diff options
Diffstat (limited to 'absl/strings')
-rw-r--r-- | absl/strings/cord.cc | 249 | ||||
-rw-r--r-- | absl/strings/cord.h | 53 | ||||
-rw-r--r-- | absl/strings/cord_test.cc | 47 | ||||
-rw-r--r-- | absl/strings/internal/str_format/extension.h | 16 | ||||
-rw-r--r-- | absl/strings/str_format.h | 2 |
5 files changed, 145 insertions, 222 deletions
diff --git a/absl/strings/cord.cc b/absl/strings/cord.cc index 415b239b0e9c..4f64f79965c7 100644 --- a/absl/strings/cord.cc +++ b/absl/strings/cord.cc @@ -30,6 +30,7 @@ #include "absl/base/internal/raw_logging.h" #include "absl/base/port.h" #include "absl/container/fixed_array.h" +#include "absl/container/inlined_vector.h" #include "absl/strings/escaping.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/resize_uninitialized.h" @@ -131,14 +132,6 @@ inline const CordRepExternal* CordRep::external() const { return static_cast<const CordRepExternal*>(this); } -using CordTreeConstPath = CordTreePath<const CordRep*, MaxCordDepth()>; - -// This type is used to store the list of pending nodes during re-balancing. -// Its maximum size is 2 * MaxCordDepth() because the tree has a maximum -// possible depth of MaxCordDepth() and every concat node along a tree path -// could theoretically be split during rebalancing. -using RebalancingStack = CordTreePath<CordRep*, 2 * MaxCordDepth()>; - } // namespace cord_internal static const size_t kFlatOverhead = offsetof(CordRep, data); @@ -187,78 +180,98 @@ static constexpr size_t TagToLength(uint8_t tag) { // Enforce that kMaxFlatSize maps to a well-known exact tag value. static_assert(TagToAllocatedSize(224) == kMaxFlatSize, "Bad tag logic"); -constexpr size_t Fibonacci(uint8_t n, const size_t a = 0, const size_t b = 1) { - return n == 0 - ? a - : n == 1 ? b - : Fibonacci(n - 1, b, - (a > (size_t(-1) - b)) ? size_t(-1) : a + b); +constexpr uint64_t Fibonacci(unsigned char n, uint64_t a = 0, uint64_t b = 1) { + return n == 0 ? a : Fibonacci(n - 1, b, a + b); } +static_assert(Fibonacci(63) == 6557470319842, + "Fibonacci values computed incorrectly"); + // Minimum length required for a given depth tree -- a tree is considered // balanced if -// length(t) >= kMinLength[depth(t)] -// The node depth is allowed to become larger to reduce rebalancing -// for larger strings (see ShouldRebalance). -constexpr size_t kMinLength[] = { - Fibonacci(2), Fibonacci(3), Fibonacci(4), Fibonacci(5), Fibonacci(6), - Fibonacci(7), Fibonacci(8), Fibonacci(9), Fibonacci(10), Fibonacci(11), - Fibonacci(12), Fibonacci(13), Fibonacci(14), Fibonacci(15), Fibonacci(16), - Fibonacci(17), Fibonacci(18), Fibonacci(19), Fibonacci(20), Fibonacci(21), - Fibonacci(22), Fibonacci(23), Fibonacci(24), Fibonacci(25), Fibonacci(26), - Fibonacci(27), Fibonacci(28), Fibonacci(29), Fibonacci(30), Fibonacci(31), - Fibonacci(32), Fibonacci(33), Fibonacci(34), Fibonacci(35), Fibonacci(36), - Fibonacci(37), Fibonacci(38), Fibonacci(39), Fibonacci(40), Fibonacci(41), - Fibonacci(42), Fibonacci(43), Fibonacci(44), Fibonacci(45), Fibonacci(46), - Fibonacci(47), Fibonacci(48), Fibonacci(49), Fibonacci(50), Fibonacci(51), - Fibonacci(52), Fibonacci(53), Fibonacci(54), Fibonacci(55), Fibonacci(56), - Fibonacci(57), Fibonacci(58), Fibonacci(59), Fibonacci(60), Fibonacci(61), - Fibonacci(62), Fibonacci(63), Fibonacci(64), Fibonacci(65), Fibonacci(66), - Fibonacci(67), Fibonacci(68), Fibonacci(69), Fibonacci(70), Fibonacci(71), - Fibonacci(72), Fibonacci(73), Fibonacci(74), Fibonacci(75), Fibonacci(76), - Fibonacci(77), Fibonacci(78), Fibonacci(79), Fibonacci(80), Fibonacci(81), - Fibonacci(82), Fibonacci(83), Fibonacci(84), Fibonacci(85), Fibonacci(86), - Fibonacci(87), Fibonacci(88), Fibonacci(89), Fibonacci(90), Fibonacci(91), - Fibonacci(92), Fibonacci(93), Fibonacci(94), Fibonacci(95)}; - -static_assert(sizeof(kMinLength) / sizeof(size_t) >= - (cord_internal::MaxCordDepth() + 1), - "Not enough elements in kMinLength array to cover all the " - "supported Cord depth(s)"); - -inline bool ShouldRebalance(const CordRep* node) { - if (node->tag != CONCAT) return false; - - size_t node_depth = node->concat()->depth(); - - if (node_depth <= 15) return false; - - // Rebalancing Cords is expensive, so we reduce how often rebalancing occurs - // by allowing shallow Cords to have twice the depth that the Fibonacci rule - // would otherwise imply. Deep Cords need to follow the rule more closely, - // however to ensure algorithm correctness. We implement this with linear - // interpolation. Cords of depth 16 are treated as though they have a depth - // of 16 * 1/2, and Cords of depth MaxCordDepth() interpolate to - // MaxCordDepth() * 1. - return node->length < - kMinLength[(node_depth * (cord_internal::MaxCordDepth() - 16)) / - (2 * cord_internal::MaxCordDepth() - 16 - node_depth)]; -} - -// Unlike root balancing condition this one is part of the re-balancing -// algorithm and has to be always matching against right depth for -// algorithm to be correct. -inline bool IsNodeBalanced(const CordRep* node) { - if (node->tag != CONCAT) return true; - - size_t node_depth = node->concat()->depth(); - - return node->length >= kMinLength[node_depth]; +// length(t) >= min_length[depth(t)] +// The root node depth is allowed to become twice as large to reduce rebalancing +// for larger strings (see IsRootBalanced). +static constexpr uint64_t min_length[] = { + Fibonacci(2), + Fibonacci(3), + Fibonacci(4), + Fibonacci(5), + Fibonacci(6), + Fibonacci(7), + Fibonacci(8), + Fibonacci(9), + Fibonacci(10), + Fibonacci(11), + Fibonacci(12), + Fibonacci(13), + Fibonacci(14), + Fibonacci(15), + Fibonacci(16), + Fibonacci(17), + Fibonacci(18), + Fibonacci(19), + Fibonacci(20), + Fibonacci(21), + Fibonacci(22), + Fibonacci(23), + Fibonacci(24), + Fibonacci(25), + Fibonacci(26), + Fibonacci(27), + Fibonacci(28), + Fibonacci(29), + Fibonacci(30), + Fibonacci(31), + Fibonacci(32), + Fibonacci(33), + Fibonacci(34), + Fibonacci(35), + Fibonacci(36), + Fibonacci(37), + Fibonacci(38), + Fibonacci(39), + Fibonacci(40), + Fibonacci(41), + Fibonacci(42), + Fibonacci(43), + Fibonacci(44), + Fibonacci(45), + Fibonacci(46), + Fibonacci(47), + 0xffffffffffffffffull, // Avoid overflow +}; + +static const int kMinLengthSize = ABSL_ARRAYSIZE(min_length); + +// The inlined size to use with absl::InlinedVector. +// +// Note: The InlinedVectors in this file (and in cord.h) do not need to use +// the same value for their inlined size. The fact that they do is historical. +// It may be desirable for each to use a different inlined size optimized for +// that InlinedVector's usage. +// +// TODO(jgm): Benchmark to see if there's a more optimal value than 47 for +// the inlined vector size (47 exists for backward compatibility). +static const int kInlinedVectorSize = 47; + +static inline bool IsRootBalanced(CordRep* node) { + if (node->tag != CONCAT) { + return true; + } else if (node->concat()->depth() <= 15) { + return true; + } else if (node->concat()->depth() > kMinLengthSize) { + return false; + } else { + // Allow depth to become twice as large as implied by fibonacci rule to + // reduce rebalancing for larger strings. + return (node->length >= min_length[node->concat()->depth() / 2]); + } } static CordRep* Rebalance(CordRep* node); -static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os); -static bool VerifyNode(const CordRep* root, const CordRep* start_node, +static void DumpNode(CordRep* rep, bool include_data, std::ostream* os); +static bool VerifyNode(CordRep* root, CordRep* start_node, bool full_validation); static inline CordRep* VerifyTree(CordRep* node) { @@ -305,8 +318,7 @@ __attribute__((preserve_most)) static void UnrefInternal(CordRep* rep) { assert(rep != nullptr); - cord_internal::RebalancingStack pending; - + absl::InlinedVector<CordRep*, kInlinedVectorSize> pending; while (true) { if (rep->tag == CONCAT) { CordRepConcat* rep_concat = rep->concat(); @@ -388,11 +400,6 @@ static void SetConcatChildren(CordRepConcat* concat, CordRep* left, concat->length = left->length + right->length; concat->set_depth(1 + std::max(Depth(left), Depth(right))); - - ABSL_INTERNAL_CHECK(concat->depth() <= cord_internal::MaxCordDepth(), - "Cord depth exceeds max"); - ABSL_INTERNAL_CHECK(concat->length >= left->length, "Cord is too long"); - ABSL_INTERNAL_CHECK(concat->length >= right->length, "Cord is too long"); } // Create a concatenation of the specified nodes. @@ -418,7 +425,7 @@ static CordRep* RawConcat(CordRep* left, CordRep* right) { static CordRep* Concat(CordRep* left, CordRep* right) { CordRep* rep = RawConcat(left, right); - if (rep != nullptr && ShouldRebalance(rep)) { + if (rep != nullptr && !IsRootBalanced(rep)) { rep = Rebalance(rep); } return VerifyTree(rep); @@ -909,7 +916,7 @@ void Cord::Prepend(absl::string_view src) { static CordRep* RemovePrefixFrom(CordRep* node, size_t n) { if (n >= node->length) return nullptr; if (n == 0) return Ref(node); - cord_internal::CordTreeMutablePath rhs_stack; + absl::InlinedVector<CordRep*, kInlinedVectorSize> rhs_stack; while (node->tag == CONCAT) { assert(n <= node->length); @@ -950,7 +957,7 @@ static CordRep* RemovePrefixFrom(CordRep* node, size_t n) { static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) { if (n >= node->length) return nullptr; if (n == 0) return Ref(node); - absl::cord_internal::CordTreeMutablePath lhs_stack; + absl::InlinedVector<CordRep*, kInlinedVectorSize> lhs_stack; bool inplace_ok = node->refcount.IsOne(); while (node->tag == CONCAT) { @@ -1021,7 +1028,6 @@ void Cord::RemoveSuffix(size_t n) { // Work item for NewSubRange(). struct SubRange { - SubRange() = default; SubRange(CordRep* a_node, size_t a_pos, size_t a_n) : node(a_node), pos(a_pos), n(a_n) {} CordRep* node; // nullptr means concat last 2 results. @@ -1030,11 +1036,8 @@ struct SubRange { }; static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) { - cord_internal::CordTreeMutablePath results; - // The algorithm below in worst case scenario adds up to 3 nodes to the `todo` - // list, but we also pop one out on every cycle. If original tree has depth d - // todo list can grew up to 2*d in size. - cord_internal::CordTreePath<SubRange, 2 * cord_internal::MaxCordDepth()> todo; + absl::InlinedVector<CordRep*, kInlinedVectorSize> results; + absl::InlinedVector<SubRange, kInlinedVectorSize> todo; todo.push_back(SubRange(node, pos, n)); do { const SubRange& sr = todo.back(); @@ -1071,7 +1074,7 @@ static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) { } } while (!todo.empty()); assert(results.size() == 1); - return results.back(); + return results[0]; } Cord Cord::Subcord(size_t pos, size_t new_size) const { @@ -1110,12 +1113,11 @@ Cord Cord::Subcord(size_t pos, size_t new_size) const { class CordForest { public: - explicit CordForest(size_t length) : root_length_(length), trees_({}) {} + explicit CordForest(size_t length) + : root_length_(length), trees_(kMinLengthSize, nullptr) {} void Build(CordRep* cord_root) { - // We are adding up to two nodes to the `pending` list, but we also popping - // one, so the size of `pending` will never exceed `MaxCordDepth()`. - cord_internal::CordTreeMutablePath pending(cord_root); + std::vector<CordRep*> pending = {cord_root}; while (!pending.empty()) { CordRep* node = pending.back(); @@ -1127,20 +1129,21 @@ class CordForest { } CordRepConcat* concat_node = node->concat(); - if (IsNodeBalanced(concat_node)) { - AddNode(node); - continue; - } - pending.push_back(concat_node->right); - pending.push_back(concat_node->left); - - if (concat_node->refcount.IsOne()) { - concat_node->left = concat_freelist_; - concat_freelist_ = concat_node; + if (concat_node->depth() >= kMinLengthSize || + concat_node->length < min_length[concat_node->depth()]) { + pending.push_back(concat_node->right); + pending.push_back(concat_node->left); + + if (concat_node->refcount.IsOne()) { + concat_node->left = concat_freelist_; + concat_freelist_ = concat_node; + } else { + Ref(concat_node->right); + Ref(concat_node->left); + Unref(concat_node); + } } else { - Ref(concat_node->right); - Ref(concat_node->left); - Unref(concat_node); + AddNode(node); } } } @@ -1172,7 +1175,7 @@ class CordForest { // Collect together everything with which we will merge with node int i = 0; - for (; node->length >= kMinLength[i + 1]; ++i) { + for (; node->length > min_length[i + 1]; ++i) { auto& tree_at_i = trees_[i]; if (tree_at_i == nullptr) continue; @@ -1183,7 +1186,7 @@ class CordForest { sum = AppendNode(node, sum); // Insert sum into appropriate place in the forest - for (; sum->length >= kMinLength[i]; ++i) { + for (; sum->length >= min_length[i]; ++i) { auto& tree_at_i = trees_[i]; if (tree_at_i == nullptr) continue; @@ -1191,7 +1194,7 @@ class CordForest { tree_at_i = nullptr; } - // kMinLength[0] == 1, which means sum->length >= kMinLength[0] + // min_length[0] == 1, which means sum->length >= min_length[0] assert(i > 0); trees_[i - 1] = sum; } @@ -1224,7 +1227,9 @@ class CordForest { } size_t root_length_; - std::array<cord_internal::CordRep*, cord_internal::MaxCordDepth()> trees_; + + // use an inlined vector instead of a flat array to get bounds checking + absl::InlinedVector<CordRep*, kInlinedVectorSize> trees_; // List of concat nodes we can re-use for Cord balancing. CordRepConcat* concat_freelist_ = nullptr; @@ -1836,18 +1841,18 @@ absl::string_view Cord::FlattenSlowPath() { } } -static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os) { +static void DumpNode(CordRep* rep, bool include_data, std::ostream* os) { const int kIndentStep = 1; int indent = 0; - cord_internal::CordTreeConstPath stack; - cord_internal::CordTreePath<int, cord_internal::MaxCordDepth()> indents; + absl::InlinedVector<CordRep*, kInlinedVectorSize> stack; + absl::InlinedVector<int, kInlinedVectorSize> indents; for (;;) { *os << std::setw(3) << rep->refcount.Get(); *os << " " << std::setw(7) << rep->length; *os << " ["; - if (include_data) *os << static_cast<const void*>(rep); + if (include_data) *os << static_cast<void*>(rep); *os << "]"; - *os << " " << (IsNodeBalanced(rep) ? 'b' : 'u'); + *os << " " << (IsRootBalanced(rep) ? 'b' : 'u'); *os << " " << std::setw(indent) << ""; if (rep->tag == CONCAT) { *os << "CONCAT depth=" << Depth(rep) << "\n"; @@ -1868,7 +1873,7 @@ static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os) { } else { *os << "FLAT cap=" << TagToLength(rep->tag) << " ["; if (include_data) - *os << absl::CEscape(absl::string_view(rep->data, rep->length)); + *os << absl::CEscape(std::string(rep->data, rep->length)); *os << "]\n"; } if (stack.empty()) break; @@ -1881,19 +1886,19 @@ static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os) { ABSL_INTERNAL_CHECK(indents.empty(), ""); } -static std::string ReportError(const CordRep* root, const CordRep* node) { +static std::string ReportError(CordRep* root, CordRep* node) { std::ostringstream buf; buf << "Error at node " << node << " in:"; DumpNode(root, true, &buf); return buf.str(); } -static bool VerifyNode(const CordRep* root, const CordRep* start_node, +static bool VerifyNode(CordRep* root, CordRep* start_node, bool full_validation) { - cord_internal::CordTreeConstPath worklist; + absl::InlinedVector<CordRep*, 2> worklist; worklist.push_back(start_node); do { - const CordRep* node = worklist.back(); + CordRep* node = worklist.back(); worklist.pop_back(); ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node)); @@ -1943,7 +1948,7 @@ static bool VerifyNode(const CordRep* root, const CordRep* start_node, // Iterate over the tree. cur_node is never a leaf node and leaf nodes will // never be appended to tree_stack. This reduces overhead from manipulating // tree_stack. - cord_internal::CordTreeConstPath tree_stack; + absl::InlinedVector<const CordRep*, kInlinedVectorSize> tree_stack; const CordRep* cur_node = rep; while (true) { const CordRep* next_node = nullptr; diff --git a/absl/strings/cord.h b/absl/strings/cord.h index eb236e50e22e..66645eef6e48 100644 --- a/absl/strings/cord.h +++ b/absl/strings/cord.h @@ -48,6 +48,7 @@ #include "absl/base/internal/per_thread_tls.h" #include "absl/base/macros.h" #include "absl/base/port.h" +#include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/meta/type_traits.h" #include "absl/strings/internal/cord_internal.h" @@ -67,55 +68,6 @@ template <typename H> H HashFragmentedCord(H, const Cord&); } -namespace cord_internal { - -// It's expensive to keep a tree perfectly balanced, so instead we keep trees -// approximately balanced. A tree node N of depth D(N) that contains a string -// of L(N) characters is considered balanced if L >= Fibonacci(D + 2). -// The "+ 2" is used to ensure that every balanced leaf node contains at least -// one character. Here we presume that -// Fibonacci(0) = 0 -// Fibonacci(1) = 1 -// Fibonacci(2) = 1 -// Fibonacci(3) = 2 -// ... -// The algorithm is based on paper by Hans Boehm et al: -// https://www.cs.rit.edu/usr/local/pub/jeh/courses/QUARTERS/FP/Labs/CedarRope/rope-paper.pdf -// In this paper authors shows that rebalancing based on cord forest of already -// balanced subtrees can be proven to never produce tree of depth larger than -// largest Fibonacci number representable in the same integral type as cord size -// For 64 bit integers this is the 93rd Fibonacci number. For 32 bit integrals -// this is 47th Fibonacci number. -constexpr size_t MaxCordDepth() { return sizeof(size_t) == 8 ? 93 : 47; } - -// This class models fixed max size stack of CordRep pointers. -// The elements are being pushed back and popped from the back. -template <typename CordRepPtr, size_t N> -class CordTreePath { - public: - CordTreePath() {} - explicit CordTreePath(CordRepPtr root) { push_back(root); } - - bool empty() const { return size_ == 0; } - size_t size() const { return size_; } - void clear() { size_ = 0; } - - CordRepPtr back() { return data_[size_ - 1]; } - - void pop_back() { - --size_; - assert(size_ < N); - } - void push_back(CordRepPtr elem) { data_[size_++] = elem; } - - private: - CordRepPtr data_[N]; - size_t size_ = 0; -}; - -using CordTreeMutablePath = CordTreePath<CordRep*, MaxCordDepth()>; -} // namespace cord_internal - // A Cord is a sequence of characters. class Cord { private: @@ -333,7 +285,8 @@ class Cord { absl::cord_internal::CordRep* current_leaf_ = nullptr; // The number of bytes left in the `Cord` over which we are iterating. size_t bytes_remaining_ = 0; - absl::cord_internal::CordTreeMutablePath stack_of_right_children_; + absl::InlinedVector<absl::cord_internal::CordRep*, 4> + stack_of_right_children_; }; // Returns an iterator to the first chunk of the `Cord`. diff --git a/absl/strings/cord_test.cc b/absl/strings/cord_test.cc index f2d81d4c40d0..4afa4a26969d 100644 --- a/absl/strings/cord_test.cc +++ b/absl/strings/cord_test.cc @@ -1402,53 +1402,6 @@ TEST(CordChunkIterator, Operations) { VerifyChunkIterator(subcords, 128); } -TEST(CordChunkIterator, MaxLengthFullTree) { - // Start with a 1-byte cord, and then double its length in a loop. We should - // be able to do this until the point where we would overflow size_t. - - absl::Cord cord; - size_t size = 1; - AddExternalMemory("x", &cord); - EXPECT_EQ(cord.size(), size); - - const int kCordLengthDoublingLimit = std::numeric_limits<size_t>::digits - 1; - for (int i = 0; i < kCordLengthDoublingLimit; ++i) { - cord.Prepend(absl::Cord(cord)); - size <<= 1; - - EXPECT_EQ(cord.size(), size); - - auto chunk_it = cord.chunk_begin(); - EXPECT_EQ(*chunk_it, "x"); - } - - EXPECT_DEATH_IF_SUPPORTED( - (cord.Prepend(absl::Cord(cord)), *cord.chunk_begin()), - "Cord is too long"); -} - -TEST(CordChunkIterator, MaxDepth) { - // By reusing nodes, it's possible in pathological cases to build a Cord that - // exceeds both the maximum permissible length and depth. In this case, the - // violation of the maximum depth is reported. - absl::Cord left_child; - AddExternalMemory("x", &left_child); - absl::Cord root = left_child; - - for (int i = 0; i < absl::cord_internal::MaxCordDepth() - 2; ++i) { - size_t new_size = left_child.size() + root.size(); - root.Prepend(left_child); - EXPECT_EQ(root.size(), new_size); - - auto chunk_it = root.chunk_begin(); - EXPECT_EQ(*chunk_it, "x"); - - std::swap(left_child, root); - } - - EXPECT_DEATH_IF_SUPPORTED(root.Prepend(left_child), "Cord is too long"); -} - TEST(CordCharIterator, Traits) { static_assert(std::is_copy_constructible<absl::Cord::CharIterator>::value, ""); diff --git a/absl/strings/internal/str_format/extension.h b/absl/strings/internal/str_format/extension.h index d1665753d182..968850ebfc84 100644 --- a/absl/strings/internal/str_format/extension.h +++ b/absl/strings/internal/str_format/extension.h @@ -24,6 +24,7 @@ #include "absl/base/config.h" #include "absl/base/port.h" +#include "absl/meta/type_traits.h" #include "absl/strings/internal/str_format/output.h" #include "absl/strings/string_view.h" @@ -365,11 +366,22 @@ constexpr FormatConversionCharSet operator|(FormatConversionCharSet a, static_cast<uint64_t>(b)); } +// Overloaded conversion functions to support absl::ParsedFormat. // Get a conversion with a single character in it. -constexpr FormatConversionCharSet ConversionCharToConv(char c) { - return FormatConversionCharSet(FormatConversionCharToConvValue(c)); +constexpr FormatConversionCharSet ToFormatConversionCharSet(char c) { + return static_cast<FormatConversionCharSet>( + FormatConversionCharToConvValue(c)); } +// Get a conversion with a single character in it. +constexpr FormatConversionCharSet ToFormatConversionCharSet( + FormatConversionCharSet c) { + return c; +} + +template <typename T> +void ToFormatConversionCharSet(T) = delete; + // Checks whether `c` exists in `set`. constexpr bool Contains(FormatConversionCharSet set, char c) { return (static_cast<uint64_t>(set) & FormatConversionCharToConvValue(c)) != 0; diff --git a/absl/strings/str_format.h b/absl/strings/str_format.h index 2f9b4b2786f8..d40fca114be3 100644 --- a/absl/strings/str_format.h +++ b/absl/strings/str_format.h @@ -285,7 +285,7 @@ using FormatSpec = // } template <char... Conv> using ParsedFormat = str_format_internal::ExtendedParsedFormat< - str_format_internal::ConversionCharToConv(Conv)...>; + absl::str_format_internal::ToFormatConversionCharSet(Conv)...>; // StrFormat() // |