diff options
Diffstat (limited to 'third_party/abseil_cpp/absl/algorithm/container.h')
-rw-r--r-- | third_party/abseil_cpp/absl/algorithm/container.h | 1727 |
1 files changed, 1727 insertions, 0 deletions
diff --git a/third_party/abseil_cpp/absl/algorithm/container.h b/third_party/abseil_cpp/absl/algorithm/container.h new file mode 100644 index 000000000000..d72532decf38 --- /dev/null +++ b/third_party/abseil_cpp/absl/algorithm/container.h @@ -0,0 +1,1727 @@ +// Copyright 2017 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// ----------------------------------------------------------------------------- +// File: container.h +// ----------------------------------------------------------------------------- +// +// This header file provides Container-based versions of algorithmic functions +// within the C++ standard library. The following standard library sets of +// functions are covered within this file: +// +// * Algorithmic <iterator> functions +// * Algorithmic <numeric> functions +// * <algorithm> functions +// +// The standard library functions operate on iterator ranges; the functions +// within this API operate on containers, though many return iterator ranges. +// +// All functions within this API are named with a `c_` prefix. Calls such as +// `absl::c_xx(container, ...) are equivalent to std:: functions such as +// `std::xx(std::begin(cont), std::end(cont), ...)`. Functions that act on +// iterators but not conceptually on iterator ranges (e.g. `std::iter_swap`) +// have no equivalent here. +// +// For template parameter and variable naming, `C` indicates the container type +// to which the function is applied, `Pred` indicates the predicate object type +// to be used by the function and `T` indicates the applicable element type. + +#ifndef ABSL_ALGORITHM_CONTAINER_H_ +#define ABSL_ALGORITHM_CONTAINER_H_ + +#include <algorithm> +#include <cassert> +#include <iterator> +#include <numeric> +#include <type_traits> +#include <unordered_map> +#include <unordered_set> +#include <utility> +#include <vector> + +#include "absl/algorithm/algorithm.h" +#include "absl/base/macros.h" +#include "absl/meta/type_traits.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_algorithm_internal { + +// NOTE: it is important to defer to ADL lookup for building with C++ modules, +// especially for headers like <valarray> which are not visible from this file +// but specialize std::begin and std::end. +using std::begin; +using std::end; + +// The type of the iterator given by begin(c) (possibly std::begin(c)). +// ContainerIter<const vector<T>> gives vector<T>::const_iterator, +// while ContainerIter<vector<T>> gives vector<T>::iterator. +template <typename C> +using ContainerIter = decltype(begin(std::declval<C&>())); + +// An MSVC bug involving template parameter substitution requires us to use +// decltype() here instead of just std::pair. +template <typename C1, typename C2> +using ContainerIterPairType = + decltype(std::make_pair(ContainerIter<C1>(), ContainerIter<C2>())); + +template <typename C> +using ContainerDifferenceType = + decltype(std::distance(std::declval<ContainerIter<C>>(), + std::declval<ContainerIter<C>>())); + +template <typename C> +using ContainerPointerType = + typename std::iterator_traits<ContainerIter<C>>::pointer; + +// container_algorithm_internal::c_begin and +// container_algorithm_internal::c_end are abbreviations for proper ADL +// lookup of std::begin and std::end, i.e. +// using std::begin; +// using std::end; +// std::foo(begin(c), end(c); +// becomes +// std::foo(container_algorithm_internal::begin(c), +// container_algorithm_internal::end(c)); +// These are meant for internal use only. + +template <typename C> +ContainerIter<C> c_begin(C& c) { return begin(c); } + +template <typename C> +ContainerIter<C> c_end(C& c) { return end(c); } + +template <typename T> +struct IsUnorderedContainer : std::false_type {}; + +template <class Key, class T, class Hash, class KeyEqual, class Allocator> +struct IsUnorderedContainer< + std::unordered_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {}; + +template <class Key, class Hash, class KeyEqual, class Allocator> +struct IsUnorderedContainer<std::unordered_set<Key, Hash, KeyEqual, Allocator>> + : std::true_type {}; + +// container_algorithm_internal::c_size. It is meant for internal use only. + +template <class C> +auto c_size(C& c) -> decltype(c.size()) { + return c.size(); +} + +template <class T, std::size_t N> +constexpr std::size_t c_size(T (&)[N]) { + return N; +} + +} // namespace container_algorithm_internal + +// PUBLIC API + +//------------------------------------------------------------------------------ +// Abseil algorithm.h functions +//------------------------------------------------------------------------------ + +// c_linear_search() +// +// Container-based version of absl::linear_search() for performing a linear +// search within a container. +template <typename C, typename EqualityComparable> +bool c_linear_search(const C& c, EqualityComparable&& value) { + return linear_search(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<EqualityComparable>(value)); +} + +//------------------------------------------------------------------------------ +// <iterator> algorithms +//------------------------------------------------------------------------------ + +// c_distance() +// +// Container-based version of the <iterator> `std::distance()` function to +// return the number of elements within a container. +template <typename C> +container_algorithm_internal::ContainerDifferenceType<const C> c_distance( + const C& c) { + return std::distance(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c)); +} + +//------------------------------------------------------------------------------ +// <algorithm> Non-modifying sequence operations +//------------------------------------------------------------------------------ + +// c_all_of() +// +// Container-based version of the <algorithm> `std::all_of()` function to +// test a condition on all elements within a container. +template <typename C, typename Pred> +bool c_all_of(const C& c, Pred&& pred) { + return std::all_of(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Pred>(pred)); +} + +// c_any_of() +// +// Container-based version of the <algorithm> `std::any_of()` function to +// test if any element in a container fulfills a condition. +template <typename C, typename Pred> +bool c_any_of(const C& c, Pred&& pred) { + return std::any_of(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Pred>(pred)); +} + +// c_none_of() +// +// Container-based version of the <algorithm> `std::none_of()` function to +// test if no elements in a container fulfil a condition. +template <typename C, typename Pred> +bool c_none_of(const C& c, Pred&& pred) { + return std::none_of(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Pred>(pred)); +} + +// c_for_each() +// +// Container-based version of the <algorithm> `std::for_each()` function to +// apply a function to a container's elements. +template <typename C, typename Function> +decay_t<Function> c_for_each(C&& c, Function&& f) { + return std::for_each(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Function>(f)); +} + +// c_find() +// +// Container-based version of the <algorithm> `std::find()` function to find +// the first element containing the passed value within a container value. +template <typename C, typename T> +container_algorithm_internal::ContainerIter<C> c_find(C& c, T&& value) { + return std::find(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<T>(value)); +} + +// c_find_if() +// +// Container-based version of the <algorithm> `std::find_if()` function to find +// the first element in a container matching the given condition. +template <typename C, typename Pred> +container_algorithm_internal::ContainerIter<C> c_find_if(C& c, Pred&& pred) { + return std::find_if(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Pred>(pred)); +} + +// c_find_if_not() +// +// Container-based version of the <algorithm> `std::find_if_not()` function to +// find the first element in a container not matching the given condition. +template <typename C, typename Pred> +container_algorithm_internal::ContainerIter<C> c_find_if_not(C& c, + Pred&& pred) { + return std::find_if_not(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Pred>(pred)); +} + +// c_find_end() +// +// Container-based version of the <algorithm> `std::find_end()` function to +// find the last subsequence within a container. +template <typename Sequence1, typename Sequence2> +container_algorithm_internal::ContainerIter<Sequence1> c_find_end( + Sequence1& sequence, Sequence2& subsequence) { + return std::find_end(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + container_algorithm_internal::c_begin(subsequence), + container_algorithm_internal::c_end(subsequence)); +} + +// Overload of c_find_end() for using a predicate evaluation other than `==` as +// the function's test condition. +template <typename Sequence1, typename Sequence2, typename BinaryPredicate> +container_algorithm_internal::ContainerIter<Sequence1> c_find_end( + Sequence1& sequence, Sequence2& subsequence, BinaryPredicate&& pred) { + return std::find_end(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + container_algorithm_internal::c_begin(subsequence), + container_algorithm_internal::c_end(subsequence), + std::forward<BinaryPredicate>(pred)); +} + +// c_find_first_of() +// +// Container-based version of the <algorithm> `std::find_first_of()` function to +// find the first element within the container that is also within the options +// container. +template <typename C1, typename C2> +container_algorithm_internal::ContainerIter<C1> c_find_first_of(C1& container, + C2& options) { + return std::find_first_of(container_algorithm_internal::c_begin(container), + container_algorithm_internal::c_end(container), + container_algorithm_internal::c_begin(options), + container_algorithm_internal::c_end(options)); +} + +// Overload of c_find_first_of() for using a predicate evaluation other than +// `==` as the function's test condition. +template <typename C1, typename C2, typename BinaryPredicate> +container_algorithm_internal::ContainerIter<C1> c_find_first_of( + C1& container, C2& options, BinaryPredicate&& pred) { + return std::find_first_of(container_algorithm_internal::c_begin(container), + container_algorithm_internal::c_end(container), + container_algorithm_internal::c_begin(options), + container_algorithm_internal::c_end(options), + std::forward<BinaryPredicate>(pred)); +} + +// c_adjacent_find() +// +// Container-based version of the <algorithm> `std::adjacent_find()` function to +// find equal adjacent elements within a container. +template <typename Sequence> +container_algorithm_internal::ContainerIter<Sequence> c_adjacent_find( + Sequence& sequence) { + return std::adjacent_find(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence)); +} + +// Overload of c_adjacent_find() for using a predicate evaluation other than +// `==` as the function's test condition. +template <typename Sequence, typename BinaryPredicate> +container_algorithm_internal::ContainerIter<Sequence> c_adjacent_find( + Sequence& sequence, BinaryPredicate&& pred) { + return std::adjacent_find(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<BinaryPredicate>(pred)); +} + +// c_count() +// +// Container-based version of the <algorithm> `std::count()` function to count +// values that match within a container. +template <typename C, typename T> +container_algorithm_internal::ContainerDifferenceType<const C> c_count( + const C& c, T&& value) { + return std::count(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<T>(value)); +} + +// c_count_if() +// +// Container-based version of the <algorithm> `std::count_if()` function to +// count values matching a condition within a container. +template <typename C, typename Pred> +container_algorithm_internal::ContainerDifferenceType<const C> c_count_if( + const C& c, Pred&& pred) { + return std::count_if(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Pred>(pred)); +} + +// c_mismatch() +// +// Container-based version of the <algorithm> `std::mismatch()` function to +// return the first element where two ordered containers differ. +template <typename C1, typename C2> +container_algorithm_internal::ContainerIterPairType<C1, C2> +c_mismatch(C1& c1, C2& c2) { + return std::mismatch(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2)); +} + +// Overload of c_mismatch() for using a predicate evaluation other than `==` as +// the function's test condition. +template <typename C1, typename C2, typename BinaryPredicate> +container_algorithm_internal::ContainerIterPairType<C1, C2> +c_mismatch(C1& c1, C2& c2, BinaryPredicate&& pred) { + return std::mismatch(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + std::forward<BinaryPredicate>(pred)); +} + +// c_equal() +// +// Container-based version of the <algorithm> `std::equal()` function to +// test whether two containers are equal. +// +// NOTE: the semantics of c_equal() are slightly different than those of +// equal(): while the latter iterates over the second container only up to the +// size of the first container, c_equal() also checks whether the container +// sizes are equal. This better matches expectations about c_equal() based on +// its signature. +// +// Example: +// vector v1 = <1, 2, 3>; +// vector v2 = <1, 2, 3, 4>; +// equal(std::begin(v1), std::end(v1), std::begin(v2)) returns true +// c_equal(v1, v2) returns false + +template <typename C1, typename C2> +bool c_equal(const C1& c1, const C2& c2) { + return ((container_algorithm_internal::c_size(c1) == + container_algorithm_internal::c_size(c2)) && + std::equal(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2))); +} + +// Overload of c_equal() for using a predicate evaluation other than `==` as +// the function's test condition. +template <typename C1, typename C2, typename BinaryPredicate> +bool c_equal(const C1& c1, const C2& c2, BinaryPredicate&& pred) { + return ((container_algorithm_internal::c_size(c1) == + container_algorithm_internal::c_size(c2)) && + std::equal(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + std::forward<BinaryPredicate>(pred))); +} + +// c_is_permutation() +// +// Container-based version of the <algorithm> `std::is_permutation()` function +// to test whether a container is a permutation of another. +template <typename C1, typename C2> +bool c_is_permutation(const C1& c1, const C2& c2) { + using std::begin; + using std::end; + return c1.size() == c2.size() && + std::is_permutation(begin(c1), end(c1), begin(c2)); +} + +// Overload of c_is_permutation() for using a predicate evaluation other than +// `==` as the function's test condition. +template <typename C1, typename C2, typename BinaryPredicate> +bool c_is_permutation(const C1& c1, const C2& c2, BinaryPredicate&& pred) { + using std::begin; + using std::end; + return c1.size() == c2.size() && + std::is_permutation(begin(c1), end(c1), begin(c2), + std::forward<BinaryPredicate>(pred)); +} + +// c_search() +// +// Container-based version of the <algorithm> `std::search()` function to search +// a container for a subsequence. +template <typename Sequence1, typename Sequence2> +container_algorithm_internal::ContainerIter<Sequence1> c_search( + Sequence1& sequence, Sequence2& subsequence) { + return std::search(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + container_algorithm_internal::c_begin(subsequence), + container_algorithm_internal::c_end(subsequence)); +} + +// Overload of c_search() for using a predicate evaluation other than +// `==` as the function's test condition. +template <typename Sequence1, typename Sequence2, typename BinaryPredicate> +container_algorithm_internal::ContainerIter<Sequence1> c_search( + Sequence1& sequence, Sequence2& subsequence, BinaryPredicate&& pred) { + return std::search(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + container_algorithm_internal::c_begin(subsequence), + container_algorithm_internal::c_end(subsequence), + std::forward<BinaryPredicate>(pred)); +} + +// c_search_n() +// +// Container-based version of the <algorithm> `std::search_n()` function to +// search a container for the first sequence of N elements. +template <typename Sequence, typename Size, typename T> +container_algorithm_internal::ContainerIter<Sequence> c_search_n( + Sequence& sequence, Size count, T&& value) { + return std::search_n(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), count, + std::forward<T>(value)); +} + +// Overload of c_search_n() for using a predicate evaluation other than +// `==` as the function's test condition. +template <typename Sequence, typename Size, typename T, + typename BinaryPredicate> +container_algorithm_internal::ContainerIter<Sequence> c_search_n( + Sequence& sequence, Size count, T&& value, BinaryPredicate&& pred) { + return std::search_n(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), count, + std::forward<T>(value), + std::forward<BinaryPredicate>(pred)); +} + +//------------------------------------------------------------------------------ +// <algorithm> Modifying sequence operations +//------------------------------------------------------------------------------ + +// c_copy() +// +// Container-based version of the <algorithm> `std::copy()` function to copy a +// container's elements into an iterator. +template <typename InputSequence, typename OutputIterator> +OutputIterator c_copy(const InputSequence& input, OutputIterator output) { + return std::copy(container_algorithm_internal::c_begin(input), + container_algorithm_internal::c_end(input), output); +} + +// c_copy_n() +// +// Container-based version of the <algorithm> `std::copy_n()` function to copy a +// container's first N elements into an iterator. +template <typename C, typename Size, typename OutputIterator> +OutputIterator c_copy_n(const C& input, Size n, OutputIterator output) { + return std::copy_n(container_algorithm_internal::c_begin(input), n, output); +} + +// c_copy_if() +// +// Container-based version of the <algorithm> `std::copy_if()` function to copy +// a container's elements satisfying some condition into an iterator. +template <typename InputSequence, typename OutputIterator, typename Pred> +OutputIterator c_copy_if(const InputSequence& input, OutputIterator output, + Pred&& pred) { + return std::copy_if(container_algorithm_internal::c_begin(input), + container_algorithm_internal::c_end(input), output, + std::forward<Pred>(pred)); +} + +// c_copy_backward() +// +// Container-based version of the <algorithm> `std::copy_backward()` function to +// copy a container's elements in reverse order into an iterator. +template <typename C, typename BidirectionalIterator> +BidirectionalIterator c_copy_backward(const C& src, + BidirectionalIterator dest) { + return std::copy_backward(container_algorithm_internal::c_begin(src), + container_algorithm_internal::c_end(src), dest); +} + +// c_move() +// +// Container-based version of the <algorithm> `std::move()` function to move +// a container's elements into an iterator. +template <typename C, typename OutputIterator> +OutputIterator c_move(C&& src, OutputIterator dest) { + return std::move(container_algorithm_internal::c_begin(src), + container_algorithm_internal::c_end(src), dest); +} + +// c_move_backward() +// +// Container-based version of the <algorithm> `std::move_backward()` function to +// move a container's elements into an iterator in reverse order. +template <typename C, typename BidirectionalIterator> +BidirectionalIterator c_move_backward(C&& src, BidirectionalIterator dest) { + return std::move_backward(container_algorithm_internal::c_begin(src), + container_algorithm_internal::c_end(src), dest); +} + +// c_swap_ranges() +// +// Container-based version of the <algorithm> `std::swap_ranges()` function to +// swap a container's elements with another container's elements. +template <typename C1, typename C2> +container_algorithm_internal::ContainerIter<C2> c_swap_ranges(C1& c1, C2& c2) { + return std::swap_ranges(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2)); +} + +// c_transform() +// +// Container-based version of the <algorithm> `std::transform()` function to +// transform a container's elements using the unary operation, storing the +// result in an iterator pointing to the last transformed element in the output +// range. +template <typename InputSequence, typename OutputIterator, typename UnaryOp> +OutputIterator c_transform(const InputSequence& input, OutputIterator output, + UnaryOp&& unary_op) { + return std::transform(container_algorithm_internal::c_begin(input), + container_algorithm_internal::c_end(input), output, + std::forward<UnaryOp>(unary_op)); +} + +// Overload of c_transform() for performing a transformation using a binary +// predicate. +template <typename InputSequence1, typename InputSequence2, + typename OutputIterator, typename BinaryOp> +OutputIterator c_transform(const InputSequence1& input1, + const InputSequence2& input2, OutputIterator output, + BinaryOp&& binary_op) { + return std::transform(container_algorithm_internal::c_begin(input1), + container_algorithm_internal::c_end(input1), + container_algorithm_internal::c_begin(input2), output, + std::forward<BinaryOp>(binary_op)); +} + +// c_replace() +// +// Container-based version of the <algorithm> `std::replace()` function to +// replace a container's elements of some value with a new value. The container +// is modified in place. +template <typename Sequence, typename T> +void c_replace(Sequence& sequence, const T& old_value, const T& new_value) { + std::replace(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), old_value, + new_value); +} + +// c_replace_if() +// +// Container-based version of the <algorithm> `std::replace_if()` function to +// replace a container's elements of some value with a new value based on some +// condition. The container is modified in place. +template <typename C, typename Pred, typename T> +void c_replace_if(C& c, Pred&& pred, T&& new_value) { + std::replace_if(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Pred>(pred), std::forward<T>(new_value)); +} + +// c_replace_copy() +// +// Container-based version of the <algorithm> `std::replace_copy()` function to +// replace a container's elements of some value with a new value and return the +// results within an iterator. +template <typename C, typename OutputIterator, typename T> +OutputIterator c_replace_copy(const C& c, OutputIterator result, T&& old_value, + T&& new_value) { + return std::replace_copy(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), result, + std::forward<T>(old_value), + std::forward<T>(new_value)); +} + +// c_replace_copy_if() +// +// Container-based version of the <algorithm> `std::replace_copy_if()` function +// to replace a container's elements of some value with a new value based on +// some condition, and return the results within an iterator. +template <typename C, typename OutputIterator, typename Pred, typename T> +OutputIterator c_replace_copy_if(const C& c, OutputIterator result, Pred&& pred, + T&& new_value) { + return std::replace_copy_if(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), result, + std::forward<Pred>(pred), + std::forward<T>(new_value)); +} + +// c_fill() +// +// Container-based version of the <algorithm> `std::fill()` function to fill a +// container with some value. +template <typename C, typename T> +void c_fill(C& c, T&& value) { + std::fill(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), std::forward<T>(value)); +} + +// c_fill_n() +// +// Container-based version of the <algorithm> `std::fill_n()` function to fill +// the first N elements in a container with some value. +template <typename C, typename Size, typename T> +void c_fill_n(C& c, Size n, T&& value) { + std::fill_n(container_algorithm_internal::c_begin(c), n, + std::forward<T>(value)); +} + +// c_generate() +// +// Container-based version of the <algorithm> `std::generate()` function to +// assign a container's elements to the values provided by the given generator. +template <typename C, typename Generator> +void c_generate(C& c, Generator&& gen) { + std::generate(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Generator>(gen)); +} + +// c_generate_n() +// +// Container-based version of the <algorithm> `std::generate_n()` function to +// assign a container's first N elements to the values provided by the given +// generator. +template <typename C, typename Size, typename Generator> +container_algorithm_internal::ContainerIter<C> c_generate_n(C& c, Size n, + Generator&& gen) { + return std::generate_n(container_algorithm_internal::c_begin(c), n, + std::forward<Generator>(gen)); +} + +// Note: `c_xx()` <algorithm> container versions for `remove()`, `remove_if()`, +// and `unique()` are omitted, because it's not clear whether or not such +// functions should call erase on their supplied sequences afterwards. Either +// behavior would be surprising for a different set of users. + +// c_remove_copy() +// +// Container-based version of the <algorithm> `std::remove_copy()` function to +// copy a container's elements while removing any elements matching the given +// `value`. +template <typename C, typename OutputIterator, typename T> +OutputIterator c_remove_copy(const C& c, OutputIterator result, T&& value) { + return std::remove_copy(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), result, + std::forward<T>(value)); +} + +// c_remove_copy_if() +// +// Container-based version of the <algorithm> `std::remove_copy_if()` function +// to copy a container's elements while removing any elements matching the given +// condition. +template <typename C, typename OutputIterator, typename Pred> +OutputIterator c_remove_copy_if(const C& c, OutputIterator result, + Pred&& pred) { + return std::remove_copy_if(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), result, + std::forward<Pred>(pred)); +} + +// c_unique_copy() +// +// Container-based version of the <algorithm> `std::unique_copy()` function to +// copy a container's elements while removing any elements containing duplicate +// values. +template <typename C, typename OutputIterator> +OutputIterator c_unique_copy(const C& c, OutputIterator result) { + return std::unique_copy(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), result); +} + +// Overload of c_unique_copy() for using a predicate evaluation other than +// `==` for comparing uniqueness of the element values. +template <typename C, typename OutputIterator, typename BinaryPredicate> +OutputIterator c_unique_copy(const C& c, OutputIterator result, + BinaryPredicate&& pred) { + return std::unique_copy(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), result, + std::forward<BinaryPredicate>(pred)); +} + +// c_reverse() +// +// Container-based version of the <algorithm> `std::reverse()` function to +// reverse a container's elements. +template <typename Sequence> +void c_reverse(Sequence& sequence) { + std::reverse(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence)); +} + +// c_reverse_copy() +// +// Container-based version of the <algorithm> `std::reverse()` function to +// reverse a container's elements and write them to an iterator range. +template <typename C, typename OutputIterator> +OutputIterator c_reverse_copy(const C& sequence, OutputIterator result) { + return std::reverse_copy(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + result); +} + +// c_rotate() +// +// Container-based version of the <algorithm> `std::rotate()` function to +// shift a container's elements leftward such that the `middle` element becomes +// the first element in the container. +template <typename C, + typename Iterator = container_algorithm_internal::ContainerIter<C>> +Iterator c_rotate(C& sequence, Iterator middle) { + return absl::rotate(container_algorithm_internal::c_begin(sequence), middle, + container_algorithm_internal::c_end(sequence)); +} + +// c_rotate_copy() +// +// Container-based version of the <algorithm> `std::rotate_copy()` function to +// shift a container's elements leftward such that the `middle` element becomes +// the first element in a new iterator range. +template <typename C, typename OutputIterator> +OutputIterator c_rotate_copy( + const C& sequence, + container_algorithm_internal::ContainerIter<const C> middle, + OutputIterator result) { + return std::rotate_copy(container_algorithm_internal::c_begin(sequence), + middle, container_algorithm_internal::c_end(sequence), + result); +} + +// c_shuffle() +// +// Container-based version of the <algorithm> `std::shuffle()` function to +// randomly shuffle elements within the container using a `gen()` uniform random +// number generator. +template <typename RandomAccessContainer, typename UniformRandomBitGenerator> +void c_shuffle(RandomAccessContainer& c, UniformRandomBitGenerator&& gen) { + std::shuffle(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<UniformRandomBitGenerator>(gen)); +} + +//------------------------------------------------------------------------------ +// <algorithm> Partition functions +//------------------------------------------------------------------------------ + +// c_is_partitioned() +// +// Container-based version of the <algorithm> `std::is_partitioned()` function +// to test whether all elements in the container for which `pred` returns `true` +// precede those for which `pred` is `false`. +template <typename C, typename Pred> +bool c_is_partitioned(const C& c, Pred&& pred) { + return std::is_partitioned(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Pred>(pred)); +} + +// c_partition() +// +// Container-based version of the <algorithm> `std::partition()` function +// to rearrange all elements in a container in such a way that all elements for +// which `pred` returns `true` precede all those for which it returns `false`, +// returning an iterator to the first element of the second group. +template <typename C, typename Pred> +container_algorithm_internal::ContainerIter<C> c_partition(C& c, Pred&& pred) { + return std::partition(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Pred>(pred)); +} + +// c_stable_partition() +// +// Container-based version of the <algorithm> `std::stable_partition()` function +// to rearrange all elements in a container in such a way that all elements for +// which `pred` returns `true` precede all those for which it returns `false`, +// preserving the relative ordering between the two groups. The function returns +// an iterator to the first element of the second group. +template <typename C, typename Pred> +container_algorithm_internal::ContainerIter<C> c_stable_partition(C& c, + Pred&& pred) { + return std::stable_partition(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Pred>(pred)); +} + +// c_partition_copy() +// +// Container-based version of the <algorithm> `std::partition_copy()` function +// to partition a container's elements and return them into two iterators: one +// for which `pred` returns `true`, and one for which `pred` returns `false.` + +template <typename C, typename OutputIterator1, typename OutputIterator2, + typename Pred> +std::pair<OutputIterator1, OutputIterator2> c_partition_copy( + const C& c, OutputIterator1 out_true, OutputIterator2 out_false, + Pred&& pred) { + return std::partition_copy(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), out_true, + out_false, std::forward<Pred>(pred)); +} + +// c_partition_point() +// +// Container-based version of the <algorithm> `std::partition_point()` function +// to return the first element of an already partitioned container for which +// the given `pred` is not `true`. +template <typename C, typename Pred> +container_algorithm_internal::ContainerIter<C> c_partition_point(C& c, + Pred&& pred) { + return std::partition_point(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Pred>(pred)); +} + +//------------------------------------------------------------------------------ +// <algorithm> Sorting functions +//------------------------------------------------------------------------------ + +// c_sort() +// +// Container-based version of the <algorithm> `std::sort()` function +// to sort elements in ascending order of their values. +template <typename C> +void c_sort(C& c) { + std::sort(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c)); +} + +// Overload of c_sort() for performing a `comp` comparison other than the +// default `operator<`. +template <typename C, typename Compare> +void c_sort(C& c, Compare&& comp) { + std::sort(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Compare>(comp)); +} + +// c_stable_sort() +// +// Container-based version of the <algorithm> `std::stable_sort()` function +// to sort elements in ascending order of their values, preserving the order +// of equivalents. +template <typename C> +void c_stable_sort(C& c) { + std::stable_sort(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c)); +} + +// Overload of c_stable_sort() for performing a `comp` comparison other than the +// default `operator<`. +template <typename C, typename Compare> +void c_stable_sort(C& c, Compare&& comp) { + std::stable_sort(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Compare>(comp)); +} + +// c_is_sorted() +// +// Container-based version of the <algorithm> `std::is_sorted()` function +// to evaluate whether the given container is sorted in ascending order. +template <typename C> +bool c_is_sorted(const C& c) { + return std::is_sorted(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c)); +} + +// c_is_sorted() overload for performing a `comp` comparison other than the +// default `operator<`. +template <typename C, typename Compare> +bool c_is_sorted(const C& c, Compare&& comp) { + return std::is_sorted(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Compare>(comp)); +} + +// c_partial_sort() +// +// Container-based version of the <algorithm> `std::partial_sort()` function +// to rearrange elements within a container such that elements before `middle` +// are sorted in ascending order. +template <typename RandomAccessContainer> +void c_partial_sort( + RandomAccessContainer& sequence, + container_algorithm_internal::ContainerIter<RandomAccessContainer> middle) { + std::partial_sort(container_algorithm_internal::c_begin(sequence), middle, + container_algorithm_internal::c_end(sequence)); +} + +// Overload of c_partial_sort() for performing a `comp` comparison other than +// the default `operator<`. +template <typename RandomAccessContainer, typename Compare> +void c_partial_sort( + RandomAccessContainer& sequence, + container_algorithm_internal::ContainerIter<RandomAccessContainer> middle, + Compare&& comp) { + std::partial_sort(container_algorithm_internal::c_begin(sequence), middle, + container_algorithm_internal::c_end(sequence), + std::forward<Compare>(comp)); +} + +// c_partial_sort_copy() +// +// Container-based version of the <algorithm> `std::partial_sort_copy()` +// function to sort elements within a container such that elements before +// `middle` are sorted in ascending order, and return the result within an +// iterator. +template <typename C, typename RandomAccessContainer> +container_algorithm_internal::ContainerIter<RandomAccessContainer> +c_partial_sort_copy(const C& sequence, RandomAccessContainer& result) { + return std::partial_sort_copy(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + container_algorithm_internal::c_begin(result), + container_algorithm_internal::c_end(result)); +} + +// Overload of c_partial_sort_copy() for performing a `comp` comparison other +// than the default `operator<`. +template <typename C, typename RandomAccessContainer, typename Compare> +container_algorithm_internal::ContainerIter<RandomAccessContainer> +c_partial_sort_copy(const C& sequence, RandomAccessContainer& result, + Compare&& comp) { + return std::partial_sort_copy(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + container_algorithm_internal::c_begin(result), + container_algorithm_internal::c_end(result), + std::forward<Compare>(comp)); +} + +// c_is_sorted_until() +// +// Container-based version of the <algorithm> `std::is_sorted_until()` function +// to return the first element within a container that is not sorted in +// ascending order as an iterator. +template <typename C> +container_algorithm_internal::ContainerIter<C> c_is_sorted_until(C& c) { + return std::is_sorted_until(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c)); +} + +// Overload of c_is_sorted_until() for performing a `comp` comparison other than +// the default `operator<`. +template <typename C, typename Compare> +container_algorithm_internal::ContainerIter<C> c_is_sorted_until( + C& c, Compare&& comp) { + return std::is_sorted_until(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Compare>(comp)); +} + +// c_nth_element() +// +// Container-based version of the <algorithm> `std::nth_element()` function +// to rearrange the elements within a container such that the `nth` element +// would be in that position in an ordered sequence; other elements may be in +// any order, except that all preceding `nth` will be less than that element, +// and all following `nth` will be greater than that element. +template <typename RandomAccessContainer> +void c_nth_element( + RandomAccessContainer& sequence, + container_algorithm_internal::ContainerIter<RandomAccessContainer> nth) { + std::nth_element(container_algorithm_internal::c_begin(sequence), nth, + container_algorithm_internal::c_end(sequence)); +} + +// Overload of c_nth_element() for performing a `comp` comparison other than +// the default `operator<`. +template <typename RandomAccessContainer, typename Compare> +void c_nth_element( + RandomAccessContainer& sequence, + container_algorithm_internal::ContainerIter<RandomAccessContainer> nth, + Compare&& comp) { + std::nth_element(container_algorithm_internal::c_begin(sequence), nth, + container_algorithm_internal::c_end(sequence), + std::forward<Compare>(comp)); +} + +//------------------------------------------------------------------------------ +// <algorithm> Binary Search +//------------------------------------------------------------------------------ + +// c_lower_bound() +// +// Container-based version of the <algorithm> `std::lower_bound()` function +// to return an iterator pointing to the first element in a sorted container +// which does not compare less than `value`. +template <typename Sequence, typename T> +container_algorithm_internal::ContainerIter<Sequence> c_lower_bound( + Sequence& sequence, T&& value) { + return std::lower_bound(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<T>(value)); +} + +// Overload of c_lower_bound() for performing a `comp` comparison other than +// the default `operator<`. +template <typename Sequence, typename T, typename Compare> +container_algorithm_internal::ContainerIter<Sequence> c_lower_bound( + Sequence& sequence, T&& value, Compare&& comp) { + return std::lower_bound(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<T>(value), std::forward<Compare>(comp)); +} + +// c_upper_bound() +// +// Container-based version of the <algorithm> `std::upper_bound()` function +// to return an iterator pointing to the first element in a sorted container +// which is greater than `value`. +template <typename Sequence, typename T> +container_algorithm_internal::ContainerIter<Sequence> c_upper_bound( + Sequence& sequence, T&& value) { + return std::upper_bound(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<T>(value)); +} + +// Overload of c_upper_bound() for performing a `comp` comparison other than +// the default `operator<`. +template <typename Sequence, typename T, typename Compare> +container_algorithm_internal::ContainerIter<Sequence> c_upper_bound( + Sequence& sequence, T&& value, Compare&& comp) { + return std::upper_bound(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<T>(value), std::forward<Compare>(comp)); +} + +// c_equal_range() +// +// Container-based version of the <algorithm> `std::equal_range()` function +// to return an iterator pair pointing to the first and last elements in a +// sorted container which compare equal to `value`. +template <typename Sequence, typename T> +container_algorithm_internal::ContainerIterPairType<Sequence, Sequence> +c_equal_range(Sequence& sequence, T&& value) { + return std::equal_range(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<T>(value)); +} + +// Overload of c_equal_range() for performing a `comp` comparison other than +// the default `operator<`. +template <typename Sequence, typename T, typename Compare> +container_algorithm_internal::ContainerIterPairType<Sequence, Sequence> +c_equal_range(Sequence& sequence, T&& value, Compare&& comp) { + return std::equal_range(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<T>(value), std::forward<Compare>(comp)); +} + +// c_binary_search() +// +// Container-based version of the <algorithm> `std::binary_search()` function +// to test if any element in the sorted container contains a value equivalent to +// 'value'. +template <typename Sequence, typename T> +bool c_binary_search(Sequence&& sequence, T&& value) { + return std::binary_search(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<T>(value)); +} + +// Overload of c_binary_search() for performing a `comp` comparison other than +// the default `operator<`. +template <typename Sequence, typename T, typename Compare> +bool c_binary_search(Sequence&& sequence, T&& value, Compare&& comp) { + return std::binary_search(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<T>(value), + std::forward<Compare>(comp)); +} + +//------------------------------------------------------------------------------ +// <algorithm> Merge functions +//------------------------------------------------------------------------------ + +// c_merge() +// +// Container-based version of the <algorithm> `std::merge()` function +// to merge two sorted containers into a single sorted iterator. +template <typename C1, typename C2, typename OutputIterator> +OutputIterator c_merge(const C1& c1, const C2& c2, OutputIterator result) { + return std::merge(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + container_algorithm_internal::c_end(c2), result); +} + +// Overload of c_merge() for performing a `comp` comparison other than +// the default `operator<`. +template <typename C1, typename C2, typename OutputIterator, typename Compare> +OutputIterator c_merge(const C1& c1, const C2& c2, OutputIterator result, + Compare&& comp) { + return std::merge(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + container_algorithm_internal::c_end(c2), result, + std::forward<Compare>(comp)); +} + +// c_inplace_merge() +// +// Container-based version of the <algorithm> `std::inplace_merge()` function +// to merge a supplied iterator `middle` into a container. +template <typename C> +void c_inplace_merge(C& c, + container_algorithm_internal::ContainerIter<C> middle) { + std::inplace_merge(container_algorithm_internal::c_begin(c), middle, + container_algorithm_internal::c_end(c)); +} + +// Overload of c_inplace_merge() for performing a merge using a `comp` other +// than `operator<`. +template <typename C, typename Compare> +void c_inplace_merge(C& c, + container_algorithm_internal::ContainerIter<C> middle, + Compare&& comp) { + std::inplace_merge(container_algorithm_internal::c_begin(c), middle, + container_algorithm_internal::c_end(c), + std::forward<Compare>(comp)); +} + +// c_includes() +// +// Container-based version of the <algorithm> `std::includes()` function +// to test whether a sorted container `c1` entirely contains another sorted +// container `c2`. +template <typename C1, typename C2> +bool c_includes(const C1& c1, const C2& c2) { + return std::includes(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + container_algorithm_internal::c_end(c2)); +} + +// Overload of c_includes() for performing a merge using a `comp` other than +// `operator<`. +template <typename C1, typename C2, typename Compare> +bool c_includes(const C1& c1, const C2& c2, Compare&& comp) { + return std::includes(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + container_algorithm_internal::c_end(c2), + std::forward<Compare>(comp)); +} + +// c_set_union() +// +// Container-based version of the <algorithm> `std::set_union()` function +// to return an iterator containing the union of two containers; duplicate +// values are not copied into the output. +template <typename C1, typename C2, typename OutputIterator, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C1>::value, + void>::type, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C2>::value, + void>::type> +OutputIterator c_set_union(const C1& c1, const C2& c2, OutputIterator output) { + return std::set_union(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + container_algorithm_internal::c_end(c2), output); +} + +// Overload of c_set_union() for performing a merge using a `comp` other than +// `operator<`. +template <typename C1, typename C2, typename OutputIterator, typename Compare, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C1>::value, + void>::type, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C2>::value, + void>::type> +OutputIterator c_set_union(const C1& c1, const C2& c2, OutputIterator output, + Compare&& comp) { + return std::set_union(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + container_algorithm_internal::c_end(c2), output, + std::forward<Compare>(comp)); +} + +// c_set_intersection() +// +// Container-based version of the <algorithm> `std::set_intersection()` function +// to return an iterator containing the intersection of two containers. +template <typename C1, typename C2, typename OutputIterator, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C1>::value, + void>::type, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C2>::value, + void>::type> +OutputIterator c_set_intersection(const C1& c1, const C2& c2, + OutputIterator output) { + return std::set_intersection(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + container_algorithm_internal::c_end(c2), output); +} + +// Overload of c_set_intersection() for performing a merge using a `comp` other +// than `operator<`. +template <typename C1, typename C2, typename OutputIterator, typename Compare, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C1>::value, + void>::type, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C2>::value, + void>::type> +OutputIterator c_set_intersection(const C1& c1, const C2& c2, + OutputIterator output, Compare&& comp) { + return std::set_intersection(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + container_algorithm_internal::c_end(c2), output, + std::forward<Compare>(comp)); +} + +// c_set_difference() +// +// Container-based version of the <algorithm> `std::set_difference()` function +// to return an iterator containing elements present in the first container but +// not in the second. +template <typename C1, typename C2, typename OutputIterator, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C1>::value, + void>::type, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C2>::value, + void>::type> +OutputIterator c_set_difference(const C1& c1, const C2& c2, + OutputIterator output) { + return std::set_difference(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + container_algorithm_internal::c_end(c2), output); +} + +// Overload of c_set_difference() for performing a merge using a `comp` other +// than `operator<`. +template <typename C1, typename C2, typename OutputIterator, typename Compare, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C1>::value, + void>::type, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C2>::value, + void>::type> +OutputIterator c_set_difference(const C1& c1, const C2& c2, + OutputIterator output, Compare&& comp) { + return std::set_difference(container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + container_algorithm_internal::c_end(c2), output, + std::forward<Compare>(comp)); +} + +// c_set_symmetric_difference() +// +// Container-based version of the <algorithm> `std::set_symmetric_difference()` +// function to return an iterator containing elements present in either one +// container or the other, but not both. +template <typename C1, typename C2, typename OutputIterator, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C1>::value, + void>::type, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C2>::value, + void>::type> +OutputIterator c_set_symmetric_difference(const C1& c1, const C2& c2, + OutputIterator output) { + return std::set_symmetric_difference( + container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + container_algorithm_internal::c_end(c2), output); +} + +// Overload of c_set_symmetric_difference() for performing a merge using a +// `comp` other than `operator<`. +template <typename C1, typename C2, typename OutputIterator, typename Compare, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C1>::value, + void>::type, + typename = typename std::enable_if< + !container_algorithm_internal::IsUnorderedContainer<C2>::value, + void>::type> +OutputIterator c_set_symmetric_difference(const C1& c1, const C2& c2, + OutputIterator output, + Compare&& comp) { + return std::set_symmetric_difference( + container_algorithm_internal::c_begin(c1), + container_algorithm_internal::c_end(c1), + container_algorithm_internal::c_begin(c2), + container_algorithm_internal::c_end(c2), output, + std::forward<Compare>(comp)); +} + +//------------------------------------------------------------------------------ +// <algorithm> Heap functions +//------------------------------------------------------------------------------ + +// c_push_heap() +// +// Container-based version of the <algorithm> `std::push_heap()` function +// to push a value onto a container heap. +template <typename RandomAccessContainer> +void c_push_heap(RandomAccessContainer& sequence) { + std::push_heap(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence)); +} + +// Overload of c_push_heap() for performing a push operation on a heap using a +// `comp` other than `operator<`. +template <typename RandomAccessContainer, typename Compare> +void c_push_heap(RandomAccessContainer& sequence, Compare&& comp) { + std::push_heap(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<Compare>(comp)); +} + +// c_pop_heap() +// +// Container-based version of the <algorithm> `std::pop_heap()` function +// to pop a value from a heap container. +template <typename RandomAccessContainer> +void c_pop_heap(RandomAccessContainer& sequence) { + std::pop_heap(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence)); +} + +// Overload of c_pop_heap() for performing a pop operation on a heap using a +// `comp` other than `operator<`. +template <typename RandomAccessContainer, typename Compare> +void c_pop_heap(RandomAccessContainer& sequence, Compare&& comp) { + std::pop_heap(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<Compare>(comp)); +} + +// c_make_heap() +// +// Container-based version of the <algorithm> `std::make_heap()` function +// to make a container a heap. +template <typename RandomAccessContainer> +void c_make_heap(RandomAccessContainer& sequence) { + std::make_heap(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence)); +} + +// Overload of c_make_heap() for performing heap comparisons using a +// `comp` other than `operator<` +template <typename RandomAccessContainer, typename Compare> +void c_make_heap(RandomAccessContainer& sequence, Compare&& comp) { + std::make_heap(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<Compare>(comp)); +} + +// c_sort_heap() +// +// Container-based version of the <algorithm> `std::sort_heap()` function +// to sort a heap into ascending order (after which it is no longer a heap). +template <typename RandomAccessContainer> +void c_sort_heap(RandomAccessContainer& sequence) { + std::sort_heap(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence)); +} + +// Overload of c_sort_heap() for performing heap comparisons using a +// `comp` other than `operator<` +template <typename RandomAccessContainer, typename Compare> +void c_sort_heap(RandomAccessContainer& sequence, Compare&& comp) { + std::sort_heap(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<Compare>(comp)); +} + +// c_is_heap() +// +// Container-based version of the <algorithm> `std::is_heap()` function +// to check whether the given container is a heap. +template <typename RandomAccessContainer> +bool c_is_heap(const RandomAccessContainer& sequence) { + return std::is_heap(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence)); +} + +// Overload of c_is_heap() for performing heap comparisons using a +// `comp` other than `operator<` +template <typename RandomAccessContainer, typename Compare> +bool c_is_heap(const RandomAccessContainer& sequence, Compare&& comp) { + return std::is_heap(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<Compare>(comp)); +} + +// c_is_heap_until() +// +// Container-based version of the <algorithm> `std::is_heap_until()` function +// to find the first element in a given container which is not in heap order. +template <typename RandomAccessContainer> +container_algorithm_internal::ContainerIter<RandomAccessContainer> +c_is_heap_until(RandomAccessContainer& sequence) { + return std::is_heap_until(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence)); +} + +// Overload of c_is_heap_until() for performing heap comparisons using a +// `comp` other than `operator<` +template <typename RandomAccessContainer, typename Compare> +container_algorithm_internal::ContainerIter<RandomAccessContainer> +c_is_heap_until(RandomAccessContainer& sequence, Compare&& comp) { + return std::is_heap_until(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<Compare>(comp)); +} + +//------------------------------------------------------------------------------ +// <algorithm> Min/max +//------------------------------------------------------------------------------ + +// c_min_element() +// +// Container-based version of the <algorithm> `std::min_element()` function +// to return an iterator pointing to the element with the smallest value, using +// `operator<` to make the comparisons. +template <typename Sequence> +container_algorithm_internal::ContainerIter<Sequence> c_min_element( + Sequence& sequence) { + return std::min_element(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence)); +} + +// Overload of c_min_element() for performing a `comp` comparison other than +// `operator<`. +template <typename Sequence, typename Compare> +container_algorithm_internal::ContainerIter<Sequence> c_min_element( + Sequence& sequence, Compare&& comp) { + return std::min_element(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<Compare>(comp)); +} + +// c_max_element() +// +// Container-based version of the <algorithm> `std::max_element()` function +// to return an iterator pointing to the element with the largest value, using +// `operator<` to make the comparisons. +template <typename Sequence> +container_algorithm_internal::ContainerIter<Sequence> c_max_element( + Sequence& sequence) { + return std::max_element(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence)); +} + +// Overload of c_max_element() for performing a `comp` comparison other than +// `operator<`. +template <typename Sequence, typename Compare> +container_algorithm_internal::ContainerIter<Sequence> c_max_element( + Sequence& sequence, Compare&& comp) { + return std::max_element(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<Compare>(comp)); +} + +// c_minmax_element() +// +// Container-based version of the <algorithm> `std::minmax_element()` function +// to return a pair of iterators pointing to the elements containing the +// smallest and largest values, respectively, using `operator<` to make the +// comparisons. +template <typename C> +container_algorithm_internal::ContainerIterPairType<C, C> +c_minmax_element(C& c) { + return std::minmax_element(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c)); +} + +// Overload of c_minmax_element() for performing `comp` comparisons other than +// `operator<`. +template <typename C, typename Compare> +container_algorithm_internal::ContainerIterPairType<C, C> +c_minmax_element(C& c, Compare&& comp) { + return std::minmax_element(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Compare>(comp)); +} + +//------------------------------------------------------------------------------ +// <algorithm> Lexicographical Comparisons +//------------------------------------------------------------------------------ + +// c_lexicographical_compare() +// +// Container-based version of the <algorithm> `std::lexicographical_compare()` +// function to lexicographically compare (e.g. sort words alphabetically) two +// container sequences. The comparison is performed using `operator<`. Note +// that capital letters ("A-Z") have ASCII values less than lowercase letters +// ("a-z"). +template <typename Sequence1, typename Sequence2> +bool c_lexicographical_compare(Sequence1&& sequence1, Sequence2&& sequence2) { + return std::lexicographical_compare( + container_algorithm_internal::c_begin(sequence1), + container_algorithm_internal::c_end(sequence1), + container_algorithm_internal::c_begin(sequence2), + container_algorithm_internal::c_end(sequence2)); +} + +// Overload of c_lexicographical_compare() for performing a lexicographical +// comparison using a `comp` operator instead of `operator<`. +template <typename Sequence1, typename Sequence2, typename Compare> +bool c_lexicographical_compare(Sequence1&& sequence1, Sequence2&& sequence2, + Compare&& comp) { + return std::lexicographical_compare( + container_algorithm_internal::c_begin(sequence1), + container_algorithm_internal::c_end(sequence1), + container_algorithm_internal::c_begin(sequence2), + container_algorithm_internal::c_end(sequence2), + std::forward<Compare>(comp)); +} + +// c_next_permutation() +// +// Container-based version of the <algorithm> `std::next_permutation()` function +// to rearrange a container's elements into the next lexicographically greater +// permutation. +template <typename C> +bool c_next_permutation(C& c) { + return std::next_permutation(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c)); +} + +// Overload of c_next_permutation() for performing a lexicographical +// comparison using a `comp` operator instead of `operator<`. +template <typename C, typename Compare> +bool c_next_permutation(C& c, Compare&& comp) { + return std::next_permutation(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Compare>(comp)); +} + +// c_prev_permutation() +// +// Container-based version of the <algorithm> `std::prev_permutation()` function +// to rearrange a container's elements into the next lexicographically lesser +// permutation. +template <typename C> +bool c_prev_permutation(C& c) { + return std::prev_permutation(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c)); +} + +// Overload of c_prev_permutation() for performing a lexicographical +// comparison using a `comp` operator instead of `operator<`. +template <typename C, typename Compare> +bool c_prev_permutation(C& c, Compare&& comp) { + return std::prev_permutation(container_algorithm_internal::c_begin(c), + container_algorithm_internal::c_end(c), + std::forward<Compare>(comp)); +} + +//------------------------------------------------------------------------------ +// <numeric> algorithms +//------------------------------------------------------------------------------ + +// c_iota() +// +// Container-based version of the <algorithm> `std::iota()` function +// to compute successive values of `value`, as if incremented with `++value` +// after each element is written. and write them to the container. +template <typename Sequence, typename T> +void c_iota(Sequence& sequence, T&& value) { + std::iota(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<T>(value)); +} +// c_accumulate() +// +// Container-based version of the <algorithm> `std::accumulate()` function +// to accumulate the element values of a container to `init` and return that +// accumulation by value. +// +// Note: Due to a language technicality this function has return type +// absl::decay_t<T>. As a user of this function you can casually read +// this as "returns T by value" and assume it does the right thing. +template <typename Sequence, typename T> +decay_t<T> c_accumulate(const Sequence& sequence, T&& init) { + return std::accumulate(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<T>(init)); +} + +// Overload of c_accumulate() for using a binary operations other than +// addition for computing the accumulation. +template <typename Sequence, typename T, typename BinaryOp> +decay_t<T> c_accumulate(const Sequence& sequence, T&& init, + BinaryOp&& binary_op) { + return std::accumulate(container_algorithm_internal::c_begin(sequence), + container_algorithm_internal::c_end(sequence), + std::forward<T>(init), + std::forward<BinaryOp>(binary_op)); +} + +// c_inner_product() +// +// Container-based version of the <algorithm> `std::inner_product()` function +// to compute the cumulative inner product of container element pairs. +// +// Note: Due to a language technicality this function has return type +// absl::decay_t<T>. As a user of this function you can casually read +// this as "returns T by value" and assume it does the right thing. +template <typename Sequence1, typename Sequence2, typename T> +decay_t<T> c_inner_product(const Sequence1& factors1, const Sequence2& factors2, + T&& sum) { + return std::inner_product(container_algorithm_internal::c_begin(factors1), + container_algorithm_internal::c_end(factors1), + container_algorithm_internal::c_begin(factors2), + std::forward<T>(sum)); +} + +// Overload of c_inner_product() for using binary operations other than +// `operator+` (for computing the accumulation) and `operator*` (for computing +// the product between the two container's element pair). +template <typename Sequence1, typename Sequence2, typename T, + typename BinaryOp1, typename BinaryOp2> +decay_t<T> c_inner_product(const Sequence1& factors1, const Sequence2& factors2, + T&& sum, BinaryOp1&& op1, BinaryOp2&& op2) { + return std::inner_product(container_algorithm_internal::c_begin(factors1), + container_algorithm_internal::c_end(factors1), + container_algorithm_internal::c_begin(factors2), + std::forward<T>(sum), std::forward<BinaryOp1>(op1), + std::forward<BinaryOp2>(op2)); +} + +// c_adjacent_difference() +// +// Container-based version of the <algorithm> `std::adjacent_difference()` +// function to compute the difference between each element and the one preceding +// it and write it to an iterator. +template <typename InputSequence, typename OutputIt> +OutputIt c_adjacent_difference(const InputSequence& input, + OutputIt output_first) { + return std::adjacent_difference(container_algorithm_internal::c_begin(input), + container_algorithm_internal::c_end(input), + output_first); +} + +// Overload of c_adjacent_difference() for using a binary operation other than +// subtraction to compute the adjacent difference. +template <typename InputSequence, typename OutputIt, typename BinaryOp> +OutputIt c_adjacent_difference(const InputSequence& input, + OutputIt output_first, BinaryOp&& op) { + return std::adjacent_difference(container_algorithm_internal::c_begin(input), + container_algorithm_internal::c_end(input), + output_first, std::forward<BinaryOp>(op)); +} + +// c_partial_sum() +// +// Container-based version of the <algorithm> `std::partial_sum()` function +// to compute the partial sum of the elements in a sequence and write them +// to an iterator. The partial sum is the sum of all element values so far in +// the sequence. +template <typename InputSequence, typename OutputIt> +OutputIt c_partial_sum(const InputSequence& input, OutputIt output_first) { + return std::partial_sum(container_algorithm_internal::c_begin(input), + container_algorithm_internal::c_end(input), + output_first); +} + +// Overload of c_partial_sum() for using a binary operation other than addition +// to compute the "partial sum". +template <typename InputSequence, typename OutputIt, typename BinaryOp> +OutputIt c_partial_sum(const InputSequence& input, OutputIt output_first, + BinaryOp&& op) { + return std::partial_sum(container_algorithm_internal::c_begin(input), + container_algorithm_internal::c_end(input), + output_first, std::forward<BinaryOp>(op)); +} + +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_ALGORITHM_CONTAINER_H_ |