diff options
Diffstat (limited to 'scratch/facebook/recursion-and-dynamic-programming/subsets.py')
-rw-r--r-- | scratch/facebook/recursion-and-dynamic-programming/subsets.py | 41 |
1 files changed, 41 insertions, 0 deletions
diff --git a/scratch/facebook/recursion-and-dynamic-programming/subsets.py b/scratch/facebook/recursion-and-dynamic-programming/subsets.py new file mode 100644 index 000000000000..a6d26aa85055 --- /dev/null +++ b/scratch/facebook/recursion-and-dynamic-programming/subsets.py @@ -0,0 +1,41 @@ +# take-aways: +# - Use integers as lists of boolean values +# - Use 1 << n to compute 2^n where n = len(xs) + +def set_from_int(xs, n): + result = [] + for i in range(len(xs)): + if n & (1 << i) != 0: + result.append(xs[i]) + return result + +# subsets :: Set a -> List (Set a) +def subsets(xs): + n = len(xs) + return [set_from_int(xs, i) for i in range(1 << n)] + +# 0 1 2 +# 0 N Y Y +# 1 _ N Y +# 2 _ _ N + +# For my interview, be able to compute *permutations* and *combinations* + +# This differs from permutations because this is about finding combinations... +# +# bottom-up +# 0 => { } +# 1 => {3} {4} {3} +# 2 => {5,4} {5,3} {4,3} + +xs = [ + ([], [[]]), + ([5], [[], [5]]), + ([5,4], [[],[5],[4],[5,4]]), +] + +for x, expected in xs: + result = subsets(x) + print("subsets({}) => {} == {}".format(x, result, expected)) + assert result == expected + print("Success!") |