diff options
Diffstat (limited to 'absl/strings/numbers.cc')
-rw-r--r-- | absl/strings/numbers.cc | 1288 |
1 files changed, 1288 insertions, 0 deletions
diff --git a/absl/strings/numbers.cc b/absl/strings/numbers.cc new file mode 100644 index 000000000000..3b093b98c6f4 --- /dev/null +++ b/absl/strings/numbers.cc @@ -0,0 +1,1288 @@ +// This file contains std::string processing functions related to +// numeric values. + +#include "absl/strings/numbers.h" + +#include <cassert> +#include <cctype> +#include <cfloat> // for DBL_DIG and FLT_DIG +#include <cmath> // for HUGE_VAL +#include <cstdio> +#include <cstdlib> +#include <cstring> +#include <limits> +#include <memory> +#include <string> + +#include "absl/base/internal/raw_logging.h" +#include "absl/numeric/int128.h" +#include "absl/strings/ascii.h" +#include "absl/strings/internal/memutil.h" +#include "absl/strings/str_cat.h" + +namespace absl { + +bool SimpleAtof(absl::string_view str, float* value) { + *value = 0.0; + if (str.empty()) return false; + char buf[32]; + std::unique_ptr<char[]> bigbuf; + char* ptr = buf; + if (str.size() > sizeof(buf) - 1) { + bigbuf.reset(new char[str.size() + 1]); + ptr = bigbuf.get(); + } + memcpy(ptr, str.data(), str.size()); + ptr[str.size()] = '\0'; + + char* endptr; + *value = strtof(ptr, &endptr); + if (endptr != ptr) { + while (absl::ascii_isspace(*endptr)) ++endptr; + } + // Ignore range errors from strtod/strtof. + // The values it returns on underflow and + // overflow are the right fallback in a + // robust setting. + return *ptr != '\0' && *endptr == '\0'; +} + +bool SimpleAtod(absl::string_view str, double* value) { + *value = 0.0; + if (str.empty()) return false; + char buf[32]; + std::unique_ptr<char[]> bigbuf; + char* ptr = buf; + if (str.size() > sizeof(buf) - 1) { + bigbuf.reset(new char[str.size() + 1]); + ptr = bigbuf.get(); + } + memcpy(ptr, str.data(), str.size()); + ptr[str.size()] = '\0'; + + char* endptr; + *value = strtod(ptr, &endptr); + if (endptr != ptr) { + while (absl::ascii_isspace(*endptr)) ++endptr; + } + // Ignore range errors from strtod. The values it + // returns on underflow and overflow are the right + // fallback in a robust setting. + return *ptr != '\0' && *endptr == '\0'; +} + +namespace { + +// TODO(rogeeff): replace with the real released thing once we figure out what +// it is. +inline bool CaseEqual(absl::string_view piece1, absl::string_view piece2) { + return (piece1.size() == piece2.size() && + 0 == strings_internal::memcasecmp(piece1.data(), piece2.data(), + piece1.size())); +} + +// Writes a two-character representation of 'i' to 'buf'. 'i' must be in the +// range 0 <= i < 100, and buf must have space for two characters. Example: +// char buf[2]; +// PutTwoDigits(42, buf); +// // buf[0] == '4' +// // buf[1] == '2' +inline void PutTwoDigits(size_t i, char* buf) { + static const char two_ASCII_digits[100][2] = { + {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, + {'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, + {'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'}, + {'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'}, + {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'}, + {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'}, + {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, + {'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, + {'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'}, + {'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'}, + {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'}, + {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'}, + {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, + {'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, + {'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'}, + {'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'}, + {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'}, + {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'}, + {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, + {'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'} + }; + assert(i < 100); + memcpy(buf, two_ASCII_digits[i], 2); +} + +} // namespace + +bool SimpleAtob(absl::string_view str, bool* value) { + ABSL_RAW_CHECK(value != nullptr, "Output pointer must not be nullptr."); + if (CaseEqual(str, "true") || CaseEqual(str, "t") || + CaseEqual(str, "yes") || CaseEqual(str, "y") || + CaseEqual(str, "1")) { + *value = true; + return true; + } + if (CaseEqual(str, "false") || CaseEqual(str, "f") || + CaseEqual(str, "no") || CaseEqual(str, "n") || + CaseEqual(str, "0")) { + *value = false; + return true; + } + return false; +} + +// ---------------------------------------------------------------------- +// FastInt32ToBuffer() +// FastUInt32ToBuffer() +// FastInt64ToBuffer() +// FastUInt64ToBuffer() +// +// Like the Fast*ToBuffer() functions above, these are intended for speed. +// Unlike the Fast*ToBuffer() functions, however, these functions write +// their output to the beginning of the buffer (hence the name, as the +// output is left-aligned). The caller is responsible for ensuring that +// the buffer has enough space to hold the output. +// +// Returns a pointer to the end of the std::string (i.e. the null character +// terminating the std::string). +// ---------------------------------------------------------------------- + +namespace { + +// Used to optimize printing a decimal number's final digit. +const char one_ASCII_final_digits[10][2] { + {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0}, + {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0}, +}; + +} // namespace + +char* numbers_internal::FastUInt32ToBuffer(uint32_t i, char* buffer) { + uint32_t digits; + // The idea of this implementation is to trim the number of divides to as few + // as possible, and also reducing memory stores and branches, by going in + // steps of two digits at a time rather than one whenever possible. + // The huge-number case is first, in the hopes that the compiler will output + // that case in one branch-free block of code, and only output conditional + // branches into it from below. + if (i >= 1000000000) { // >= 1,000,000,000 + digits = i / 100000000; // 100,000,000 + i -= digits * 100000000; + PutTwoDigits(digits, buffer); + buffer += 2; + lt100_000_000: + digits = i / 1000000; // 1,000,000 + i -= digits * 1000000; + PutTwoDigits(digits, buffer); + buffer += 2; + lt1_000_000: + digits = i / 10000; // 10,000 + i -= digits * 10000; + PutTwoDigits(digits, buffer); + buffer += 2; + lt10_000: + digits = i / 100; + i -= digits * 100; + PutTwoDigits(digits, buffer); + buffer += 2; + lt100: + digits = i; + PutTwoDigits(digits, buffer); + buffer += 2; + *buffer = 0; + return buffer; + } + + if (i < 100) { + digits = i; + if (i >= 10) goto lt100; + memcpy(buffer, one_ASCII_final_digits[i], 2); + return buffer + 1; + } + if (i < 10000) { // 10,000 + if (i >= 1000) goto lt10_000; + digits = i / 100; + i -= digits * 100; + *buffer++ = '0' + digits; + goto lt100; + } + if (i < 1000000) { // 1,000,000 + if (i >= 100000) goto lt1_000_000; + digits = i / 10000; // 10,000 + i -= digits * 10000; + *buffer++ = '0' + digits; + goto lt10_000; + } + if (i < 100000000) { // 100,000,000 + if (i >= 10000000) goto lt100_000_000; + digits = i / 1000000; // 1,000,000 + i -= digits * 1000000; + *buffer++ = '0' + digits; + goto lt1_000_000; + } + // we already know that i < 1,000,000,000 + digits = i / 100000000; // 100,000,000 + i -= digits * 100000000; + *buffer++ = '0' + digits; + goto lt100_000_000; +} + +char* numbers_internal::FastInt32ToBuffer(int32_t i, char* buffer) { + uint32_t u = i; + if (i < 0) { + *buffer++ = '-'; + // We need to do the negation in modular (i.e., "unsigned") + // arithmetic; MSVC++ apprently warns for plain "-u", so + // we write the equivalent expression "0 - u" instead. + u = 0 - u; + } + return numbers_internal::FastUInt32ToBuffer(u, buffer); +} + +char* numbers_internal::FastUInt64ToBuffer(uint64_t i, char* buffer) { + uint32_t u32 = static_cast<uint32_t>(i); + if (u32 == i) return numbers_internal::FastUInt32ToBuffer(u32, buffer); + + // Here we know i has at least 10 decimal digits. + uint64_t top_1to11 = i / 1000000000; + u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000); + uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11); + + if (top_1to11_32 == top_1to11) { + buffer = numbers_internal::FastUInt32ToBuffer(top_1to11_32, buffer); + } else { + // top_1to11 has more than 32 bits too; print it in two steps. + uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100); + uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100); + buffer = numbers_internal::FastUInt32ToBuffer(top_8to9, buffer); + PutTwoDigits(mid_2, buffer); + buffer += 2; + } + + // We have only 9 digits now, again the maximum uint32_t can handle fully. + uint32_t digits = u32 / 10000000; // 10,000,000 + u32 -= digits * 10000000; + PutTwoDigits(digits, buffer); + buffer += 2; + digits = u32 / 100000; // 100,000 + u32 -= digits * 100000; + PutTwoDigits(digits, buffer); + buffer += 2; + digits = u32 / 1000; // 1,000 + u32 -= digits * 1000; + PutTwoDigits(digits, buffer); + buffer += 2; + digits = u32 / 10; + u32 -= digits * 10; + PutTwoDigits(digits, buffer); + buffer += 2; + memcpy(buffer, one_ASCII_final_digits[u32], 2); + return buffer + 1; +} + +char* numbers_internal::FastInt64ToBuffer(int64_t i, char* buffer) { + uint64_t u = i; + if (i < 0) { + *buffer++ = '-'; + u = 0 - u; + } + return numbers_internal::FastUInt64ToBuffer(u, buffer); +} + +// Although DBL_DIG is typically 15, DBL_MAX is normally represented with 17 +// digits of precision. When converted to a std::string value with fewer digits +// of precision using strtod(), the result can be bigger than DBL_MAX due to +// a rounding error. Converting this value back to a double will produce an +// Inf which will trigger a SIGFPE if FP exceptions are enabled. We skip +// the precision check for sufficiently large values to avoid the SIGFPE. +static const double kDoublePrecisionCheckMax = DBL_MAX / 1.000000000000001; + +char* numbers_internal::RoundTripDoubleToBuffer(double d, char* buffer) { + // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all + // platforms these days. Just in case some system exists where DBL_DIG + // is significantly larger -- and risks overflowing our buffer -- we have + // this assert. + static_assert(DBL_DIG < 20, "DBL_DIG is too big"); + + bool full_precision_needed = true; + if (std::abs(d) <= kDoublePrecisionCheckMax) { + int snprintf_result = snprintf(buffer, numbers_internal::kFastToBufferSize, + "%.*g", DBL_DIG, d); + + // The snprintf should never overflow because the buffer is significantly + // larger than the precision we asked for. + assert(snprintf_result > 0 && + snprintf_result < numbers_internal::kFastToBufferSize); + (void)snprintf_result; + + full_precision_needed = strtod(buffer, nullptr) != d; + } + + if (full_precision_needed) { + int snprintf_result = snprintf(buffer, numbers_internal::kFastToBufferSize, + "%.*g", DBL_DIG + 2, d); + + // Should never overflow; see above. + assert(snprintf_result > 0 && + snprintf_result < numbers_internal::kFastToBufferSize); + (void)snprintf_result; + } + return buffer; +} +// This table is used to quickly calculate the base-ten exponent of a given +// float, and then to provide a multiplier to bring that number into the +// range 1-999,999,999, that is, into uint32_t range. Finally, the exp +// std::string is made available so there is one less int-to-std::string conversion +// to be done. + +struct Spec { + double min_range; + double multiplier; + const char expstr[5]; +}; +const Spec neg_exp_table[] = { + {1.4e-45f, 1e+55, "e-45"}, // + {1e-44f, 1e+54, "e-44"}, // + {1e-43f, 1e+53, "e-43"}, // + {1e-42f, 1e+52, "e-42"}, // + {1e-41f, 1e+51, "e-41"}, // + {1e-40f, 1e+50, "e-40"}, // + {1e-39f, 1e+49, "e-39"}, // + {1e-38f, 1e+48, "e-38"}, // + {1e-37f, 1e+47, "e-37"}, // + {1e-36f, 1e+46, "e-36"}, // + {1e-35f, 1e+45, "e-35"}, // + {1e-34f, 1e+44, "e-34"}, // + {1e-33f, 1e+43, "e-33"}, // + {1e-32f, 1e+42, "e-32"}, // + {1e-31f, 1e+41, "e-31"}, // + {1e-30f, 1e+40, "e-30"}, // + {1e-29f, 1e+39, "e-29"}, // + {1e-28f, 1e+38, "e-28"}, // + {1e-27f, 1e+37, "e-27"}, // + {1e-26f, 1e+36, "e-26"}, // + {1e-25f, 1e+35, "e-25"}, // + {1e-24f, 1e+34, "e-24"}, // + {1e-23f, 1e+33, "e-23"}, // + {1e-22f, 1e+32, "e-22"}, // + {1e-21f, 1e+31, "e-21"}, // + {1e-20f, 1e+30, "e-20"}, // + {1e-19f, 1e+29, "e-19"}, // + {1e-18f, 1e+28, "e-18"}, // + {1e-17f, 1e+27, "e-17"}, // + {1e-16f, 1e+26, "e-16"}, // + {1e-15f, 1e+25, "e-15"}, // + {1e-14f, 1e+24, "e-14"}, // + {1e-13f, 1e+23, "e-13"}, // + {1e-12f, 1e+22, "e-12"}, // + {1e-11f, 1e+21, "e-11"}, // + {1e-10f, 1e+20, "e-10"}, // + {1e-09f, 1e+19, "e-09"}, // + {1e-08f, 1e+18, "e-08"}, // + {1e-07f, 1e+17, "e-07"}, // + {1e-06f, 1e+16, "e-06"}, // + {1e-05f, 1e+15, "e-05"}, // + {1e-04f, 1e+14, "e-04"}, // +}; + +const Spec pos_exp_table[] = { + {1e+08f, 1e+02, "e+08"}, // + {1e+09f, 1e+01, "e+09"}, // + {1e+10f, 1e+00, "e+10"}, // + {1e+11f, 1e-01, "e+11"}, // + {1e+12f, 1e-02, "e+12"}, // + {1e+13f, 1e-03, "e+13"}, // + {1e+14f, 1e-04, "e+14"}, // + {1e+15f, 1e-05, "e+15"}, // + {1e+16f, 1e-06, "e+16"}, // + {1e+17f, 1e-07, "e+17"}, // + {1e+18f, 1e-08, "e+18"}, // + {1e+19f, 1e-09, "e+19"}, // + {1e+20f, 1e-10, "e+20"}, // + {1e+21f, 1e-11, "e+21"}, // + {1e+22f, 1e-12, "e+22"}, // + {1e+23f, 1e-13, "e+23"}, // + {1e+24f, 1e-14, "e+24"}, // + {1e+25f, 1e-15, "e+25"}, // + {1e+26f, 1e-16, "e+26"}, // + {1e+27f, 1e-17, "e+27"}, // + {1e+28f, 1e-18, "e+28"}, // + {1e+29f, 1e-19, "e+29"}, // + {1e+30f, 1e-20, "e+30"}, // + {1e+31f, 1e-21, "e+31"}, // + {1e+32f, 1e-22, "e+32"}, // + {1e+33f, 1e-23, "e+33"}, // + {1e+34f, 1e-24, "e+34"}, // + {1e+35f, 1e-25, "e+35"}, // + {1e+36f, 1e-26, "e+36"}, // + {1e+37f, 1e-27, "e+37"}, // + {1e+38f, 1e-28, "e+38"}, // + {1e+39, 1e-29, "e+39"}, // +}; + +struct ExpCompare { + bool operator()(const Spec& spec, double d) const { + return spec.min_range < d; + } +}; + +// Utility routine(s) for RoundTripFloatToBuffer: +// OutputNecessaryDigits takes two 11-digit numbers, whose integer portion +// represents the fractional part of a floating-point number, and outputs a +// number that is in-between them, with the fewest digits possible. For +// instance, given 12345678900 and 12345876900, it would output "0123457". +// When there are multiple final digits that would satisfy this requirement, +// this routine attempts to use a digit that would represent the average of +// lower_double and upper_double. +// +// Although the routine works using integers, all callers use doubles, so +// for their convenience this routine accepts doubles. +static char* OutputNecessaryDigits(double lower_double, double upper_double, + char* out) { + assert(lower_double > 0); + assert(lower_double < upper_double - 10); + assert(upper_double < 100000000000.0); + + // Narrow the range a bit; without this bias, an input of lower=87654320010.0 + // and upper=87654320100.0 would produce an output of 876543201 + // + // We do this in three steps: first, we lower the upper bound and truncate it + // to an integer. Then, we increase the lower bound by exactly the amount we + // just decreased the upper bound by - at that point, the midpoint is exactly + // where it used to be. Then we truncate the lower bound. + + uint64_t upper64 = upper_double - (1.0 / 1024); + double shrink = upper_double - upper64; + uint64_t lower64 = lower_double + shrink; + + // Theory of operation: we convert the lower number to ascii representation, + // two digits at a time. As we go, we remove the same digits from the upper + // number. When we see the upper number does not share those same digits, we + // know we can stop converting. When we stop, the last digit we output is + // taken from the average of upper and lower values, rounded up. + char buf[2]; + uint32_t lodigits = + static_cast<uint32_t>(lower64 / 1000000000); // 1,000,000,000 + uint64_t mul64 = lodigits * uint64_t{1000000000}; + + PutTwoDigits(lodigits, out); + out += 2; + if (upper64 - mul64 >= 1000000000) { // digit mismatch! + PutTwoDigits(upper64 / 1000000000, buf); + if (out[-2] != buf[0]) { + out[-2] = '0' + (upper64 + lower64 + 10000000000) / 20000000000; + --out; + } else { + PutTwoDigits((upper64 + lower64 + 1000000000) / 2000000000, out - 2); + } + *out = '\0'; + return out; + } + uint32_t lower = static_cast<uint32_t>(lower64 - mul64); + uint32_t upper = static_cast<uint32_t>(upper64 - mul64); + + lodigits = lower / 10000000; // 10,000,000 + uint32_t mul = lodigits * 10000000; + PutTwoDigits(lodigits, out); + out += 2; + if (upper - mul >= 10000000) { // digit mismatch! + PutTwoDigits(upper / 10000000, buf); + if (out[-2] != buf[0]) { + out[-2] = '0' + (upper + lower + 100000000) / 200000000; + --out; + } else { + PutTwoDigits((upper + lower + 10000000) / 20000000, out - 2); + } + *out = '\0'; + return out; + } + lower -= mul; + upper -= mul; + + lodigits = lower / 100000; // 100,000 + mul = lodigits * 100000; + PutTwoDigits(lodigits, out); + out += 2; + if (upper - mul >= 100000) { // digit mismatch! + PutTwoDigits(upper / 100000, buf); + if (out[-2] != buf[0]) { + out[-2] = '0' + (upper + lower + 1000000) / 2000000; + --out; + } else { + PutTwoDigits((upper + lower + 100000) / 200000, out - 2); + } + *out = '\0'; + return out; + } + lower -= mul; + upper -= mul; + + lodigits = lower / 1000; + mul = lodigits * 1000; + PutTwoDigits(lodigits, out); + out += 2; + if (upper - mul >= 1000) { // digit mismatch! + PutTwoDigits(upper / 1000, buf); + if (out[-2] != buf[0]) { + out[-2] = '0' + (upper + lower + 10000) / 20000; + --out; + } else { + PutTwoDigits((upper + lower + 1000) / 2000, out - 2); + } + *out = '\0'; + return out; + } + lower -= mul; + upper -= mul; + + PutTwoDigits(lower / 10, out); + out += 2; + PutTwoDigits(upper / 10, buf); + if (out[-2] != buf[0]) { + out[-2] = '0' + (upper + lower + 100) / 200; + --out; + } else { + PutTwoDigits((upper + lower + 10) / 20, out - 2); + } + *out = '\0'; + return out; +} + +// RoundTripFloatToBuffer converts the given float into a std::string which, if +// passed to strtof, will produce the exact same original float. It does this +// by computing the range of possible doubles which map to the given float, and +// then examining the digits of the doubles in that range. If all the doubles +// in the range start with "2.37", then clearly our float does, too. As soon as +// they diverge, only one more digit is needed. +char* numbers_internal::RoundTripFloatToBuffer(float f, char* buffer) { + static_assert(std::numeric_limits<float>::is_iec559, + "IEEE-754/IEC-559 support only"); + + char* out = buffer; // we write data to out, incrementing as we go, but + // FloatToBuffer always returns the address of the buffer + // passed in. + + if (std::isnan(f)) { + strcpy(out, "nan"); // NOLINT(runtime/printf) + return buffer; + } + if (f == 0) { // +0 and -0 are handled here + if (std::signbit(f)) { + strcpy(out, "-0"); // NOLINT(runtime/printf) + } else { + strcpy(out, "0"); // NOLINT(runtime/printf) + } + return buffer; + } + if (f < 0) { + *out++ = '-'; + f = -f; + } + if (std::isinf(f)) { + strcpy(out, "inf"); // NOLINT(runtime/printf) + return buffer; + } + + double next_lower = nextafterf(f, 0.0f); + // For all doubles in the range lower_bound < f < upper_bound, the + // nearest float is f. + double lower_bound = (f + next_lower) * 0.5; + double upper_bound = f + (f - lower_bound); + // Note: because std::nextafter is slow, we calculate upper_bound + // assuming that it is the same distance from f as lower_bound is. + // For exact powers of two, upper_bound is actually twice as far + // from f as lower_bound is, but this turns out not to matter. + + // Most callers pass floats that are either 0 or within the + // range 0.0001 through 100,000,000, so handle those first, + // since they don't need exponential notation. + const Spec* spec = nullptr; + if (f < 1.0) { + if (f >= 0.0001f) { + // for fractional values, we set up the multiplier at the same + // time as we output the leading "0." / "0.0" / "0.00" / "0.000" + double multiplier = 1e+11; + *out++ = '0'; + *out++ = '.'; + if (f < 0.1f) { + multiplier = 1e+12; + *out++ = '0'; + if (f < 0.01f) { + multiplier = 1e+13; + *out++ = '0'; + if (f < 0.001f) { + multiplier = 1e+14; + *out++ = '0'; + } + } + } + OutputNecessaryDigits(lower_bound * multiplier, upper_bound * multiplier, + out); + return buffer; + } + spec = std::lower_bound(std::begin(neg_exp_table), std::end(neg_exp_table), + double{f}, ExpCompare()); + if (spec == std::end(neg_exp_table)) --spec; + } else if (f < 1e8) { + // Handling non-exponential format greater than 1.0 is similar to the above, + // but instead of 0.0 / 0.00 / 0.000, the prefix is simply the truncated + // integer part of f. + int32_t as_int = f; + out = numbers_internal::FastUInt32ToBuffer(as_int, out); + // Easy: if the integer part is within (lower_bound, upper_bound), then we + // are already done. + if (as_int > lower_bound && as_int < upper_bound) { + return buffer; + } + *out++ = '.'; + OutputNecessaryDigits((lower_bound - as_int) * 1e11, + (upper_bound - as_int) * 1e11, out); + return buffer; + } else { + spec = std::lower_bound(std::begin(pos_exp_table), + std::end(pos_exp_table), + double{f}, ExpCompare()); + if (spec == std::end(pos_exp_table)) --spec; + } + // Exponential notation from here on. "spec" was computed using lower_bound, + // which means it's the first spec from the table where min_range is greater + // or equal to f. + // Unfortunately that's not quite what we want; we want a min_range that is + // less or equal. So first thing, if it was greater, back up one entry. + if (spec->min_range > f) --spec; + + // The digits might be "237000123", but we want "2.37000123", + // so we output the digits one character later, and then move the first + // digit back so we can stick the "." in. + char* start = out; + out = OutputNecessaryDigits(lower_bound * spec->multiplier, + upper_bound * spec->multiplier, start + 1); + start[0] = start[1]; + start[1] = '.'; + + // If it turns out there was only one digit output, then back up over the '.' + if (out == &start[2]) --out; + + // Now add the "e+NN" part. + memcpy(out, spec->expstr, 4); + out[4] = '\0'; + return buffer; +} + +// Returns the number of leading 0 bits in a 64-bit value. +// TODO(jorg): Replace with builtin_clzll if available. +// Are we shipping util/bits in absl? +static inline int CountLeadingZeros64(uint64_t n) { + int zeroes = 60; + if (n >> 32) zeroes -= 32, n >>= 32; + if (n >> 16) zeroes -= 16, n >>= 16; + if (n >> 8) zeroes -= 8, n >>= 8; + if (n >> 4) zeroes -= 4, n >>= 4; + return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0\0"[n] + zeroes; +} + +// Given a 128-bit number expressed as a pair of uint64_t, high half first, +// return that number multiplied by the given 32-bit value. If the result is +// too large to fit in a 128-bit number, divide it by 2 until it fits. +static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num, + uint32_t mul) { + uint64_t bits0_31 = num.second & 0xFFFFFFFF; + uint64_t bits32_63 = num.second >> 32; + uint64_t bits64_95 = num.first & 0xFFFFFFFF; + uint64_t bits96_127 = num.first >> 32; + + // The picture so far: each of these 64-bit values has only the lower 32 bits + // filled in. + // bits96_127: [ 00000000 xxxxxxxx ] + // bits64_95: [ 00000000 xxxxxxxx ] + // bits32_63: [ 00000000 xxxxxxxx ] + // bits0_31: [ 00000000 xxxxxxxx ] + + bits0_31 *= mul; + bits32_63 *= mul; + bits64_95 *= mul; + bits96_127 *= mul; + + // Now the top halves may also have value, though all 64 of their bits will + // never be set at the same time, since they are a result of a 32x32 bit + // multiply. This makes the carry calculation slightly easier. + // bits96_127: [ mmmmmmmm | mmmmmmmm ] + // bits64_95: [ | mmmmmmmm mmmmmmmm | ] + // bits32_63: | [ mmmmmmmm | mmmmmmmm ] + // bits0_31: | [ | mmmmmmmm mmmmmmmm ] + // eventually: [ bits128_up | ...bits64_127.... | ..bits0_63... ] + + uint64_t bits0_63 = bits0_31 + (bits32_63 << 32); + uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) + + (bits0_63 < bits0_31); + uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95); + if (bits128_up == 0) return {bits64_127, bits0_63}; + + int shift = 64 - CountLeadingZeros64(bits128_up); + uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift)); + uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift)); + return {hi, lo}; +} + +// Compute num * 5 ^ expfive, and return the first 128 bits of the result, +// where the first bit is always a one. So PowFive(1, 0) starts 0b100000, +// PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc. +static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) { + std::pair<uint64_t, uint64_t> result = {num, 0}; + while (expfive >= 13) { + // 5^13 is the highest power of five that will fit in a 32-bit integer. + result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5); + expfive -= 13; + } + constexpr int powers_of_five[13] = { + 1, + 5, + 5 * 5, + 5 * 5 * 5, + 5 * 5 * 5 * 5, + 5 * 5 * 5 * 5 * 5, + 5 * 5 * 5 * 5 * 5 * 5, + 5 * 5 * 5 * 5 * 5 * 5 * 5, + 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, + 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, + 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, + 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, + 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5}; + result = Mul32(result, powers_of_five[expfive & 15]); + int shift = CountLeadingZeros64(result.first); + if (shift != 0) { + result.first = (result.first << shift) + (result.second >> (64 - shift)); + result.second = (result.second << shift); + } + return result; +} + +struct ExpDigits { + int32_t exponent; + char digits[6]; +}; + +// SplitToSix converts value, a positive double-precision floating-point number, +// into a base-10 exponent and 6 ASCII digits, where the first digit is never +// zero. For example, SplitToSix(1) returns an exponent of zero and a digits +// array of {'1', '0', '0', '0', '0', '0'}. If value is exactly halfway between +// two possible representations, e.g. value = 100000.5, then "round to even" is +// performed. +static ExpDigits SplitToSix(const double value) { + ExpDigits exp_dig; + int exp = 5; + double d = value; + // First step: calculate a close approximation of the output, where the + // value d will be between 100,000 and 999,999, representing the digits + // in the output ASCII array, and exp is the base-10 exponent. It would be + // faster to use a table here, and to look up the base-2 exponent of value, + // however value is an IEEE-754 64-bit number, so the table would have 2,000 + // entries, which is not cache-friendly. + if (d >= 999999.5) { + if (d >= 1e+261) exp += 256, d *= 1e-256; + if (d >= 1e+133) exp += 128, d *= 1e-128; + if (d >= 1e+69) exp += 64, d *= 1e-64; + if (d >= 1e+37) exp += 32, d *= 1e-32; + if (d >= 1e+21) exp += 16, d *= 1e-16; + if (d >= 1e+13) exp += 8, d *= 1e-8; + if (d >= 1e+9) exp += 4, d *= 1e-4; + if (d >= 1e+7) exp += 2, d *= 1e-2; + if (d >= 1e+6) exp += 1, d *= 1e-1; + } else { + if (d < 1e-250) exp -= 256, d *= 1e256; + if (d < 1e-122) exp -= 128, d *= 1e128; + if (d < 1e-58) exp -= 64, d *= 1e64; + if (d < 1e-26) exp -= 32, d *= 1e32; + if (d < 1e-10) exp -= 16, d *= 1e16; + if (d < 1e-2) exp -= 8, d *= 1e8; + if (d < 1e+2) exp -= 4, d *= 1e4; + if (d < 1e+4) exp -= 2, d *= 1e2; + if (d < 1e+5) exp -= 1, d *= 1e1; + } + // At this point, d is in the range [99999.5..999999.5) and exp is in the + // range [-324..308]. Since we need to round d up, we want to add a half + // and truncate. + // However, the technique above may have lost some precision, due to its + // repeated multiplication by constants that each may be off by half a bit + // of precision. This only matters if we're close to the edge though. + // Since we'd like to know if the fractional part of d is close to a half, + // we multiply it by 65536 and see if the fractional part is close to 32768. + // (The number doesn't have to be a power of two,but powers of two are faster) + uint64_t d64k = d * 65536; + int dddddd; // A 6-digit decimal integer. + if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) { + // OK, it's fairly likely that precision was lost above, which is + // not a surprise given only 52 mantissa bits are available. Therefore + // redo the calculation using 128-bit numbers. (64 bits are not enough). + + // Start out with digits rounded down; maybe add one below. + dddddd = static_cast<int>(d64k / 65536); + + // mantissa is a 64-bit integer representing M.mmm... * 2^63. The actual + // value we're representing, of course, is M.mmm... * 2^exp2. + int exp2; + double m = std::frexp(value, &exp2); + uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0); + // std::frexp returns an m value in the range [0.5, 1.0), however we + // can't multiply it by 2^64 and convert to an integer because some FPUs + // throw an exception when converting an number higher than 2^63 into an + // integer - even an unsigned 64-bit integer! Fortunately it doesn't matter + // since m only has 52 significant bits anyway. + mantissa <<= 1; + exp2 -= 64; // not needed, but nice for debugging + + // OK, we are here to compare: + // (dddddd + 0.5) * 10^(exp-5) vs. mantissa * 2^exp2 + // so we can round up dddddd if appropriate. Those values span the full + // range of 600 orders of magnitude of IEE 64-bit floating-point. + // Fortunately, we already know they are very close, so we don't need to + // track the base-2 exponent of both sides. This greatly simplifies the + // the math since the 2^exp2 calculation is unnecessary and the power-of-10 + // calculation can become a power-of-5 instead. + + std::pair<uint64_t, uint64_t> edge, val; + if (exp >= 6) { + // Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa + // Since we're tossing powers of two, 2 * dddddd + 1 is the + // same as dddddd + 0.5 + edge = PowFive(2 * dddddd + 1, exp - 5); + + val.first = mantissa; + val.second = 0; + } else { + // We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did + // above because (exp - 5) is negative. So we compare (dddddd + 0.5) to + // mantissa * 5 ^ (5 - exp) + edge = PowFive(2 * dddddd + 1, 0); + + val = PowFive(mantissa, 5 - exp); + } + // printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first, + // val.second, edge.first, edge.second); + if (val > edge) { + dddddd++; + } else if (val == edge) { + dddddd += (dddddd & 1); + } + } else { + // Here, we are not close to the edge. + dddddd = static_cast<int>((d64k + 32768) / 65536); + } + if (dddddd == 1000000) { + dddddd = 100000; + exp += 1; + } + exp_dig.exponent = exp; + + int two_digits = dddddd / 10000; + dddddd -= two_digits * 10000; + PutTwoDigits(two_digits, &exp_dig.digits[0]); + + two_digits = dddddd / 100; + dddddd -= two_digits * 100; + PutTwoDigits(two_digits, &exp_dig.digits[2]); + + PutTwoDigits(dddddd, &exp_dig.digits[4]); + return exp_dig; +} + +// Helper function for fast formatting of floating-point. +// The result is the same as "%g", a.k.a. "%.6g". +size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) { + static_assert(std::numeric_limits<float>::is_iec559, + "IEEE-754/IEC-559 support only"); + + char* out = buffer; // we write data to out, incrementing as we go, but + // FloatToBuffer always returns the address of the buffer + // passed in. + + if (std::isnan(d)) { + strcpy(out, "nan"); // NOLINT(runtime/printf) + return 3; + } + if (d == 0) { // +0 and -0 are handled here + if (std::signbit(d)) *out++ = '-'; + *out++ = '0'; + *out = 0; + return out - buffer; + } + if (d < 0) { + *out++ = '-'; + d = -d; + } + if (std::isinf(d)) { + strcpy(out, "inf"); // NOLINT(runtime/printf) + return out + 3 - buffer; + } + + auto exp_dig = SplitToSix(d); + int exp = exp_dig.exponent; + const char* digits = exp_dig.digits; + out[0] = '0'; + out[1] = '.'; + switch (exp) { + case 5: + memcpy(out, &digits[0], 6), out += 6; + *out = 0; + return out - buffer; + case 4: + memcpy(out, &digits[0], 5), out += 5; + if (digits[5] != '0') { + *out++ = '.'; + *out++ = digits[5]; + } + *out = 0; + return out - buffer; + case 3: + memcpy(out, &digits[0], 4), out += 4; + if ((digits[5] | digits[4]) != '0') { + *out++ = '.'; + *out++ = digits[4]; + if (digits[5] != '0') *out++ = digits[5]; + } + *out = 0; + return out - buffer; + case 2: + memcpy(out, &digits[0], 3), out += 3; + *out++ = '.'; + memcpy(out, &digits[3], 3); + out += 3; + while (out[-1] == '0') --out; + if (out[-1] == '.') --out; + *out = 0; + return out - buffer; + case 1: + memcpy(out, &digits[0], 2), out += 2; + *out++ = '.'; + memcpy(out, &digits[2], 4); + out += 4; + while (out[-1] == '0') --out; + if (out[-1] == '.') --out; + *out = 0; + return out - buffer; + case 0: + memcpy(out, &digits[0], 1), out += 1; + *out++ = '.'; + memcpy(out, &digits[1], 5); + out += 5; + while (out[-1] == '0') --out; + if (out[-1] == '.') --out; + *out = 0; + return out - buffer; + case -4: + out[2] = '0'; + ++out; + ABSL_FALLTHROUGH_INTENDED; + case -3: + out[2] = '0'; + ++out; + ABSL_FALLTHROUGH_INTENDED; + case -2: + out[2] = '0'; + ++out; + ABSL_FALLTHROUGH_INTENDED; + case -1: + out += 2; + memcpy(out, &digits[0], 6); + out += 6; + while (out[-1] == '0') --out; + *out = 0; + return out - buffer; + } + assert(exp < -4 || exp >= 6); + out[0] = digits[0]; + assert(out[1] == '.'); + out += 2; + memcpy(out, &digits[1], 5), out += 5; + while (out[-1] == '0') --out; + if (out[-1] == '.') --out; + *out++ = 'e'; + if (exp > 0) { + *out++ = '+'; + } else { + *out++ = '-'; + exp = -exp; + } + if (exp > 99) { + int dig1 = exp / 100; + exp -= dig1 * 100; + *out++ = '0' + dig1; + } + PutTwoDigits(exp, out); + out += 2; + *out = 0; + return out - buffer; +} + +namespace { +// Represents integer values of digits. +// Uses 36 to indicate an invalid character since we support +// bases up to 36. +static const int8_t kAsciiToInt[256] = { + 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s. + 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, + 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5, + 6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, + 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, + 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36, + 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, + 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, + 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, + 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, + 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, + 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, + 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36}; + +// Parse the sign and optional hex or oct prefix in text. +inline bool safe_parse_sign_and_base(absl::string_view* text /*inout*/, + int* base_ptr /*inout*/, + bool* negative_ptr /*output*/) { + if (text->data() == nullptr) { + return false; + } + + const char* start = text->data(); + const char* end = start + text->size(); + int base = *base_ptr; + + // Consume whitespace. + while (start < end && absl::ascii_isspace(start[0])) { + ++start; + } + while (start < end && absl::ascii_isspace(end[-1])) { + --end; + } + if (start >= end) { + return false; + } + + // Consume sign. + *negative_ptr = (start[0] == '-'); + if (*negative_ptr || start[0] == '+') { + ++start; + if (start >= end) { + return false; + } + } + + // Consume base-dependent prefix. + // base 0: "0x" -> base 16, "0" -> base 8, default -> base 10 + // base 16: "0x" -> base 16 + // Also validate the base. + if (base == 0) { + if (end - start >= 2 && start[0] == '0' && + (start[1] == 'x' || start[1] == 'X')) { + base = 16; + start += 2; + if (start >= end) { + // "0x" with no digits after is invalid. + return false; + } + } else if (end - start >= 1 && start[0] == '0') { + base = 8; + start += 1; + } else { + base = 10; + } + } else if (base == 16) { + if (end - start >= 2 && start[0] == '0' && + (start[1] == 'x' || start[1] == 'X')) { + start += 2; + if (start >= end) { + // "0x" with no digits after is invalid. + return false; + } + } + } else if (base >= 2 && base <= 36) { + // okay + } else { + return false; + } + *text = absl::string_view(start, end - start); + *base_ptr = base; + return true; +} + +// Consume digits. +// +// The classic loop: +// +// for each digit +// value = value * base + digit +// value *= sign +// +// The classic loop needs overflow checking. It also fails on the most +// negative integer, -2147483648 in 32-bit two's complement representation. +// +// My improved loop: +// +// if (!negative) +// for each digit +// value = value * base +// value = value + digit +// else +// for each digit +// value = value * base +// value = value - digit +// +// Overflow checking becomes simple. + +// Lookup tables per IntType: +// vmax/base and vmin/base are precomputed because division costs at least 8ns. +// TODO(junyer): Doing this per base instead (i.e. an array of structs, not a +// struct of arrays) would probably be better in terms of d-cache for the most +// commonly used bases. +template <typename IntType> +struct LookupTables { + static const IntType kVmaxOverBase[]; + static const IntType kVminOverBase[]; +}; + +// An array initializer macro for X/base where base in [0, 36]. +// However, note that lookups for base in [0, 1] should never happen because +// base has been validated to be in [2, 36] by safe_parse_sign_and_base(). +#define X_OVER_BASE_INITIALIZER(X) \ + { \ + 0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \ + X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18, \ + X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26, \ + X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34, \ + X / 35, X / 36, \ + } + +template <typename IntType> +const IntType LookupTables<IntType>::kVmaxOverBase[] = + X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max()); + +template <typename IntType> +const IntType LookupTables<IntType>::kVminOverBase[] = + X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min()); + +#undef X_OVER_BASE_INITIALIZER + +template <typename IntType> +inline bool safe_parse_positive_int(absl::string_view text, int base, + IntType* value_p) { + IntType value = 0; + const IntType vmax = std::numeric_limits<IntType>::max(); + assert(vmax > 0); + assert(base >= 0); + assert(vmax >= static_cast<IntType>(base)); + const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base]; + const char* start = text.data(); + const char* end = start + text.size(); + // loop over digits + for (; start < end; ++start) { + unsigned char c = static_cast<unsigned char>(start[0]); + int digit = kAsciiToInt[c]; + if (digit >= base) { + *value_p = value; + return false; + } + if (value > vmax_over_base) { + *value_p = vmax; + return false; + } + value *= base; + if (value > vmax - digit) { + *value_p = vmax; + return false; + } + value += digit; + } + *value_p = value; + return true; +} + +template <typename IntType> +inline bool safe_parse_negative_int(absl::string_view text, int base, + IntType* value_p) { + IntType value = 0; + const IntType vmin = std::numeric_limits<IntType>::min(); + assert(vmin < 0); + assert(vmin <= 0 - base); + IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base]; + // 2003 c++ standard [expr.mul] + // "... the sign of the remainder is implementation-defined." + // Although (vmin/base)*base + vmin%base is always vmin. + // 2011 c++ standard tightens the spec but we cannot rely on it. + // TODO(junyer): Handle this in the lookup table generation. + if (vmin % base > 0) { + vmin_over_base += 1; + } + const char* start = text.data(); + const char* end = start + text.size(); + // loop over digits + for (; start < end; ++start) { + unsigned char c = static_cast<unsigned char>(start[0]); + int digit = kAsciiToInt[c]; + if (digit >= base) { + *value_p = value; + return false; + } + if (value < vmin_over_base) { + *value_p = vmin; + return false; + } + value *= base; + if (value < vmin + digit) { + *value_p = vmin; + return false; + } + value -= digit; + } + *value_p = value; + return true; +} + +// Input format based on POSIX.1-2008 strtol +// http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html +template <typename IntType> +inline bool safe_int_internal(absl::string_view text, IntType* value_p, + int base) { + *value_p = 0; + bool negative; + if (!safe_parse_sign_and_base(&text, &base, &negative)) { + return false; + } + if (!negative) { + return safe_parse_positive_int(text, base, value_p); + } else { + return safe_parse_negative_int(text, base, value_p); + } +} + +template <typename IntType> +inline bool safe_uint_internal(absl::string_view text, IntType* value_p, + int base) { + *value_p = 0; + bool negative; + if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) { + return false; + } + return safe_parse_positive_int(text, base, value_p); +} +} // anonymous namespace + +namespace numbers_internal { +bool safe_strto32_base(absl::string_view text, int32_t* value, int base) { + return safe_int_internal<int32_t>(text, value, base); +} + +bool safe_strto64_base(absl::string_view text, int64_t* value, int base) { + return safe_int_internal<int64_t>(text, value, base); +} + +bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base) { + return safe_uint_internal<uint32_t>(text, value, base); +} + +bool safe_strtou64_base(absl::string_view text, uint64_t* value, int base) { + return safe_uint_internal<uint64_t>(text, value, base); +} +} // namespace numbers_internal + +} // namespace absl |