about summary refs log tree commit diff
path: root/absl/strings/numbers.cc
diff options
context:
space:
mode:
Diffstat (limited to 'absl/strings/numbers.cc')
-rw-r--r--absl/strings/numbers.cc1288
1 files changed, 1288 insertions, 0 deletions
diff --git a/absl/strings/numbers.cc b/absl/strings/numbers.cc
new file mode 100644
index 000000000000..3b093b98c6f4
--- /dev/null
+++ b/absl/strings/numbers.cc
@@ -0,0 +1,1288 @@
+// This file contains std::string processing functions related to
+// numeric values.
+
+#include "absl/strings/numbers.h"
+
+#include <cassert>
+#include <cctype>
+#include <cfloat>          // for DBL_DIG and FLT_DIG
+#include <cmath>           // for HUGE_VAL
+#include <cstdio>
+#include <cstdlib>
+#include <cstring>
+#include <limits>
+#include <memory>
+#include <string>
+
+#include "absl/base/internal/raw_logging.h"
+#include "absl/numeric/int128.h"
+#include "absl/strings/ascii.h"
+#include "absl/strings/internal/memutil.h"
+#include "absl/strings/str_cat.h"
+
+namespace absl {
+
+bool SimpleAtof(absl::string_view str, float* value) {
+  *value = 0.0;
+  if (str.empty()) return false;
+  char buf[32];
+  std::unique_ptr<char[]> bigbuf;
+  char* ptr = buf;
+  if (str.size() > sizeof(buf) - 1) {
+    bigbuf.reset(new char[str.size() + 1]);
+    ptr = bigbuf.get();
+  }
+  memcpy(ptr, str.data(), str.size());
+  ptr[str.size()] = '\0';
+
+  char* endptr;
+  *value = strtof(ptr, &endptr);
+  if (endptr != ptr) {
+    while (absl::ascii_isspace(*endptr)) ++endptr;
+  }
+  // Ignore range errors from strtod/strtof.
+  // The values it returns on underflow and
+  // overflow are the right fallback in a
+  // robust setting.
+  return *ptr != '\0' && *endptr == '\0';
+}
+
+bool SimpleAtod(absl::string_view str, double* value) {
+  *value = 0.0;
+  if (str.empty()) return false;
+  char buf[32];
+  std::unique_ptr<char[]> bigbuf;
+  char* ptr = buf;
+  if (str.size() > sizeof(buf) - 1) {
+    bigbuf.reset(new char[str.size() + 1]);
+    ptr = bigbuf.get();
+  }
+  memcpy(ptr, str.data(), str.size());
+  ptr[str.size()] = '\0';
+
+  char* endptr;
+  *value = strtod(ptr, &endptr);
+  if (endptr != ptr) {
+    while (absl::ascii_isspace(*endptr)) ++endptr;
+  }
+  // Ignore range errors from strtod.  The values it
+  // returns on underflow and overflow are the right
+  // fallback in a robust setting.
+  return *ptr != '\0' && *endptr == '\0';
+}
+
+namespace {
+
+// TODO(rogeeff): replace with the real released thing once we figure out what
+// it is.
+inline bool CaseEqual(absl::string_view piece1, absl::string_view piece2) {
+  return (piece1.size() == piece2.size() &&
+          0 == strings_internal::memcasecmp(piece1.data(), piece2.data(),
+                                            piece1.size()));
+}
+
+// Writes a two-character representation of 'i' to 'buf'. 'i' must be in the
+// range 0 <= i < 100, and buf must have space for two characters. Example:
+//   char buf[2];
+//   PutTwoDigits(42, buf);
+//   // buf[0] == '4'
+//   // buf[1] == '2'
+inline void PutTwoDigits(size_t i, char* buf) {
+  static const char two_ASCII_digits[100][2] = {
+    {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'},
+    {'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'},
+    {'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'},
+    {'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'},
+    {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'},
+    {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
+    {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'},
+    {'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'},
+    {'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'},
+    {'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'},
+    {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'},
+    {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
+    {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'},
+    {'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'},
+    {'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'},
+    {'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'},
+    {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'},
+    {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
+    {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'},
+    {'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}
+  };
+  assert(i < 100);
+  memcpy(buf, two_ASCII_digits[i], 2);
+}
+
+}  // namespace
+
+bool SimpleAtob(absl::string_view str, bool* value) {
+  ABSL_RAW_CHECK(value != nullptr, "Output pointer must not be nullptr.");
+  if (CaseEqual(str, "true") || CaseEqual(str, "t") ||
+      CaseEqual(str, "yes") || CaseEqual(str, "y") ||
+      CaseEqual(str, "1")) {
+    *value = true;
+    return true;
+  }
+  if (CaseEqual(str, "false") || CaseEqual(str, "f") ||
+      CaseEqual(str, "no") || CaseEqual(str, "n") ||
+      CaseEqual(str, "0")) {
+    *value = false;
+    return true;
+  }
+  return false;
+}
+
+// ----------------------------------------------------------------------
+// FastInt32ToBuffer()
+// FastUInt32ToBuffer()
+// FastInt64ToBuffer()
+// FastUInt64ToBuffer()
+//
+// Like the Fast*ToBuffer() functions above, these are intended for speed.
+// Unlike the Fast*ToBuffer() functions, however, these functions write
+// their output to the beginning of the buffer (hence the name, as the
+// output is left-aligned).  The caller is responsible for ensuring that
+// the buffer has enough space to hold the output.
+//
+// Returns a pointer to the end of the std::string (i.e. the null character
+// terminating the std::string).
+// ----------------------------------------------------------------------
+
+namespace {
+
+// Used to optimize printing a decimal number's final digit.
+const char one_ASCII_final_digits[10][2] {
+  {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0},
+  {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0},
+};
+
+}  // namespace
+
+char* numbers_internal::FastUInt32ToBuffer(uint32_t i, char* buffer) {
+  uint32_t digits;
+  // The idea of this implementation is to trim the number of divides to as few
+  // as possible, and also reducing memory stores and branches, by going in
+  // steps of two digits at a time rather than one whenever possible.
+  // The huge-number case is first, in the hopes that the compiler will output
+  // that case in one branch-free block of code, and only output conditional
+  // branches into it from below.
+  if (i >= 1000000000) {     // >= 1,000,000,000
+    digits = i / 100000000;  //      100,000,000
+    i -= digits * 100000000;
+    PutTwoDigits(digits, buffer);
+    buffer += 2;
+  lt100_000_000:
+    digits = i / 1000000;  // 1,000,000
+    i -= digits * 1000000;
+    PutTwoDigits(digits, buffer);
+    buffer += 2;
+  lt1_000_000:
+    digits = i / 10000;  // 10,000
+    i -= digits * 10000;
+    PutTwoDigits(digits, buffer);
+    buffer += 2;
+  lt10_000:
+    digits = i / 100;
+    i -= digits * 100;
+    PutTwoDigits(digits, buffer);
+    buffer += 2;
+ lt100:
+    digits = i;
+    PutTwoDigits(digits, buffer);
+    buffer += 2;
+    *buffer = 0;
+    return buffer;
+  }
+
+  if (i < 100) {
+    digits = i;
+    if (i >= 10) goto lt100;
+    memcpy(buffer, one_ASCII_final_digits[i], 2);
+    return buffer + 1;
+  }
+  if (i < 10000) {  //    10,000
+    if (i >= 1000) goto lt10_000;
+    digits = i / 100;
+    i -= digits * 100;
+    *buffer++ = '0' + digits;
+    goto lt100;
+  }
+  if (i < 1000000) {  //    1,000,000
+    if (i >= 100000) goto lt1_000_000;
+    digits = i / 10000;  //    10,000
+    i -= digits * 10000;
+    *buffer++ = '0' + digits;
+    goto lt10_000;
+  }
+  if (i < 100000000) {  //    100,000,000
+    if (i >= 10000000) goto lt100_000_000;
+    digits = i / 1000000;  //   1,000,000
+    i -= digits * 1000000;
+    *buffer++ = '0' + digits;
+    goto lt1_000_000;
+  }
+  // we already know that i < 1,000,000,000
+  digits = i / 100000000;  //   100,000,000
+  i -= digits * 100000000;
+  *buffer++ = '0' + digits;
+  goto lt100_000_000;
+}
+
+char* numbers_internal::FastInt32ToBuffer(int32_t i, char* buffer) {
+  uint32_t u = i;
+  if (i < 0) {
+    *buffer++ = '-';
+    // We need to do the negation in modular (i.e., "unsigned")
+    // arithmetic; MSVC++ apprently warns for plain "-u", so
+    // we write the equivalent expression "0 - u" instead.
+    u = 0 - u;
+  }
+  return numbers_internal::FastUInt32ToBuffer(u, buffer);
+}
+
+char* numbers_internal::FastUInt64ToBuffer(uint64_t i, char* buffer) {
+  uint32_t u32 = static_cast<uint32_t>(i);
+  if (u32 == i) return numbers_internal::FastUInt32ToBuffer(u32, buffer);
+
+  // Here we know i has at least 10 decimal digits.
+  uint64_t top_1to11 = i / 1000000000;
+  u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000);
+  uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11);
+
+  if (top_1to11_32 == top_1to11) {
+    buffer = numbers_internal::FastUInt32ToBuffer(top_1to11_32, buffer);
+  } else {
+    // top_1to11 has more than 32 bits too; print it in two steps.
+    uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100);
+    uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100);
+    buffer = numbers_internal::FastUInt32ToBuffer(top_8to9, buffer);
+    PutTwoDigits(mid_2, buffer);
+    buffer += 2;
+  }
+
+  // We have only 9 digits now, again the maximum uint32_t can handle fully.
+  uint32_t digits = u32 / 10000000;  // 10,000,000
+  u32 -= digits * 10000000;
+  PutTwoDigits(digits, buffer);
+  buffer += 2;
+  digits = u32 / 100000;  // 100,000
+  u32 -= digits * 100000;
+  PutTwoDigits(digits, buffer);
+  buffer += 2;
+  digits = u32 / 1000;  // 1,000
+  u32 -= digits * 1000;
+  PutTwoDigits(digits, buffer);
+  buffer += 2;
+  digits = u32 / 10;
+  u32 -= digits * 10;
+  PutTwoDigits(digits, buffer);
+  buffer += 2;
+  memcpy(buffer, one_ASCII_final_digits[u32], 2);
+  return buffer + 1;
+}
+
+char* numbers_internal::FastInt64ToBuffer(int64_t i, char* buffer) {
+  uint64_t u = i;
+  if (i < 0) {
+    *buffer++ = '-';
+    u = 0 - u;
+  }
+  return numbers_internal::FastUInt64ToBuffer(u, buffer);
+}
+
+// Although DBL_DIG is typically 15, DBL_MAX is normally represented with 17
+// digits of precision. When converted to a std::string value with fewer digits
+// of precision using strtod(), the result can be bigger than DBL_MAX due to
+// a rounding error. Converting this value back to a double will produce an
+// Inf which will trigger a SIGFPE if FP exceptions are enabled. We skip
+// the precision check for sufficiently large values to avoid the SIGFPE.
+static const double kDoublePrecisionCheckMax = DBL_MAX / 1.000000000000001;
+
+char* numbers_internal::RoundTripDoubleToBuffer(double d, char* buffer) {
+  // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
+  // platforms these days.  Just in case some system exists where DBL_DIG
+  // is significantly larger -- and risks overflowing our buffer -- we have
+  // this assert.
+  static_assert(DBL_DIG < 20, "DBL_DIG is too big");
+
+  bool full_precision_needed = true;
+  if (std::abs(d) <= kDoublePrecisionCheckMax) {
+    int snprintf_result = snprintf(buffer, numbers_internal::kFastToBufferSize,
+                                   "%.*g", DBL_DIG, d);
+
+    // The snprintf should never overflow because the buffer is significantly
+    // larger than the precision we asked for.
+    assert(snprintf_result > 0 &&
+           snprintf_result < numbers_internal::kFastToBufferSize);
+    (void)snprintf_result;
+
+    full_precision_needed = strtod(buffer, nullptr) != d;
+  }
+
+  if (full_precision_needed) {
+    int snprintf_result = snprintf(buffer, numbers_internal::kFastToBufferSize,
+                                   "%.*g", DBL_DIG + 2, d);
+
+    // Should never overflow; see above.
+    assert(snprintf_result > 0 &&
+           snprintf_result < numbers_internal::kFastToBufferSize);
+    (void)snprintf_result;
+  }
+  return buffer;
+}
+// This table is used to quickly calculate the base-ten exponent of a given
+// float, and then to provide a multiplier to bring that number into the
+// range 1-999,999,999, that is, into uint32_t range.  Finally, the exp
+// std::string is made available so there is one less int-to-std::string conversion
+// to be done.
+
+struct Spec {
+  double min_range;
+  double multiplier;
+  const char expstr[5];
+};
+const Spec neg_exp_table[] = {
+    {1.4e-45f, 1e+55, "e-45"},  //
+    {1e-44f, 1e+54, "e-44"},    //
+    {1e-43f, 1e+53, "e-43"},    //
+    {1e-42f, 1e+52, "e-42"},    //
+    {1e-41f, 1e+51, "e-41"},    //
+    {1e-40f, 1e+50, "e-40"},    //
+    {1e-39f, 1e+49, "e-39"},    //
+    {1e-38f, 1e+48, "e-38"},    //
+    {1e-37f, 1e+47, "e-37"},    //
+    {1e-36f, 1e+46, "e-36"},    //
+    {1e-35f, 1e+45, "e-35"},    //
+    {1e-34f, 1e+44, "e-34"},    //
+    {1e-33f, 1e+43, "e-33"},    //
+    {1e-32f, 1e+42, "e-32"},    //
+    {1e-31f, 1e+41, "e-31"},    //
+    {1e-30f, 1e+40, "e-30"},    //
+    {1e-29f, 1e+39, "e-29"},    //
+    {1e-28f, 1e+38, "e-28"},    //
+    {1e-27f, 1e+37, "e-27"},    //
+    {1e-26f, 1e+36, "e-26"},    //
+    {1e-25f, 1e+35, "e-25"},    //
+    {1e-24f, 1e+34, "e-24"},    //
+    {1e-23f, 1e+33, "e-23"},    //
+    {1e-22f, 1e+32, "e-22"},    //
+    {1e-21f, 1e+31, "e-21"},    //
+    {1e-20f, 1e+30, "e-20"},    //
+    {1e-19f, 1e+29, "e-19"},    //
+    {1e-18f, 1e+28, "e-18"},    //
+    {1e-17f, 1e+27, "e-17"},    //
+    {1e-16f, 1e+26, "e-16"},    //
+    {1e-15f, 1e+25, "e-15"},    //
+    {1e-14f, 1e+24, "e-14"},    //
+    {1e-13f, 1e+23, "e-13"},    //
+    {1e-12f, 1e+22, "e-12"},    //
+    {1e-11f, 1e+21, "e-11"},    //
+    {1e-10f, 1e+20, "e-10"},    //
+    {1e-09f, 1e+19, "e-09"},    //
+    {1e-08f, 1e+18, "e-08"},    //
+    {1e-07f, 1e+17, "e-07"},    //
+    {1e-06f, 1e+16, "e-06"},    //
+    {1e-05f, 1e+15, "e-05"},    //
+    {1e-04f, 1e+14, "e-04"},    //
+};
+
+const Spec pos_exp_table[] = {
+    {1e+08f, 1e+02, "e+08"},  //
+    {1e+09f, 1e+01, "e+09"},  //
+    {1e+10f, 1e+00, "e+10"},  //
+    {1e+11f, 1e-01, "e+11"},  //
+    {1e+12f, 1e-02, "e+12"},  //
+    {1e+13f, 1e-03, "e+13"},  //
+    {1e+14f, 1e-04, "e+14"},  //
+    {1e+15f, 1e-05, "e+15"},  //
+    {1e+16f, 1e-06, "e+16"},  //
+    {1e+17f, 1e-07, "e+17"},  //
+    {1e+18f, 1e-08, "e+18"},  //
+    {1e+19f, 1e-09, "e+19"},  //
+    {1e+20f, 1e-10, "e+20"},  //
+    {1e+21f, 1e-11, "e+21"},  //
+    {1e+22f, 1e-12, "e+22"},  //
+    {1e+23f, 1e-13, "e+23"},  //
+    {1e+24f, 1e-14, "e+24"},  //
+    {1e+25f, 1e-15, "e+25"},  //
+    {1e+26f, 1e-16, "e+26"},  //
+    {1e+27f, 1e-17, "e+27"},  //
+    {1e+28f, 1e-18, "e+28"},  //
+    {1e+29f, 1e-19, "e+29"},  //
+    {1e+30f, 1e-20, "e+30"},  //
+    {1e+31f, 1e-21, "e+31"},  //
+    {1e+32f, 1e-22, "e+32"},  //
+    {1e+33f, 1e-23, "e+33"},  //
+    {1e+34f, 1e-24, "e+34"},  //
+    {1e+35f, 1e-25, "e+35"},  //
+    {1e+36f, 1e-26, "e+36"},  //
+    {1e+37f, 1e-27, "e+37"},  //
+    {1e+38f, 1e-28, "e+38"},  //
+    {1e+39,  1e-29, "e+39"},  //
+};
+
+struct ExpCompare {
+  bool operator()(const Spec& spec, double d) const {
+    return spec.min_range < d;
+  }
+};
+
+// Utility routine(s) for RoundTripFloatToBuffer:
+// OutputNecessaryDigits takes two 11-digit numbers, whose integer portion
+// represents the fractional part of a floating-point number, and outputs a
+// number that is in-between them, with the fewest digits possible. For
+// instance, given 12345678900 and 12345876900, it would output "0123457".
+// When there are multiple final digits that would satisfy this requirement,
+// this routine attempts to use a digit that would represent the average of
+// lower_double and upper_double.
+//
+// Although the routine works using integers, all callers use doubles, so
+// for their convenience this routine accepts doubles.
+static char* OutputNecessaryDigits(double lower_double, double upper_double,
+                                   char* out) {
+  assert(lower_double > 0);
+  assert(lower_double < upper_double - 10);
+  assert(upper_double < 100000000000.0);
+
+  // Narrow the range a bit; without this bias, an input of lower=87654320010.0
+  // and upper=87654320100.0 would produce an output of 876543201
+  //
+  // We do this in three steps: first, we lower the upper bound and truncate it
+  // to an integer.  Then, we increase the lower bound by exactly the amount we
+  // just decreased the upper bound by - at that point, the midpoint is exactly
+  // where it used to be.  Then we truncate the lower bound.
+
+  uint64_t upper64 = upper_double - (1.0 / 1024);
+  double shrink = upper_double - upper64;
+  uint64_t lower64 = lower_double + shrink;
+
+  // Theory of operation: we convert the lower number to ascii representation,
+  // two digits at a time.  As we go, we remove the same digits from the upper
+  // number.  When we see the upper number does not share those same digits, we
+  // know we can stop converting. When we stop, the last digit we output is
+  // taken from the average of upper and lower values, rounded up.
+  char buf[2];
+  uint32_t lodigits =
+      static_cast<uint32_t>(lower64 / 1000000000);  // 1,000,000,000
+  uint64_t mul64 = lodigits * uint64_t{1000000000};
+
+  PutTwoDigits(lodigits, out);
+  out += 2;
+  if (upper64 - mul64 >= 1000000000) {  // digit mismatch!
+    PutTwoDigits(upper64 / 1000000000, buf);
+    if (out[-2] != buf[0]) {
+      out[-2] = '0' + (upper64 + lower64 + 10000000000) / 20000000000;
+      --out;
+    } else {
+      PutTwoDigits((upper64 + lower64 + 1000000000) / 2000000000, out - 2);
+    }
+    *out = '\0';
+    return out;
+  }
+  uint32_t lower = static_cast<uint32_t>(lower64 - mul64);
+  uint32_t upper = static_cast<uint32_t>(upper64 - mul64);
+
+  lodigits = lower / 10000000;  // 10,000,000
+  uint32_t mul = lodigits * 10000000;
+  PutTwoDigits(lodigits, out);
+  out += 2;
+  if (upper - mul >= 10000000) {  // digit mismatch!
+    PutTwoDigits(upper / 10000000, buf);
+    if (out[-2] != buf[0]) {
+      out[-2] = '0' + (upper + lower + 100000000) / 200000000;
+      --out;
+    } else {
+      PutTwoDigits((upper + lower + 10000000) / 20000000, out - 2);
+    }
+    *out = '\0';
+    return out;
+  }
+  lower -= mul;
+  upper -= mul;
+
+  lodigits = lower / 100000;  // 100,000
+  mul = lodigits * 100000;
+  PutTwoDigits(lodigits, out);
+  out += 2;
+  if (upper - mul >= 100000) {  // digit mismatch!
+    PutTwoDigits(upper / 100000, buf);
+    if (out[-2] != buf[0]) {
+      out[-2] = '0' + (upper + lower + 1000000) / 2000000;
+      --out;
+    } else {
+      PutTwoDigits((upper + lower + 100000) / 200000, out - 2);
+    }
+    *out = '\0';
+    return out;
+  }
+  lower -= mul;
+  upper -= mul;
+
+  lodigits = lower / 1000;
+  mul = lodigits * 1000;
+  PutTwoDigits(lodigits, out);
+  out += 2;
+  if (upper - mul >= 1000) {  // digit mismatch!
+    PutTwoDigits(upper / 1000, buf);
+    if (out[-2] != buf[0]) {
+      out[-2] = '0' + (upper + lower + 10000) / 20000;
+      --out;
+    } else {
+      PutTwoDigits((upper + lower + 1000) / 2000, out - 2);
+    }
+    *out = '\0';
+    return out;
+  }
+  lower -= mul;
+  upper -= mul;
+
+  PutTwoDigits(lower / 10, out);
+  out += 2;
+  PutTwoDigits(upper / 10, buf);
+  if (out[-2] != buf[0]) {
+    out[-2] = '0' + (upper + lower + 100) / 200;
+    --out;
+  } else {
+    PutTwoDigits((upper + lower + 10) / 20, out - 2);
+  }
+  *out = '\0';
+  return out;
+}
+
+// RoundTripFloatToBuffer converts the given float into a std::string which, if
+// passed to strtof, will produce the exact same original float.  It does this
+// by computing the range of possible doubles which map to the given float, and
+// then examining the digits of the doubles in that range.  If all the doubles
+// in the range start with "2.37", then clearly our float does, too.  As soon as
+// they diverge, only one more digit is needed.
+char* numbers_internal::RoundTripFloatToBuffer(float f, char* buffer) {
+  static_assert(std::numeric_limits<float>::is_iec559,
+                "IEEE-754/IEC-559 support only");
+
+  char* out = buffer;  // we write data to out, incrementing as we go, but
+                       // FloatToBuffer always returns the address of the buffer
+                       // passed in.
+
+  if (std::isnan(f)) {
+    strcpy(out, "nan");  // NOLINT(runtime/printf)
+    return buffer;
+  }
+  if (f == 0) {  // +0 and -0 are handled here
+    if (std::signbit(f)) {
+      strcpy(out, "-0");  // NOLINT(runtime/printf)
+    } else {
+      strcpy(out, "0");  // NOLINT(runtime/printf)
+    }
+    return buffer;
+  }
+  if (f < 0) {
+    *out++ = '-';
+    f = -f;
+  }
+  if (std::isinf(f)) {
+    strcpy(out, "inf");  // NOLINT(runtime/printf)
+    return buffer;
+  }
+
+  double next_lower = nextafterf(f, 0.0f);
+  // For all doubles in the range lower_bound < f < upper_bound, the
+  // nearest float is f.
+  double lower_bound = (f + next_lower) * 0.5;
+  double upper_bound = f + (f - lower_bound);
+  // Note: because std::nextafter is slow, we calculate upper_bound
+  // assuming that it is the same distance from f as lower_bound is.
+  // For exact powers of two, upper_bound is actually twice as far
+  // from f as lower_bound is, but this turns out not to matter.
+
+  // Most callers pass floats that are either 0 or within the
+  // range 0.0001 through 100,000,000, so handle those first,
+  // since they don't need exponential notation.
+  const Spec* spec = nullptr;
+  if (f < 1.0) {
+    if (f >= 0.0001f) {
+      // for fractional values, we set up the multiplier at the same
+      // time as we output the leading "0." / "0.0" / "0.00" / "0.000"
+      double multiplier = 1e+11;
+      *out++ = '0';
+      *out++ = '.';
+      if (f < 0.1f) {
+        multiplier = 1e+12;
+        *out++ = '0';
+        if (f < 0.01f) {
+          multiplier = 1e+13;
+          *out++ = '0';
+          if (f < 0.001f) {
+            multiplier = 1e+14;
+            *out++ = '0';
+          }
+        }
+      }
+      OutputNecessaryDigits(lower_bound * multiplier, upper_bound * multiplier,
+                            out);
+      return buffer;
+    }
+    spec = std::lower_bound(std::begin(neg_exp_table), std::end(neg_exp_table),
+                            double{f}, ExpCompare());
+    if (spec == std::end(neg_exp_table)) --spec;
+  } else if (f < 1e8) {
+    // Handling non-exponential format greater than 1.0 is similar to the above,
+    // but instead of 0.0 / 0.00 / 0.000, the prefix is simply the truncated
+    // integer part of f.
+    int32_t as_int = f;
+    out = numbers_internal::FastUInt32ToBuffer(as_int, out);
+    // Easy: if the integer part is within (lower_bound, upper_bound), then we
+    // are already done.
+    if (as_int > lower_bound && as_int < upper_bound) {
+      return buffer;
+    }
+    *out++ = '.';
+    OutputNecessaryDigits((lower_bound - as_int) * 1e11,
+                          (upper_bound - as_int) * 1e11, out);
+    return buffer;
+  } else {
+    spec = std::lower_bound(std::begin(pos_exp_table),
+                            std::end(pos_exp_table),
+                            double{f}, ExpCompare());
+    if (spec == std::end(pos_exp_table)) --spec;
+  }
+  // Exponential notation from here on.  "spec" was computed using lower_bound,
+  // which means it's the first spec from the table where min_range is greater
+  // or equal to f.
+  // Unfortunately that's not quite what we want; we want a min_range that is
+  // less or equal.  So first thing, if it was greater, back up one entry.
+  if (spec->min_range > f) --spec;
+
+  // The digits might be "237000123", but we want "2.37000123",
+  // so we output the digits one character later, and then move the first
+  // digit back so we can stick the "." in.
+  char* start = out;
+  out = OutputNecessaryDigits(lower_bound * spec->multiplier,
+                              upper_bound * spec->multiplier, start + 1);
+  start[0] = start[1];
+  start[1] = '.';
+
+  // If it turns out there was only one digit output, then back up over the '.'
+  if (out == &start[2]) --out;
+
+  // Now add the "e+NN" part.
+  memcpy(out, spec->expstr, 4);
+  out[4] = '\0';
+  return buffer;
+}
+
+// Returns the number of leading 0 bits in a 64-bit value.
+// TODO(jorg): Replace with builtin_clzll if available.
+// Are we shipping util/bits in absl?
+static inline int CountLeadingZeros64(uint64_t n) {
+  int zeroes = 60;
+  if (n >> 32) zeroes -= 32, n >>= 32;
+  if (n >> 16) zeroes -= 16, n >>= 16;
+  if (n >> 8) zeroes -= 8, n >>= 8;
+  if (n >> 4) zeroes -= 4, n >>= 4;
+  return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0\0"[n] + zeroes;
+}
+
+// Given a 128-bit number expressed as a pair of uint64_t, high half first,
+// return that number multiplied by the given 32-bit value.  If the result is
+// too large to fit in a 128-bit number, divide it by 2 until it fits.
+static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num,
+                                           uint32_t mul) {
+  uint64_t bits0_31 = num.second & 0xFFFFFFFF;
+  uint64_t bits32_63 = num.second >> 32;
+  uint64_t bits64_95 = num.first & 0xFFFFFFFF;
+  uint64_t bits96_127 = num.first >> 32;
+
+  // The picture so far: each of these 64-bit values has only the lower 32 bits
+  // filled in.
+  // bits96_127:          [ 00000000 xxxxxxxx ]
+  // bits64_95:                    [ 00000000 xxxxxxxx ]
+  // bits32_63:                             [ 00000000 xxxxxxxx ]
+  // bits0_31:                                       [ 00000000 xxxxxxxx ]
+
+  bits0_31 *= mul;
+  bits32_63 *= mul;
+  bits64_95 *= mul;
+  bits96_127 *= mul;
+
+  // Now the top halves may also have value, though all 64 of their bits will
+  // never be set at the same time, since they are a result of a 32x32 bit
+  // multiply.  This makes the carry calculation slightly easier.
+  // bits96_127:          [ mmmmmmmm | mmmmmmmm ]
+  // bits64_95:                    [ | mmmmmmmm mmmmmmmm | ]
+  // bits32_63:                      |        [ mmmmmmmm | mmmmmmmm ]
+  // bits0_31:                       |                 [ | mmmmmmmm mmmmmmmm ]
+  // eventually:        [ bits128_up | ...bits64_127.... | ..bits0_63... ]
+
+  uint64_t bits0_63 = bits0_31 + (bits32_63 << 32);
+  uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) +
+                        (bits0_63 < bits0_31);
+  uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95);
+  if (bits128_up == 0) return {bits64_127, bits0_63};
+
+  int shift = 64 - CountLeadingZeros64(bits128_up);
+  uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift));
+  uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift));
+  return {hi, lo};
+}
+
+// Compute num * 5 ^ expfive, and return the first 128 bits of the result,
+// where the first bit is always a one.  So PowFive(1, 0) starts 0b100000,
+// PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc.
+static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) {
+  std::pair<uint64_t, uint64_t> result = {num, 0};
+  while (expfive >= 13) {
+    // 5^13 is the highest power of five that will fit in a 32-bit integer.
+    result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5);
+    expfive -= 13;
+  }
+  constexpr int powers_of_five[13] = {
+      1,
+      5,
+      5 * 5,
+      5 * 5 * 5,
+      5 * 5 * 5 * 5,
+      5 * 5 * 5 * 5 * 5,
+      5 * 5 * 5 * 5 * 5 * 5,
+      5 * 5 * 5 * 5 * 5 * 5 * 5,
+      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5};
+  result = Mul32(result, powers_of_five[expfive & 15]);
+  int shift = CountLeadingZeros64(result.first);
+  if (shift != 0) {
+    result.first = (result.first << shift) + (result.second >> (64 - shift));
+    result.second = (result.second << shift);
+  }
+  return result;
+}
+
+struct ExpDigits {
+  int32_t exponent;
+  char digits[6];
+};
+
+// SplitToSix converts value, a positive double-precision floating-point number,
+// into a base-10 exponent and 6 ASCII digits, where the first digit is never
+// zero.  For example, SplitToSix(1) returns an exponent of zero and a digits
+// array of {'1', '0', '0', '0', '0', '0'}.  If value is exactly halfway between
+// two possible representations, e.g. value = 100000.5, then "round to even" is
+// performed.
+static ExpDigits SplitToSix(const double value) {
+  ExpDigits exp_dig;
+  int exp = 5;
+  double d = value;
+  // First step: calculate a close approximation of the output, where the
+  // value d will be between 100,000 and 999,999, representing the digits
+  // in the output ASCII array, and exp is the base-10 exponent.  It would be
+  // faster to use a table here, and to look up the base-2 exponent of value,
+  // however value is an IEEE-754 64-bit number, so the table would have 2,000
+  // entries, which is not cache-friendly.
+  if (d >= 999999.5) {
+    if (d >= 1e+261) exp += 256, d *= 1e-256;
+    if (d >= 1e+133) exp += 128, d *= 1e-128;
+    if (d >= 1e+69) exp += 64, d *= 1e-64;
+    if (d >= 1e+37) exp += 32, d *= 1e-32;
+    if (d >= 1e+21) exp += 16, d *= 1e-16;
+    if (d >= 1e+13) exp += 8, d *= 1e-8;
+    if (d >= 1e+9) exp += 4, d *= 1e-4;
+    if (d >= 1e+7) exp += 2, d *= 1e-2;
+    if (d >= 1e+6) exp += 1, d *= 1e-1;
+  } else {
+    if (d < 1e-250) exp -= 256, d *= 1e256;
+    if (d < 1e-122) exp -= 128, d *= 1e128;
+    if (d < 1e-58) exp -= 64, d *= 1e64;
+    if (d < 1e-26) exp -= 32, d *= 1e32;
+    if (d < 1e-10) exp -= 16, d *= 1e16;
+    if (d < 1e-2) exp -= 8, d *= 1e8;
+    if (d < 1e+2) exp -= 4, d *= 1e4;
+    if (d < 1e+4) exp -= 2, d *= 1e2;
+    if (d < 1e+5) exp -= 1, d *= 1e1;
+  }
+  // At this point, d is in the range [99999.5..999999.5) and exp is in the
+  // range [-324..308]. Since we need to round d up, we want to add a half
+  // and truncate.
+  // However, the technique above may have lost some precision, due to its
+  // repeated multiplication by constants that each may be off by half a bit
+  // of precision.  This only matters if we're close to the edge though.
+  // Since we'd like to know if the fractional part of d is close to a half,
+  // we multiply it by 65536 and see if the fractional part is close to 32768.
+  // (The number doesn't have to be a power of two,but powers of two are faster)
+  uint64_t d64k = d * 65536;
+  int dddddd;  // A 6-digit decimal integer.
+  if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) {
+    // OK, it's fairly likely that precision was lost above, which is
+    // not a surprise given only 52 mantissa bits are available.  Therefore
+    // redo the calculation using 128-bit numbers.  (64 bits are not enough).
+
+    // Start out with digits rounded down; maybe add one below.
+    dddddd = static_cast<int>(d64k / 65536);
+
+    // mantissa is a 64-bit integer representing M.mmm... * 2^63.  The actual
+    // value we're representing, of course, is M.mmm... * 2^exp2.
+    int exp2;
+    double m = std::frexp(value, &exp2);
+    uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0);
+    // std::frexp returns an m value in the range [0.5, 1.0), however we
+    // can't multiply it by 2^64 and convert to an integer because some FPUs
+    // throw an exception when converting an number higher than 2^63 into an
+    // integer - even an unsigned 64-bit integer!  Fortunately it doesn't matter
+    // since m only has 52 significant bits anyway.
+    mantissa <<= 1;
+    exp2 -= 64;  // not needed, but nice for debugging
+
+    // OK, we are here to compare:
+    //     (dddddd + 0.5) * 10^(exp-5)  vs.  mantissa * 2^exp2
+    // so we can round up dddddd if appropriate.  Those values span the full
+    // range of 600 orders of magnitude of IEE 64-bit floating-point.
+    // Fortunately, we already know they are very close, so we don't need to
+    // track the base-2 exponent of both sides.  This greatly simplifies the
+    // the math since the 2^exp2 calculation is unnecessary and the power-of-10
+    // calculation can become a power-of-5 instead.
+
+    std::pair<uint64_t, uint64_t> edge, val;
+    if (exp >= 6) {
+      // Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa
+      // Since we're tossing powers of two, 2 * dddddd + 1 is the
+      // same as dddddd + 0.5
+      edge = PowFive(2 * dddddd + 1, exp - 5);
+
+      val.first = mantissa;
+      val.second = 0;
+    } else {
+      // We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did
+      // above because (exp - 5) is negative.  So we compare (dddddd + 0.5) to
+      // mantissa * 5 ^ (5 - exp)
+      edge = PowFive(2 * dddddd + 1, 0);
+
+      val = PowFive(mantissa, 5 - exp);
+    }
+    // printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first,
+    //        val.second, edge.first, edge.second);
+    if (val > edge) {
+      dddddd++;
+    } else if (val == edge) {
+      dddddd += (dddddd & 1);
+    }
+  } else {
+    // Here, we are not close to the edge.
+    dddddd = static_cast<int>((d64k + 32768) / 65536);
+  }
+  if (dddddd == 1000000) {
+    dddddd = 100000;
+    exp += 1;
+  }
+  exp_dig.exponent = exp;
+
+  int two_digits = dddddd / 10000;
+  dddddd -= two_digits * 10000;
+  PutTwoDigits(two_digits, &exp_dig.digits[0]);
+
+  two_digits = dddddd / 100;
+  dddddd -= two_digits * 100;
+  PutTwoDigits(two_digits, &exp_dig.digits[2]);
+
+  PutTwoDigits(dddddd, &exp_dig.digits[4]);
+  return exp_dig;
+}
+
+// Helper function for fast formatting of floating-point.
+// The result is the same as "%g", a.k.a. "%.6g".
+size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) {
+  static_assert(std::numeric_limits<float>::is_iec559,
+                "IEEE-754/IEC-559 support only");
+
+  char* out = buffer;  // we write data to out, incrementing as we go, but
+                       // FloatToBuffer always returns the address of the buffer
+                       // passed in.
+
+  if (std::isnan(d)) {
+    strcpy(out, "nan");  // NOLINT(runtime/printf)
+    return 3;
+  }
+  if (d == 0) {  // +0 and -0 are handled here
+    if (std::signbit(d)) *out++ = '-';
+    *out++ = '0';
+    *out = 0;
+    return out - buffer;
+  }
+  if (d < 0) {
+    *out++ = '-';
+    d = -d;
+  }
+  if (std::isinf(d)) {
+    strcpy(out, "inf");  // NOLINT(runtime/printf)
+    return out + 3 - buffer;
+  }
+
+  auto exp_dig = SplitToSix(d);
+  int exp = exp_dig.exponent;
+  const char* digits = exp_dig.digits;
+  out[0] = '0';
+  out[1] = '.';
+  switch (exp) {
+    case 5:
+      memcpy(out, &digits[0], 6), out += 6;
+      *out = 0;
+      return out - buffer;
+    case 4:
+      memcpy(out, &digits[0], 5), out += 5;
+      if (digits[5] != '0') {
+        *out++ = '.';
+        *out++ = digits[5];
+      }
+      *out = 0;
+      return out - buffer;
+    case 3:
+      memcpy(out, &digits[0], 4), out += 4;
+      if ((digits[5] | digits[4]) != '0') {
+        *out++ = '.';
+        *out++ = digits[4];
+        if (digits[5] != '0') *out++ = digits[5];
+      }
+      *out = 0;
+      return out - buffer;
+    case 2:
+      memcpy(out, &digits[0], 3), out += 3;
+      *out++ = '.';
+      memcpy(out, &digits[3], 3);
+      out += 3;
+      while (out[-1] == '0') --out;
+      if (out[-1] == '.') --out;
+      *out = 0;
+      return out - buffer;
+    case 1:
+      memcpy(out, &digits[0], 2), out += 2;
+      *out++ = '.';
+      memcpy(out, &digits[2], 4);
+      out += 4;
+      while (out[-1] == '0') --out;
+      if (out[-1] == '.') --out;
+      *out = 0;
+      return out - buffer;
+    case 0:
+      memcpy(out, &digits[0], 1), out += 1;
+      *out++ = '.';
+      memcpy(out, &digits[1], 5);
+      out += 5;
+      while (out[-1] == '0') --out;
+      if (out[-1] == '.') --out;
+      *out = 0;
+      return out - buffer;
+    case -4:
+      out[2] = '0';
+      ++out;
+      ABSL_FALLTHROUGH_INTENDED;
+    case -3:
+      out[2] = '0';
+      ++out;
+      ABSL_FALLTHROUGH_INTENDED;
+    case -2:
+      out[2] = '0';
+      ++out;
+      ABSL_FALLTHROUGH_INTENDED;
+    case -1:
+      out += 2;
+      memcpy(out, &digits[0], 6);
+      out += 6;
+      while (out[-1] == '0') --out;
+      *out = 0;
+      return out - buffer;
+  }
+  assert(exp < -4 || exp >= 6);
+  out[0] = digits[0];
+  assert(out[1] == '.');
+  out += 2;
+  memcpy(out, &digits[1], 5), out += 5;
+  while (out[-1] == '0') --out;
+  if (out[-1] == '.') --out;
+  *out++ = 'e';
+  if (exp > 0) {
+    *out++ = '+';
+  } else {
+    *out++ = '-';
+    exp = -exp;
+  }
+  if (exp > 99) {
+    int dig1 = exp / 100;
+    exp -= dig1 * 100;
+    *out++ = '0' + dig1;
+  }
+  PutTwoDigits(exp, out);
+  out += 2;
+  *out = 0;
+  return out - buffer;
+}
+
+namespace {
+// Represents integer values of digits.
+// Uses 36 to indicate an invalid character since we support
+// bases up to 36.
+static const int8_t kAsciiToInt[256] = {
+    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,  // 16 36s.
+    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0,  1,  2,  3,  4,  5,
+    6,  7,  8,  9,  36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17,
+    18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
+    36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
+    24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36,
+    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};
+
+// Parse the sign and optional hex or oct prefix in text.
+inline bool safe_parse_sign_and_base(absl::string_view* text /*inout*/,
+                                     int* base_ptr /*inout*/,
+                                     bool* negative_ptr /*output*/) {
+  if (text->data() == nullptr) {
+    return false;
+  }
+
+  const char* start = text->data();
+  const char* end = start + text->size();
+  int base = *base_ptr;
+
+  // Consume whitespace.
+  while (start < end && absl::ascii_isspace(start[0])) {
+    ++start;
+  }
+  while (start < end && absl::ascii_isspace(end[-1])) {
+    --end;
+  }
+  if (start >= end) {
+    return false;
+  }
+
+  // Consume sign.
+  *negative_ptr = (start[0] == '-');
+  if (*negative_ptr || start[0] == '+') {
+    ++start;
+    if (start >= end) {
+      return false;
+    }
+  }
+
+  // Consume base-dependent prefix.
+  //  base 0: "0x" -> base 16, "0" -> base 8, default -> base 10
+  //  base 16: "0x" -> base 16
+  // Also validate the base.
+  if (base == 0) {
+    if (end - start >= 2 && start[0] == '0' &&
+        (start[1] == 'x' || start[1] == 'X')) {
+      base = 16;
+      start += 2;
+      if (start >= end) {
+        // "0x" with no digits after is invalid.
+        return false;
+      }
+    } else if (end - start >= 1 && start[0] == '0') {
+      base = 8;
+      start += 1;
+    } else {
+      base = 10;
+    }
+  } else if (base == 16) {
+    if (end - start >= 2 && start[0] == '0' &&
+        (start[1] == 'x' || start[1] == 'X')) {
+      start += 2;
+      if (start >= end) {
+        // "0x" with no digits after is invalid.
+        return false;
+      }
+    }
+  } else if (base >= 2 && base <= 36) {
+    // okay
+  } else {
+    return false;
+  }
+  *text = absl::string_view(start, end - start);
+  *base_ptr = base;
+  return true;
+}
+
+// Consume digits.
+//
+// The classic loop:
+//
+//   for each digit
+//     value = value * base + digit
+//   value *= sign
+//
+// The classic loop needs overflow checking.  It also fails on the most
+// negative integer, -2147483648 in 32-bit two's complement representation.
+//
+// My improved loop:
+//
+//  if (!negative)
+//    for each digit
+//      value = value * base
+//      value = value + digit
+//  else
+//    for each digit
+//      value = value * base
+//      value = value - digit
+//
+// Overflow checking becomes simple.
+
+// Lookup tables per IntType:
+// vmax/base and vmin/base are precomputed because division costs at least 8ns.
+// TODO(junyer): Doing this per base instead (i.e. an array of structs, not a
+// struct of arrays) would probably be better in terms of d-cache for the most
+// commonly used bases.
+template <typename IntType>
+struct LookupTables {
+  static const IntType kVmaxOverBase[];
+  static const IntType kVminOverBase[];
+};
+
+// An array initializer macro for X/base where base in [0, 36].
+// However, note that lookups for base in [0, 1] should never happen because
+// base has been validated to be in [2, 36] by safe_parse_sign_and_base().
+#define X_OVER_BASE_INITIALIZER(X)                                        \
+  {                                                                       \
+    0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \
+        X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18,   \
+        X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26,   \
+        X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34,   \
+        X / 35, X / 36,                                                   \
+  }
+
+template <typename IntType>
+const IntType LookupTables<IntType>::kVmaxOverBase[] =
+    X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());
+
+template <typename IntType>
+const IntType LookupTables<IntType>::kVminOverBase[] =
+    X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min());
+
+#undef X_OVER_BASE_INITIALIZER
+
+template <typename IntType>
+inline bool safe_parse_positive_int(absl::string_view text, int base,
+                                    IntType* value_p) {
+  IntType value = 0;
+  const IntType vmax = std::numeric_limits<IntType>::max();
+  assert(vmax > 0);
+  assert(base >= 0);
+  assert(vmax >= static_cast<IntType>(base));
+  const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base];
+  const char* start = text.data();
+  const char* end = start + text.size();
+  // loop over digits
+  for (; start < end; ++start) {
+    unsigned char c = static_cast<unsigned char>(start[0]);
+    int digit = kAsciiToInt[c];
+    if (digit >= base) {
+      *value_p = value;
+      return false;
+    }
+    if (value > vmax_over_base) {
+      *value_p = vmax;
+      return false;
+    }
+    value *= base;
+    if (value > vmax - digit) {
+      *value_p = vmax;
+      return false;
+    }
+    value += digit;
+  }
+  *value_p = value;
+  return true;
+}
+
+template <typename IntType>
+inline bool safe_parse_negative_int(absl::string_view text, int base,
+                                    IntType* value_p) {
+  IntType value = 0;
+  const IntType vmin = std::numeric_limits<IntType>::min();
+  assert(vmin < 0);
+  assert(vmin <= 0 - base);
+  IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base];
+  // 2003 c++ standard [expr.mul]
+  // "... the sign of the remainder is implementation-defined."
+  // Although (vmin/base)*base + vmin%base is always vmin.
+  // 2011 c++ standard tightens the spec but we cannot rely on it.
+  // TODO(junyer): Handle this in the lookup table generation.
+  if (vmin % base > 0) {
+    vmin_over_base += 1;
+  }
+  const char* start = text.data();
+  const char* end = start + text.size();
+  // loop over digits
+  for (; start < end; ++start) {
+    unsigned char c = static_cast<unsigned char>(start[0]);
+    int digit = kAsciiToInt[c];
+    if (digit >= base) {
+      *value_p = value;
+      return false;
+    }
+    if (value < vmin_over_base) {
+      *value_p = vmin;
+      return false;
+    }
+    value *= base;
+    if (value < vmin + digit) {
+      *value_p = vmin;
+      return false;
+    }
+    value -= digit;
+  }
+  *value_p = value;
+  return true;
+}
+
+// Input format based on POSIX.1-2008 strtol
+// http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html
+template <typename IntType>
+inline bool safe_int_internal(absl::string_view text, IntType* value_p,
+                              int base) {
+  *value_p = 0;
+  bool negative;
+  if (!safe_parse_sign_and_base(&text, &base, &negative)) {
+    return false;
+  }
+  if (!negative) {
+    return safe_parse_positive_int(text, base, value_p);
+  } else {
+    return safe_parse_negative_int(text, base, value_p);
+  }
+}
+
+template <typename IntType>
+inline bool safe_uint_internal(absl::string_view text, IntType* value_p,
+                               int base) {
+  *value_p = 0;
+  bool negative;
+  if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) {
+    return false;
+  }
+  return safe_parse_positive_int(text, base, value_p);
+}
+}  // anonymous namespace
+
+namespace numbers_internal {
+bool safe_strto32_base(absl::string_view text, int32_t* value, int base) {
+  return safe_int_internal<int32_t>(text, value, base);
+}
+
+bool safe_strto64_base(absl::string_view text, int64_t* value, int base) {
+  return safe_int_internal<int64_t>(text, value, base);
+}
+
+bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base) {
+  return safe_uint_internal<uint32_t>(text, value, base);
+}
+
+bool safe_strtou64_base(absl::string_view text, uint64_t* value, int base) {
+  return safe_uint_internal<uint64_t>(text, value, base);
+}
+}  // namespace numbers_internal
+
+}  // namespace absl