diff options
Diffstat (limited to 'absl/synchronization/mutex.cc')
-rw-r--r-- | absl/synchronization/mutex.cc | 2680 |
1 files changed, 2680 insertions, 0 deletions
diff --git a/absl/synchronization/mutex.cc b/absl/synchronization/mutex.cc new file mode 100644 index 000000000000..cb0a3a10a012 --- /dev/null +++ b/absl/synchronization/mutex.cc @@ -0,0 +1,2680 @@ +#include "absl/synchronization/mutex.h" + +#ifdef _WIN32 +#include <windows.h> +#ifdef ERROR +#undef ERROR +#endif +#else +#include <fcntl.h> +#include <pthread.h> +#include <sched.h> +#include <sys/time.h> +#endif + +#include <assert.h> +#include <errno.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <time.h> + +#include <algorithm> +#include <atomic> +#include <cinttypes> +#include <thread> // NOLINT(build/c++11) + +#include "absl/base/attributes.h" +#include "absl/base/config.h" +#include "absl/base/dynamic_annotations.h" +#include "absl/base/internal/atomic_hook.h" +#include "absl/base/internal/cycleclock.h" +#include "absl/base/internal/low_level_alloc.h" +#include "absl/base/internal/raw_logging.h" +#include "absl/base/internal/spinlock.h" +#include "absl/base/internal/sysinfo.h" +#include "absl/base/internal/thread_identity.h" +#include "absl/base/internal/tsan_mutex_interface.h" +#include "absl/base/port.h" +#include "absl/debugging/stacktrace.h" +#include "absl/synchronization/internal/graphcycles.h" +#include "absl/synchronization/internal/per_thread_sem.h" +#include "absl/time/time.h" + +using absl::base_internal::CurrentThreadIdentityIfPresent; +using absl::base_internal::PerThreadSynch; +using absl::base_internal::ThreadIdentity; +using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity; +using absl::synchronization_internal::GraphCycles; +using absl::synchronization_internal::GraphId; +using absl::synchronization_internal::InvalidGraphId; +using absl::synchronization_internal::KernelTimeout; +using absl::synchronization_internal::PerThreadSem; + +extern "C" { +ABSL_ATTRIBUTE_WEAK void AbslInternalMutexYield() { std::this_thread::yield(); } +} // extern "C" + +namespace absl { + +namespace { + +#if defined(THREAD_SANITIZER) +constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore; +#else +constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort; +#endif + +ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection( + kDeadlockDetectionDefault); +ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false); + +// ------------------------------------------ spinlock support + +// Make sure read-only globals used in the Mutex code are contained on the +// same cacheline and cacheline aligned to eliminate any false sharing with +// other globals from this and other modules. +static struct MutexGlobals { + MutexGlobals() { + // Find machine-specific data needed for Delay() and + // TryAcquireWithSpinning(). This runs in the global constructor + // sequence, and before that zeros are safe values. + num_cpus = absl::base_internal::NumCPUs(); + spinloop_iterations = num_cpus > 1 ? 1500 : 0; + } + int num_cpus; + int spinloop_iterations; + // Pad this struct to a full cacheline to prevent false sharing. + char padding[ABSL_CACHELINE_SIZE - 2 * sizeof(int)]; +} ABSL_CACHELINE_ALIGNED mutex_globals; +static_assert( + sizeof(MutexGlobals) == ABSL_CACHELINE_SIZE, + "MutexGlobals must occupy an entire cacheline to prevent false sharing"); + +ABSL_CONST_INIT absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)> + submit_profile_data; +ABSL_CONST_INIT absl::base_internal::AtomicHook< + void (*)(const char *msg, const void *obj, int64_t wait_cycles)> mutex_tracer; +ABSL_CONST_INIT absl::base_internal::AtomicHook< + void (*)(const char *msg, const void *cv)> cond_var_tracer; +ABSL_CONST_INIT absl::base_internal::AtomicHook< + bool (*)(const void *pc, char *out, int out_size)> symbolizer; + +} // namespace + +void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)) { + submit_profile_data.Store(fn); +} + +void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj, + int64_t wait_cycles)) { + mutex_tracer.Store(fn); +} + +void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) { + cond_var_tracer.Store(fn); +} + +void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) { + symbolizer.Store(fn); +} + +// spinlock delay on iteration c. Returns new c. +namespace { + enum DelayMode { AGGRESSIVE, GENTLE }; +}; +static int Delay(int32_t c, DelayMode mode) { + // If this a uniprocessor, only yield/sleep. Otherwise, if the mode is + // aggressive then spin many times before yielding. If the mode is + // gentle then spin only a few times before yielding. Aggressive spinning is + // used to ensure that an Unlock() call, which must get the spin lock for + // any thread to make progress gets it without undue delay. + int32_t limit = (mutex_globals.num_cpus > 1) ? + ((mode == AGGRESSIVE) ? 5000 : 250) : 0; + if (c < limit) { + c++; // spin + } else { + ABSL_TSAN_MUTEX_PRE_DIVERT(0, 0); + if (c == limit) { // yield once + AbslInternalMutexYield(); + c++; + } else { // then wait + absl::SleepFor(absl::Microseconds(10)); + c = 0; + } + ABSL_TSAN_MUTEX_POST_DIVERT(0, 0); + } + return (c); +} + +// --------------------------Generic atomic ops +// Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to +// "*pv | bits" if necessary. Wait until (*pv & wait_until_clear)==0 +// before making any change. +// This is used to set flags in mutex and condition variable words. +static void AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits, + intptr_t wait_until_clear) { + intptr_t v; + do { + v = pv->load(std::memory_order_relaxed); + } while ((v & bits) != bits && + ((v & wait_until_clear) != 0 || + !pv->compare_exchange_weak(v, v | bits, + std::memory_order_release, + std::memory_order_relaxed))); +} + +// Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to +// "*pv & ~bits" if necessary. Wait until (*pv & wait_until_clear)==0 +// before making any change. +// This is used to unset flags in mutex and condition variable words. +static void AtomicClearBits(std::atomic<intptr_t>* pv, intptr_t bits, + intptr_t wait_until_clear) { + intptr_t v; + do { + v = pv->load(std::memory_order_relaxed); + } while ((v & bits) != 0 && + ((v & wait_until_clear) != 0 || + !pv->compare_exchange_weak(v, v & ~bits, + std::memory_order_release, + std::memory_order_relaxed))); +} + +//------------------------------------------------------------------ + +// Data for doing deadlock detection. +static absl::base_internal::SpinLock deadlock_graph_mu( + absl::base_internal::kLinkerInitialized); + +// graph used to detect deadlocks. +static GraphCycles *deadlock_graph GUARDED_BY(deadlock_graph_mu) + PT_GUARDED_BY(deadlock_graph_mu); + +//------------------------------------------------------------------ +// An event mechanism for debugging mutex use. +// It also allows mutexes to be given names for those who can't handle +// addresses, and instead like to give their data structures names like +// "Henry", "Fido", or "Rupert IV, King of Yondavia". + +namespace { // to prevent name pollution +enum { // Mutex and CondVar events passed as "ev" to PostSynchEvent + // Mutex events + SYNCH_EV_TRYLOCK_SUCCESS, + SYNCH_EV_TRYLOCK_FAILED, + SYNCH_EV_READERTRYLOCK_SUCCESS, + SYNCH_EV_READERTRYLOCK_FAILED, + SYNCH_EV_LOCK, + SYNCH_EV_LOCK_RETURNING, + SYNCH_EV_READERLOCK, + SYNCH_EV_READERLOCK_RETURNING, + SYNCH_EV_UNLOCK, + SYNCH_EV_READERUNLOCK, + + // CondVar events + SYNCH_EV_WAIT, + SYNCH_EV_WAIT_RETURNING, + SYNCH_EV_SIGNAL, + SYNCH_EV_SIGNALALL, +}; + +enum { // Event flags + SYNCH_F_R = 0x01, // reader event + SYNCH_F_LCK = 0x02, // PostSynchEvent called with mutex held + SYNCH_F_ACQ = 0x04, // event is an acquire + + SYNCH_F_LCK_W = SYNCH_F_LCK, + SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R, + SYNCH_F_ACQ_W = SYNCH_F_ACQ, + SYNCH_F_ACQ_R = SYNCH_F_ACQ | SYNCH_F_R, +}; +} // anonymous namespace + +// Properties of the events. +static const struct { + int flags; + const char *msg; +} event_properties[] = { + { SYNCH_F_LCK_W|SYNCH_F_ACQ_W, "TryLock succeeded " }, + { 0, "TryLock failed " }, + { SYNCH_F_LCK_R|SYNCH_F_ACQ_R, "ReaderTryLock succeeded " }, + { 0, "ReaderTryLock failed " }, + { SYNCH_F_ACQ_W, "Lock blocking " }, + { SYNCH_F_LCK_W, "Lock returning " }, + { SYNCH_F_ACQ_R, "ReaderLock blocking " }, + { SYNCH_F_LCK_R, "ReaderLock returning " }, + { SYNCH_F_LCK_W, "Unlock " }, + { SYNCH_F_LCK_R, "ReaderUnlock " }, + { 0, "Wait on " }, + { 0, "Wait unblocked " }, + { 0, "Signal on " }, + { 0, "SignalAll on " }, +}; + +static absl::base_internal::SpinLock synch_event_mu( + absl::base_internal::kLinkerInitialized); +// protects synch_event + +// Hash table size; should be prime > 2. +// Can't be too small, as it's used for deadlock detection information. +static const uint32_t kNSynchEvent = 1031; + +// We need to hide Mutexes (or other deadlock detection's pointers) +// from the leak detector. +static const uintptr_t kHideMask = static_cast<uintptr_t>(0xF03A5F7BF03A5F7BLL); +static uintptr_t MaskMu(const void *mu) { + return reinterpret_cast<uintptr_t>(mu) ^ kHideMask; +} + +static struct SynchEvent { // this is a trivial hash table for the events + // struct is freed when refcount reaches 0 + int refcount GUARDED_BY(synch_event_mu); + + // buckets have linear, 0-terminated chains + SynchEvent *next GUARDED_BY(synch_event_mu); + + // Constant after initialization + uintptr_t masked_addr; // object at this address is called "name" + + // No explicit synchronization used. Instead we assume that the + // client who enables/disables invariants/logging on a Mutex does so + // while the Mutex is not being concurrently accessed by others. + void (*invariant)(void *arg); // called on each event + void *arg; // first arg to (*invariant)() + bool log; // logging turned on + + // Constant after initialization + char name[1]; // actually longer---null-terminated std::string +} *synch_event[kNSynchEvent] GUARDED_BY(synch_event_mu); + +// Ensure that the object at "addr" has a SynchEvent struct associated with it, +// set "bits" in the word there (waiting until lockbit is clear before doing +// so), and return a refcounted reference that will remain valid until +// UnrefSynchEvent() is called. If a new SynchEvent is allocated, +// the std::string name is copied into it. +// When used with a mutex, the caller should also ensure that kMuEvent +// is set in the mutex word, and similarly for condition variables and kCVEvent. +static SynchEvent *EnsureSynchEvent(std::atomic<intptr_t> *addr, + const char *name, intptr_t bits, + intptr_t lockbit) { + uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent; + SynchEvent *e; + // first look for existing SynchEvent struct.. + synch_event_mu.Lock(); + for (e = synch_event[h]; e != nullptr && e->masked_addr != MaskMu(addr); + e = e->next) { + } + if (e == nullptr) { // no SynchEvent struct found; make one. + if (name == nullptr) { + name = ""; + } + size_t l = strlen(name); + e = reinterpret_cast<SynchEvent *>( + base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l)); + e->refcount = 2; // one for return value, one for linked list + e->masked_addr = MaskMu(addr); + e->invariant = nullptr; + e->arg = nullptr; + e->log = false; + strcpy(e->name, name); // NOLINT(runtime/printf) + e->next = synch_event[h]; + AtomicSetBits(addr, bits, lockbit); + synch_event[h] = e; + } else { + e->refcount++; // for return value + } + synch_event_mu.Unlock(); + return e; +} + +// Deallocate the SynchEvent *e, whose refcount has fallen to zero. +static void DeleteSynchEvent(SynchEvent *e) { + base_internal::LowLevelAlloc::Free(e); +} + +// Decrement the reference count of *e, or do nothing if e==null. +static void UnrefSynchEvent(SynchEvent *e) { + if (e != nullptr) { + synch_event_mu.Lock(); + bool del = (--(e->refcount) == 0); + synch_event_mu.Unlock(); + if (del) { + DeleteSynchEvent(e); + } + } +} + +// Forget the mapping from the object (Mutex or CondVar) at address addr +// to SynchEvent object, and clear "bits" in its word (waiting until lockbit +// is clear before doing so). +static void ForgetSynchEvent(std::atomic<intptr_t> *addr, intptr_t bits, + intptr_t lockbit) { + uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent; + SynchEvent **pe; + SynchEvent *e; + synch_event_mu.Lock(); + for (pe = &synch_event[h]; + (e = *pe) != nullptr && e->masked_addr != MaskMu(addr); pe = &e->next) { + } + bool del = false; + if (e != nullptr) { + *pe = e->next; + del = (--(e->refcount) == 0); + } + AtomicClearBits(addr, bits, lockbit); + synch_event_mu.Unlock(); + if (del) { + DeleteSynchEvent(e); + } +} + +// Return a refcounted reference to the SynchEvent of the object at address +// "addr", if any. The pointer returned is valid until the UnrefSynchEvent() is +// called. +static SynchEvent *GetSynchEvent(const void *addr) { + uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent; + SynchEvent *e; + synch_event_mu.Lock(); + for (e = synch_event[h]; e != nullptr && e->masked_addr != MaskMu(addr); + e = e->next) { + } + if (e != nullptr) { + e->refcount++; + } + synch_event_mu.Unlock(); + return e; +} + +// Called when an event "ev" occurs on a Mutex of CondVar "obj" +// if event recording is on +static void PostSynchEvent(void *obj, int ev) { + SynchEvent *e = GetSynchEvent(obj); + // logging is on if event recording is on and either there's no event struct, + // or it explicitly says to log + if (e == nullptr || e->log) { + void *pcs[40]; + int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1); + // A buffer with enough space for the ASCII for all the PCs, even on a + // 64-bit machine. + char buffer[ABSL_ARRAYSIZE(pcs) * 24]; + int pos = snprintf(buffer, sizeof (buffer), " @"); + for (int i = 0; i != n; i++) { + pos += snprintf(&buffer[pos], sizeof (buffer) - pos, " %p", pcs[i]); + } + ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj, + (e == nullptr ? "" : e->name), buffer); + } + if ((event_properties[ev].flags & SYNCH_F_LCK) != 0 && e != nullptr && + e->invariant != nullptr) { + (*e->invariant)(e->arg); + } + UnrefSynchEvent(e); +} + +//------------------------------------------------------------------ + +// The SynchWaitParams struct encapsulates the way in which a thread is waiting: +// whether it has a timeout, the condition, exclusive/shared, and whether a +// condition variable wait has an associated Mutex (as opposed to another +// type of lock). It also points to the PerThreadSynch struct of its thread. +// cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue(). +// +// This structure is held on the stack rather than directly in +// PerThreadSynch because a thread can be waiting on multiple Mutexes if, +// while waiting on one Mutex, the implementation calls a client callback +// (such as a Condition function) that acquires another Mutex. We don't +// strictly need to allow this, but programmers become confused if we do not +// allow them to use functions such a LOG() within Condition functions. The +// PerThreadSynch struct points at the most recent SynchWaitParams struct when +// the thread is on a Mutex's waiter queue. +struct SynchWaitParams { + SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg, + KernelTimeout timeout_arg, Mutex *cvmu_arg, + PerThreadSynch *thread_arg, + std::atomic<intptr_t> *cv_word_arg) + : how(how_arg), + cond(cond_arg), + timeout(timeout_arg), + cvmu(cvmu_arg), + thread(thread_arg), + cv_word(cv_word_arg), + contention_start_cycles(base_internal::CycleClock::Now()) {} + + const Mutex::MuHow how; // How this thread needs to wait. + const Condition *cond; // The condition that this thread is waiting for. + // In Mutex, this field is set to zero if a timeout + // expires. + KernelTimeout timeout; // timeout expiry---absolute time + // In Mutex, this field is set to zero if a timeout + // expires. + Mutex *const cvmu; // used for transfer from cond var to mutex + PerThreadSynch *const thread; // thread that is waiting + + // If not null, thread should be enqueued on the CondVar whose state + // word is cv_word instead of queueing normally on the Mutex. + std::atomic<intptr_t> *cv_word; + + int64_t contention_start_cycles; // Time (in cycles) when this thread started + // to contend for the mutex. +}; + +struct SynchLocksHeld { + int n; // number of valid entries in locks[] + bool overflow; // true iff we overflowed the array at some point + struct { + Mutex *mu; // lock acquired + int32_t count; // times acquired + GraphId id; // deadlock_graph id of acquired lock + } locks[40]; + // If a thread overfills the array during deadlock detection, we + // continue, discarding information as needed. If no overflow has + // taken place, we can provide more error checking, such as + // detecting when a thread releases a lock it does not hold. +}; + +// A sentinel value in lists that is not 0. +// A 0 value is used to mean "not on a list". +static PerThreadSynch *const kPerThreadSynchNull = + reinterpret_cast<PerThreadSynch *>(1); + +static SynchLocksHeld *LocksHeldAlloc() { + SynchLocksHeld *ret = reinterpret_cast<SynchLocksHeld *>( + base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld))); + ret->n = 0; + ret->overflow = false; + return ret; +} + +// Return the PerThreadSynch-struct for this thread. +static PerThreadSynch *Synch_GetPerThread() { + ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity(); + return &identity->per_thread_synch; +} + +static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) { + if (mu) { + ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); + } + PerThreadSynch *w = Synch_GetPerThread(); + if (mu) { + ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); + } + return w; +} + +static SynchLocksHeld *Synch_GetAllLocks() { + PerThreadSynch *s = Synch_GetPerThread(); + if (s->all_locks == nullptr) { + s->all_locks = LocksHeldAlloc(); // Freed by ReclaimThreadIdentity. + } + return s->all_locks; +} + +// Post on "w"'s associated PerThreadSem. +inline void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) { + if (mu) { + ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); + } + PerThreadSem::Post(w->thread_identity()); + if (mu) { + ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); + } +} + +// Wait on "w"'s associated PerThreadSem; returns false if timeout expired. +bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) { + if (mu) { + ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); + } + assert(w == Synch_GetPerThread()); + static_cast<void>(w); + bool res = PerThreadSem::Wait(t); + if (mu) { + ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); + } + return res; +} + +// We're in a fatal signal handler that hopes to use Mutex and to get +// lucky by not deadlocking. We try to improve its chances of success +// by effectively disabling some of the consistency checks. This will +// prevent certain ABSL_RAW_CHECK() statements from being triggered when +// re-rentry is detected. The ABSL_RAW_CHECK() statements are those in the +// Mutex code checking that the "waitp" field has not been reused. +void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() { + // Fix the per-thread state only if it exists. + ThreadIdentity *identity = CurrentThreadIdentityIfPresent(); + if (identity != nullptr) { + identity->per_thread_synch.suppress_fatal_errors = true; + } + // Don't do deadlock detection when we are already failing. + synch_deadlock_detection.store(OnDeadlockCycle::kIgnore, + std::memory_order_release); +} + +// --------------------------time support + +// Return the current time plus the timeout. Use the same clock as +// PerThreadSem::Wait() for consistency. Unfortunately, we don't have +// such a choice when a deadline is given directly. +static absl::Time DeadlineFromTimeout(absl::Duration timeout) { +#ifndef _WIN32 + struct timeval tv; + gettimeofday(&tv, nullptr); + return absl::TimeFromTimeval(tv) + timeout; +#else + return absl::Now() + timeout; +#endif +} + +// --------------------------Mutexes + +// In the layout below, the msb of the bottom byte is currently unused. Also, +// the following constraints were considered in choosing the layout: +// o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and +// 0xcd) are illegal: reader and writer lock both held. +// o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the +// bit-twiddling trick in Mutex::Unlock(). +// o kMuWriter / kMuReader == kMuWrWait / kMuWait, +// to enable the bit-twiddling trick in CheckForMutexCorruption(). +static const intptr_t kMuReader = 0x0001L; // a reader holds the lock +static const intptr_t kMuDesig = 0x0002L; // there's a designated waker +static const intptr_t kMuWait = 0x0004L; // threads are waiting +static const intptr_t kMuWriter = 0x0008L; // a writer holds the lock +static const intptr_t kMuEvent = 0x0010L; // record this mutex's events +// INVARIANT1: there's a thread that was blocked on the mutex, is +// no longer, yet has not yet acquired the mutex. If there's a +// designated waker, all threads can avoid taking the slow path in +// unlock because the designated waker will subsequently acquire +// the lock and wake someone. To maintain INVARIANT1 the bit is +// set when a thread is unblocked(INV1a), and threads that were +// unblocked reset the bit when they either acquire or re-block +// (INV1b). +static const intptr_t kMuWrWait = 0x0020L; // runnable writer is waiting + // for a reader +static const intptr_t kMuSpin = 0x0040L; // spinlock protects wait list +static const intptr_t kMuLow = 0x00ffL; // mask all mutex bits +static const intptr_t kMuHigh = ~kMuLow; // mask pointer/reader count + +// Hack to make constant values available to gdb pretty printer +enum { + kGdbMuSpin = kMuSpin, + kGdbMuEvent = kMuEvent, + kGdbMuWait = kMuWait, + kGdbMuWriter = kMuWriter, + kGdbMuDesig = kMuDesig, + kGdbMuWrWait = kMuWrWait, + kGdbMuReader = kMuReader, + kGdbMuLow = kMuLow, +}; + +// kMuWrWait implies kMuWait. +// kMuReader and kMuWriter are mutually exclusive. +// If kMuReader is zero, there are no readers. +// Otherwise, if kMuWait is zero, the high order bits contain a count of the +// number of readers. Otherwise, the reader count is held in +// PerThreadSynch::readers of the most recently queued waiter, again in the +// bits above kMuLow. +static const intptr_t kMuOne = 0x0100; // a count of one reader + +// flags passed to Enqueue and LockSlow{,WithTimeout,Loop} +static const int kMuHasBlocked = 0x01; // already blocked (MUST == 1) +static const int kMuIsCond = 0x02; // conditional waiter (CV or Condition) + +static_assert(PerThreadSynch::kAlignment > kMuLow, + "PerThreadSynch::kAlignment must be greater than kMuLow"); + +// This struct contains various bitmasks to be used in +// acquiring and releasing a mutex in a particular mode. +struct MuHowS { + // if all the bits in fast_need_zero are zero, the lock can be acquired by + // adding fast_add and oring fast_or. The bit kMuDesig should be reset iff + // this is the designated waker. + intptr_t fast_need_zero; + intptr_t fast_or; + intptr_t fast_add; + + intptr_t slow_need_zero; // fast_need_zero with events (e.g. logging) + + intptr_t slow_inc_need_zero; // if all the bits in slow_inc_need_zero are + // zero a reader can acquire a read share by + // setting the reader bit and incrementing + // the reader count (in last waiter since + // we're now slow-path). kMuWrWait be may + // be ignored if we already waited once. +}; + +static const MuHowS kSharedS = { + // shared or read lock + kMuWriter | kMuWait | kMuEvent, // fast_need_zero + kMuReader, // fast_or + kMuOne, // fast_add + kMuWriter | kMuWait, // slow_need_zero + kMuSpin | kMuWriter | kMuWrWait, // slow_inc_need_zero +}; +static const MuHowS kExclusiveS = { + // exclusive or write lock + kMuWriter | kMuReader | kMuEvent, // fast_need_zero + kMuWriter, // fast_or + 0, // fast_add + kMuWriter | kMuReader, // slow_need_zero + ~static_cast<intptr_t>(0), // slow_inc_need_zero +}; +static const Mutex::MuHow kShared = &kSharedS; // shared lock +static const Mutex::MuHow kExclusive = &kExclusiveS; // exclusive lock + +#ifdef NDEBUG +static constexpr bool kDebugMode = false; +#else +static constexpr bool kDebugMode = true; +#endif + +#ifdef THREAD_SANITIZER +static unsigned TsanFlags(Mutex::MuHow how) { + return how == kShared ? __tsan_mutex_read_lock : 0; +} +#endif + +Mutex::Mutex() : mu_(0) { + ABSL_TSAN_MUTEX_CREATE(this, 0); +} + +static bool DebugOnlyIsExiting() { + return false; +} + +Mutex::~Mutex() { + intptr_t v = mu_.load(std::memory_order_relaxed); + if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) { + ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin); + } + if (kDebugMode) { + this->ForgetDeadlockInfo(); + } + ABSL_TSAN_MUTEX_DESTROY(this, 0); +} + +void Mutex::EnableDebugLog(const char *name) { + SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin); + e->log = true; + UnrefSynchEvent(e); +} + +void EnableMutexInvariantDebugging(bool enabled) { + synch_check_invariants.store(enabled, std::memory_order_release); +} + +void Mutex::EnableInvariantDebugging(void (*invariant)(void *), + void *arg) { + if (synch_check_invariants.load(std::memory_order_acquire) && + invariant != nullptr) { + SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin); + e->invariant = invariant; + e->arg = arg; + UnrefSynchEvent(e); + } +} + +void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) { + synch_deadlock_detection.store(mode, std::memory_order_release); +} + +// Return true iff threads x and y are waiting on the same condition for the +// same type of lock. Requires that x and y be waiting on the same Mutex +// queue. +static bool MuSameCondition(PerThreadSynch *x, PerThreadSynch *y) { + return x->waitp->how == y->waitp->how && + Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond); +} + +// Given the contents of a mutex word containing a PerThreadSynch pointer, +// return the pointer. +static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) { + return reinterpret_cast<PerThreadSynch *>(v & kMuHigh); +} + +// The next several routines maintain the per-thread next and skip fields +// used in the Mutex waiter queue. +// The queue is a circular singly-linked list, of which the "head" is the +// last element, and head->next if the first element. +// The skip field has the invariant: +// For thread x, x->skip is one of: +// - invalid (iff x is not in a Mutex wait queue), +// - null, or +// - a pointer to a distinct thread waiting later in the same Mutex queue +// such that all threads in [x, x->skip] have the same condition and +// lock type (MuSameCondition() is true for all pairs in [x, x->skip]). +// In addition, if x->skip is valid, (x->may_skip || x->skip == null) +// +// By the spec of MuSameCondition(), it is not necessary when removing the +// first runnable thread y from the front a Mutex queue to adjust the skip +// field of another thread x because if x->skip==y, x->skip must (have) become +// invalid before y is removed. The function TryRemove can remove a specified +// thread from an arbitrary position in the queue whether runnable or not, so +// it fixes up skip fields that would otherwise be left dangling. +// The statement +// if (x->may_skip && MuSameCondition(x, x->next)) { x->skip = x->next; } +// maintains the invariant provided x is not the last waiter in a Mutex queue +// The statement +// if (x->skip != null) { x->skip = x->skip->skip; } +// maintains the invariant. + +// Returns the last thread y in a mutex waiter queue such that all threads in +// [x, y] inclusive share the same condition. Sets skip fields of some threads +// in that range to optimize future evaluation of Skip() on x values in +// the range. Requires thread x is in a mutex waiter queue. +// The locking is unusual. Skip() is called under these conditions: +// - spinlock is held in call from Enqueue(), with maybe_unlocking == false +// - Mutex is held in call from UnlockSlow() by last unlocker, with +// maybe_unlocking == true +// - both Mutex and spinlock are held in call from DequeueAllWakeable() (from +// UnlockSlow()) and TryRemove() +// These cases are mutually exclusive, so Skip() never runs concurrently +// with itself on the same Mutex. The skip chain is used in these other places +// that cannot occur concurrently: +// - FixSkip() (from TryRemove()) - spinlock and Mutex are held) +// - Dequeue() (with spinlock and Mutex held) +// - UnlockSlow() (with spinlock and Mutex held) +// A more complex case is Enqueue() +// - Enqueue() (with spinlock held and maybe_unlocking == false) +// This is the first case in which Skip is called, above. +// - Enqueue() (without spinlock held; but queue is empty and being freshly +// formed) +// - Enqueue() (with spinlock held and maybe_unlocking == true) +// The first case has mutual exclusion, and the second isolation through +// working on an otherwise unreachable data structure. +// In the last case, Enqueue() is required to change no skip/next pointers +// except those in the added node and the former "head" node. This implies +// that the new node is added after head, and so must be the new head or the +// new front of the queue. +static PerThreadSynch *Skip(PerThreadSynch *x) { + PerThreadSynch *x0 = nullptr; + PerThreadSynch *x1 = x; + PerThreadSynch *x2 = x->skip; + if (x2 != nullptr) { + // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence + // such that x1 == x0->skip && x2 == x1->skip + while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) { + x0->skip = x2; // short-circuit skip from x0 to x2 + } + x->skip = x1; // short-circuit skip from x to result + } + return x1; +} + +// "ancestor" appears before "to_be_removed" in the same Mutex waiter queue. +// The latter is going to be removed out of order, because of a timeout. +// Check whether "ancestor" has a skip field pointing to "to_be_removed", +// and fix it if it does. +static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) { + if (ancestor->skip == to_be_removed) { // ancestor->skip left dangling + if (to_be_removed->skip != nullptr) { + ancestor->skip = to_be_removed->skip; // can skip past to_be_removed + } else if (ancestor->next != to_be_removed) { // they are not adjacent + ancestor->skip = ancestor->next; // can skip one past ancestor + } else { + ancestor->skip = nullptr; // can't skip at all + } + } +} + +static void CondVarEnqueue(SynchWaitParams *waitp); + +// Enqueue thread "waitp->thread" on a waiter queue. +// Called with mutex spinlock held if head != nullptr +// If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is +// idempotent; it alters no state associated with the existing (empty) +// queue. +// +// If waitp->cv_word == nullptr, queue the thread at either the front or +// the end (according to its priority) of the circular mutex waiter queue whose +// head is "head", and return the new head. mu is the previous mutex state, +// which contains the reader count (perhaps adjusted for the operation in +// progress) if the list was empty and a read lock held, and the holder hint if +// the list was empty and a write lock held. (flags & kMuIsCond) indicates +// whether this thread was transferred from a CondVar or is waiting for a +// non-trivial condition. In this case, Enqueue() never returns nullptr +// +// If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is +// returned. This mechanism is used by CondVar to queue a thread on the +// condition variable queue instead of the mutex queue in implementing Wait(). +// In this case, Enqueue() can return nullptr (if head==nullptr). +static PerThreadSynch *Enqueue(PerThreadSynch *head, + SynchWaitParams *waitp, intptr_t mu, int flags) { + // If we have been given a cv_word, call CondVarEnqueue() and return + // the previous head of the Mutex waiter queue. + if (waitp->cv_word != nullptr) { + CondVarEnqueue(waitp); + return head; + } + + PerThreadSynch *s = waitp->thread; + ABSL_RAW_CHECK( + s->waitp == nullptr || // normal case + s->waitp == waitp || // Fer()---transfer from condition variable + s->suppress_fatal_errors, + "detected illegal recursion into Mutex code"); + s->waitp = waitp; + s->skip = nullptr; // maintain skip invariant (see above) + s->may_skip = true; // always true on entering queue + s->wake = false; // not being woken + s->cond_waiter = ((flags & kMuIsCond) != 0); + if (head == nullptr) { // s is the only waiter + s->next = s; // it's the only entry in the cycle + s->readers = mu; // reader count is from mu word + s->maybe_unlocking = false; // no one is searching an empty list + head = s; // s is new head + } else { + PerThreadSynch *enqueue_after = nullptr; // we'll put s after this element +#ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM + int64_t now_cycles = base_internal::CycleClock::Now(); + if (s->next_priority_read_cycles < now_cycles) { + // Every so often, update our idea of the thread's priority. + // pthread_getschedparam() is 5% of the block/wakeup time; + // base_internal::CycleClock::Now() is 0.5%. + int policy; + struct sched_param param; + pthread_getschedparam(pthread_self(), &policy, ¶m); + s->priority = param.sched_priority; + s->next_priority_read_cycles = + now_cycles + + static_cast<int64_t>(base_internal::CycleClock::Frequency()); + } + if (s->priority > head->priority) { // s's priority is above head's + // try to put s in priority-fifo order, or failing that at the front. + if (!head->maybe_unlocking) { + // No unlocker can be scanning the queue, so we can insert between + // skip-chains, and within a skip-chain if it has the same condition as + // s. We insert in priority-fifo order, examining the end of every + // skip-chain, plus every element with the same condition as s. + PerThreadSynch *advance_to = head; // next value of enqueue_after + PerThreadSynch *cur; // successor of enqueue_after + do { + enqueue_after = advance_to; + cur = enqueue_after->next; // this advance ensures progress + advance_to = Skip(cur); // normally, advance to end of skip chain + // (side-effect: optimizes skip chain) + if (advance_to != cur && s->priority > advance_to->priority && + MuSameCondition(s, cur)) { + // but this skip chain is not a singleton, s has higher priority + // than its tail and has the same condition as the chain, + // so we can insert within the skip-chain + advance_to = cur; // advance by just one + } + } while (s->priority <= advance_to->priority); + // termination guaranteed because s->priority > head->priority + // and head is the end of a skip chain + } else if (waitp->how == kExclusive && + Condition::GuaranteedEqual(waitp->cond, nullptr)) { + // An unlocker could be scanning the queue, but we know it will recheck + // the queue front for writers that have no condition, which is what s + // is, so an insert at front is safe. + enqueue_after = head; // add after head, at front + } + } +#endif + if (enqueue_after != nullptr) { + s->next = enqueue_after->next; + enqueue_after->next = s; + + // enqueue_after can be: head, Skip(...), or cur. + // The first two imply enqueue_after->skip == nullptr, and + // the last is used only if MuSameCondition(s, cur). + // We require this because clearing enqueue_after->skip + // is impossible; enqueue_after's predecessors might also + // incorrectly skip over s if we were to allow other + // insertion points. + ABSL_RAW_CHECK( + enqueue_after->skip == nullptr || MuSameCondition(enqueue_after, s), + "Mutex Enqueue failure"); + + if (enqueue_after != head && enqueue_after->may_skip && + MuSameCondition(enqueue_after, enqueue_after->next)) { + // enqueue_after can skip to its new successor, s + enqueue_after->skip = enqueue_after->next; + } + if (MuSameCondition(s, s->next)) { // s->may_skip is known to be true + s->skip = s->next; // s may skip to its successor + } + } else { // enqueue not done any other way, so + // we're inserting s at the back + // s will become new head; copy data from head into it + s->next = head->next; // add s after head + head->next = s; + s->readers = head->readers; // reader count is from previous head + s->maybe_unlocking = head->maybe_unlocking; // same for unlock hint + if (head->may_skip && MuSameCondition(head, s)) { + // head now has successor; may skip + head->skip = s; + } + head = s; // s is new head + } + } + s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed); + return head; +} + +// Dequeue the successor pw->next of thread pw from the Mutex waiter queue +// whose last element is head. The new head element is returned, or null +// if the list is made empty. +// Dequeue is called with both spinlock and Mutex held. +static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) { + PerThreadSynch *w = pw->next; + pw->next = w->next; // snip w out of list + if (head == w) { // we removed the head + head = (pw == w) ? nullptr : pw; // either emptied list, or pw is new head + } else if (pw != head && MuSameCondition(pw, pw->next)) { + // pw can skip to its new successor + if (pw->next->skip != + nullptr) { // either skip to its successors skip target + pw->skip = pw->next->skip; + } else { // or to pw's successor + pw->skip = pw->next; + } + } + return head; +} + +// Traverse the elements [ pw->next, h] of the circular list whose last element +// is head. +// Remove all elements with wake==true and place them in the +// singly-linked list wake_list in the order found. Assumes that +// there is only one such element if the element has how == kExclusive. +// Return the new head. +static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head, + PerThreadSynch *pw, + PerThreadSynch **wake_tail) { + PerThreadSynch *orig_h = head; + PerThreadSynch *w = pw->next; + bool skipped = false; + do { + if (w->wake) { // remove this element + ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable"); + // we're removing pw's successor so either pw->skip is zero or we should + // already have removed pw since if pw->skip!=null, pw has the same + // condition as w. + head = Dequeue(head, pw); + w->next = *wake_tail; // keep list terminated + *wake_tail = w; // add w to wake_list; + wake_tail = &w->next; // next addition to end + if (w->waitp->how == kExclusive) { // wake at most 1 writer + break; + } + } else { // not waking this one; skip + pw = Skip(w); // skip as much as possible + skipped = true; + } + w = pw->next; + // We want to stop processing after we've considered the original head, + // orig_h. We can't test for w==orig_h in the loop because w may skip over + // it; we are guaranteed only that w's predecessor will not skip over + // orig_h. When we've considered orig_h, either we've processed it and + // removed it (so orig_h != head), or we considered it and skipped it (so + // skipped==true && pw == head because skipping from head always skips by + // just one, leaving pw pointing at head). So we want to + // continue the loop with the negation of that expression. + } while (orig_h == head && (pw != head || !skipped)); + return head; +} + +// Try to remove thread s from the list of waiters on this mutex. +// Does nothing if s is not on the waiter list. +void Mutex::TryRemove(PerThreadSynch *s) { + intptr_t v = mu_.load(std::memory_order_relaxed); + // acquire spinlock & lock + if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait && + mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter, + std::memory_order_acquire, + std::memory_order_relaxed)) { + PerThreadSynch *h = GetPerThreadSynch(v); + if (h != nullptr) { + PerThreadSynch *pw = h; // pw is w's predecessor + PerThreadSynch *w; + if ((w = pw->next) != s) { // search for thread, + do { // processing at least one element + if (!MuSameCondition(s, w)) { // seeking different condition + pw = Skip(w); // so skip all that won't match + // we don't have to worry about dangling skip fields + // in the threads we skipped; none can point to s + // because their condition differs from s + } else { // seeking same condition + FixSkip(w, s); // fix up any skip pointer from w to s + pw = w; + } + // don't search further if we found the thread, or we're about to + // process the first thread again. + } while ((w = pw->next) != s && pw != h); + } + if (w == s) { // found thread; remove it + // pw->skip may be non-zero here; the loop above ensured that + // no ancestor of s can skip to s, so removal is safe anyway. + h = Dequeue(h, pw); + s->next = nullptr; + s->state.store(PerThreadSynch::kAvailable, std::memory_order_release); + } + } + intptr_t nv; + do { // release spinlock and lock + v = mu_.load(std::memory_order_relaxed); + nv = v & (kMuDesig | kMuEvent); + if (h != nullptr) { + nv |= kMuWait | reinterpret_cast<intptr_t>(h); + h->readers = 0; // we hold writer lock + h->maybe_unlocking = false; // finished unlocking + } + } while (!mu_.compare_exchange_weak(v, nv, + std::memory_order_release, + std::memory_order_relaxed)); + } +} + +// Wait until thread "s", which must be the current thread, is removed from the +// this mutex's waiter queue. If "s->waitp->timeout" has a timeout, wake up +// if the wait extends past the absolute time specified, even if "s" is still +// on the mutex queue. In this case, remove "s" from the queue and return +// true, otherwise return false. +void Mutex::Block(PerThreadSynch *s) { + while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) { + if (!DecrementSynchSem(this, s, s->waitp->timeout)) { + // After a timeout, we go into a spin loop until we remove ourselves + // from the queue, or someone else removes us. We can't be sure to be + // able to remove ourselves in a single lock acquisition because this + // mutex may be held, and the holder has the right to read the centre + // of the waiter queue without holding the spinlock. + this->TryRemove(s); + int c = 0; + while (s->next != nullptr) { + c = Delay(c, GENTLE); + this->TryRemove(s); + } + if (kDebugMode) { + // This ensures that we test the case that TryRemove() is called when s + // is not on the queue. + this->TryRemove(s); + } + s->waitp->timeout = KernelTimeout::Never(); // timeout is satisfied + s->waitp->cond = nullptr; // condition no longer relevant for wakeups + } + } + ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors, + "detected illegal recursion in Mutex code"); + s->waitp = nullptr; +} + +// Wake thread w, and return the next thread in the list. +PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) { + PerThreadSynch *next = w->next; + w->next = nullptr; + w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); + IncrementSynchSem(this, w); + + return next; +} + +static GraphId GetGraphIdLocked(Mutex *mu) + EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) { + if (!deadlock_graph) { // (re)create the deadlock graph. + deadlock_graph = + new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph))) + GraphCycles; + } + return deadlock_graph->GetId(mu); +} + +static GraphId GetGraphId(Mutex *mu) LOCKS_EXCLUDED(deadlock_graph_mu) { + deadlock_graph_mu.Lock(); + GraphId id = GetGraphIdLocked(mu); + deadlock_graph_mu.Unlock(); + return id; +} + +// Record a lock acquisition. This is used in debug mode for deadlock +// detection. The held_locks pointer points to the relevant data +// structure for each case. +static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) { + int n = held_locks->n; + int i = 0; + while (i != n && held_locks->locks[i].id != id) { + i++; + } + if (i == n) { + if (n == ABSL_ARRAYSIZE(held_locks->locks)) { + held_locks->overflow = true; // lost some data + } else { // we have room for lock + held_locks->locks[i].mu = mu; + held_locks->locks[i].count = 1; + held_locks->locks[i].id = id; + held_locks->n = n + 1; + } + } else { + held_locks->locks[i].count++; + } +} + +// Record a lock release. Each call to LockEnter(mu, id, x) should be +// eventually followed by a call to LockLeave(mu, id, x) by the same thread. +// It does not process the event if is not needed when deadlock detection is +// disabled. +static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) { + int n = held_locks->n; + int i = 0; + while (i != n && held_locks->locks[i].id != id) { + i++; + } + if (i == n) { + if (!held_locks->overflow) { + // The deadlock id may have been reassigned after ForgetDeadlockInfo, + // but in that case mu should still be present. + i = 0; + while (i != n && held_locks->locks[i].mu != mu) { + i++; + } + if (i == n) { // mu missing means releasing unheld lock + SynchEvent *mu_events = GetSynchEvent(mu); + ABSL_RAW_LOG(FATAL, + "thread releasing lock it does not hold: %p %s; " + , + static_cast<void *>(mu), + mu_events == nullptr ? "" : mu_events->name); + } + } + } else if (held_locks->locks[i].count == 1) { + held_locks->n = n - 1; + held_locks->locks[i] = held_locks->locks[n - 1]; + held_locks->locks[n - 1].id = InvalidGraphId(); + held_locks->locks[n - 1].mu = + nullptr; // clear mu to please the leak detector. + } else { + assert(held_locks->locks[i].count > 0); + held_locks->locks[i].count--; + } +} + +// Call LockEnter() if in debug mode and deadlock detection is enabled. +static inline void DebugOnlyLockEnter(Mutex *mu) { + if (kDebugMode) { + if (synch_deadlock_detection.load(std::memory_order_acquire) != + OnDeadlockCycle::kIgnore) { + LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks()); + } + } +} + +// Call LockEnter() if in debug mode and deadlock detection is enabled. +static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) { + if (kDebugMode) { + if (synch_deadlock_detection.load(std::memory_order_acquire) != + OnDeadlockCycle::kIgnore) { + LockEnter(mu, id, Synch_GetAllLocks()); + } + } +} + +// Call LockLeave() if in debug mode and deadlock detection is enabled. +static inline void DebugOnlyLockLeave(Mutex *mu) { + if (kDebugMode) { + if (synch_deadlock_detection.load(std::memory_order_acquire) != + OnDeadlockCycle::kIgnore) { + LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks()); + } + } +} + +static char *StackString(void **pcs, int n, char *buf, int maxlen, + bool symbolize) { + static const int kSymLen = 200; + char sym[kSymLen]; + int len = 0; + for (int i = 0; i != n; i++) { + if (symbolize) { + if (!symbolizer(pcs[i], sym, kSymLen)) { + sym[0] = '\0'; + } + snprintf(buf + len, maxlen - len, "%s\t@ %p %s\n", + (i == 0 ? "\n" : ""), + pcs[i], sym); + } else { + snprintf(buf + len, maxlen - len, " %p", pcs[i]); + } + len += strlen(&buf[len]); + } + return buf; +} + +static char *CurrentStackString(char *buf, int maxlen, bool symbolize) { + void *pcs[40]; + return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf, + maxlen, symbolize); +} + +namespace { +enum { kMaxDeadlockPathLen = 10 }; // maximum length of a deadlock cycle; + // a path this long would be remarkable +// Buffers required to report a deadlock. +// We do not allocate them on stack to avoid large stack frame. +struct DeadlockReportBuffers { + char buf[6100]; + GraphId path[kMaxDeadlockPathLen]; +}; + +struct ScopedDeadlockReportBuffers { + ScopedDeadlockReportBuffers() { + b = reinterpret_cast<DeadlockReportBuffers *>( + base_internal::LowLevelAlloc::Alloc(sizeof(*b))); + } + ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); } + DeadlockReportBuffers *b; +}; + +// Helper to pass to GraphCycles::UpdateStackTrace. +int GetStack(void** stack, int max_depth) { + return absl::GetStackTrace(stack, max_depth, 3); +} +} // anonymous namespace + +// Called in debug mode when a thread is about to acquire a lock in a way that +// may block. +static GraphId DeadlockCheck(Mutex *mu) { + if (synch_deadlock_detection.load(std::memory_order_acquire) == + OnDeadlockCycle::kIgnore) { + return InvalidGraphId(); + } + + SynchLocksHeld *all_locks = Synch_GetAllLocks(); + + absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu); + const GraphId mu_id = GetGraphIdLocked(mu); + + if (all_locks->n == 0) { + // There are no other locks held. Return now so that we don't need to + // call GetSynchEvent(). This way we do not record the stack trace + // for this Mutex. It's ok, since if this Mutex is involved in a deadlock, + // it can't always be the first lock acquired by a thread. + return mu_id; + } + + // We prefer to keep stack traces that show a thread holding and acquiring + // as many locks as possible. This increases the chances that a given edge + // in the acquires-before graph will be represented in the stack traces + // recorded for the locks. + deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack); + + // For each other mutex already held by this thread: + for (int i = 0; i != all_locks->n; i++) { + const GraphId other_node_id = all_locks->locks[i].id; + const Mutex *other = + static_cast<const Mutex *>(deadlock_graph->Ptr(other_node_id)); + if (other == nullptr) { + // Ignore stale lock + continue; + } + + // Add the acquired-before edge to the graph. + if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) { + ScopedDeadlockReportBuffers scoped_buffers; + DeadlockReportBuffers *b = scoped_buffers.b; + static int number_of_reported_deadlocks = 0; + number_of_reported_deadlocks++; + // Symbolize only 2 first deadlock report to avoid huge slowdowns. + bool symbolize = number_of_reported_deadlocks <= 2; + ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s", + CurrentStackString(b->buf, sizeof (b->buf), symbolize)); + int len = 0; + for (int j = 0; j != all_locks->n; j++) { + void* pr = deadlock_graph->Ptr(all_locks->locks[j].id); + if (pr != nullptr) { + snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr); + len += static_cast<int>(strlen(&b->buf[len])); + } + } + ABSL_RAW_LOG(ERROR, "Acquiring %p Mutexes held: %s", + static_cast<void *>(mu), b->buf); + ABSL_RAW_LOG(ERROR, "Cycle: "); + int path_len = deadlock_graph->FindPath( + mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path); + for (int j = 0; j != path_len; j++) { + GraphId id = b->path[j]; + Mutex *path_mu = static_cast<Mutex *>(deadlock_graph->Ptr(id)); + if (path_mu == nullptr) continue; + void** stack; + int depth = deadlock_graph->GetStackTrace(id, &stack); + snprintf(b->buf, sizeof(b->buf), + "mutex@%p stack: ", static_cast<void *>(path_mu)); + StackString(stack, depth, b->buf + strlen(b->buf), + static_cast<int>(sizeof(b->buf) - strlen(b->buf)), + symbolize); + ABSL_RAW_LOG(ERROR, "%s", b->buf); + } + if (synch_deadlock_detection.load(std::memory_order_acquire) == + OnDeadlockCycle::kAbort) { + deadlock_graph_mu.Unlock(); // avoid deadlock in fatal sighandler + ABSL_RAW_LOG(FATAL, "dying due to potential deadlock"); + return mu_id; + } + break; // report at most one potential deadlock per acquisition + } + } + + return mu_id; +} + +// Invoke DeadlockCheck() iff we're in debug mode and +// deadlock checking has been enabled. +static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) { + if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) != + OnDeadlockCycle::kIgnore) { + return DeadlockCheck(mu); + } else { + return InvalidGraphId(); + } +} + +void Mutex::ForgetDeadlockInfo() { + if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) != + OnDeadlockCycle::kIgnore) { + deadlock_graph_mu.Lock(); + if (deadlock_graph != nullptr) { + deadlock_graph->RemoveNode(this); + } + deadlock_graph_mu.Unlock(); + } +} + +void Mutex::AssertNotHeld() const { + // We have the data to allow this check only if in debug mode and deadlock + // detection is enabled. + if (kDebugMode && + (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 && + synch_deadlock_detection.load(std::memory_order_acquire) != + OnDeadlockCycle::kIgnore) { + GraphId id = GetGraphId(const_cast<Mutex *>(this)); + SynchLocksHeld *locks = Synch_GetAllLocks(); + for (int i = 0; i != locks->n; i++) { + if (locks->locks[i].id == id) { + SynchEvent *mu_events = GetSynchEvent(this); + ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s", + static_cast<const void *>(this), + (mu_events == nullptr ? "" : mu_events->name)); + } + } + } +} + +// Attempt to acquire *mu, and return whether successful. The implementation +// may spin for a short while if the lock cannot be acquired immediately. +static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) { + int c = mutex_globals.spinloop_iterations; + int result = -1; // result of operation: 0=false, 1=true, -1=unknown + + do { // do/while somewhat faster on AMD + intptr_t v = mu->load(std::memory_order_relaxed); + if ((v & (kMuReader|kMuEvent)) != 0) { // a reader or tracing -> give up + result = 0; + } else if (((v & kMuWriter) == 0) && // no holder -> try to acquire + mu->compare_exchange_strong(v, kMuWriter | v, + std::memory_order_acquire, + std::memory_order_relaxed)) { + result = 1; + } + } while (result == -1 && --c > 0); + return result == 1; +} + +ABSL_XRAY_LOG_ARGS(1) void Mutex::Lock() { + ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); + GraphId id = DebugOnlyDeadlockCheck(this); + intptr_t v = mu_.load(std::memory_order_relaxed); + // try fast acquire, then spin loop + if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 || + !mu_.compare_exchange_strong(v, kMuWriter | v, + std::memory_order_acquire, + std::memory_order_relaxed)) { + // try spin acquire, then slow loop + if (!TryAcquireWithSpinning(&this->mu_)) { + this->LockSlow(kExclusive, nullptr, 0); + } + } + DebugOnlyLockEnter(this, id); + ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); +} + +ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderLock() { + ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock); + GraphId id = DebugOnlyDeadlockCheck(this); + intptr_t v = mu_.load(std::memory_order_relaxed); + // try fast acquire, then slow loop + if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 || + !mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne, + std::memory_order_acquire, + std::memory_order_relaxed)) { + this->LockSlow(kShared, nullptr, 0); + } + DebugOnlyLockEnter(this, id); + ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0); +} + +void Mutex::LockWhen(const Condition &cond) { + ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); + GraphId id = DebugOnlyDeadlockCheck(this); + this->LockSlow(kExclusive, &cond, 0); + DebugOnlyLockEnter(this, id); + ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); +} + +bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) { + return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout)); +} + +bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) { + ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); + GraphId id = DebugOnlyDeadlockCheck(this); + bool res = LockSlowWithDeadline(kExclusive, &cond, + KernelTimeout(deadline), 0); + DebugOnlyLockEnter(this, id); + ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); + return res; +} + +void Mutex::ReaderLockWhen(const Condition &cond) { + ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock); + GraphId id = DebugOnlyDeadlockCheck(this); + this->LockSlow(kShared, &cond, 0); + DebugOnlyLockEnter(this, id); + ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0); +} + +bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond, + absl::Duration timeout) { + return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout)); +} + +bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond, + absl::Time deadline) { + ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock); + GraphId id = DebugOnlyDeadlockCheck(this); + bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0); + DebugOnlyLockEnter(this, id); + ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0); + return res; +} + +void Mutex::Await(const Condition &cond) { + if (cond.Eval()) { // condition already true; nothing to do + if (kDebugMode) { + this->AssertReaderHeld(); + } + } else { // normal case + ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()), + "condition untrue on return from Await"); + } +} + +bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) { + return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout)); +} + +bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) { + if (cond.Eval()) { // condition already true; nothing to do + if (kDebugMode) { + this->AssertReaderHeld(); + } + return true; + } + + KernelTimeout t{deadline}; + bool res = this->AwaitCommon(cond, t); + ABSL_RAW_CHECK(res || t.has_timeout(), + "condition untrue on return from Await"); + return res; +} + +bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) { + this->AssertReaderHeld(); + MuHow how = + (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared; + ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how)); + SynchWaitParams waitp( + how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this), + nullptr /*no cv_word*/); + int flags = kMuHasBlocked; + if (!Condition::GuaranteedEqual(&cond, nullptr)) { + flags |= kMuIsCond; + } + this->UnlockSlow(&waitp); + this->Block(waitp.thread); + ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how)); + ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how)); + this->LockSlowLoop(&waitp, flags); + bool res = waitp.cond != nullptr || // => cond known true from LockSlowLoop + cond.Eval(); + ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0); + return res; +} + +ABSL_XRAY_LOG_ARGS(1) bool Mutex::TryLock() { + ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock); + intptr_t v = mu_.load(std::memory_order_relaxed); + if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 && // try fast acquire + mu_.compare_exchange_strong(v, kMuWriter | v, + std::memory_order_acquire, + std::memory_order_relaxed)) { + DebugOnlyLockEnter(this); + ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0); + return true; + } + if ((v & kMuEvent) != 0) { // we're recording events + if ((v & kExclusive->slow_need_zero) == 0 && // try fast acquire + mu_.compare_exchange_strong( + v, (kExclusive->fast_or | v) + kExclusive->fast_add, + std::memory_order_acquire, std::memory_order_relaxed)) { + DebugOnlyLockEnter(this); + PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS); + ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0); + return true; + } else { + PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED); + } + } + ABSL_TSAN_MUTEX_POST_LOCK( + this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0); + return false; +} + +ABSL_XRAY_LOG_ARGS(1) bool Mutex::ReaderTryLock() { + ABSL_TSAN_MUTEX_PRE_LOCK(this, + __tsan_mutex_read_lock | __tsan_mutex_try_lock); + intptr_t v = mu_.load(std::memory_order_relaxed); + // The while-loops (here and below) iterate only if the mutex word keeps + // changing (typically because the reader count changes) under the CAS. We + // limit the number of attempts to avoid having to think about livelock. + int loop_limit = 5; + while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) { + if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne, + std::memory_order_acquire, + std::memory_order_relaxed)) { + DebugOnlyLockEnter(this); + ABSL_TSAN_MUTEX_POST_LOCK( + this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0); + return true; + } + loop_limit--; + v = mu_.load(std::memory_order_relaxed); + } + if ((v & kMuEvent) != 0) { // we're recording events + loop_limit = 5; + while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) { + if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne, + std::memory_order_acquire, + std::memory_order_relaxed)) { + DebugOnlyLockEnter(this); + PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS); + ABSL_TSAN_MUTEX_POST_LOCK( + this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0); + return true; + } + loop_limit--; + v = mu_.load(std::memory_order_relaxed); + } + if ((v & kMuEvent) != 0) { + PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED); + } + } + ABSL_TSAN_MUTEX_POST_LOCK(this, + __tsan_mutex_read_lock | __tsan_mutex_try_lock | + __tsan_mutex_try_lock_failed, + 0); + return false; +} + +ABSL_XRAY_LOG_ARGS(1) void Mutex::Unlock() { + ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0); + DebugOnlyLockLeave(this); + intptr_t v = mu_.load(std::memory_order_relaxed); + + if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) { + ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x", + static_cast<unsigned>(v)); + } + + // should_try_cas is whether we'll try a compare-and-swap immediately. + // NOTE: optimized out when kDebugMode is false. + bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter && + (v & (kMuWait | kMuDesig)) != kMuWait); + // But, we can use an alternate computation of it, that compilers + // currently don't find on their own. When that changes, this function + // can be simplified. + intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent); + intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig); + // Claim: "x == 0 && y > 0" is equal to should_try_cas. + // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait, + // all possible non-zero values for x exceed all possible values for y. + // Therefore, (x == 0 && y > 0) == (x < y). + if (kDebugMode && should_try_cas != (x < y)) { + // We would usually use PRIdPTR here, but is not correctly implemented + // within the android toolchain. + ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n", + static_cast<long long>(v), static_cast<long long>(x), + static_cast<long long>(y)); + } + if (x < y && + mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter), + std::memory_order_release, + std::memory_order_relaxed)) { + // fast writer release (writer with no waiters or with designated waker) + } else { + this->UnlockSlow(nullptr /*no waitp*/); // take slow path + } + ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0); +} + +// Requires v to represent a reader-locked state. +static bool ExactlyOneReader(intptr_t v) { + assert((v & (kMuWriter|kMuReader)) == kMuReader); + assert((v & kMuHigh) != 0); + // The more straightforward "(v & kMuHigh) == kMuOne" also works, but + // on some architectures the following generates slightly smaller code. + // It may be faster too. + constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne; + return (v & kMuMultipleWaitersMask) == 0; +} + +ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderUnlock() { + ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock); + DebugOnlyLockLeave(this); + intptr_t v = mu_.load(std::memory_order_relaxed); + assert((v & (kMuWriter|kMuReader)) == kMuReader); + if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) { + // fast reader release (reader with no waiters) + intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne; + if (mu_.compare_exchange_strong(v, v - clear, + std::memory_order_release, + std::memory_order_relaxed)) { + ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock); + return; + } + } + this->UnlockSlow(nullptr /*no waitp*/); // take slow path + ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock); +} + +// The zap_desig_waker bitmask is used to clear the designated waker flag in +// the mutex if this thread has blocked, and therefore may be the designated +// waker. +static const intptr_t zap_desig_waker[] = { + ~static_cast<intptr_t>(0), // not blocked + ~static_cast<intptr_t>( + kMuDesig) // blocked; turn off the designated waker bit +}; + +// The ignore_waiting_writers bitmask is used to ignore the existence +// of waiting writers if a reader that has already blocked once +// wakes up. +static const intptr_t ignore_waiting_writers[] = { + ~static_cast<intptr_t>(0), // not blocked + ~static_cast<intptr_t>( + kMuWrWait) // blocked; pretend there are no waiting writers +}; + +// Internal version of LockWhen(). See LockSlowWithDeadline() +void Mutex::LockSlow(MuHow how, const Condition *cond, int flags) { + ABSL_RAW_CHECK( + this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags), + "condition untrue on return from LockSlow"); +} + +// Compute cond->Eval() and tell race detectors that we do it under mutex mu. +static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu, + bool locking, Mutex::MuHow how) { + // Delicate annotation dance. + // We are currently inside of read/write lock/unlock operation. + // All memory accesses are ignored inside of mutex operations + for unlock + // operation tsan considers that we've already released the mutex. + bool res = false; + if (locking) { + // For lock we pretend that we have finished the operation, + // evaluate the predicate, then unlock the mutex and start locking it again + // to match the annotation at the end of outer lock operation. + // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan + // will think the lock acquisition is recursive which will trigger + // deadlock detector. + ABSL_TSAN_MUTEX_POST_LOCK(mu, TsanFlags(how), 0); + res = cond->Eval(); + ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, TsanFlags(how)); + ABSL_TSAN_MUTEX_POST_UNLOCK(mu, TsanFlags(how)); + ABSL_TSAN_MUTEX_PRE_LOCK(mu, TsanFlags(how)); + } else { + // Similarly, for unlock we pretend that we have unlocked the mutex, + // lock the mutex, evaluate the predicate, and start unlocking it again + // to match the annotation at the end of outer unlock operation. + ABSL_TSAN_MUTEX_POST_UNLOCK(mu, TsanFlags(how)); + ABSL_TSAN_MUTEX_PRE_LOCK(mu, TsanFlags(how)); + ABSL_TSAN_MUTEX_POST_LOCK(mu, TsanFlags(how), 0); + res = cond->Eval(); + ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, TsanFlags(how)); + } + // Prevent unused param warnings in non-TSAN builds. + static_cast<void>(mu); + static_cast<void>(how); + return res; +} + +// Compute cond->Eval() hiding it from race detectors. +// We are hiding it because inside of UnlockSlow we can evaluate a predicate +// that was just added by a concurrent Lock operation; Lock adds the predicate +// to the internal Mutex list without actually acquiring the Mutex +// (it only acquires the internal spinlock, which is rightfully invisible for +// tsan). As the result there is no tsan-visible synchronization between the +// addition and this thread. So if we would enable race detection here, +// it would race with the predicate initialization. +static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) { + // Memory accesses are already ignored inside of lock/unlock operations, + // but synchronization operations are also ignored. When we evaluate the + // predicate we must ignore only memory accesses but not synchronization, + // because missed synchronization can lead to false reports later. + // So we "divert" (which un-ignores both memory accesses and synchronization) + // and then separately turn on ignores of memory accesses. + ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); + ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN(); + bool res = cond->Eval(); + ANNOTATE_IGNORE_READS_AND_WRITES_END(); + ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); + static_cast<void>(mu); // Prevent unused param warning in non-TSAN builds. + return res; +} + +// Internal equivalent of *LockWhenWithDeadline(), where +// "t" represents the absolute timeout; !t.has_timeout() means "forever". +// "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen) +// In flags, bits are ored together: +// - kMuHasBlocked indicates that the client has already blocked on the call so +// the designated waker bit must be cleared and waiting writers should not +// obstruct this call +// - kMuIsCond indicates that this is a conditional acquire (condition variable, +// Await, LockWhen) so contention profiling should be suppressed. +bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond, + KernelTimeout t, int flags) { + intptr_t v = mu_.load(std::memory_order_relaxed); + bool unlock = false; + if ((v & how->fast_need_zero) == 0 && // try fast acquire + mu_.compare_exchange_strong( + v, (how->fast_or | (v & zap_desig_waker[flags & kMuHasBlocked])) + + how->fast_add, + std::memory_order_acquire, std::memory_order_relaxed)) { + if (cond == nullptr || EvalConditionAnnotated(cond, this, true, how)) { + return true; + } + unlock = true; + } + SynchWaitParams waitp( + how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this), + nullptr /*no cv_word*/); + if (!Condition::GuaranteedEqual(cond, nullptr)) { + flags |= kMuIsCond; + } + if (unlock) { + this->UnlockSlow(&waitp); + this->Block(waitp.thread); + flags |= kMuHasBlocked; + } + this->LockSlowLoop(&waitp, flags); + return waitp.cond != nullptr || // => cond known true from LockSlowLoop + cond == nullptr || EvalConditionAnnotated(cond, this, true, how); +} + +// RAW_CHECK_FMT() takes a condition, a printf-style format std::string, and +// the printf-style argument list. The format std::string must be a literal. +// Arguments after the first are not evaluated unless the condition is true. +#define RAW_CHECK_FMT(cond, ...) \ + do { \ + if (ABSL_PREDICT_FALSE(!(cond))) { \ + ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \ + } \ + } while (0) + +static void CheckForMutexCorruption(intptr_t v, const char* label) { + // Test for either of two situations that should not occur in v: + // kMuWriter and kMuReader + // kMuWrWait and !kMuWait + const intptr_t w = v ^ kMuWait; + // By flipping that bit, we can now test for: + // kMuWriter and kMuReader in w + // kMuWrWait and kMuWait in w + // We've chosen these two pairs of values to be so that they will overlap, + // respectively, when the word is left shifted by three. This allows us to + // save a branch in the common (correct) case of them not being coincident. + static_assert(kMuReader << 3 == kMuWriter, "must match"); + static_assert(kMuWait << 3 == kMuWrWait, "must match"); + if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return; + RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader), + "%s: Mutex corrupt: both reader and writer lock held: %p", + label, reinterpret_cast<void *>(v)); + RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait, + "%s: Mutex corrupt: waiting writer with no waiters: %p", + label, reinterpret_cast<void *>(v)); + assert(false); +} + +void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) { + int c = 0; + intptr_t v = mu_.load(std::memory_order_relaxed); + if ((v & kMuEvent) != 0) { + PostSynchEvent(this, + waitp->how == kExclusive? SYNCH_EV_LOCK: SYNCH_EV_READERLOCK); + } + ABSL_RAW_CHECK( + waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, + "detected illegal recursion into Mutex code"); + for (;;) { + v = mu_.load(std::memory_order_relaxed); + CheckForMutexCorruption(v, "Lock"); + if ((v & waitp->how->slow_need_zero) == 0) { + if (mu_.compare_exchange_strong( + v, (waitp->how->fast_or | + (v & zap_desig_waker[flags & kMuHasBlocked])) + + waitp->how->fast_add, + std::memory_order_acquire, std::memory_order_relaxed)) { + if (waitp->cond == nullptr || + EvalConditionAnnotated(waitp->cond, this, true, waitp->how)) { + break; // we timed out, or condition true, so return + } + this->UnlockSlow(waitp); // got lock but condition false + this->Block(waitp->thread); + flags |= kMuHasBlocked; + c = 0; + } + } else { // need to access waiter list + bool dowait = false; + if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters + // This thread tries to become the one and only waiter. + PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags); + intptr_t nv = (v & zap_desig_waker[flags & kMuHasBlocked] & kMuLow) | + kMuWait; + ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed"); + if (waitp->how == kExclusive && (v & kMuReader) != 0) { + nv |= kMuWrWait; + } + if (mu_.compare_exchange_strong( + v, reinterpret_cast<intptr_t>(new_h) | nv, + std::memory_order_release, std::memory_order_relaxed)) { + dowait = true; + } else { // attempted Enqueue() failed + // zero out the waitp field set by Enqueue() + waitp->thread->waitp = nullptr; + } + } else if ((v & waitp->how->slow_inc_need_zero & + ignore_waiting_writers[flags & kMuHasBlocked]) == 0) { + // This is a reader that needs to increment the reader count, + // but the count is currently held in the last waiter. + if (mu_.compare_exchange_strong( + v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin | + kMuReader, + std::memory_order_acquire, std::memory_order_relaxed)) { + PerThreadSynch *h = GetPerThreadSynch(v); + h->readers += kMuOne; // inc reader count in waiter + do { // release spinlock + v = mu_.load(std::memory_order_relaxed); + } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader, + std::memory_order_release, + std::memory_order_relaxed)); + if (waitp->cond == nullptr || + EvalConditionAnnotated(waitp->cond, this, true, waitp->how)) { + break; // we timed out, or condition true, so return + } + this->UnlockSlow(waitp); // got lock but condition false + this->Block(waitp->thread); + flags |= kMuHasBlocked; + c = 0; + } + } else if ((v & kMuSpin) == 0 && // attempt to queue ourselves + mu_.compare_exchange_strong( + v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin | + kMuWait, + std::memory_order_acquire, std::memory_order_relaxed)) { + PerThreadSynch *h = GetPerThreadSynch(v); + PerThreadSynch *new_h = Enqueue(h, waitp, v, flags); + intptr_t wr_wait = 0; + ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed"); + if (waitp->how == kExclusive && (v & kMuReader) != 0) { + wr_wait = kMuWrWait; // give priority to a waiting writer + } + do { // release spinlock + v = mu_.load(std::memory_order_relaxed); + } while (!mu_.compare_exchange_weak( + v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait | + reinterpret_cast<intptr_t>(new_h), + std::memory_order_release, std::memory_order_relaxed)); + dowait = true; + } + if (dowait) { + this->Block(waitp->thread); // wait until removed from list or timeout + flags |= kMuHasBlocked; + c = 0; + } + } + ABSL_RAW_CHECK( + waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, + "detected illegal recursion into Mutex code"); + c = Delay(c, GENTLE); // delay, then try again + } + ABSL_RAW_CHECK( + waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, + "detected illegal recursion into Mutex code"); + if ((v & kMuEvent) != 0) { + PostSynchEvent(this, + waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING : + SYNCH_EV_READERLOCK_RETURNING); + } +} + +// Unlock this mutex, which is held by the current thread. +// If waitp is non-zero, it must be the wait parameters for the current thread +// which holds the lock but is not runnable because its condition is false +// or it n the process of blocking on a condition variable; it must requeue +// itself on the mutex/condvar to wait for its condition to become true. +void Mutex::UnlockSlow(SynchWaitParams *waitp) { + intptr_t v = mu_.load(std::memory_order_relaxed); + this->AssertReaderHeld(); + CheckForMutexCorruption(v, "Unlock"); + if ((v & kMuEvent) != 0) { + PostSynchEvent(this, + (v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK); + } + int c = 0; + // the waiter under consideration to wake, or zero + PerThreadSynch *w = nullptr; + // the predecessor to w or zero + PerThreadSynch *pw = nullptr; + // head of the list searched previously, or zero + PerThreadSynch *old_h = nullptr; + // a condition that's known to be false. + const Condition *known_false = nullptr; + PerThreadSynch *wake_list = kPerThreadSynchNull; // list of threads to wake + intptr_t wr_wait = 0; // set to kMuWrWait if we wake a reader and a + // later writer could have acquired the lock + // (starvation avoidance) + ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr || + waitp->thread->suppress_fatal_errors, + "detected illegal recursion into Mutex code"); + // This loop finds threads wake_list to wakeup if any, and removes them from + // the list of waiters. In addition, it places waitp.thread on the queue of + // waiters if waitp is non-zero. + for (;;) { + v = mu_.load(std::memory_order_relaxed); + if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait && + waitp == nullptr) { + // fast writer release (writer with no waiters or with designated waker) + if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter), + std::memory_order_release, + std::memory_order_relaxed)) { + return; + } + } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) { + // fast reader release (reader with no waiters) + intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne; + if (mu_.compare_exchange_strong(v, v - clear, + std::memory_order_release, + std::memory_order_relaxed)) { + return; + } + } else if ((v & kMuSpin) == 0 && // attempt to get spinlock + mu_.compare_exchange_strong(v, v | kMuSpin, + std::memory_order_acquire, + std::memory_order_relaxed)) { + if ((v & kMuWait) == 0) { // no one to wake + intptr_t nv; + bool do_enqueue = true; // always Enqueue() the first time + ABSL_RAW_CHECK(waitp != nullptr, + "UnlockSlow is confused"); // about to sleep + do { // must loop to release spinlock as reader count may change + v = mu_.load(std::memory_order_relaxed); + // decrement reader count if there are readers + intptr_t new_readers = (v >= kMuOne)? v - kMuOne : v; + PerThreadSynch *new_h = nullptr; + if (do_enqueue) { + // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then + // we must not retry here. The initial attempt will always have + // succeeded, further attempts would enqueue us against *this due to + // Fer() handling. + do_enqueue = (waitp->cv_word == nullptr); + new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond); + } + intptr_t clear = kMuWrWait | kMuWriter; // by default clear write bit + if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) { // last reader + clear = kMuWrWait | kMuReader; // clear read bit + } + nv = (v & kMuLow & ~clear & ~kMuSpin); + if (new_h != nullptr) { + nv |= kMuWait | reinterpret_cast<intptr_t>(new_h); + } else { // new_h could be nullptr if we queued ourselves on a + // CondVar + // In that case, we must place the reader count back in the mutex + // word, as Enqueue() did not store it in the new waiter. + nv |= new_readers & kMuHigh; + } + // release spinlock & our lock; retry if reader-count changed + // (writer count cannot change since we hold lock) + } while (!mu_.compare_exchange_weak(v, nv, + std::memory_order_release, + std::memory_order_relaxed)); + break; + } + + // There are waiters. + // Set h to the head of the circular waiter list. + PerThreadSynch *h = GetPerThreadSynch(v); + if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) { + // a reader but not the last + h->readers -= kMuOne; // release our lock + intptr_t nv = v; // normally just release spinlock + if (waitp != nullptr) { // but waitp!=nullptr => must queue ourselves + PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond); + ABSL_RAW_CHECK(new_h != nullptr, + "waiters disappeared during Enqueue()!"); + nv &= kMuLow; + nv |= kMuWait | reinterpret_cast<intptr_t>(new_h); + } + mu_.store(nv, std::memory_order_release); // release spinlock + // can release with a store because there were waiters + break; + } + + // Either we didn't search before, or we marked the queue + // as "maybe_unlocking" and no one else should have changed it. + ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking, + "Mutex queue changed beneath us"); + + // The lock is becoming free, and there's a waiter + if (old_h != nullptr && + !old_h->may_skip) { // we used old_h as a terminator + old_h->may_skip = true; // allow old_h to skip once more + ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head"); + if (h != old_h && MuSameCondition(old_h, old_h->next)) { + old_h->skip = old_h->next; // old_h not head & can skip to successor + } + } + if (h->next->waitp->how == kExclusive && + Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) { + // easy case: writer with no condition; no need to search + pw = h; // wake w, the successor of h (=pw) + w = h->next; + w->wake = true; + // We are waking up a writer. This writer may be racing against + // an already awake reader for the lock. We want the + // writer to usually win this race, + // because if it doesn't, we can potentially keep taking a reader + // perpetually and writers will starve. Worse than + // that, this can also starve other readers if kMuWrWait gets set + // later. + wr_wait = kMuWrWait; + } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) { + // we found a waiter w to wake on a previous iteration and either it's + // a writer, or we've searched the entire list so we have all the + // readers. + if (pw == nullptr) { // if w's predecessor is unknown, it must be h + pw = h; + } + } else { + // At this point we don't know all the waiters to wake, and the first + // waiter has a condition or is a reader. We avoid searching over + // waiters we've searched on previous iterations by starting at + // old_h if it's set. If old_h==h, there's no one to wakeup at all. + if (old_h == h) { // we've searched before, and nothing's new + // so there's no one to wake. + intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait)); + h->readers = 0; + h->maybe_unlocking = false; // finished unlocking + if (waitp != nullptr) { // we must queue ourselves and sleep + PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond); + nv &= kMuLow; + if (new_h != nullptr) { + nv |= kMuWait | reinterpret_cast<intptr_t>(new_h); + } // else new_h could be nullptr if we queued ourselves on a + // CondVar + } + // release spinlock & lock + // can release with a store because there were waiters + mu_.store(nv, std::memory_order_release); + break; + } + + // set up to walk the list + PerThreadSynch *w_walk; // current waiter during list walk + PerThreadSynch *pw_walk; // previous waiter during list walk + if (old_h != nullptr) { // we've searched up to old_h before + pw_walk = old_h; + w_walk = old_h->next; + } else { // no prior search, start at beginning + pw_walk = + nullptr; // h->next's predecessor may change; don't record it + w_walk = h->next; + } + + h->may_skip = false; // ensure we never skip past h in future searches + // even if other waiters are queued after it. + ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head"); + + h->maybe_unlocking = true; // we're about to scan the waiter list + // without the spinlock held. + // Enqueue must be conservative about + // priority queuing. + + // We must release the spinlock to evaluate the conditions. + mu_.store(v, std::memory_order_release); // release just spinlock + // can release with a store because there were waiters + + // h is the last waiter queued, and w_walk the first unsearched waiter. + // Without the spinlock, the locations mu_ and h->next may now change + // underneath us, but since we hold the lock itself, the only legal + // change is to add waiters between h and w_walk. Therefore, it's safe + // to walk the path from w_walk to h inclusive. (TryRemove() can remove + // a waiter anywhere, but it acquires both the spinlock and the Mutex) + + old_h = h; // remember we searched to here + + // Walk the path upto and including h looking for waiters we can wake. + while (pw_walk != h) { + w_walk->wake = false; + if (w_walk->waitp->cond == + nullptr || // no condition => vacuously true OR + (w_walk->waitp->cond != known_false && + // this thread's condition is not known false, AND + // is in fact true + EvalConditionIgnored(this, w_walk->waitp->cond))) { + if (w == nullptr) { + w_walk->wake = true; // can wake this waiter + w = w_walk; + pw = pw_walk; + if (w_walk->waitp->how == kExclusive) { + wr_wait = kMuWrWait; + break; // bail if waking this writer + } + } else if (w_walk->waitp->how == kShared) { // wake if a reader + w_walk->wake = true; + } else { // writer with true condition + wr_wait = kMuWrWait; + } + } else { // can't wake; condition false + known_false = w_walk->waitp->cond; // remember last false condition + } + if (w_walk->wake) { // we're waking reader w_walk + pw_walk = w_walk; // don't skip similar waiters + } else { // not waking; skip as much as possible + pw_walk = Skip(w_walk); + } + // If pw_walk == h, then load of pw_walk->next can race with + // concurrent write in Enqueue(). However, at the same time + // we do not need to do the load, because we will bail out + // from the loop anyway. + if (pw_walk != h) { + w_walk = pw_walk->next; + } + } + + continue; // restart for(;;)-loop to wakeup w or to find more waiters + } + ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor"); + // The first (and perhaps only) waiter we've chosen to wake is w, whose + // predecessor is pw. If w is a reader, we must wake all the other + // waiters with wake==true as well. We may also need to queue + // ourselves if waitp != null. The spinlock and the lock are still + // held. + + // This traverses the list in [ pw->next, h ], where h is the head, + // removing all elements with wake==true and placing them in the + // singly-linked list wake_list. Returns the new head. + h = DequeueAllWakeable(h, pw, &wake_list); + + intptr_t nv = (v & kMuEvent) | kMuDesig; + // assume no waiters left, + // set kMuDesig for INV1a + + if (waitp != nullptr) { // we must queue ourselves and sleep + h = Enqueue(h, waitp, v, kMuIsCond); + // h is new last waiter; could be null if we queued ourselves on a + // CondVar + } + + ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull, + "unexpected empty wake list"); + + if (h != nullptr) { // there are waiters left + h->readers = 0; + h->maybe_unlocking = false; // finished unlocking + nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h); + } + + // release both spinlock & lock + // can release with a store because there were waiters + mu_.store(nv, std::memory_order_release); + break; // out of for(;;)-loop + } + c = Delay(c, AGGRESSIVE); // aggressive here; no one can proceed till we do + } // end of for(;;)-loop + + if (wake_list != kPerThreadSynchNull) { + int64_t enqueue_timestamp = wake_list->waitp->contention_start_cycles; + bool cond_waiter = wake_list->cond_waiter; + do { + wake_list = Wakeup(wake_list); // wake waiters + } while (wake_list != kPerThreadSynchNull); + if (!cond_waiter) { + // Sample lock contention events only if the (first) waiter was trying to + // acquire the lock, not waiting on a condition variable or Condition. + int64_t wait_cycles = base_internal::CycleClock::Now() - enqueue_timestamp; + mutex_tracer("slow release", this, wait_cycles); + ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0); + submit_profile_data(enqueue_timestamp); + ABSL_TSAN_MUTEX_POST_DIVERT(this, 0); + } + } +} + +// Used by CondVar implementation to reacquire mutex after waking from +// condition variable. This routine is used instead of Lock() because the +// waiting thread may have been moved from the condition variable queue to the +// mutex queue without a wakeup, by Trans(). In that case, when the thread is +// finally woken, the woken thread will believe it has been woken from the +// condition variable (i.e. its PC will be in when in the CondVar code), when +// in fact it has just been woken from the mutex. Thus, it must enter the slow +// path of the mutex in the same state as if it had just woken from the mutex. +// That is, it must ensure to clear kMuDesig (INV1b). +void Mutex::Trans(MuHow how) { + this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond); +} + +// Used by CondVar implementation to effectively wake thread w from the +// condition variable. If this mutex is free, we simply wake the thread. +// It will later acquire the mutex with high probability. Otherwise, we +// enqueue thread w on this mutex. +void Mutex::Fer(PerThreadSynch *w) { + int c = 0; + ABSL_RAW_CHECK(w->waitp->cond == nullptr, + "Mutex::Fer while waiting on Condition"); + ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(), + "Mutex::Fer while in timed wait"); + ABSL_RAW_CHECK(w->waitp->cv_word == nullptr, + "Mutex::Fer with pending CondVar queueing"); + for (;;) { + intptr_t v = mu_.load(std::memory_order_relaxed); + // Note: must not queue if the mutex is unlocked (nobody will wake it). + // For example, we can have only kMuWait (conditional) or maybe + // kMuWait|kMuWrWait. + // conflicting != 0 implies that the waking thread cannot currently take + // the mutex, which in turn implies that someone else has it and can wake + // us if we queue. + const intptr_t conflicting = + kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader); + if ((v & conflicting) == 0) { + w->next = nullptr; + w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); + IncrementSynchSem(this, w); + return; + } else { + if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters + // This thread tries to become the one and only waiter. + PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond); + ABSL_RAW_CHECK(new_h != nullptr, + "Enqueue failed"); // we must queue ourselves + if (mu_.compare_exchange_strong( + v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait, + std::memory_order_release, std::memory_order_relaxed)) { + return; + } + } else if ((v & kMuSpin) == 0 && + mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) { + PerThreadSynch *h = GetPerThreadSynch(v); + PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond); + ABSL_RAW_CHECK(new_h != nullptr, + "Enqueue failed"); // we must queue ourselves + do { + v = mu_.load(std::memory_order_relaxed); + } while (!mu_.compare_exchange_weak( + v, + (v & kMuLow & ~kMuSpin) | kMuWait | + reinterpret_cast<intptr_t>(new_h), + std::memory_order_release, std::memory_order_relaxed)); + return; + } + } + c = Delay(c, GENTLE); + } +} + +void Mutex::AssertHeld() const { + if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) { + SynchEvent *e = GetSynchEvent(this); + ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s", + static_cast<const void *>(this), + (e == nullptr ? "" : e->name)); + } +} + +void Mutex::AssertReaderHeld() const { + if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) { + SynchEvent *e = GetSynchEvent(this); + ABSL_RAW_LOG( + FATAL, "thread should hold at least a read lock on Mutex %p %s", + static_cast<const void *>(this), (e == nullptr ? "" : e->name)); + } +} + +// -------------------------------- condition variables +static const intptr_t kCvSpin = 0x0001L; // spinlock protects waiter list +static const intptr_t kCvEvent = 0x0002L; // record events + +static const intptr_t kCvLow = 0x0003L; // low order bits of CV + +// Hack to make constant values available to gdb pretty printer +enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, }; + +static_assert(PerThreadSynch::kAlignment > kCvLow, + "PerThreadSynch::kAlignment must be greater than kCvLow"); + +void CondVar::EnableDebugLog(const char *name) { + SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin); + e->log = true; + UnrefSynchEvent(e); +} + +CondVar::~CondVar() { + if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) { + ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin); + } +} + + +// Remove thread s from the list of waiters on this condition variable. +void CondVar::Remove(PerThreadSynch *s) { + intptr_t v; + int c = 0; + for (v = cv_.load(std::memory_order_relaxed);; + v = cv_.load(std::memory_order_relaxed)) { + if ((v & kCvSpin) == 0 && // attempt to acquire spinlock + cv_.compare_exchange_strong(v, v | kCvSpin, + std::memory_order_acquire, + std::memory_order_relaxed)) { + PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow); + if (h != nullptr) { + PerThreadSynch *w = h; + while (w->next != s && w->next != h) { // search for thread + w = w->next; + } + if (w->next == s) { // found thread; remove it + w->next = s->next; + if (h == s) { + h = (w == s) ? nullptr : w; + } + s->next = nullptr; + s->state.store(PerThreadSynch::kAvailable, std::memory_order_release); + } + } + // release spinlock + cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h), + std::memory_order_release); + return; + } else { + c = Delay(c, GENTLE); // try again after a delay + } + } +} + +// Queue thread waitp->thread on condition variable word cv_word using +// wait parameters waitp. +// We split this into a separate routine, rather than simply doing it as part +// of WaitCommon(). If we were to queue ourselves on the condition variable +// before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via +// the logging code, or via a Condition function) and might potentially attempt +// to block this thread. That would be a problem if the thread were already on +// a the condition variable waiter queue. Thus, we use the waitp->cv_word +// to tell the unlock code to call CondVarEnqueue() to queue the thread on the +// condition variable queue just before the mutex is to be unlocked, and (most +// importantly) after any call to an external routine that might re-enter the +// mutex code. +static void CondVarEnqueue(SynchWaitParams *waitp) { + // This thread might be transferred to the Mutex queue by Fer() when + // we are woken. To make sure that is what happens, Enqueue() doesn't + // call CondVarEnqueue() again but instead uses its normal code. We + // must do this before we queue ourselves so that cv_word will be null + // when seen by the dequeuer, who may wish immediately to requeue + // this thread on another queue. + std::atomic<intptr_t> *cv_word = waitp->cv_word; + waitp->cv_word = nullptr; + + intptr_t v = cv_word->load(std::memory_order_relaxed); + int c = 0; + while ((v & kCvSpin) != 0 || // acquire spinlock + !cv_word->compare_exchange_weak(v, v | kCvSpin, + std::memory_order_acquire, + std::memory_order_relaxed)) { + c = Delay(c, GENTLE); + v = cv_word->load(std::memory_order_relaxed); + } + ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be"); + waitp->thread->waitp = waitp; // prepare ourselves for waiting + PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow); + if (h == nullptr) { // add this thread to waiter list + waitp->thread->next = waitp->thread; + } else { + waitp->thread->next = h->next; + h->next = waitp->thread; + } + waitp->thread->state.store(PerThreadSynch::kQueued, + std::memory_order_relaxed); + cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread), + std::memory_order_release); +} + +bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) { + bool rc = false; // return value; true iff we timed-out + + intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed); + Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared; + ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how)); + + // maybe trace this call + intptr_t v = cv_.load(std::memory_order_relaxed); + cond_var_tracer("Wait", this); + if ((v & kCvEvent) != 0) { + PostSynchEvent(this, SYNCH_EV_WAIT); + } + + // Release mu and wait on condition variable. + SynchWaitParams waitp(mutex_how, nullptr, t, mutex, + Synch_GetPerThreadAnnotated(mutex), &cv_); + // UnlockSlow() will call CondVarEnqueue() just before releasing the + // Mutex, thus queuing this thread on the condition variable. See + // CondVarEnqueue() for the reasons. + mutex->UnlockSlow(&waitp); + + // wait for signal + while (waitp.thread->state.load(std::memory_order_acquire) == + PerThreadSynch::kQueued) { + if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) { + this->Remove(waitp.thread); + rc = true; + } + } + + ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be"); + waitp.thread->waitp = nullptr; // cleanup + + // maybe trace this call + cond_var_tracer("Unwait", this); + if ((v & kCvEvent) != 0) { + PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING); + } + + // From synchronization point of view Wait is unlock of the mutex followed + // by lock of the mutex. We've annotated start of unlock in the beginning + // of the function. Now, finish unlock and annotate lock of the mutex. + // (Trans is effectively lock). + ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how)); + ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how)); + mutex->Trans(mutex_how); // Reacquire mutex + ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0); + return rc; +} + +bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) { + return WaitWithDeadline(mu, DeadlineFromTimeout(timeout)); +} + +bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) { + return WaitCommon(mu, KernelTimeout(deadline)); +} + +void CondVar::Wait(Mutex *mu) { + WaitCommon(mu, KernelTimeout::Never()); +} + +// Wake thread w +// If it was a timed wait, w will be waiting on w->cv +// Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem +// Otherwise, w is transferred to the Mutex mutex via Mutex::Fer(). +void CondVar::Wakeup(PerThreadSynch *w) { + if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) { + // The waiting thread only needs to observe "w->state == kAvailable" to be + // released, we must cache "cvmu" before clearing "next". + Mutex *mu = w->waitp->cvmu; + w->next = nullptr; + w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); + Mutex::IncrementSynchSem(mu, w); + } else { + w->waitp->cvmu->Fer(w); + } +} + +void CondVar::Signal() { + ABSL_TSAN_MUTEX_PRE_SIGNAL(0, 0); + intptr_t v; + int c = 0; + for (v = cv_.load(std::memory_order_relaxed); v != 0; + v = cv_.load(std::memory_order_relaxed)) { + if ((v & kCvSpin) == 0 && // attempt to acquire spinlock + cv_.compare_exchange_strong(v, v | kCvSpin, + std::memory_order_acquire, + std::memory_order_relaxed)) { + PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow); + PerThreadSynch *w = nullptr; + if (h != nullptr) { // remove first waiter + w = h->next; + if (w == h) { + h = nullptr; + } else { + h->next = w->next; + } + } + // release spinlock + cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h), + std::memory_order_release); + if (w != nullptr) { + CondVar::Wakeup(w); // wake waiter, if there was one + cond_var_tracer("Signal wakeup", this); + } + if ((v & kCvEvent) != 0) { + PostSynchEvent(this, SYNCH_EV_SIGNAL); + } + ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0); + return; + } else { + c = Delay(c, GENTLE); + } + } + ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0); +} + +void CondVar::SignalAll () { + ABSL_TSAN_MUTEX_PRE_SIGNAL(0, 0); + intptr_t v; + int c = 0; + for (v = cv_.load(std::memory_order_relaxed); v != 0; + v = cv_.load(std::memory_order_relaxed)) { + // empty the list if spinlock free + // We do this by simply setting the list to empty using + // compare and swap. We then have the entire list in our hands, + // which cannot be changing since we grabbed it while no one + // held the lock. + if ((v & kCvSpin) == 0 && + cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire, + std::memory_order_relaxed)) { + PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow); + if (h != nullptr) { + PerThreadSynch *w; + PerThreadSynch *n = h->next; + do { // for every thread, wake it up + w = n; + n = n->next; + CondVar::Wakeup(w); + } while (w != h); + cond_var_tracer("SignalAll wakeup", this); + } + if ((v & kCvEvent) != 0) { + PostSynchEvent(this, SYNCH_EV_SIGNALALL); + } + ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0); + return; + } else { + c = Delay(c, GENTLE); // try again after a delay + } + } + ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0); +} + +void ReleasableMutexLock::Release() { + ABSL_RAW_CHECK(this->mu_ != nullptr, + "ReleasableMutexLock::Release may only be called once"); + this->mu_->Unlock(); + this->mu_ = nullptr; +} + +#ifdef THREAD_SANITIZER +extern "C" void __tsan_read1(void *addr); +#else +#define __tsan_read1(addr) // do nothing if TSan not enabled +#endif + +// A function that just returns its argument, dereferenced +static bool Dereference(void *arg) { + // ThreadSanitizer does not instrument this file for memory accesses. + // This function dereferences a user variable that can participate + // in a data race, so we need to manually tell TSan about this memory access. + __tsan_read1(arg); + return *(static_cast<bool *>(arg)); +} + +Condition::Condition() {} // null constructor, used for kTrue only +const Condition Condition::kTrue; + +Condition::Condition(bool (*func)(void *), void *arg) + : eval_(&CallVoidPtrFunction), + function_(func), + method_(nullptr), + arg_(arg) {} + +bool Condition::CallVoidPtrFunction(const Condition *c) { + return (*c->function_)(c->arg_); +} + +Condition::Condition(const bool *cond) + : eval_(CallVoidPtrFunction), + function_(Dereference), + method_(nullptr), + // const_cast is safe since Dereference does not modify arg + arg_(const_cast<bool *>(cond)) {} + +bool Condition::Eval() const { + // eval_ == null for kTrue + return (this->eval_ == nullptr) || (*this->eval_)(this); +} + +bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) { + if (a == nullptr) { + return b == nullptr || b->eval_ == nullptr; + } + if (b == nullptr || b->eval_ == nullptr) { + return a->eval_ == nullptr; + } + return a->eval_ == b->eval_ && a->function_ == b->function_ && + a->arg_ == b->arg_ && a->method_ == b->method_; +} + +} // namespace absl |