about summary refs log tree commit diff
path: root/absl
diff options
context:
space:
mode:
Diffstat (limited to 'absl')
-rw-r--r--absl/container/flat_hash_set.h6
-rw-r--r--absl/container/inlined_vector.h391
-rw-r--r--absl/container/internal/inlined_vector.h61
-rw-r--r--absl/random/BUILD.bazel4
-rw-r--r--absl/random/benchmarks.cc12
-rw-r--r--absl/random/distributions.h2
-rw-r--r--absl/random/internal/seed_material_test.cc3
-rw-r--r--absl/random/zipf_distribution.h2
-rw-r--r--absl/strings/numbers.h6
9 files changed, 238 insertions, 249 deletions
diff --git a/absl/container/flat_hash_set.h b/absl/container/flat_hash_set.h
index 6bf51833fca6..2a51c3411d66 100644
--- a/absl/container/flat_hash_set.h
+++ b/absl/container/flat_hash_set.h
@@ -55,9 +55,9 @@ struct FlatHashSetPolicy;
 // following notable differences:
 //
 // * Requires keys that are CopyConstructible
-// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
-//   `insert()`, provided that the set is provided a compatible heterogeneous
-//   hashing function and equality operator.
+// * Supports heterogeneous lookup, through `find()` and `insert()`, provided
+//   that the set is provided a compatible heterogeneous hashing function and
+//   equality operator.
 // * Invalidates any references and pointers to elements within the table after
 //   `rehash()`.
 // * Contains a `capacity()` member function indicating the number of element
diff --git a/absl/container/inlined_vector.h b/absl/container/inlined_vector.h
index 2381e65f51e9..25af1658914c 100644
--- a/absl/container/inlined_vector.h
+++ b/absl/container/inlined_vector.h
@@ -66,8 +66,7 @@ namespace absl {
 // designed to cover the same API footprint as covered by `std::vector`.
 template <typename T, size_t N, typename A = std::allocator<T>>
 class InlinedVector {
-  static_assert(
-      N > 0, "InlinedVector cannot be instantiated with `0` inlined elements.");
+  static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity.");
 
   using Storage = inlined_vector_internal::Storage<T, N, A>;
   using rvalue_reference = typename Storage::rvalue_reference;
@@ -84,7 +83,6 @@ class InlinedVector {
   template <typename Iterator>
   using EnableIfAtLeastForwardIterator = absl::enable_if_t<
       inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
-
   template <typename Iterator>
   using DisableIfAtLeastForwardIterator = absl::enable_if_t<
       !inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
@@ -110,7 +108,7 @@ class InlinedVector {
   // Creates an empty inlined vector with a value-initialized allocator.
   InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {}
 
-  // Creates an empty inlined vector with a specified allocator.
+  // Creates an empty inlined vector with a copy of `alloc`.
   explicit InlinedVector(const allocator_type& alloc) noexcept
       : storage_(alloc) {}
 
@@ -128,7 +126,7 @@ class InlinedVector {
     storage_.Initialize(CopyValueAdapter(v), n);
   }
 
-  // Creates an inlined vector of copies of the values in `list`.
+  // Creates an inlined vector with copies of the elements of `list`.
   InlinedVector(std::initializer_list<value_type> list,
                 const allocator_type& alloc = allocator_type())
       : InlinedVector(list.begin(), list.end(), alloc) {}
@@ -136,7 +134,7 @@ class InlinedVector {
   // Creates an inlined vector with elements constructed from the provided
   // forward iterator range [`first`, `last`).
   //
-  // NOTE: The `enable_if` prevents ambiguous interpretation between a call to
+  // NOTE: the `enable_if` prevents ambiguous interpretation between a call to
   // this constructor with two integral arguments and a call to the above
   // `InlinedVector(size_type, const_reference)` constructor.
   template <typename ForwardIterator,
@@ -158,11 +156,12 @@ class InlinedVector {
     std::copy(first, last, std::back_inserter(*this));
   }
 
-  // Creates a copy of an `other` inlined vector using `other`'s allocator.
+  // Creates an inlined vector by copying the contents of `other` using
+  // `other`'s allocator.
   InlinedVector(const InlinedVector& other)
       : InlinedVector(other, *other.storage_.GetAllocPtr()) {}
 
-  // Creates a copy of an `other` inlined vector using a specified allocator.
+  // Creates an inlined vector by copying the contents of `other` using `alloc`.
   InlinedVector(const InlinedVector& other, const allocator_type& alloc)
       : storage_(alloc) {
     if (IsMemcpyOk::value && !other.storage_.GetIsAllocated()) {
@@ -173,67 +172,66 @@ class InlinedVector {
     }
   }
 
-  // Creates an inlined vector by moving in the contents of an `other` inlined
-  // vector without performing any allocations. If `other` contains allocated
-  // memory, the newly-created instance will take ownership of that memory
-  // (leaving `other` empty). However, if `other` does not contain allocated
-  // memory (i.e. is inlined), the new inlined vector will perform element-wise
-  // move construction of `other`'s elements.
+  // Creates an inlined vector by moving in the contents of `other` without
+  // allocating. If `other` contains allocated memory, the newly-created inlined
+  // vector will take ownership of that memory. However, if `other` does not
+  // contain allocated memory, the newly-created inlined vector will perform
+  // element-wise move construction of the contents of `other`.
   //
   // NOTE: since no allocation is performed for the inlined vector in either
   // case, the `noexcept(...)` specification depends on whether moving the
-  // underlying objects can throw. We assume:
-  //  a) Move constructors should only throw due to allocation failure.
-  //  b) If `value_type`'s move constructor allocates, it uses the same
-  //     allocation function as the `InlinedVector`'s allocator. Thus, the move
-  //     constructor is non-throwing if the allocator is non-throwing or
-  //     `value_type`'s move constructor is specified as `noexcept`.
+  // underlying objects can throw. It is assumed assumed that...
+  //  a) move constructors should only throw due to allocation failure.
+  //  b) if `value_type`'s move constructor allocates, it uses the same
+  //     allocation function as the inlined vector's allocator.
+  // Thus, the move constructor is non-throwing if the allocator is non-throwing
+  // or `value_type`'s move constructor is specified as `noexcept`.
   InlinedVector(InlinedVector&& other) noexcept(
       absl::allocator_is_nothrow<allocator_type>::value ||
       std::is_nothrow_move_constructible<value_type>::value)
       : storage_(*other.storage_.GetAllocPtr()) {
     if (IsMemcpyOk::value) {
       storage_.MemcpyFrom(other.storage_);
+
       other.storage_.SetInlinedSize(0);
     } else if (other.storage_.GetIsAllocated()) {
       storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
                                 other.storage_.GetAllocatedCapacity());
       storage_.SetAllocatedSize(other.storage_.GetSize());
+
       other.storage_.SetInlinedSize(0);
     } else {
       IteratorValueAdapter<MoveIterator> other_values(
           MoveIterator(other.storage_.GetInlinedData()));
+
       inlined_vector_internal::ConstructElements(
           storage_.GetAllocPtr(), storage_.GetInlinedData(), &other_values,
           other.storage_.GetSize());
+
       storage_.SetInlinedSize(other.storage_.GetSize());
     }
   }
 
-  // Creates an inlined vector by moving in the contents of an `other` inlined
-  // vector, performing allocations with the specified `alloc` allocator. If
-  // `other`'s allocator is not equal to `alloc` and `other` contains allocated
-  // memory, this move constructor will create a new allocation.
+  // Creates an inlined vector by moving in the contents of `other` with a copy
+  // of `alloc`.
   //
-  // NOTE: since allocation is performed in this case, this constructor can
-  // only be `noexcept` if the specified allocator is also `noexcept`. If this
-  // is the case, or if `other` contains allocated memory, this constructor
-  // performs element-wise move construction of its contents.
-  //
-  // Only in the case where `other`'s allocator is equal to `alloc` and `other`
-  // contains allocated memory will the newly created inlined vector take
-  // ownership of `other`'s allocated memory.
+  // NOTE: if `other`'s allocator is not equal to `alloc`, even if `other`
+  // contains allocated memory, this move constructor will still allocate. Since
+  // allocation is performed, this constructor can only be `noexcept` if the
+  // specified allocator is also `noexcept`.
   InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(
       absl::allocator_is_nothrow<allocator_type>::value)
       : storage_(alloc) {
     if (IsMemcpyOk::value) {
       storage_.MemcpyFrom(other.storage_);
+
       other.storage_.SetInlinedSize(0);
     } else if ((*storage_.GetAllocPtr() == *other.storage_.GetAllocPtr()) &&
                other.storage_.GetIsAllocated()) {
       storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
                                 other.storage_.GetAllocatedCapacity());
       storage_.SetAllocatedSize(other.storage_.GetSize());
+
       other.storage_.SetInlinedSize(0);
     } else {
       storage_.Initialize(
@@ -250,7 +248,7 @@ class InlinedVector {
 
   // `InlinedVector::empty()`
   //
-  // Checks if the inlined vector has no elements.
+  // Returns whether the inlined vector contains no elements.
   bool empty() const noexcept { return !size(); }
 
   // `InlinedVector::size()`
@@ -260,23 +258,23 @@ class InlinedVector {
 
   // `InlinedVector::max_size()`
   //
-  // Returns the maximum number of elements the vector can hold.
+  // Returns the maximum number of elements the inlined vector can hold.
   size_type max_size() const noexcept {
     // One bit of the size storage is used to indicate whether the inlined
-    // vector is allocated. As a result, the maximum size of the container that
-    // we can express is half of the max for `size_type`.
+    // vector contains allocated memory. As a result, the maximum size that the
+    // inlined vector can express is half of the max for `size_type`.
     return (std::numeric_limits<size_type>::max)() / 2;
   }
 
   // `InlinedVector::capacity()`
   //
-  // Returns the number of elements that can be stored in the inlined vector
-  // without requiring a reallocation of underlying memory.
+  // Returns the number of elements that could be stored in the inlined vector
+  // without requiring a reallocation.
   //
-  // NOTE: For most inlined vectors, `capacity()` should equal the template
-  // parameter `N`. For inlined vectors which exceed this capacity, they
-  // will no longer be inlined and `capacity()` will equal its capacity on the
-  // allocated heap.
+  // NOTE: for most inlined vectors, `capacity()` should be equal to the
+  // template parameter `N`. For inlined vectors which exceed this capacity,
+  // they will no longer be inlined and `capacity()` will equal the capactity of
+  // the allocated memory.
   size_type capacity() const noexcept {
     return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()
                                      : storage_.GetInlinedCapacity();
@@ -284,56 +282,68 @@ class InlinedVector {
 
   // `InlinedVector::data()`
   //
-  // Returns a `pointer` to elements of the inlined vector. This pointer can be
-  // used to access and modify the contained elements.
-  // Only results within the range [`0`, `size()`) are defined.
+  // Returns a `pointer` to the elements of the inlined vector. This pointer
+  // can be used to access and modify the contained elements.
+  //
+  // NOTE: only elements within [`data()`, `data() + size()`) are valid.
   pointer data() noexcept {
     return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
                                      : storage_.GetInlinedData();
   }
 
-  // Overload of `InlinedVector::data()` to return a `const_pointer` to elements
-  // of the inlined vector. This pointer can be used to access (but not modify)
-  // the contained elements.
+  // Overload of `InlinedVector::data()` that returns a `const_pointer` to the
+  // elements of the inlined vector. This pointer can be used to access but not
+  // modify the contained elements.
+  //
+  // NOTE: only elements within [`data()`, `data() + size()`) are valid.
   const_pointer data() const noexcept {
     return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
                                      : storage_.GetInlinedData();
   }
 
-  // `InlinedVector::operator[]()`
+  // `InlinedVector::operator[](...)`
   //
-  // Returns a `reference` to the `i`th element of the inlined vector using the
-  // array operator.
+  // Returns a `reference` to the `i`th element of the inlined vector.
   reference operator[](size_type i) {
     assert(i < size());
+
     return data()[i];
   }
 
-  // Overload of `InlinedVector::operator[]()` to return a `const_reference` to
-  // the `i`th element of the inlined vector.
+  // Overload of `InlinedVector::operator[](...)` that returns a
+  // `const_reference` to the `i`th element of the inlined vector.
   const_reference operator[](size_type i) const {
     assert(i < size());
+
     return data()[i];
   }
 
-  // `InlinedVector::at()`
+  // `InlinedVector::at(...)`
   //
   // Returns a `reference` to the `i`th element of the inlined vector.
+  //
+  // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
+  // in both debug and non-debug builds, `std::out_of_range` will be thrown.
   reference at(size_type i) {
     if (ABSL_PREDICT_FALSE(i >= size())) {
       base_internal::ThrowStdOutOfRange(
           "`InlinedVector::at(size_type)` failed bounds check");
     }
+
     return data()[i];
   }
 
-  // Overload of `InlinedVector::at()` to return a `const_reference` to the
-  // `i`th element of the inlined vector.
+  // Overload of `InlinedVector::at(...)` that returns a `const_reference` to
+  // the `i`th element of the inlined vector.
+  //
+  // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
+  // in both debug and non-debug builds, `std::out_of_range` will be thrown.
   const_reference at(size_type i) const {
     if (ABSL_PREDICT_FALSE(i >= size())) {
       base_internal::ThrowStdOutOfRange(
           "`InlinedVector::at(size_type) const` failed bounds check");
     }
+
     return data()[i];
   }
 
@@ -342,13 +352,15 @@ class InlinedVector {
   // Returns a `reference` to the first element of the inlined vector.
   reference front() {
     assert(!empty());
+
     return at(0);
   }
 
-  // Overload of `InlinedVector::front()` returns a `const_reference` to the
-  // first element of the inlined vector.
+  // Overload of `InlinedVector::front()` that returns a `const_reference` to
+  // the first element of the inlined vector.
   const_reference front() const {
     assert(!empty());
+
     return at(0);
   }
 
@@ -357,13 +369,15 @@ class InlinedVector {
   // Returns a `reference` to the last element of the inlined vector.
   reference back() {
     assert(!empty());
+
     return at(size() - 1);
   }
 
-  // Overload of `InlinedVector::back()` to return a `const_reference` to the
+  // Overload of `InlinedVector::back()` that returns a `const_reference` to the
   // last element of the inlined vector.
   const_reference back() const {
     assert(!empty());
+
     return at(size() - 1);
   }
 
@@ -372,7 +386,7 @@ class InlinedVector {
   // Returns an `iterator` to the beginning of the inlined vector.
   iterator begin() noexcept { return data(); }
 
-  // Overload of `InlinedVector::begin()` to return a `const_iterator` to
+  // Overload of `InlinedVector::begin()` that returns a `const_iterator` to
   // the beginning of the inlined vector.
   const_iterator begin() const noexcept { return data(); }
 
@@ -381,7 +395,7 @@ class InlinedVector {
   // Returns an `iterator` to the end of the inlined vector.
   iterator end() noexcept { return data() + size(); }
 
-  // Overload of `InlinedVector::end()` to return a `const_iterator` to the
+  // Overload of `InlinedVector::end()` that returns a `const_iterator` to the
   // end of the inlined vector.
   const_iterator end() const noexcept { return data() + size(); }
 
@@ -400,7 +414,7 @@ class InlinedVector {
   // Returns a `reverse_iterator` from the end of the inlined vector.
   reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
 
-  // Overload of `InlinedVector::rbegin()` to return a
+  // Overload of `InlinedVector::rbegin()` that returns a
   // `const_reverse_iterator` from the end of the inlined vector.
   const_reverse_iterator rbegin() const noexcept {
     return const_reverse_iterator(end());
@@ -411,7 +425,7 @@ class InlinedVector {
   // Returns a `reverse_iterator` from the beginning of the inlined vector.
   reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
 
-  // Overload of `InlinedVector::rend()` to return a `const_reverse_iterator`
+  // Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator`
   // from the beginning of the inlined vector.
   const_reverse_iterator rend() const noexcept {
     return const_reverse_iterator(begin());
@@ -430,71 +444,75 @@ class InlinedVector {
 
   // `InlinedVector::get_allocator()`
   //
-  // Returns a copy of the allocator of the inlined vector.
+  // Returns a copy of the inlined vector's allocator.
   allocator_type get_allocator() const { return *storage_.GetAllocPtr(); }
 
   // ---------------------------------------------------------------------------
   // InlinedVector Member Mutators
   // ---------------------------------------------------------------------------
 
-  // `InlinedVector::operator=()`
+  // `InlinedVector::operator=(...)`
   //
-  // Replaces the contents of the inlined vector with copies of the elements in
-  // the provided `std::initializer_list`.
+  // Replaces the elements of the inlined vector with copies of the elements of
+  // `list`.
   InlinedVector& operator=(std::initializer_list<value_type> list) {
     assign(list.begin(), list.end());
+
     return *this;
   }
 
-  // Overload of `InlinedVector::operator=()` to replace the contents of the
-  // inlined vector with the contents of `other`.
+  // Overload of `InlinedVector::operator=(...)` that replaces the elements of
+  // the inlined vector with copies of the elements of `other`.
   InlinedVector& operator=(const InlinedVector& other) {
     if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
       const_pointer other_data = other.data();
       assign(other_data, other_data + other.size());
     }
+
     return *this;
   }
 
-  // Overload of `InlinedVector::operator=()` to replace the contents of the
-  // inlined vector with the contents of `other`.
+  // Overload of `InlinedVector::operator=(...)` that moves the elements of
+  // `other` into the inlined vector.
   //
-  // NOTE: As a result of calling this overload, `other` may be empty or it's
-  // contents may be left in a moved-from state.
+  // NOTE: as a result of calling this overload, `other` is left in a valid but
+  // unspecified state.
   InlinedVector& operator=(InlinedVector&& other) {
-    if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return *this;
-
-    if (IsMemcpyOk::value || other.storage_.GetIsAllocated()) {
-      inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
-                                               size());
-      storage_.DeallocateIfAllocated();
-      storage_.MemcpyFrom(other.storage_);
-      other.storage_.SetInlinedSize(0);
-    } else {
-      storage_.Assign(IteratorValueAdapter<MoveIterator>(
-                          MoveIterator(other.storage_.GetInlinedData())),
-                      other.size());
+    if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
+      if (IsMemcpyOk::value || other.storage_.GetIsAllocated()) {
+        inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
+                                                 size());
+        storage_.DeallocateIfAllocated();
+        storage_.MemcpyFrom(other.storage_);
+
+        other.storage_.SetInlinedSize(0);
+      } else {
+        storage_.Assign(IteratorValueAdapter<MoveIterator>(
+                            MoveIterator(other.storage_.GetInlinedData())),
+                        other.size());
+      }
     }
 
     return *this;
   }
 
-  // `InlinedVector::assign()`
+  // `InlinedVector::assign(...)`
   //
   // Replaces the contents of the inlined vector with `n` copies of `v`.
   void assign(size_type n, const_reference v) {
     storage_.Assign(CopyValueAdapter(v), n);
   }
 
-  // Overload of `InlinedVector::assign()` to replace the contents of the
-  // inlined vector with copies of the values in the provided
-  // `std::initializer_list`.
+  // Overload of `InlinedVector::assign(...)` that replaces the contents of the
+  // inlined vector with copies of the elements of `list`.
   void assign(std::initializer_list<value_type> list) {
     assign(list.begin(), list.end());
   }
 
-  // Overload of `InlinedVector::assign()` to replace the contents of the
-  // inlined vector with the forward iterator range [`first`, `last`).
+  // Overload of `InlinedVector::assign(...)` to replace the contents of the
+  // inlined vector with the range [`first`, `last`).
+  //
+  // NOTE: this overload is for iterators that are "forward" category or better.
   template <typename ForwardIterator,
             EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
   void assign(ForwardIterator first, ForwardIterator last) {
@@ -502,8 +520,10 @@ class InlinedVector {
                     std::distance(first, last));
   }
 
-  // Overload of `InlinedVector::assign()` to replace the contents of the
-  // inlined vector with the input iterator range [`first`, `last`).
+  // Overload of `InlinedVector::assign(...)` to replace the contents of the
+  // inlined vector with the range [`first`, `last`).
+  //
+  // NOTE: this overload is for iterators that are "input" category.
   template <typename InputIterator,
             DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
   void assign(InputIterator first, InputIterator last) {
@@ -517,36 +537,39 @@ class InlinedVector {
     std::copy(first, last, std::back_inserter(*this));
   }
 
-  // `InlinedVector::resize()`
+  // `InlinedVector::resize(...)`
   //
-  // Resizes the inlined vector to contain `n` elements. If `n` is smaller than
-  // the inlined vector's current size, extra elements are destroyed. If `n` is
-  // larger than the initial size, new elements are value-initialized.
+  // Resizes the inlined vector to contain `n` elements.
+  //
+  // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
+  // is larger than `size()`, new elements are value-initialized.
   void resize(size_type n) { storage_.Resize(DefaultValueAdapter(), n); }
 
-  // Overload of `InlinedVector::resize()` to resize the inlined vector to
-  // contain `n` elements where, if `n` is larger than `size()`, the new values
-  // will be copy-constructed from `v`.
+  // Overload of `InlinedVector::resize(...)` that resizes the inlined vector to
+  // contain `n` elements.
+  //
+  // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
+  // is larger than `size()`, new elements are copied-constructed from `v`.
   void resize(size_type n, const_reference v) {
     storage_.Resize(CopyValueAdapter(v), n);
   }
 
-  // `InlinedVector::insert()`
+  // `InlinedVector::insert(...)`
   //
-  // Copies `v` into `pos`, returning an `iterator` pointing to the newly
+  // Inserts a copy of `v` at `pos`, returning an `iterator` to the newly
   // inserted element.
   iterator insert(const_iterator pos, const_reference v) {
     return emplace(pos, v);
   }
 
-  // Overload of `InlinedVector::insert()` for moving `v` into `pos`, returning
-  // an iterator pointing to the newly inserted element.
+  // Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using
+  // move semantics, returning an `iterator` to the newly inserted element.
   iterator insert(const_iterator pos, rvalue_reference v) {
     return emplace(pos, std::move(v));
   }
 
-  // Overload of `InlinedVector::insert()` for inserting `n` contiguous copies
-  // of `v` starting at `pos`. Returns an `iterator` pointing to the first of
+  // Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies
+  // of `v` starting at `pos`, returning an `iterator` pointing to the first of
   // the newly inserted elements.
   iterator insert(const_iterator pos, size_type n, const_reference v) {
     assert(pos >= begin());
@@ -560,19 +583,18 @@ class InlinedVector {
     }
   }
 
-  // Overload of `InlinedVector::insert()` for copying the contents of the
-  // `std::initializer_list` into the vector starting at `pos`. Returns an
-  // `iterator` pointing to the first of the newly inserted elements.
+  // Overload of `InlinedVector::insert(...)` that inserts copies of the
+  // elements of `list` starting at `pos`, returning an `iterator` pointing to
+  // the first of the newly inserted elements.
   iterator insert(const_iterator pos, std::initializer_list<value_type> list) {
     return insert(pos, list.begin(), list.end());
   }
 
-  // Overload of `InlinedVector::insert()` for inserting elements constructed
-  // from the forward iterator range [`first`, `last`). Returns an `iterator`
-  // pointing to the first of the newly inserted elements.
+  // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
+  // `last`) starting at `pos`, returning an `iterator` pointing to the first
+  // of the newly inserted elements.
   //
-  // NOTE: The `enable_if` is intended to disambiguate the two three-argument
-  // overloads of `insert()`.
+  // NOTE: this overload is for iterators that are "forward" category or better.
   template <typename ForwardIterator,
             EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
   iterator insert(const_iterator pos, ForwardIterator first,
@@ -588,9 +610,11 @@ class InlinedVector {
     }
   }
 
-  // Overload of `InlinedVector::insert()` for inserting elements constructed
-  // from the input iterator range [`first`, `last`). Returns an `iterator`
-  // pointing to the first of the newly inserted elements.
+  // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
+  // `last`) starting at `pos`, returning an `iterator` pointing to the first
+  // of the newly inserted elements.
+  //
+  // NOTE: this overload is for iterators that are "input" category.
   template <typename InputIterator,
             DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
   iterator insert(const_iterator pos, InputIterator first, InputIterator last) {
@@ -605,10 +629,10 @@ class InlinedVector {
     return iterator(data() + index);
   }
 
-  // `InlinedVector::emplace()`
+  // `InlinedVector::emplace(...)`
   //
-  // Constructs and inserts an object in the inlined vector at the given `pos`,
-  // returning an `iterator` pointing to the newly emplaced element.
+  // Constructs and inserts an element using `args...` in the inlined vector at
+  // `pos`, returning an `iterator` pointing to the newly emplaced element.
   template <typename... Args>
   iterator emplace(const_iterator pos, Args&&... args) {
     assert(pos >= begin());
@@ -621,30 +645,29 @@ class InlinedVector {
                            1);
   }
 
-  // `InlinedVector::emplace_back()`
+  // `InlinedVector::emplace_back(...)`
   //
-  // Constructs and appends a new element to the end of the inlined vector,
-  // returning a `reference` to the emplaced element.
+  // Constructs and inserts an element using `args...` in the inlined vector at
+  // `end()`, returning a `reference` to the newly emplaced element.
   template <typename... Args>
   reference emplace_back(Args&&... args) {
     return storage_.EmplaceBack(std::forward<Args>(args)...);
   }
 
-  // `InlinedVector::push_back()`
+  // `InlinedVector::push_back(...)`
   //
-  // Appends a copy of `v` to the end of the inlined vector.
+  // Inserts a copy of `v` in the inlined vector at `end()`.
   void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
 
-  // Overload of `InlinedVector::push_back()` for moving `v` into a newly
-  // appended element.
+  // Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()`
+  // using move semantics.
   void push_back(rvalue_reference v) {
     static_cast<void>(emplace_back(std::move(v)));
   }
 
   // `InlinedVector::pop_back()`
   //
-  // Destroys the element at the end of the inlined vector and shrinks the size
-  // by `1` (unless the inlined vector is empty, in which case this is a no-op).
+  // Destroys the element at `back()`, reducing the size by `1`.
   void pop_back() noexcept {
     assert(!empty());
 
@@ -652,12 +675,12 @@ class InlinedVector {
     storage_.SubtractSize(1);
   }
 
-  // `InlinedVector::erase()`
+  // `InlinedVector::erase(...)`
   //
-  // Erases the element at `pos` of the inlined vector, returning an `iterator`
-  // pointing to the first element following the erased element.
+  // Erases the element at `pos`, returning an `iterator` pointing to where the
+  // erased element was located.
   //
-  // NOTE: May return the end iterator, which is not dereferencable.
+  // NOTE: may return `end()`, which is not dereferencable.
   iterator erase(const_iterator pos) {
     assert(pos >= begin());
     assert(pos < end());
@@ -665,10 +688,11 @@ class InlinedVector {
     return storage_.Erase(pos, pos + 1);
   }
 
-  // Overload of `InlinedVector::erase()` for erasing all elements in the
-  // range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing
-  // to the first element following the range erased or the end iterator if `to`
-  // was the end iterator.
+  // Overload of `InlinedVector::erase(...)` that erases every element in the
+  // range [`from`, `to`), returning an `iterator` pointing to where the first
+  // erased element was located.
+  //
+  // NOTE: may return `end()`, which is not dereferencable.
   iterator erase(const_iterator from, const_iterator to) {
     assert(from >= begin());
     assert(from <= to);
@@ -683,8 +707,8 @@ class InlinedVector {
 
   // `InlinedVector::clear()`
   //
-  // Destroys all elements in the inlined vector, sets the size of `0` and
-  // deallocates the heap allocation if the inlined vector was allocated.
+  // Destroys all elements in the inlined vector, setting the size to `0` and
+  // deallocating any held memory.
   void clear() noexcept {
     inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
                                              size());
@@ -692,37 +716,31 @@ class InlinedVector {
     storage_.SetInlinedSize(0);
   }
 
-  // `InlinedVector::reserve()`
+  // `InlinedVector::reserve(...)`
   //
-  // Enlarges the underlying representation of the inlined vector so it can hold
-  // at least `n` elements. This method does not change `size()` or the actual
-  // contents of the vector.
-  //
-  // NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no
-  // effects. Otherwise, `reserve()` will reallocate, performing an n-time
-  // element-wise move of everything contained.
+  // Ensures that there is enough room for at least `n` elements.
   void reserve(size_type n) { storage_.Reserve(n); }
 
   // `InlinedVector::shrink_to_fit()`
   //
-  // Reduces memory usage by freeing unused memory. After this call, calls to
+  // Reduces memory usage by freeing unused memory. After being called, calls to
   // `capacity()` will be equal to `max(N, size())`.
   //
-  // If `size() <= N` and the elements are currently stored on the heap, they
-  // will be moved to the inlined storage and the heap memory will be
-  // deallocated.
+  // If `size() <= N` and the inlined vector contains allocated memory, the
+  // elements will all be moved to the inlined space and the allocated memory
+  // will be deallocated.
   //
-  // If `size() > N` and `size() < capacity()` the elements will be moved to a
-  // smaller heap allocation.
+  // If `size() > N` and `size() < capacity()`, the elements will be moved to a
+  // smaller allocation.
   void shrink_to_fit() {
     if (storage_.GetIsAllocated()) {
       storage_.ShrinkToFit();
     }
   }
 
-  // `InlinedVector::swap()`
+  // `InlinedVector::swap(...)`
   //
-  // Swaps the contents of this inlined vector with the contents of `other`.
+  // Swaps the contents of the inlined vector with `other`.
   void swap(InlinedVector& other) {
     if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
       storage_.Swap(std::addressof(other.storage_));
@@ -740,93 +758,86 @@ class InlinedVector {
 // InlinedVector Non-Member Functions
 // -----------------------------------------------------------------------------
 
-// `swap()`
+// `swap(...)`
 //
-// Swaps the contents of two inlined vectors. This convenience function
-// simply calls `InlinedVector::swap()`.
+// Swaps the contents of two inlined vectors.
 template <typename T, size_t N, typename A>
 void swap(absl::InlinedVector<T, N, A>& a,
           absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
   a.swap(b);
 }
 
-// `operator==()`
+// `operator==(...)`
 //
-// Tests the equivalency of the contents of two inlined vectors.
+// Tests for value-equality of two inlined vectors.
 template <typename T, size_t N, typename A>
 bool operator==(const absl::InlinedVector<T, N, A>& a,
                 const absl::InlinedVector<T, N, A>& b) {
   auto a_data = a.data();
-  auto a_size = a.size();
   auto b_data = b.data();
-  auto b_size = b.size();
-  return absl::equal(a_data, a_data + a_size, b_data, b_data + b_size);
+  return absl::equal(a_data, a_data + a.size(), b_data, b_data + b.size());
 }
 
-// `operator!=()`
+// `operator!=(...)`
 //
-// Tests the inequality of the contents of two inlined vectors.
+// Tests for value-inequality of two inlined vectors.
 template <typename T, size_t N, typename A>
 bool operator!=(const absl::InlinedVector<T, N, A>& a,
                 const absl::InlinedVector<T, N, A>& b) {
   return !(a == b);
 }
 
-// `operator<()`
+// `operator<(...)`
 //
-// Tests whether the contents of one inlined vector are less than the contents
-// of another through a lexicographical comparison operation.
+// Tests whether the value of an inlined vector is less than the value of
+// another inlined vector using a lexicographical comparison algorithm.
 template <typename T, size_t N, typename A>
 bool operator<(const absl::InlinedVector<T, N, A>& a,
                const absl::InlinedVector<T, N, A>& b) {
   auto a_data = a.data();
-  auto a_size = a.size();
   auto b_data = b.data();
-  auto b_size = b.size();
-  return std::lexicographical_compare(a_data, a_data + a_size, b_data,
-                                      b_data + b_size);
+  return std::lexicographical_compare(a_data, a_data + a.size(), b_data,
+                                      b_data + b.size());
 }
 
-// `operator>()`
+// `operator>(...)`
 //
-// Tests whether the contents of one inlined vector are greater than the
-// contents of another through a lexicographical comparison operation.
+// Tests whether the value of an inlined vector is greater than the value of
+// another inlined vector using a lexicographical comparison algorithm.
 template <typename T, size_t N, typename A>
 bool operator>(const absl::InlinedVector<T, N, A>& a,
                const absl::InlinedVector<T, N, A>& b) {
   return b < a;
 }
 
-// `operator<=()`
+// `operator<=(...)`
 //
-// Tests whether the contents of one inlined vector are less than or equal to
-// the contents of another through a lexicographical comparison operation.
+// Tests whether the value of an inlined vector is less than or equal to the
+// value of another inlined vector using a lexicographical comparison algorithm.
 template <typename T, size_t N, typename A>
 bool operator<=(const absl::InlinedVector<T, N, A>& a,
                 const absl::InlinedVector<T, N, A>& b) {
   return !(b < a);
 }
 
-// `operator>=()`
+// `operator>=(...)`
 //
-// Tests whether the contents of one inlined vector are greater than or equal to
-// the contents of another through a lexicographical comparison operation.
+// Tests whether the value of an inlined vector is greater than or equal to the
+// value of another inlined vector using a lexicographical comparison algorithm.
 template <typename T, size_t N, typename A>
 bool operator>=(const absl::InlinedVector<T, N, A>& a,
                 const absl::InlinedVector<T, N, A>& b) {
   return !(a < b);
 }
 
-// `AbslHashValue()`
+// `AbslHashValue(...)`
 //
-// Provides `absl::Hash` support for `absl::InlinedVector`. You do not normally
-// call this function directly.
-template <typename H, typename TheT, size_t TheN, typename TheA>
-H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a) {
-  auto a_data = a.data();
-  auto a_size = a.size();
-  return H::combine(H::combine_contiguous(std::move(h), a_data, a_size),
-                    a_size);
+// Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to
+// call this directly.
+template <typename H, typename T, size_t N, typename A>
+H AbslHashValue(H h, const absl::InlinedVector<T, N, A>& a) {
+  auto size = a.size();
+  return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size);
 }
 
 }  // namespace absl
diff --git a/absl/container/internal/inlined_vector.h b/absl/container/internal/inlined_vector.h
index b241d0e086de..17e203e51f5e 100644
--- a/absl/container/internal/inlined_vector.h
+++ b/absl/container/internal/inlined_vector.h
@@ -71,14 +71,12 @@ template <typename AllocatorType, typename ValueType, typename ValueAdapter,
           typename SizeType>
 void ConstructElements(AllocatorType* alloc_ptr, ValueType* construct_first,
                        ValueAdapter* values_ptr, SizeType construct_size) {
-  // If any construction fails, all completed constructions are rolled back.
   for (SizeType i = 0; i < construct_size; ++i) {
     ABSL_INTERNAL_TRY {
       values_ptr->ConstructNext(alloc_ptr, construct_first + i);
     }
     ABSL_INTERNAL_CATCH_ANY {
       inlined_vector_internal::DestroyElements(alloc_ptr, construct_first, i);
-
       ABSL_INTERNAL_RETHROW;
     }
   }
@@ -171,6 +169,12 @@ class AllocationTransaction {
   explicit AllocationTransaction(AllocatorType* alloc_ptr)
       : alloc_data_(*alloc_ptr, nullptr) {}
 
+  ~AllocationTransaction() {
+    if (DidAllocate()) {
+      AllocatorTraits::deallocate(GetAllocator(), GetData(), GetCapacity());
+    }
+  }
+
   AllocationTransaction(const AllocationTransaction&) = delete;
   void operator=(const AllocationTransaction&) = delete;
 
@@ -185,12 +189,6 @@ class AllocationTransaction {
     return GetData();
   }
 
-  ~AllocationTransaction() {
-    if (DidAllocate()) {
-      AllocatorTraits::deallocate(GetAllocator(), GetData(), GetCapacity());
-    }
-  }
-
  private:
   container_internal::CompressedTuple<AllocatorType, pointer> alloc_data_;
   size_type capacity_ = 0;
@@ -205,9 +203,21 @@ class ConstructionTransaction {
   explicit ConstructionTransaction(AllocatorType* alloc_ptr)
       : alloc_data_(*alloc_ptr, nullptr) {}
 
+  ~ConstructionTransaction() {
+    if (DidConstruct()) {
+      inlined_vector_internal::DestroyElements(std::addressof(GetAllocator()),
+                                               GetData(), GetSize());
+    }
+  }
+
   ConstructionTransaction(const ConstructionTransaction&) = delete;
   void operator=(const ConstructionTransaction&) = delete;
 
+  AllocatorType& GetAllocator() { return alloc_data_.template get<0>(); }
+  pointer& GetData() { return alloc_data_.template get<1>(); }
+  size_type& GetSize() { return size_; }
+
+  bool DidConstruct() { return GetData() != nullptr; }
   template <typename ValueAdapter>
   void Construct(pointer data, ValueAdapter* values_ptr, size_type size) {
     inlined_vector_internal::ConstructElements(std::addressof(GetAllocator()),
@@ -220,18 +230,7 @@ class ConstructionTransaction {
     GetSize() = 0;
   }
 
-  ~ConstructionTransaction() {
-    if (GetData() != nullptr) {
-      inlined_vector_internal::DestroyElements(std::addressof(GetAllocator()),
-                                               GetData(), GetSize());
-    }
-  }
-
  private:
-  AllocatorType& GetAllocator() { return alloc_data_.template get<0>(); }
-  pointer& GetData() { return alloc_data_.template get<1>(); }
-  size_type& GetSize() { return size_; }
-
   container_internal::CompressedTuple<AllocatorType, pointer> alloc_data_;
   size_type size_ = 0;
 };
@@ -345,6 +344,7 @@ class Storage {
 
   void SubtractSize(size_type count) {
     assert(count <= GetSize());
+
     GetSizeAndIsAllocated() -= count << 1;
   }
 
@@ -533,22 +533,14 @@ auto Storage<T, N, A>::Resize(ValueAdapter values, size_type new_size) -> void {
   if (new_size > storage_view.capacity) {
     size_type new_capacity = ComputeCapacity(storage_view.capacity, new_size);
     pointer new_data = allocation_tx.Allocate(new_capacity);
-
-    // Construct new objects in `new_data`
     construct_loop = {new_data + storage_view.size,
                       new_size - storage_view.size};
-
-    // Move all existing objects into `new_data`
     move_construct_loop = {new_data, storage_view.size};
-
-    // Destroy all existing objects in `storage_view.data`
     destroy_loop = {storage_view.data, storage_view.size};
   } else if (new_size > storage_view.size) {
-    // Construct new objects in `storage_view.data`
     construct_loop = {storage_view.data + storage_view.size,
                       new_size - storage_view.size};
   } else {
-    // Destroy end `storage_view.size - new_size` objects in `storage_view.data`
     destroy_loop = {storage_view.data + new_size, storage_view.size - new_size};
   }
 
@@ -797,8 +789,6 @@ auto Storage<T, N, A>::ShrinkToFit() -> void {
                                                &move_values, storage_view.size);
   }
   ABSL_INTERNAL_CATCH_ANY {
-    // Writing to inlined data will trample on the existing state, thus it needs
-    // to be restored when a construction fails.
     SetAllocatedData(storage_view.data, storage_view.capacity);
     ABSL_INTERNAL_RETHROW;
   }
@@ -822,13 +812,8 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
   assert(this != other_storage_ptr);
 
   if (GetIsAllocated() && other_storage_ptr->GetIsAllocated()) {
-    // Both are allocated, thus we can swap the allocations at the top level.
-
     swap(data_.allocated, other_storage_ptr->data_.allocated);
   } else if (!GetIsAllocated() && !other_storage_ptr->GetIsAllocated()) {
-    // Both are inlined, thus element-wise swap up to smaller size, then move
-    // the remaining elements.
-
     Storage* small_ptr = this;
     Storage* large_ptr = other_storage_ptr;
     if (small_ptr->GetSize() > large_ptr->GetSize()) swap(small_ptr, large_ptr);
@@ -850,11 +835,6 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
         large_ptr->GetInlinedData() + small_ptr->GetSize(),
         large_ptr->GetSize() - small_ptr->GetSize());
   } else {
-    // One is allocated and the other is inlined, thus we first move the
-    // elements from the inlined instance to the inlined space in the allocated
-    // instance and then we can finish by having the other vector take on the
-    // allocation.
-
     Storage* allocated_ptr = this;
     Storage* inlined_ptr = other_storage_ptr;
     if (!allocated_ptr->GetIsAllocated()) swap(allocated_ptr, inlined_ptr);
@@ -872,8 +852,6 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
           &move_values, inlined_ptr->GetSize());
     }
     ABSL_INTERNAL_CATCH_ANY {
-      // Writing to inlined data will trample on the existing state, thus it
-      // needs to be restored when a construction fails.
       allocated_ptr->SetAllocatedData(allocated_storage_view.data,
                                       allocated_storage_view.capacity);
       ABSL_INTERNAL_RETHROW;
@@ -887,7 +865,6 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
                                   allocated_storage_view.capacity);
   }
 
-  // All cases swap the size, `is_allocated` boolean and the allocator.
   swap(GetSizeAndIsAllocated(), other_storage_ptr->GetSizeAndIsAllocated());
   swap(*GetAllocPtr(), *other_storage_ptr->GetAllocPtr());
 }
diff --git a/absl/random/BUILD.bazel b/absl/random/BUILD.bazel
index 00d42c9d839b..f7587bf9a9a4 100644
--- a/absl/random/BUILD.bazel
+++ b/absl/random/BUILD.bazel
@@ -368,9 +368,9 @@ BENCHMARK_TAGS = [
 ]
 
 # Benchmarks for various methods / test utilities
-cc_test(
+cc_binary(
     name = "benchmarks",
-    size = "small",
+    testonly = 1,
     srcs = [
         "benchmarks.cc",
     ],
diff --git a/absl/random/benchmarks.cc b/absl/random/benchmarks.cc
index 265d54d7d7d4..87bbb9810a77 100644
--- a/absl/random/benchmarks.cc
+++ b/absl/random/benchmarks.cc
@@ -25,7 +25,6 @@
 #include <type_traits>
 #include <vector>
 
-#include "benchmark/benchmark.h"
 #include "absl/base/macros.h"
 #include "absl/meta/type_traits.h"
 #include "absl/random/bernoulli_distribution.h"
@@ -40,6 +39,7 @@
 #include "absl/random/uniform_int_distribution.h"
 #include "absl/random/uniform_real_distribution.h"
 #include "absl/random/zipf_distribution.h"
+#include "benchmark/benchmark.h"
 
 namespace {
 
@@ -221,12 +221,12 @@ void BM_Poisson(benchmark::State& state) {
   BM_Dist<Engine, Dist>(state, a);
 }
 
-template <typename Engine, typename Dist, int V = 1, int Q = 2>
+template <typename Engine, typename Dist, int Q = 2, int V = 1>
 void BM_Zipf(benchmark::State& state) {
   using value_type = typename Dist::result_type;
-  volatile double v = V;
   volatile double q = Q;
-  BM_Dist<Engine, Dist>(state, std::numeric_limits<value_type>::max(), v, q);
+  volatile double v = V;
+  BM_Dist<Engine, Dist>(state, std::numeric_limits<value_type>::max(), q, v);
 }
 
 template <typename Engine, typename Dist>
@@ -333,8 +333,8 @@ void BM_Thread(benchmark::State& state) {
                      absl::log_uniform_int_distribution<int64_t>);             \
   BENCHMARK_TEMPLATE(BM_Dist, Engine, std::geometric_distribution<int64_t>);   \
   BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>);      \
-  BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>, 3,    \
-                     2);                                                       \
+  BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>, 2,    \
+                     3);                                                       \
   BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, std::bernoulli_distribution,        \
                      257305);                                                  \
   BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, absl::bernoulli_distribution,       \
diff --git a/absl/random/distributions.h b/absl/random/distributions.h
index c37b7347fd6e..d8ba3cdbe85e 100644
--- a/absl/random/distributions.h
+++ b/absl/random/distributions.h
@@ -437,6 +437,6 @@ IntType Zipf(URBG&& urbg,  // NOLINT(runtime/references)
       distribution_t, format_t>(&urbg, hi, q, v);
 }
 
-}  // namespace absl.
+}  // namespace absl
 
 #endif  // ABSL_RANDOM_DISTRIBUTIONS_H_
diff --git a/absl/random/internal/seed_material_test.cc b/absl/random/internal/seed_material_test.cc
index 0de6c4c6984d..6db2820ec707 100644
--- a/absl/random/internal/seed_material_test.cc
+++ b/absl/random/internal/seed_material_test.cc
@@ -28,7 +28,8 @@
 #define ABSL_EXPECT_DEATH_IF_SUPPORTED(statement, regex) \
   EXPECT_DEATH_IF_SUPPORTED(statement, ".*")
 #else
-#define ABSL_EXPECT_DEATH_IF_SUPPORTED EXPECT_DEATH_IF_SUPPORTED
+#define ABSL_EXPECT_DEATH_IF_SUPPORTED(statement, regex) \
+  EXPECT_DEATH_IF_SUPPORTED(statement, regex)
 #endif
 
 namespace {
diff --git a/absl/random/zipf_distribution.h b/absl/random/zipf_distribution.h
index 1e4dba8b4e0c..d7b4ac38edac 100644
--- a/absl/random/zipf_distribution.h
+++ b/absl/random/zipf_distribution.h
@@ -264,6 +264,6 @@ std::basic_istream<CharT, Traits>& operator>>(
   return is;
 }
 
-}  // namespace absl.
+}  // namespace absl
 
 #endif  // ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
diff --git a/absl/strings/numbers.h b/absl/strings/numbers.h
index e0f96df92098..100839b04626 100644
--- a/absl/strings/numbers.h
+++ b/absl/strings/numbers.h
@@ -47,7 +47,7 @@ namespace absl {
 // integer type. If any errors are encountered, this function returns `false`,
 // leaving `out` in an unspecified state.
 template <typename int_type>
-ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view s, int_type* out);
+ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view str, int_type* out);
 
 // SimpleAtof()
 //
@@ -180,8 +180,8 @@ ABSL_MUST_USE_RESULT bool safe_strtoi_base(absl::string_view s, int_type* out,
 // preceded by ASCII whitespace, with a value in the range of the corresponding
 // integer type.
 template <typename int_type>
-ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view s, int_type* out) {
-  return numbers_internal::safe_strtoi_base(s, out, 10);
+ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view str, int_type* out) {
+  return numbers_internal::safe_strtoi_base(str, out, 10);
 }
 
 }  // namespace absl