); + EXPECT_EQ(1, tracker.live_instances()); + EXPECT_EQ(0, tracker.copies()); + EXPECT_EQ(0, tracker.moves()); + { + InstanceTracker tracker2; + CopyableMovableInstance instance2(instance1); + CopyableMovableInstance instance3(std::move(instance2)); + EXPECT_EQ(3, tracker.instances()); + EXPECT_EQ(2, tracker.live_instances()); + EXPECT_EQ(1, tracker.copies()); + EXPECT_EQ(1, tracker.moves()); + EXPECT_EQ(2, tracker2.instances()); + EXPECT_EQ(1, tracker2.live_instances()); + EXPECT_EQ(1, tracker2.copies()); + EXPECT_EQ(1, tracker2.moves()); + } + EXPECT_EQ(1, tracker.instances()); + EXPECT_EQ(1, tracker.live_instances()); + EXPECT_EQ(1, tracker.copies()); + EXPECT_EQ(1, tracker.moves()); + } + EXPECT_EQ(0, tracker.instances()); + EXPECT_EQ(0, tracker.live_instances()); + EXPECT_EQ(1, tracker.copies()); + EXPECT_EQ(1, tracker.moves()); +} + +TEST(TestInstanceTracker, Comparisons) { + InstanceTracker tracker; + MovableOnlyInstance one(1), two(2); + + EXPECT_EQ(0, tracker.comparisons()); + EXPECT_FALSE(one == two); + EXPECT_EQ(1, tracker.comparisons()); + EXPECT_TRUE(one != two); + EXPECT_EQ(2, tracker.comparisons()); + EXPECT_TRUE(one < two); + EXPECT_EQ(3, tracker.comparisons()); + EXPECT_FALSE(one > two); + EXPECT_EQ(4, tracker.comparisons()); + EXPECT_TRUE(one <= two); + EXPECT_EQ(5, tracker.comparisons()); + EXPECT_FALSE(one >= two); + EXPECT_EQ(6, tracker.comparisons()); + EXPECT_TRUE(one.compare(two) < 0); // NOLINT + EXPECT_EQ(7, tracker.comparisons()); + + tracker.ResetCopiesMovesSwaps(); + EXPECT_EQ(0, tracker.comparisons()); +} + +} // namespace diff --git a/third_party/abseil_cpp/absl/container/internal/tracked.h b/third_party/abseil_cpp/absl/container/internal/tracked.h new file mode 100644 index 000000000000..29f5829f7199 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/tracked.h @@ -0,0 +1,83 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_TRACKED_H_ +#define ABSL_CONTAINER_INTERNAL_TRACKED_H_ + +#include <stddef.h> + +#include <memory> +#include <utility> + +#include "absl/base/config.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +// A class that tracks its copies and moves so that it can be queried in tests. +template <class T> +class Tracked { + public: + Tracked() {} + // NOLINTNEXTLINE(runtime/explicit) + Tracked(const T& val) : val_(val) {} + Tracked(const Tracked& that) + : val_(that.val_), + num_moves_(that.num_moves_), + num_copies_(that.num_copies_) { + ++(*num_copies_); + } + Tracked(Tracked&& that) + : val_(std::move(that.val_)), + num_moves_(std::move(that.num_moves_)), + num_copies_(std::move(that.num_copies_)) { + ++(*num_moves_); + } + Tracked& operator=(const Tracked& that) { + val_ = that.val_; + num_moves_ = that.num_moves_; + num_copies_ = that.num_copies_; + ++(*num_copies_); + } + Tracked& operator=(Tracked&& that) { + val_ = std::move(that.val_); + num_moves_ = std::move(that.num_moves_); + num_copies_ = std::move(that.num_copies_); + ++(*num_moves_); + } + + const T& val() const { return val_; } + + friend bool operator==(const Tracked& a, const Tracked& b) { + return a.val_ == b.val_; + } + friend bool operator!=(const Tracked& a, const Tracked& b) { + return !(a == b); + } + + size_t num_copies() { return *num_copies_; } + size_t num_moves() { return *num_moves_; } + + private: + T val_; + std::shared_ptr<size_t> num_moves_ = std::make_shared<size_t>(0); + std::shared_ptr<size_t> num_copies_ = std::make_shared<size_t>(0); +}; + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_TRACKED_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/unordered_map_constructor_test.h b/third_party/abseil_cpp/absl/container/internal/unordered_map_constructor_test.h new file mode 100644 index 000000000000..76ee95e6abc5 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/unordered_map_constructor_test.h @@ -0,0 +1,489 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_ +#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_ + +#include <algorithm> +#include <vector> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/container/internal/hash_generator_testing.h" +#include "absl/container/internal/hash_policy_testing.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <class UnordMap> +class ConstructorTest : public ::testing::Test {}; + +TYPED_TEST_SUITE_P(ConstructorTest); + +TYPED_TEST_P(ConstructorTest, NoArgs) { + TypeParam m; + EXPECT_TRUE(m.empty()); + EXPECT_THAT(m, ::testing::UnorderedElementsAre()); +} + +TYPED_TEST_P(ConstructorTest, BucketCount) { + TypeParam m(123); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(m, ::testing::UnorderedElementsAre()); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, BucketCountHash) { + using H = typename TypeParam::hasher; + H hasher; + TypeParam m(123, hasher); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(m, ::testing::UnorderedElementsAre()); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, BucketCountHashEqual) { + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + H hasher; + E equal; + TypeParam m(123, hasher, equal); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.key_eq(), equal); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(m, ::testing::UnorderedElementsAre()); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, BucketCountHashEqualAlloc) { + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + TypeParam m(123, hasher, equal, alloc); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.key_eq(), equal); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(m, ::testing::UnorderedElementsAre()); + EXPECT_GE(m.bucket_count(), 123); +} + +template <typename T> +struct is_std_unordered_map : std::false_type {}; + +template <typename... T> +struct is_std_unordered_map<std::unordered_map<T...>> : std::true_type {}; + +#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17) +using has_cxx14_std_apis = std::true_type; +#else +using has_cxx14_std_apis = std::false_type; +#endif + +template <typename T> +using expect_cxx14_apis = + absl::disjunction<absl::negation<is_std_unordered_map<T>>, + has_cxx14_std_apis>; + +template <typename TypeParam> +void BucketCountAllocTest(std::false_type) {} + +template <typename TypeParam> +void BucketCountAllocTest(std::true_type) { + using A = typename TypeParam::allocator_type; + A alloc(0); + TypeParam m(123, alloc); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(m, ::testing::UnorderedElementsAre()); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, BucketCountAlloc) { + BucketCountAllocTest<TypeParam>(expect_cxx14_apis<TypeParam>()); +} + +template <typename TypeParam> +void BucketCountHashAllocTest(std::false_type) {} + +template <typename TypeParam> +void BucketCountHashAllocTest(std::true_type) { + using H = typename TypeParam::hasher; + using A = typename TypeParam::allocator_type; + H hasher; + A alloc(0); + TypeParam m(123, hasher, alloc); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(m, ::testing::UnorderedElementsAre()); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, BucketCountHashAlloc) { + BucketCountHashAllocTest<TypeParam>(expect_cxx14_apis<TypeParam>()); +} + +#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS +using has_alloc_std_constructors = std::true_type; +#else +using has_alloc_std_constructors = std::false_type; +#endif + +template <typename T> +using expect_alloc_constructors = + absl::disjunction<absl::negation<is_std_unordered_map<T>>, + has_alloc_std_constructors>; + +template <typename TypeParam> +void AllocTest(std::false_type) {} + +template <typename TypeParam> +void AllocTest(std::true_type) { + using A = typename TypeParam::allocator_type; + A alloc(0); + TypeParam m(alloc); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(m, ::testing::UnorderedElementsAre()); +} + +TYPED_TEST_P(ConstructorTest, Alloc) { + AllocTest<TypeParam>(expect_alloc_constructors<TypeParam>()); +} + +TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashEqualAlloc) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m(values.begin(), values.end(), 123, hasher, equal, alloc); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.key_eq(), equal); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_GE(m.bucket_count(), 123); +} + +template <typename TypeParam> +void InputIteratorBucketAllocTest(std::false_type) {} + +template <typename TypeParam> +void InputIteratorBucketAllocTest(std::true_type) { + using T = hash_internal::GeneratedType<TypeParam>; + using A = typename TypeParam::allocator_type; + A alloc(0); + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m(values.begin(), values.end(), 123, alloc); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, InputIteratorBucketAlloc) { + InputIteratorBucketAllocTest<TypeParam>(expect_cxx14_apis<TypeParam>()); +} + +template <typename TypeParam> +void InputIteratorBucketHashAllocTest(std::false_type) {} + +template <typename TypeParam> +void InputIteratorBucketHashAllocTest(std::true_type) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using A = typename TypeParam::allocator_type; + H hasher; + A alloc(0); + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m(values.begin(), values.end(), 123, hasher, alloc); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashAlloc) { + InputIteratorBucketHashAllocTest<TypeParam>(expect_cxx14_apis<TypeParam>()); +} + +TYPED_TEST_P(ConstructorTest, CopyConstructor) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + TypeParam m(123, hasher, equal, alloc); + for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); + TypeParam n(m); + EXPECT_EQ(m.hash_function(), n.hash_function()); + EXPECT_EQ(m.key_eq(), n.key_eq()); + EXPECT_EQ(m.get_allocator(), n.get_allocator()); + EXPECT_EQ(m, n); +} + +template <typename TypeParam> +void CopyConstructorAllocTest(std::false_type) {} + +template <typename TypeParam> +void CopyConstructorAllocTest(std::true_type) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + TypeParam m(123, hasher, equal, alloc); + for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); + TypeParam n(m, A(11)); + EXPECT_EQ(m.hash_function(), n.hash_function()); + EXPECT_EQ(m.key_eq(), n.key_eq()); + EXPECT_NE(m.get_allocator(), n.get_allocator()); + EXPECT_EQ(m, n); +} + +TYPED_TEST_P(ConstructorTest, CopyConstructorAlloc) { + CopyConstructorAllocTest<TypeParam>(expect_alloc_constructors<TypeParam>()); +} + +// TODO(alkis): Test non-propagating allocators on copy constructors. + +TYPED_TEST_P(ConstructorTest, MoveConstructor) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + TypeParam m(123, hasher, equal, alloc); + for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); + TypeParam t(m); + TypeParam n(std::move(t)); + EXPECT_EQ(m.hash_function(), n.hash_function()); + EXPECT_EQ(m.key_eq(), n.key_eq()); + EXPECT_EQ(m.get_allocator(), n.get_allocator()); + EXPECT_EQ(m, n); +} + +template <typename TypeParam> +void MoveConstructorAllocTest(std::false_type) {} + +template <typename TypeParam> +void MoveConstructorAllocTest(std::true_type) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + TypeParam m(123, hasher, equal, alloc); + for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); + TypeParam t(m); + TypeParam n(std::move(t), A(1)); + EXPECT_EQ(m.hash_function(), n.hash_function()); + EXPECT_EQ(m.key_eq(), n.key_eq()); + EXPECT_NE(m.get_allocator(), n.get_allocator()); + EXPECT_EQ(m, n); +} + +TYPED_TEST_P(ConstructorTest, MoveConstructorAlloc) { + MoveConstructorAllocTest<TypeParam>(expect_alloc_constructors<TypeParam>()); +} + +// TODO(alkis): Test non-propagating allocators on move constructors. + +TYPED_TEST_P(ConstructorTest, InitializerListBucketHashEqualAlloc) { + using T = hash_internal::GeneratedType<TypeParam>; + hash_internal::Generator<T> gen; + std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + TypeParam m(values, 123, hasher, equal, alloc); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.key_eq(), equal); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_GE(m.bucket_count(), 123); +} + +template <typename TypeParam> +void InitializerListBucketAllocTest(std::false_type) {} + +template <typename TypeParam> +void InitializerListBucketAllocTest(std::true_type) { + using T = hash_internal::GeneratedType<TypeParam>; + using A = typename TypeParam::allocator_type; + hash_internal::Generator<T> gen; + std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; + A alloc(0); + TypeParam m(values, 123, alloc); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, InitializerListBucketAlloc) { + InitializerListBucketAllocTest<TypeParam>(expect_cxx14_apis<TypeParam>()); +} + +template <typename TypeParam> +void InitializerListBucketHashAllocTest(std::false_type) {} + +template <typename TypeParam> +void InitializerListBucketHashAllocTest(std::true_type) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using A = typename TypeParam::allocator_type; + H hasher; + A alloc(0); + hash_internal::Generator<T> gen; + std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; + TypeParam m(values, 123, hasher, alloc); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, InitializerListBucketHashAlloc) { + InitializerListBucketHashAllocTest<TypeParam>(expect_cxx14_apis<TypeParam>()); +} + +TYPED_TEST_P(ConstructorTest, Assignment) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + hash_internal::Generator<T> gen; + TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc); + TypeParam n; + n = m; + EXPECT_EQ(m.hash_function(), n.hash_function()); + EXPECT_EQ(m.key_eq(), n.key_eq()); + EXPECT_EQ(m, n); +} + +// TODO(alkis): Test [non-]propagating allocators on move/copy assignments +// (it depends on traits). + +TYPED_TEST_P(ConstructorTest, MoveAssignment) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + hash_internal::Generator<T> gen; + TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc); + TypeParam t(m); + TypeParam n; + n = std::move(t); + EXPECT_EQ(m.hash_function(), n.hash_function()); + EXPECT_EQ(m.key_eq(), n.key_eq()); + EXPECT_EQ(m, n); +} + +TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerList) { + using T = hash_internal::GeneratedType<TypeParam>; + hash_internal::Generator<T> gen; + std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; + TypeParam m; + m = values; + EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); +} + +TYPED_TEST_P(ConstructorTest, AssignmentOverwritesExisting) { + using T = hash_internal::GeneratedType<TypeParam>; + hash_internal::Generator<T> gen; + TypeParam m({gen(), gen(), gen()}); + TypeParam n({gen()}); + n = m; + EXPECT_EQ(m, n); +} + +TYPED_TEST_P(ConstructorTest, MoveAssignmentOverwritesExisting) { + using T = hash_internal::GeneratedType<TypeParam>; + hash_internal::Generator<T> gen; + TypeParam m({gen(), gen(), gen()}); + TypeParam t(m); + TypeParam n({gen()}); + n = std::move(t); + EXPECT_EQ(m, n); +} + +TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerListOverwritesExisting) { + using T = hash_internal::GeneratedType<TypeParam>; + hash_internal::Generator<T> gen; + std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; + TypeParam m; + m = values; + EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); +} + +TYPED_TEST_P(ConstructorTest, AssignmentOnSelf) { + using T = hash_internal::GeneratedType<TypeParam>; + hash_internal::Generator<T> gen; + std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; + TypeParam m(values); + m = *&m; // Avoid -Wself-assign + EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); +} + +// We cannot test self move as standard states that it leaves standard +// containers in unspecified state (and in practice in causes memory-leak +// according to heap-checker!). + +REGISTER_TYPED_TEST_CASE_P( + ConstructorTest, NoArgs, BucketCount, BucketCountHash, BucketCountHashEqual, + BucketCountHashEqualAlloc, BucketCountAlloc, BucketCountHashAlloc, Alloc, + InputIteratorBucketHashEqualAlloc, InputIteratorBucketAlloc, + InputIteratorBucketHashAlloc, CopyConstructor, CopyConstructorAlloc, + MoveConstructor, MoveConstructorAlloc, InitializerListBucketHashEqualAlloc, + InitializerListBucketAlloc, InitializerListBucketHashAlloc, Assignment, + MoveAssignment, AssignmentFromInitializerList, AssignmentOverwritesExisting, + MoveAssignmentOverwritesExisting, + AssignmentFromInitializerListOverwritesExisting, AssignmentOnSelf); + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/unordered_map_lookup_test.h b/third_party/abseil_cpp/absl/container/internal/unordered_map_lookup_test.h new file mode 100644 index 000000000000..e76421e508fe --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/unordered_map_lookup_test.h @@ -0,0 +1,117 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_ +#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_ + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/container/internal/hash_generator_testing.h" +#include "absl/container/internal/hash_policy_testing.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <class UnordMap> +class LookupTest : public ::testing::Test {}; + +TYPED_TEST_SUITE_P(LookupTest); + +TYPED_TEST_P(LookupTest, At) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m(values.begin(), values.end()); + for (const auto& p : values) { + const auto& val = m.at(p.first); + EXPECT_EQ(p.second, val) << ::testing::PrintToString(p.first); + } +} + +TYPED_TEST_P(LookupTest, OperatorBracket) { + using T = hash_internal::GeneratedType<TypeParam>; + using V = typename TypeParam::mapped_type; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m; + for (const auto& p : values) { + auto& val = m[p.first]; + EXPECT_EQ(V(), val) << ::testing::PrintToString(p.first); + val = p.second; + } + for (const auto& p : values) + EXPECT_EQ(p.second, m[p.first]) << ::testing::PrintToString(p.first); +} + +TYPED_TEST_P(LookupTest, Count) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m; + for (const auto& p : values) + EXPECT_EQ(0, m.count(p.first)) << ::testing::PrintToString(p.first); + m.insert(values.begin(), values.end()); + for (const auto& p : values) + EXPECT_EQ(1, m.count(p.first)) << ::testing::PrintToString(p.first); +} + +TYPED_TEST_P(LookupTest, Find) { + using std::get; + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m; + for (const auto& p : values) + EXPECT_TRUE(m.end() == m.find(p.first)) + << ::testing::PrintToString(p.first); + m.insert(values.begin(), values.end()); + for (const auto& p : values) { + auto it = m.find(p.first); + EXPECT_TRUE(m.end() != it) << ::testing::PrintToString(p.first); + EXPECT_EQ(p.second, get<1>(*it)) << ::testing::PrintToString(p.first); + } +} + +TYPED_TEST_P(LookupTest, EqualRange) { + using std::get; + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m; + for (const auto& p : values) { + auto r = m.equal_range(p.first); + ASSERT_EQ(0, std::distance(r.first, r.second)); + } + m.insert(values.begin(), values.end()); + for (const auto& p : values) { + auto r = m.equal_range(p.first); + ASSERT_EQ(1, std::distance(r.first, r.second)); + EXPECT_EQ(p.second, get<1>(*r.first)) << ::testing::PrintToString(p.first); + } +} + +REGISTER_TYPED_TEST_CASE_P(LookupTest, At, OperatorBracket, Count, Find, + EqualRange); + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/unordered_map_members_test.h b/third_party/abseil_cpp/absl/container/internal/unordered_map_members_test.h new file mode 100644 index 000000000000..7d48cdb890bb --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/unordered_map_members_test.h @@ -0,0 +1,87 @@ +// Copyright 2019 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MEMBERS_TEST_H_ +#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MEMBERS_TEST_H_ + +#include <type_traits> +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/meta/type_traits.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <class UnordMap> +class MembersTest : public ::testing::Test {}; + +TYPED_TEST_SUITE_P(MembersTest); + +template <typename T> +void UseType() {} + +TYPED_TEST_P(MembersTest, Typedefs) { + EXPECT_TRUE((std::is_same<std::pair<const typename TypeParam::key_type, + typename TypeParam::mapped_type>, + typename TypeParam::value_type>())); + EXPECT_TRUE((absl::conjunction< + absl::negation<std::is_signed<typename TypeParam::size_type>>, + std::is_integral<typename TypeParam::size_type>>())); + EXPECT_TRUE((absl::conjunction< + std::is_signed<typename TypeParam::difference_type>, + std::is_integral<typename TypeParam::difference_type>>())); + EXPECT_TRUE((std::is_convertible< + decltype(std::declval<const typename TypeParam::hasher&>()( + std::declval<const typename TypeParam::key_type&>())), + size_t>())); + EXPECT_TRUE((std::is_convertible< + decltype(std::declval<const typename TypeParam::key_equal&>()( + std::declval<const typename TypeParam::key_type&>(), + std::declval<const typename TypeParam::key_type&>())), + bool>())); + EXPECT_TRUE((std::is_same<typename TypeParam::allocator_type::value_type, + typename TypeParam::value_type>())); + EXPECT_TRUE((std::is_same<typename TypeParam::value_type&, + typename TypeParam::reference>())); + EXPECT_TRUE((std::is_same<const typename TypeParam::value_type&, + typename TypeParam::const_reference>())); + EXPECT_TRUE((std::is_same<typename std::allocator_traits< + typename TypeParam::allocator_type>::pointer, + typename TypeParam::pointer>())); + EXPECT_TRUE( + (std::is_same<typename std::allocator_traits< + typename TypeParam::allocator_type>::const_pointer, + typename TypeParam::const_pointer>())); +} + +TYPED_TEST_P(MembersTest, SimpleFunctions) { + EXPECT_GT(TypeParam().max_size(), 0); +} + +TYPED_TEST_P(MembersTest, BeginEnd) { + TypeParam t = {typename TypeParam::value_type{}}; + EXPECT_EQ(t.begin(), t.cbegin()); + EXPECT_EQ(t.end(), t.cend()); + EXPECT_NE(t.begin(), t.end()); + EXPECT_NE(t.cbegin(), t.cend()); +} + +REGISTER_TYPED_TEST_SUITE_P(MembersTest, Typedefs, SimpleFunctions, BeginEnd); + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MEMBERS_TEST_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/unordered_map_modifiers_test.h b/third_party/abseil_cpp/absl/container/internal/unordered_map_modifiers_test.h new file mode 100644 index 000000000000..8c9ca779a424 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/unordered_map_modifiers_test.h @@ -0,0 +1,318 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_ +#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_ + +#include <memory> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/container/internal/hash_generator_testing.h" +#include "absl/container/internal/hash_policy_testing.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <class UnordMap> +class ModifiersTest : public ::testing::Test {}; + +TYPED_TEST_SUITE_P(ModifiersTest); + +TYPED_TEST_P(ModifiersTest, Clear) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m(values.begin(), values.end()); + ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); + m.clear(); + EXPECT_THAT(items(m), ::testing::UnorderedElementsAre()); + EXPECT_TRUE(m.empty()); +} + +TYPED_TEST_P(ModifiersTest, Insert) { + using T = hash_internal::GeneratedType<TypeParam>; + using V = typename TypeParam::mapped_type; + T val = hash_internal::Generator<T>()(); + TypeParam m; + auto p = m.insert(val); + EXPECT_TRUE(p.second); + EXPECT_EQ(val, *p.first); + T val2 = {val.first, hash_internal::Generator<V>()()}; + p = m.insert(val2); + EXPECT_FALSE(p.second); + EXPECT_EQ(val, *p.first); +} + +TYPED_TEST_P(ModifiersTest, InsertHint) { + using T = hash_internal::GeneratedType<TypeParam>; + using V = typename TypeParam::mapped_type; + T val = hash_internal::Generator<T>()(); + TypeParam m; + auto it = m.insert(m.end(), val); + EXPECT_TRUE(it != m.end()); + EXPECT_EQ(val, *it); + T val2 = {val.first, hash_internal::Generator<V>()()}; + it = m.insert(it, val2); + EXPECT_TRUE(it != m.end()); + EXPECT_EQ(val, *it); +} + +TYPED_TEST_P(ModifiersTest, InsertRange) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m; + m.insert(values.begin(), values.end()); + ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); +} + +TYPED_TEST_P(ModifiersTest, InsertOrAssign) { +#ifdef UNORDERED_MAP_CXX17 + using std::get; + using K = typename TypeParam::key_type; + using V = typename TypeParam::mapped_type; + K k = hash_internal::Generator<K>()(); + V val = hash_internal::Generator<V>()(); + TypeParam m; + auto p = m.insert_or_assign(k, val); + EXPECT_TRUE(p.second); + EXPECT_EQ(k, get<0>(*p.first)); + EXPECT_EQ(val, get<1>(*p.first)); + V val2 = hash_internal::Generator<V>()(); + p = m.insert_or_assign(k, val2); + EXPECT_FALSE(p.second); + EXPECT_EQ(k, get<0>(*p.first)); + EXPECT_EQ(val2, get<1>(*p.first)); +#endif +} + +TYPED_TEST_P(ModifiersTest, InsertOrAssignHint) { +#ifdef UNORDERED_MAP_CXX17 + using std::get; + using K = typename TypeParam::key_type; + using V = typename TypeParam::mapped_type; + K k = hash_internal::Generator<K>()(); + V val = hash_internal::Generator<V>()(); + TypeParam m; + auto it = m.insert_or_assign(m.end(), k, val); + EXPECT_TRUE(it != m.end()); + EXPECT_EQ(k, get<0>(*it)); + EXPECT_EQ(val, get<1>(*it)); + V val2 = hash_internal::Generator<V>()(); + it = m.insert_or_assign(it, k, val2); + EXPECT_EQ(k, get<0>(*it)); + EXPECT_EQ(val2, get<1>(*it)); +#endif +} + +TYPED_TEST_P(ModifiersTest, Emplace) { + using T = hash_internal::GeneratedType<TypeParam>; + using V = typename TypeParam::mapped_type; + T val = hash_internal::Generator<T>()(); + TypeParam m; + // TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps + // with test traits/policy. + auto p = m.emplace(val); + EXPECT_TRUE(p.second); + EXPECT_EQ(val, *p.first); + T val2 = {val.first, hash_internal::Generator<V>()()}; + p = m.emplace(val2); + EXPECT_FALSE(p.second); + EXPECT_EQ(val, *p.first); +} + +TYPED_TEST_P(ModifiersTest, EmplaceHint) { + using T = hash_internal::GeneratedType<TypeParam>; + using V = typename TypeParam::mapped_type; + T val = hash_internal::Generator<T>()(); + TypeParam m; + // TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps + // with test traits/policy. + auto it = m.emplace_hint(m.end(), val); + EXPECT_EQ(val, *it); + T val2 = {val.first, hash_internal::Generator<V>()()}; + it = m.emplace_hint(it, val2); + EXPECT_EQ(val, *it); +} + +TYPED_TEST_P(ModifiersTest, TryEmplace) { +#ifdef UNORDERED_MAP_CXX17 + using T = hash_internal::GeneratedType<TypeParam>; + using V = typename TypeParam::mapped_type; + T val = hash_internal::Generator<T>()(); + TypeParam m; + // TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps + // with test traits/policy. + auto p = m.try_emplace(val.first, val.second); + EXPECT_TRUE(p.second); + EXPECT_EQ(val, *p.first); + T val2 = {val.first, hash_internal::Generator<V>()()}; + p = m.try_emplace(val2.first, val2.second); + EXPECT_FALSE(p.second); + EXPECT_EQ(val, *p.first); +#endif +} + +TYPED_TEST_P(ModifiersTest, TryEmplaceHint) { +#ifdef UNORDERED_MAP_CXX17 + using T = hash_internal::GeneratedType<TypeParam>; + using V = typename TypeParam::mapped_type; + T val = hash_internal::Generator<T>()(); + TypeParam m; + // TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps + // with test traits/policy. + auto it = m.try_emplace(m.end(), val.first, val.second); + EXPECT_EQ(val, *it); + T val2 = {val.first, hash_internal::Generator<V>()()}; + it = m.try_emplace(it, val2.first, val2.second); + EXPECT_EQ(val, *it); +#endif +} + +template <class V> +using IfNotVoid = typename std::enable_if<!std::is_void<V>::value, V>::type; + +// In openmap we chose not to return the iterator from erase because that's +// more expensive. As such we adapt erase to return an iterator here. +struct EraseFirst { + template <class Map> + auto operator()(Map* m, int) const + -> IfNotVoid<decltype(m->erase(m->begin()))> { + return m->erase(m->begin()); + } + template <class Map> + typename Map::iterator operator()(Map* m, ...) const { + auto it = m->begin(); + m->erase(it++); + return it; + } +}; + +TYPED_TEST_P(ModifiersTest, Erase) { + using T = hash_internal::GeneratedType<TypeParam>; + using std::get; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m(values.begin(), values.end()); + ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); + auto& first = *m.begin(); + std::vector<T> values2; + for (const auto& val : values) + if (get<0>(val) != get<0>(first)) values2.push_back(val); + auto it = EraseFirst()(&m, 0); + ASSERT_TRUE(it != m.end()); + EXPECT_EQ(1, std::count(values2.begin(), values2.end(), *it)); + EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values2.begin(), + values2.end())); +} + +TYPED_TEST_P(ModifiersTest, EraseRange) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m(values.begin(), values.end()); + ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); + auto it = m.erase(m.begin(), m.end()); + EXPECT_THAT(items(m), ::testing::UnorderedElementsAre()); + EXPECT_TRUE(it == m.end()); +} + +TYPED_TEST_P(ModifiersTest, EraseKey) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m(values.begin(), values.end()); + ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_EQ(1, m.erase(values[0].first)); + EXPECT_EQ(0, std::count(m.begin(), m.end(), values[0])); + EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values.begin() + 1, + values.end())); +} + +TYPED_TEST_P(ModifiersTest, Swap) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> v1; + std::vector<T> v2; + std::generate_n(std::back_inserter(v1), 5, hash_internal::Generator<T>()); + std::generate_n(std::back_inserter(v2), 5, hash_internal::Generator<T>()); + TypeParam m1(v1.begin(), v1.end()); + TypeParam m2(v2.begin(), v2.end()); + EXPECT_THAT(items(m1), ::testing::UnorderedElementsAreArray(v1)); + EXPECT_THAT(items(m2), ::testing::UnorderedElementsAreArray(v2)); + m1.swap(m2); + EXPECT_THAT(items(m1), ::testing::UnorderedElementsAreArray(v2)); + EXPECT_THAT(items(m2), ::testing::UnorderedElementsAreArray(v1)); +} + +// TODO(alkis): Write tests for extract. +// TODO(alkis): Write tests for merge. + +REGISTER_TYPED_TEST_CASE_P(ModifiersTest, Clear, Insert, InsertHint, + InsertRange, InsertOrAssign, InsertOrAssignHint, + Emplace, EmplaceHint, TryEmplace, TryEmplaceHint, + Erase, EraseRange, EraseKey, Swap); + +template <typename Type> +struct is_unique_ptr : std::false_type {}; + +template <typename Type> +struct is_unique_ptr<std::unique_ptr<Type>> : std::true_type {}; + +template <class UnordMap> +class UniquePtrModifiersTest : public ::testing::Test { + protected: + UniquePtrModifiersTest() { + static_assert(is_unique_ptr<typename UnordMap::mapped_type>::value, + "UniquePtrModifiersTyest may only be called with a " + "std::unique_ptr value type."); + } +}; + +GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(UniquePtrModifiersTest); + +TYPED_TEST_SUITE_P(UniquePtrModifiersTest); + +// Test that we do not move from rvalue arguments if an insertion does not +// happen. +TYPED_TEST_P(UniquePtrModifiersTest, TryEmplace) { +#ifdef UNORDERED_MAP_CXX17 + using T = hash_internal::GeneratedType<TypeParam>; + using V = typename TypeParam::mapped_type; + T val = hash_internal::Generator<T>()(); + TypeParam m; + auto p = m.try_emplace(val.first, std::move(val.second)); + EXPECT_TRUE(p.second); + // A moved from std::unique_ptr is guaranteed to be nullptr. + EXPECT_EQ(val.second, nullptr); + T val2 = {val.first, hash_internal::Generator<V>()()}; + p = m.try_emplace(val2.first, std::move(val2.second)); + EXPECT_FALSE(p.second); + EXPECT_NE(val2.second, nullptr); +#endif +} + +REGISTER_TYPED_TEST_SUITE_P(UniquePtrModifiersTest, TryEmplace); + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/unordered_map_test.cc b/third_party/abseil_cpp/absl/container/internal/unordered_map_test.cc new file mode 100644 index 000000000000..9cbf512f32b2 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/unordered_map_test.cc @@ -0,0 +1,50 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include <memory> +#include <unordered_map> + +#include "absl/container/internal/unordered_map_constructor_test.h" +#include "absl/container/internal/unordered_map_lookup_test.h" +#include "absl/container/internal/unordered_map_members_test.h" +#include "absl/container/internal/unordered_map_modifiers_test.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace { + +using MapTypes = ::testing::Types< + std::unordered_map<int, int, StatefulTestingHash, StatefulTestingEqual, + Alloc<std::pair<const int, int>>>, + std::unordered_map<std::string, std::string, StatefulTestingHash, + StatefulTestingEqual, + Alloc<std::pair<const std::string, std::string>>>>; + +INSTANTIATE_TYPED_TEST_SUITE_P(UnorderedMap, ConstructorTest, MapTypes); +INSTANTIATE_TYPED_TEST_SUITE_P(UnorderedMap, LookupTest, MapTypes); +INSTANTIATE_TYPED_TEST_SUITE_P(UnorderedMap, MembersTest, MapTypes); +INSTANTIATE_TYPED_TEST_SUITE_P(UnorderedMap, ModifiersTest, MapTypes); + +using UniquePtrMapTypes = ::testing::Types<std::unordered_map< + int, std::unique_ptr<int>, StatefulTestingHash, StatefulTestingEqual, + Alloc<std::pair<const int, std::unique_ptr<int>>>>>; + +INSTANTIATE_TYPED_TEST_SUITE_P(UnorderedMap, UniquePtrModifiersTest, + UniquePtrMapTypes); + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/third_party/abseil_cpp/absl/container/internal/unordered_set_constructor_test.h b/third_party/abseil_cpp/absl/container/internal/unordered_set_constructor_test.h new file mode 100644 index 000000000000..41165b05e97b --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/unordered_set_constructor_test.h @@ -0,0 +1,496 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_ +#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_ + +#include <algorithm> +#include <unordered_set> +#include <vector> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/container/internal/hash_generator_testing.h" +#include "absl/container/internal/hash_policy_testing.h" +#include "absl/meta/type_traits.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <class UnordMap> +class ConstructorTest : public ::testing::Test {}; + +TYPED_TEST_SUITE_P(ConstructorTest); + +TYPED_TEST_P(ConstructorTest, NoArgs) { + TypeParam m; + EXPECT_TRUE(m.empty()); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); +} + +TYPED_TEST_P(ConstructorTest, BucketCount) { + TypeParam m(123); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, BucketCountHash) { + using H = typename TypeParam::hasher; + H hasher; + TypeParam m(123, hasher); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, BucketCountHashEqual) { + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + H hasher; + E equal; + TypeParam m(123, hasher, equal); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.key_eq(), equal); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, BucketCountHashEqualAlloc) { + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + TypeParam m(123, hasher, equal, alloc); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.key_eq(), equal); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); + EXPECT_GE(m.bucket_count(), 123); + + const auto& cm = m; + EXPECT_EQ(cm.hash_function(), hasher); + EXPECT_EQ(cm.key_eq(), equal); + EXPECT_EQ(cm.get_allocator(), alloc); + EXPECT_TRUE(cm.empty()); + EXPECT_THAT(keys(cm), ::testing::UnorderedElementsAre()); + EXPECT_GE(cm.bucket_count(), 123); +} + +template <typename T> +struct is_std_unordered_set : std::false_type {}; + +template <typename... T> +struct is_std_unordered_set<std::unordered_set<T...>> : std::true_type {}; + +#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17) +using has_cxx14_std_apis = std::true_type; +#else +using has_cxx14_std_apis = std::false_type; +#endif + +template <typename T> +using expect_cxx14_apis = + absl::disjunction<absl::negation<is_std_unordered_set<T>>, + has_cxx14_std_apis>; + +template <typename TypeParam> +void BucketCountAllocTest(std::false_type) {} + +template <typename TypeParam> +void BucketCountAllocTest(std::true_type) { + using A = typename TypeParam::allocator_type; + A alloc(0); + TypeParam m(123, alloc); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, BucketCountAlloc) { + BucketCountAllocTest<TypeParam>(expect_cxx14_apis<TypeParam>()); +} + +template <typename TypeParam> +void BucketCountHashAllocTest(std::false_type) {} + +template <typename TypeParam> +void BucketCountHashAllocTest(std::true_type) { + using H = typename TypeParam::hasher; + using A = typename TypeParam::allocator_type; + H hasher; + A alloc(0); + TypeParam m(123, hasher, alloc); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, BucketCountHashAlloc) { + BucketCountHashAllocTest<TypeParam>(expect_cxx14_apis<TypeParam>()); +} + +#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS +using has_alloc_std_constructors = std::true_type; +#else +using has_alloc_std_constructors = std::false_type; +#endif + +template <typename T> +using expect_alloc_constructors = + absl::disjunction<absl::negation<is_std_unordered_set<T>>, + has_alloc_std_constructors>; + +template <typename TypeParam> +void AllocTest(std::false_type) {} + +template <typename TypeParam> +void AllocTest(std::true_type) { + using A = typename TypeParam::allocator_type; + A alloc(0); + TypeParam m(alloc); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_TRUE(m.empty()); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); +} + +TYPED_TEST_P(ConstructorTest, Alloc) { + AllocTest<TypeParam>(expect_alloc_constructors<TypeParam>()); +} + +TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashEqualAlloc) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + std::vector<T> values; + for (size_t i = 0; i != 10; ++i) + values.push_back(hash_internal::Generator<T>()()); + TypeParam m(values.begin(), values.end(), 123, hasher, equal, alloc); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.key_eq(), equal); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_GE(m.bucket_count(), 123); +} + +template <typename TypeParam> +void InputIteratorBucketAllocTest(std::false_type) {} + +template <typename TypeParam> +void InputIteratorBucketAllocTest(std::true_type) { + using T = hash_internal::GeneratedType<TypeParam>; + using A = typename TypeParam::allocator_type; + A alloc(0); + std::vector<T> values; + for (size_t i = 0; i != 10; ++i) + values.push_back(hash_internal::Generator<T>()()); + TypeParam m(values.begin(), values.end(), 123, alloc); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, InputIteratorBucketAlloc) { + InputIteratorBucketAllocTest<TypeParam>(expect_cxx14_apis<TypeParam>()); +} + +template <typename TypeParam> +void InputIteratorBucketHashAllocTest(std::false_type) {} + +template <typename TypeParam> +void InputIteratorBucketHashAllocTest(std::true_type) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using A = typename TypeParam::allocator_type; + H hasher; + A alloc(0); + std::vector<T> values; + for (size_t i = 0; i != 10; ++i) + values.push_back(hash_internal::Generator<T>()()); + TypeParam m(values.begin(), values.end(), 123, hasher, alloc); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashAlloc) { + InputIteratorBucketHashAllocTest<TypeParam>(expect_cxx14_apis<TypeParam>()); +} + +TYPED_TEST_P(ConstructorTest, CopyConstructor) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + TypeParam m(123, hasher, equal, alloc); + for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); + TypeParam n(m); + EXPECT_EQ(m.hash_function(), n.hash_function()); + EXPECT_EQ(m.key_eq(), n.key_eq()); + EXPECT_EQ(m.get_allocator(), n.get_allocator()); + EXPECT_EQ(m, n); + EXPECT_NE(TypeParam(0, hasher, equal, alloc), n); +} + +template <typename TypeParam> +void CopyConstructorAllocTest(std::false_type) {} + +template <typename TypeParam> +void CopyConstructorAllocTest(std::true_type) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + TypeParam m(123, hasher, equal, alloc); + for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); + TypeParam n(m, A(11)); + EXPECT_EQ(m.hash_function(), n.hash_function()); + EXPECT_EQ(m.key_eq(), n.key_eq()); + EXPECT_NE(m.get_allocator(), n.get_allocator()); + EXPECT_EQ(m, n); +} + +TYPED_TEST_P(ConstructorTest, CopyConstructorAlloc) { + CopyConstructorAllocTest<TypeParam>(expect_alloc_constructors<TypeParam>()); +} + +// TODO(alkis): Test non-propagating allocators on copy constructors. + +TYPED_TEST_P(ConstructorTest, MoveConstructor) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + TypeParam m(123, hasher, equal, alloc); + for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); + TypeParam t(m); + TypeParam n(std::move(t)); + EXPECT_EQ(m.hash_function(), n.hash_function()); + EXPECT_EQ(m.key_eq(), n.key_eq()); + EXPECT_EQ(m.get_allocator(), n.get_allocator()); + EXPECT_EQ(m, n); +} + +template <typename TypeParam> +void MoveConstructorAllocTest(std::false_type) {} + +template <typename TypeParam> +void MoveConstructorAllocTest(std::true_type) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + TypeParam m(123, hasher, equal, alloc); + for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); + TypeParam t(m); + TypeParam n(std::move(t), A(1)); + EXPECT_EQ(m.hash_function(), n.hash_function()); + EXPECT_EQ(m.key_eq(), n.key_eq()); + EXPECT_NE(m.get_allocator(), n.get_allocator()); + EXPECT_EQ(m, n); +} + +TYPED_TEST_P(ConstructorTest, MoveConstructorAlloc) { + MoveConstructorAllocTest<TypeParam>(expect_alloc_constructors<TypeParam>()); +} + +// TODO(alkis): Test non-propagating allocators on move constructors. + +TYPED_TEST_P(ConstructorTest, InitializerListBucketHashEqualAlloc) { + using T = hash_internal::GeneratedType<TypeParam>; + hash_internal::Generator<T> gen; + std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + TypeParam m(values, 123, hasher, equal, alloc); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.key_eq(), equal); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_GE(m.bucket_count(), 123); +} + +template <typename TypeParam> +void InitializerListBucketAllocTest(std::false_type) {} + +template <typename TypeParam> +void InitializerListBucketAllocTest(std::true_type) { + using T = hash_internal::GeneratedType<TypeParam>; + using A = typename TypeParam::allocator_type; + hash_internal::Generator<T> gen; + std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; + A alloc(0); + TypeParam m(values, 123, alloc); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, InitializerListBucketAlloc) { + InitializerListBucketAllocTest<TypeParam>(expect_cxx14_apis<TypeParam>()); +} + +template <typename TypeParam> +void InitializerListBucketHashAllocTest(std::false_type) {} + +template <typename TypeParam> +void InitializerListBucketHashAllocTest(std::true_type) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using A = typename TypeParam::allocator_type; + H hasher; + A alloc(0); + hash_internal::Generator<T> gen; + std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; + TypeParam m(values, 123, hasher, alloc); + EXPECT_EQ(m.hash_function(), hasher); + EXPECT_EQ(m.get_allocator(), alloc); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_GE(m.bucket_count(), 123); +} + +TYPED_TEST_P(ConstructorTest, InitializerListBucketHashAlloc) { + InitializerListBucketHashAllocTest<TypeParam>(expect_cxx14_apis<TypeParam>()); +} + +TYPED_TEST_P(ConstructorTest, CopyAssignment) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + hash_internal::Generator<T> gen; + TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc); + TypeParam n; + n = m; + EXPECT_EQ(m.hash_function(), n.hash_function()); + EXPECT_EQ(m.key_eq(), n.key_eq()); + EXPECT_EQ(m, n); +} + +// TODO(alkis): Test [non-]propagating allocators on move/copy assignments +// (it depends on traits). + +TYPED_TEST_P(ConstructorTest, MoveAssignment) { + using T = hash_internal::GeneratedType<TypeParam>; + using H = typename TypeParam::hasher; + using E = typename TypeParam::key_equal; + using A = typename TypeParam::allocator_type; + H hasher; + E equal; + A alloc(0); + hash_internal::Generator<T> gen; + TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc); + TypeParam t(m); + TypeParam n; + n = std::move(t); + EXPECT_EQ(m.hash_function(), n.hash_function()); + EXPECT_EQ(m.key_eq(), n.key_eq()); + EXPECT_EQ(m, n); +} + +TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerList) { + using T = hash_internal::GeneratedType<TypeParam>; + hash_internal::Generator<T> gen; + std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; + TypeParam m; + m = values; + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); +} + +TYPED_TEST_P(ConstructorTest, AssignmentOverwritesExisting) { + using T = hash_internal::GeneratedType<TypeParam>; + hash_internal::Generator<T> gen; + TypeParam m({gen(), gen(), gen()}); + TypeParam n({gen()}); + n = m; + EXPECT_EQ(m, n); +} + +TYPED_TEST_P(ConstructorTest, MoveAssignmentOverwritesExisting) { + using T = hash_internal::GeneratedType<TypeParam>; + hash_internal::Generator<T> gen; + TypeParam m({gen(), gen(), gen()}); + TypeParam t(m); + TypeParam n({gen()}); + n = std::move(t); + EXPECT_EQ(m, n); +} + +TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerListOverwritesExisting) { + using T = hash_internal::GeneratedType<TypeParam>; + hash_internal::Generator<T> gen; + std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; + TypeParam m; + m = values; + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); +} + +TYPED_TEST_P(ConstructorTest, AssignmentOnSelf) { + using T = hash_internal::GeneratedType<TypeParam>; + hash_internal::Generator<T> gen; + std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; + TypeParam m(values); + m = *&m; // Avoid -Wself-assign. + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); +} + +REGISTER_TYPED_TEST_CASE_P( + ConstructorTest, NoArgs, BucketCount, BucketCountHash, BucketCountHashEqual, + BucketCountHashEqualAlloc, BucketCountAlloc, BucketCountHashAlloc, Alloc, + InputIteratorBucketHashEqualAlloc, InputIteratorBucketAlloc, + InputIteratorBucketHashAlloc, CopyConstructor, CopyConstructorAlloc, + MoveConstructor, MoveConstructorAlloc, InitializerListBucketHashEqualAlloc, + InitializerListBucketAlloc, InitializerListBucketHashAlloc, CopyAssignment, + MoveAssignment, AssignmentFromInitializerList, AssignmentOverwritesExisting, + MoveAssignmentOverwritesExisting, + AssignmentFromInitializerListOverwritesExisting, AssignmentOnSelf); + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/unordered_set_lookup_test.h b/third_party/abseil_cpp/absl/container/internal/unordered_set_lookup_test.h new file mode 100644 index 000000000000..8f2f4b207ef0 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/unordered_set_lookup_test.h @@ -0,0 +1,91 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_ +#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_ + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/container/internal/hash_generator_testing.h" +#include "absl/container/internal/hash_policy_testing.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <class UnordSet> +class LookupTest : public ::testing::Test {}; + +TYPED_TEST_SUITE_P(LookupTest); + +TYPED_TEST_P(LookupTest, Count) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m; + for (const auto& v : values) + EXPECT_EQ(0, m.count(v)) << ::testing::PrintToString(v); + m.insert(values.begin(), values.end()); + for (const auto& v : values) + EXPECT_EQ(1, m.count(v)) << ::testing::PrintToString(v); +} + +TYPED_TEST_P(LookupTest, Find) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m; + for (const auto& v : values) + EXPECT_TRUE(m.end() == m.find(v)) << ::testing::PrintToString(v); + m.insert(values.begin(), values.end()); + for (const auto& v : values) { + typename TypeParam::iterator it = m.find(v); + static_assert(std::is_same<const typename TypeParam::value_type&, + decltype(*it)>::value, + ""); + static_assert(std::is_same<const typename TypeParam::value_type*, + decltype(it.operator->())>::value, + ""); + EXPECT_TRUE(m.end() != it) << ::testing::PrintToString(v); + EXPECT_EQ(v, *it) << ::testing::PrintToString(v); + } +} + +TYPED_TEST_P(LookupTest, EqualRange) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m; + for (const auto& v : values) { + auto r = m.equal_range(v); + ASSERT_EQ(0, std::distance(r.first, r.second)); + } + m.insert(values.begin(), values.end()); + for (const auto& v : values) { + auto r = m.equal_range(v); + ASSERT_EQ(1, std::distance(r.first, r.second)); + EXPECT_EQ(v, *r.first); + } +} + +REGISTER_TYPED_TEST_CASE_P(LookupTest, Count, Find, EqualRange); + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/unordered_set_members_test.h b/third_party/abseil_cpp/absl/container/internal/unordered_set_members_test.h new file mode 100644 index 000000000000..4c5e104af292 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/unordered_set_members_test.h @@ -0,0 +1,86 @@ +// Copyright 2019 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MEMBERS_TEST_H_ +#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MEMBERS_TEST_H_ + +#include <type_traits> +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/meta/type_traits.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <class UnordSet> +class MembersTest : public ::testing::Test {}; + +TYPED_TEST_SUITE_P(MembersTest); + +template <typename T> +void UseType() {} + +TYPED_TEST_P(MembersTest, Typedefs) { + EXPECT_TRUE((std::is_same<typename TypeParam::key_type, + typename TypeParam::value_type>())); + EXPECT_TRUE((absl::conjunction< + absl::negation<std::is_signed<typename TypeParam::size_type>>, + std::is_integral<typename TypeParam::size_type>>())); + EXPECT_TRUE((absl::conjunction< + std::is_signed<typename TypeParam::difference_type>, + std::is_integral<typename TypeParam::difference_type>>())); + EXPECT_TRUE((std::is_convertible< + decltype(std::declval<const typename TypeParam::hasher&>()( + std::declval<const typename TypeParam::key_type&>())), + size_t>())); + EXPECT_TRUE((std::is_convertible< + decltype(std::declval<const typename TypeParam::key_equal&>()( + std::declval<const typename TypeParam::key_type&>(), + std::declval<const typename TypeParam::key_type&>())), + bool>())); + EXPECT_TRUE((std::is_same<typename TypeParam::allocator_type::value_type, + typename TypeParam::value_type>())); + EXPECT_TRUE((std::is_same<typename TypeParam::value_type&, + typename TypeParam::reference>())); + EXPECT_TRUE((std::is_same<const typename TypeParam::value_type&, + typename TypeParam::const_reference>())); + EXPECT_TRUE((std::is_same<typename std::allocator_traits< + typename TypeParam::allocator_type>::pointer, + typename TypeParam::pointer>())); + EXPECT_TRUE( + (std::is_same<typename std::allocator_traits< + typename TypeParam::allocator_type>::const_pointer, + typename TypeParam::const_pointer>())); +} + +TYPED_TEST_P(MembersTest, SimpleFunctions) { + EXPECT_GT(TypeParam().max_size(), 0); +} + +TYPED_TEST_P(MembersTest, BeginEnd) { + TypeParam t = {typename TypeParam::value_type{}}; + EXPECT_EQ(t.begin(), t.cbegin()); + EXPECT_EQ(t.end(), t.cend()); + EXPECT_NE(t.begin(), t.end()); + EXPECT_NE(t.cbegin(), t.cend()); +} + +REGISTER_TYPED_TEST_SUITE_P(MembersTest, Typedefs, SimpleFunctions, BeginEnd); + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MEMBERS_TEST_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/unordered_set_modifiers_test.h b/third_party/abseil_cpp/absl/container/internal/unordered_set_modifiers_test.h new file mode 100644 index 000000000000..26be58d99f21 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/unordered_set_modifiers_test.h @@ -0,0 +1,190 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_ +#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_ + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/container/internal/hash_generator_testing.h" +#include "absl/container/internal/hash_policy_testing.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +template <class UnordSet> +class ModifiersTest : public ::testing::Test {}; + +TYPED_TEST_SUITE_P(ModifiersTest); + +TYPED_TEST_P(ModifiersTest, Clear) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m(values.begin(), values.end()); + ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); + m.clear(); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); + EXPECT_TRUE(m.empty()); +} + +TYPED_TEST_P(ModifiersTest, Insert) { + using T = hash_internal::GeneratedType<TypeParam>; + T val = hash_internal::Generator<T>()(); + TypeParam m; + auto p = m.insert(val); + EXPECT_TRUE(p.second); + EXPECT_EQ(val, *p.first); + p = m.insert(val); + EXPECT_FALSE(p.second); +} + +TYPED_TEST_P(ModifiersTest, InsertHint) { + using T = hash_internal::GeneratedType<TypeParam>; + T val = hash_internal::Generator<T>()(); + TypeParam m; + auto it = m.insert(m.end(), val); + EXPECT_TRUE(it != m.end()); + EXPECT_EQ(val, *it); + it = m.insert(it, val); + EXPECT_TRUE(it != m.end()); + EXPECT_EQ(val, *it); +} + +TYPED_TEST_P(ModifiersTest, InsertRange) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m; + m.insert(values.begin(), values.end()); + ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); +} + +TYPED_TEST_P(ModifiersTest, Emplace) { + using T = hash_internal::GeneratedType<TypeParam>; + T val = hash_internal::Generator<T>()(); + TypeParam m; + // TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps + // with test traits/policy. + auto p = m.emplace(val); + EXPECT_TRUE(p.second); + EXPECT_EQ(val, *p.first); + p = m.emplace(val); + EXPECT_FALSE(p.second); + EXPECT_EQ(val, *p.first); +} + +TYPED_TEST_P(ModifiersTest, EmplaceHint) { + using T = hash_internal::GeneratedType<TypeParam>; + T val = hash_internal::Generator<T>()(); + TypeParam m; + // TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps + // with test traits/policy. + auto it = m.emplace_hint(m.end(), val); + EXPECT_EQ(val, *it); + it = m.emplace_hint(it, val); + EXPECT_EQ(val, *it); +} + +template <class V> +using IfNotVoid = typename std::enable_if<!std::is_void<V>::value, V>::type; + +// In openmap we chose not to return the iterator from erase because that's +// more expensive. As such we adapt erase to return an iterator here. +struct EraseFirst { + template <class Map> + auto operator()(Map* m, int) const + -> IfNotVoid<decltype(m->erase(m->begin()))> { + return m->erase(m->begin()); + } + template <class Map> + typename Map::iterator operator()(Map* m, ...) const { + auto it = m->begin(); + m->erase(it++); + return it; + } +}; + +TYPED_TEST_P(ModifiersTest, Erase) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m(values.begin(), values.end()); + ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); + std::vector<T> values2; + for (const auto& val : values) + if (val != *m.begin()) values2.push_back(val); + auto it = EraseFirst()(&m, 0); + ASSERT_TRUE(it != m.end()); + EXPECT_EQ(1, std::count(values2.begin(), values2.end(), *it)); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values2.begin(), + values2.end())); +} + +TYPED_TEST_P(ModifiersTest, EraseRange) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m(values.begin(), values.end()); + ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); + auto it = m.erase(m.begin(), m.end()); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); + EXPECT_TRUE(it == m.end()); +} + +TYPED_TEST_P(ModifiersTest, EraseKey) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> values; + std::generate_n(std::back_inserter(values), 10, + hash_internal::Generator<T>()); + TypeParam m(values.begin(), values.end()); + ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); + EXPECT_EQ(1, m.erase(values[0])); + EXPECT_EQ(0, std::count(m.begin(), m.end(), values[0])); + EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values.begin() + 1, + values.end())); +} + +TYPED_TEST_P(ModifiersTest, Swap) { + using T = hash_internal::GeneratedType<TypeParam>; + std::vector<T> v1; + std::vector<T> v2; + std::generate_n(std::back_inserter(v1), 5, hash_internal::Generator<T>()); + std::generate_n(std::back_inserter(v2), 5, hash_internal::Generator<T>()); + TypeParam m1(v1.begin(), v1.end()); + TypeParam m2(v2.begin(), v2.end()); + EXPECT_THAT(keys(m1), ::testing::UnorderedElementsAreArray(v1)); + EXPECT_THAT(keys(m2), ::testing::UnorderedElementsAreArray(v2)); + m1.swap(m2); + EXPECT_THAT(keys(m1), ::testing::UnorderedElementsAreArray(v2)); + EXPECT_THAT(keys(m2), ::testing::UnorderedElementsAreArray(v1)); +} + +// TODO(alkis): Write tests for extract. +// TODO(alkis): Write tests for merge. + +REGISTER_TYPED_TEST_CASE_P(ModifiersTest, Clear, Insert, InsertHint, + InsertRange, Emplace, EmplaceHint, Erase, EraseRange, + EraseKey, Swap); + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_ diff --git a/third_party/abseil_cpp/absl/container/internal/unordered_set_test.cc b/third_party/abseil_cpp/absl/container/internal/unordered_set_test.cc new file mode 100644 index 000000000000..a134b53984bc --- /dev/null +++ b/third_party/abseil_cpp/absl/container/internal/unordered_set_test.cc @@ -0,0 +1,41 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include <unordered_set> + +#include "absl/container/internal/unordered_set_constructor_test.h" +#include "absl/container/internal/unordered_set_lookup_test.h" +#include "absl/container/internal/unordered_set_members_test.h" +#include "absl/container/internal/unordered_set_modifiers_test.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace { + +using SetTypes = ::testing::Types< + std::unordered_set<int, StatefulTestingHash, StatefulTestingEqual, + Alloc<int>>, + std::unordered_set<std::string, StatefulTestingHash, StatefulTestingEqual, + Alloc<std::string>>>; + +INSTANTIATE_TYPED_TEST_SUITE_P(UnorderedSet, ConstructorTest, SetTypes); +INSTANTIATE_TYPED_TEST_SUITE_P(UnorderedSet, LookupTest, SetTypes); +INSTANTIATE_TYPED_TEST_SUITE_P(UnorderedSet, MembersTest, SetTypes); +INSTANTIATE_TYPED_TEST_SUITE_P(UnorderedSet, ModifiersTest, SetTypes); + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl |