diff options
Diffstat (limited to 'scratch/haskell-programming-from-first-principles/traversable.hs')
-rw-r--r-- | scratch/haskell-programming-from-first-principles/traversable.hs | 131 |
1 files changed, 131 insertions, 0 deletions
diff --git a/scratch/haskell-programming-from-first-principles/traversable.hs b/scratch/haskell-programming-from-first-principles/traversable.hs new file mode 100644 index 000000000000..5dc4ea411bc2 --- /dev/null +++ b/scratch/haskell-programming-from-first-principles/traversable.hs @@ -0,0 +1,131 @@ +module TraversableScratch where + +import qualified Data.Foldable as F + +import Test.QuickCheck + +newtype Identity a = Identity a + deriving (Eq, Ord, Show) + +instance Functor Identity where + fmap f (Identity x) = Identity (f x) + +instance Foldable Identity where + foldMap f (Identity x) = f x + +instance Traversable Identity where + traverse f (Identity x) = Identity <$> f x + +-------------------------------------------------------------------------------- + +data Optional a + = Nada + | Some a + deriving (Eq, Show) + +instance Functor Optional where + fmap f Nada = Nada + fmap f (Some x) = Some (f x) + +instance Foldable Optional where + foldMap f Nada = mempty + foldMap f (Some x) = f x + +instance Traversable Optional where + traverse f Nada = pure Nada + traverse f (Some x) = Some <$> f x + +-------------------------------------------------------------------------------- + +data List a = Nil | Cons a (List a) deriving (Eq, Show) + +instance Functor List where + fmap _ Nil = Nil + fmap f (Cons x xs) = Cons (f x) (fmap f xs) + +instance Foldable List where + foldMap f Nil = mempty + foldMap f (Cons x xs) = mappend (f x) (foldMap f xs) + +instance Traversable List where + sequenceA Nil = pure Nil + sequenceA (Cons x xs) = Cons <$> x <*> sequenceA xs + +-------------------------------------------------------------------------------- + +data Three a b c = Three a b c + deriving (Eq, Show) + +instance Functor (Three a b) where + fmap f (Three x y z) = Three x y (f z) + +instance Foldable (Three a b) where + foldMap f (Three _ _ z) = f z + +instance Traversable (Three a b) where + sequenceA (Three x y z) = (\z' -> Three x y z') <$> z + +-------------------------------------------------------------------------------- + +data Pair a b = Pair a b + deriving (Eq, Show) + +instance Functor (Pair a) where + fmap f (Pair x y) = Pair x (f y) + +instance Foldable (Pair a) where + foldMap f (Pair x y) = f y + +instance Traversable (Pair a) where + sequenceA (Pair x y) = (\y' -> Pair x y') <$> y + +-------------------------------------------------------------------------------- + +data Big a b = Big a b b + deriving (Eq, Show) + +instance Functor (Big a) where + fmap f (Big x y z) = Big x (f y) (f z) + +instance Foldable (Big a) where + foldMap f (Big x y z) = f y <> f z + +instance Traversable (Big a) where + sequenceA (Big x y z) = (\y' z' -> Big x y' z') <$> y <*> z + +-------------------------------------------------------------------------------- + +data Bigger a b = Bigger a b b b + deriving (Eq, Show) + +instance Functor (Bigger a) where + fmap f (Bigger w x y z) = Bigger w (f x) (f y) (f z) + +instance Foldable (Bigger a) where + foldMap f (Bigger w x y z) = f x <> f y <> f z + +instance Traversable (Bigger a) where + sequenceA (Bigger w x y z) = (\x' y' z' -> Bigger w x' y' z') <$> x <*> y <*> z + +-------------------------------------------------------------------------------- + +data Tree a + = Empty + | Leaf a + | Node (Tree a) a (Tree a) + deriving (Eq, Show) + +instance Functor Tree where + fmap f Empty = Empty + fmap f (Leaf x) = Leaf (f x) + fmap f (Node lhs x rhs) = Node (fmap f lhs) (f x) (fmap f rhs) + +instance Foldable Tree where + foldMap f Empty = mempty + foldMap f (Leaf x) = f x + foldMap f (Node lhs x rhs) = (foldMap f lhs) <> (f x) <> (foldMap f rhs) + +instance Traversable Tree where + sequenceA Empty = pure Empty + sequenceA (Leaf x) = Leaf <$> x + sequenceA (Node lhs x rhs) = Node <$> sequenceA lhs <*> x <*> sequenceA rhs |