diff options
Diffstat (limited to 'absl/synchronization/barrier.h')
-rw-r--r-- | absl/synchronization/barrier.h | 77 |
1 files changed, 77 insertions, 0 deletions
diff --git a/absl/synchronization/barrier.h b/absl/synchronization/barrier.h new file mode 100644 index 000000000000..f834feec11dc --- /dev/null +++ b/absl/synchronization/barrier.h @@ -0,0 +1,77 @@ +// Copyright 2017 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// ----------------------------------------------------------------------------- +// barrier.h +// ----------------------------------------------------------------------------- + +#ifndef ABSL_SYNCHRONIZATION_BARRIER_H_ +#define ABSL_SYNCHRONIZATION_BARRIER_H_ + +#include "absl/base/thread_annotations.h" +#include "absl/synchronization/mutex.h" + +namespace absl { + +// Barrier +// +// This class creates a barrier which blocks threads until a prespecified +// threshold of threads (`num_threads`) utilizes the barrier. A thread utilizes +// the `Barrier` by calling `Block()` on the barrier, which will block that +// thread; no call to `Block()` will return until `num_threads` threads have +// called it. +// +// Exactly one call to `Block()` will return `true`, which is then responsible +// for destroying the barrier; because stack allocation will cause the barrier +// to be deleted when it is out of scope, barriers should not be stack +// allocated. +// +// Example: +// +// // Main thread creates a `Barrier`: +// barrier = new Barrier(num_threads); +// +// // Each participating thread could then call: +// if (barrier->Block()) delete barrier; // Exactly one call to `Block()` +// // returns `true`; that call +// // deletes the barrier. +class Barrier { + public: + // `num_threads` is the number of threads that will participate in the barrier + explicit Barrier(int num_threads) + : num_to_block_(num_threads), num_to_exit_(num_threads) {} + + Barrier(const Barrier&) = delete; + Barrier& operator=(const Barrier&) = delete; + + // Barrier::Block() + // + // Blocks the current thread, and returns only when the `num_threads` + // threshold of threads utilizing this barrier has been reached. `Block()` + // returns `true` for precisely one caller, which may then destroy the + // barrier. + // + // Memory ordering: For any threads X and Y, any action taken by X + // before X calls `Block()` will be visible to Y after Y returns from + // `Block()`. + bool Block(); + + private: + Mutex lock_; + int num_to_block_ GUARDED_BY(lock_); + int num_to_exit_ GUARDED_BY(lock_); +}; + +} // namespace absl +#endif // ABSL_SYNCHRONIZATION_BARRIER_H_ |