about summary refs log tree commit diff
path: root/absl/strings/internal
diff options
context:
space:
mode:
Diffstat (limited to 'absl/strings/internal')
-rw-r--r--absl/strings/internal/charconv_bigint.cc357
-rw-r--r--absl/strings/internal/charconv_bigint.h426
-rw-r--r--absl/strings/internal/charconv_bigint_test.cc203
-rw-r--r--absl/strings/internal/charconv_parse.cc496
-rw-r--r--absl/strings/internal/charconv_parse.h96
-rw-r--r--absl/strings/internal/charconv_parse_test.cc357
6 files changed, 1935 insertions, 0 deletions
diff --git a/absl/strings/internal/charconv_bigint.cc b/absl/strings/internal/charconv_bigint.cc
new file mode 100644
index 000000000000..3e7296e7068a
--- /dev/null
+++ b/absl/strings/internal/charconv_bigint.cc
@@ -0,0 +1,357 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/strings/internal/charconv_bigint.h"
+
+#include <algorithm>
+#include <cassert>
+#include <string>
+
+namespace absl {
+namespace strings_internal {
+
+namespace {
+
+// Table containing some large powers of 5, for fast computation.
+
+// Constant step size for entries in the kLargePowersOfFive table.  Each entry
+// is larger than the previous entry by a factor of 5**kLargePowerOfFiveStep
+// (or 5**27).
+//
+// In other words, the Nth entry in the table is 5**(27*N).
+//
+// 5**27 is the largest power of 5 that fits in 64 bits.
+constexpr int kLargePowerOfFiveStep = 27;
+
+// The largest legal index into the kLargePowersOfFive table.
+//
+// In other words, the largest precomputed power of 5 is 5**(27*20).
+constexpr int kLargestPowerOfFiveIndex = 20;
+
+// Table of powers of (5**27), up to (5**27)**20 == 5**540.
+//
+// Used to generate large powers of 5 while limiting the number of repeated
+// multiplications required.
+//
+// clang-format off
+const uint32_t kLargePowersOfFive[] = {
+// 5**27 (i=1), start=0, end=2
+  0xfa10079dU, 0x6765c793U,
+// 5**54 (i=2), start=2, end=6
+  0x97d9f649U, 0x6664242dU, 0x29939b14U, 0x29c30f10U,
+// 5**81 (i=3), start=6, end=12
+  0xc4f809c5U, 0x7bf3f22aU, 0x67bdae34U, 0xad340517U, 0x369d1b5fU, 0x10de1593U,
+// 5**108 (i=4), start=12, end=20
+  0x92b260d1U, 0x9efff7c7U, 0x81de0ec6U, 0xaeba5d56U, 0x410664a4U, 0x4f40737aU,
+  0x20d3846fU, 0x06d00f73U,
+// 5**135 (i=5), start=20, end=30
+  0xff1b172dU, 0x13a1d71cU, 0xefa07617U, 0x7f682d3dU, 0xff8c90c0U, 0x3f0131e7U,
+  0x3fdcb9feU, 0x917b0177U, 0x16c407a7U, 0x02c06b9dU,
+// 5**162 (i=6), start=30, end=42
+  0x960f7199U, 0x056667ecU, 0xe07aefd8U, 0x80f2b9ccU, 0x8273f5e3U, 0xeb9a214aU,
+  0x40b38005U, 0x0e477ad4U, 0x277d08e6U, 0xfa28b11eU, 0xd3f7d784U, 0x011c835bU,
+// 5**189 (i=7), start=42, end=56
+  0xf723d9d5U, 0x3282d3f3U, 0xe00857d1U, 0x69659d25U, 0x2cf117cfU, 0x24da6d07U,
+  0x954d1417U, 0x3e5d8cedU, 0x7a8bb766U, 0xfd785ae6U, 0x645436d2U, 0x40c78b34U,
+  0x94151217U, 0x0072e9f7U,
+// 5**216 (i=8), start=56, end=72
+  0x2b416aa1U, 0x7893c5a7U, 0xe37dc6d4U, 0x2bad2beaU, 0xf0fc846cU, 0x7575ae4bU,
+  0x62587b14U, 0x83b67a34U, 0x02110cdbU, 0xf7992f55U, 0x00deb022U, 0xa4a23becU,
+  0x8af5c5cdU, 0xb85b654fU, 0x818df38bU, 0x002e69d2U,
+// 5**243 (i=9), start=72, end=90
+  0x3518cbbdU, 0x20b0c15fU, 0x38756c2fU, 0xfb5dc3ddU, 0x22ad2d94U, 0xbf35a952U,
+  0xa699192aU, 0x9a613326U, 0xad2a9cedU, 0xd7f48968U, 0xe87dfb54U, 0xc8f05db6U,
+  0x5ef67531U, 0x31c1ab49U, 0xe202ac9fU, 0x9b2957b5U, 0xa143f6d3U, 0x0012bf07U,
+// 5**270 (i=10), start=90, end=110
+  0x8b971de9U, 0x21aba2e1U, 0x63944362U, 0x57172336U, 0xd9544225U, 0xfb534166U,
+  0x08c563eeU, 0x14640ee2U, 0x24e40d31U, 0x02b06537U, 0x03887f14U, 0x0285e533U,
+  0xb744ef26U, 0x8be3a6c4U, 0x266979b4U, 0x6761ece2U, 0xd9cb39e4U, 0xe67de319U,
+  0x0d39e796U, 0x00079250U,
+// 5**297 (i=11), start=110, end=132
+  0x260eb6e5U, 0xf414a796U, 0xee1a7491U, 0xdb9368ebU, 0xf50c105bU, 0x59157750U,
+  0x9ed2fb5cU, 0xf6e56d8bU, 0xeaee8d23U, 0x0f319f75U, 0x2aa134d6U, 0xac2908e9U,
+  0xd4413298U, 0x02f02a55U, 0x989d5a7aU, 0x70dde184U, 0xba8040a7U, 0x03200981U,
+  0xbe03b11cU, 0x3c1c2a18U, 0xd60427a1U, 0x00030ee0U,
+// 5**324 (i=12), start=132, end=156
+  0xce566d71U, 0xf1c4aa25U, 0x4e93ca53U, 0xa72283d0U, 0x551a73eaU, 0x3d0538e2U,
+  0x8da4303fU, 0x6a58de60U, 0x0e660221U, 0x49cf61a6U, 0x8d058fc1U, 0xb9d1a14cU,
+  0x4bab157dU, 0xc85c6932U, 0x518c8b9eU, 0x9b92b8d0U, 0x0d8a0e21U, 0xbd855df9U,
+  0xb3ea59a1U, 0x8da29289U, 0x4584d506U, 0x3752d80fU, 0xb72569c6U, 0x00013c33U,
+// 5**351 (i=13), start=156, end=182
+  0x190f354dU, 0x83695cfeU, 0xe5a4d0c7U, 0xb60fb7e8U, 0xee5bbcc4U, 0xb922054cU,
+  0xbb4f0d85U, 0x48394028U, 0x1d8957dbU, 0x0d7edb14U, 0x4ecc7587U, 0x505e9e02U,
+  0x4c87f36bU, 0x99e66bd6U, 0x44b9ed35U, 0x753037d4U, 0xe5fe5f27U, 0x2742c203U,
+  0x13b2ed2bU, 0xdc525d2cU, 0xe6fde59aU, 0x77ffb18fU, 0x13c5752cU, 0x08a84bccU,
+  0x859a4940U, 0x00007fb6U,
+// 5**378 (i=14), start=182, end=210
+  0x4f98cb39U, 0xa60edbbcU, 0x83b5872eU, 0xa501acffU, 0x9cc76f78U, 0xbadd4c73U,
+  0x43e989faU, 0xca7acf80U, 0x2e0c824fU, 0xb19f4ffcU, 0x092fd81cU, 0xe4eb645bU,
+  0xa1ff84c2U, 0x8a5a83baU, 0xa8a1fae9U, 0x1db43609U, 0xb0fed50bU, 0x0dd7d2bdU,
+  0x7d7accd8U, 0x91fa640fU, 0x37dcc6c5U, 0x1c417fd5U, 0xe4d462adU, 0xe8a43399U,
+  0x131bf9a5U, 0x8df54d29U, 0x36547dc1U, 0x00003395U,
+// 5**405 (i=15), start=210, end=240
+  0x5bd330f5U, 0x77d21967U, 0x1ac481b7U, 0x6be2f7ceU, 0x7f4792a9U, 0xe84c2c52U,
+  0x84592228U, 0x9dcaf829U, 0xdab44ce1U, 0x3d0c311bU, 0x532e297dU, 0x4704e8b4U,
+  0x9cdc32beU, 0x41e64d9dU, 0x7717bea1U, 0xa824c00dU, 0x08f50b27U, 0x0f198d77U,
+  0x49bbfdf0U, 0x025c6c69U, 0xd4e55cd3U, 0xf083602bU, 0xb9f0fecdU, 0xc0864aeaU,
+  0x9cb98681U, 0xaaf620e9U, 0xacb6df30U, 0x4faafe66U, 0x8af13c3bU, 0x000014d5U,
+// 5**432 (i=16), start=240, end=272
+  0x682bb941U, 0x89a9f297U, 0xcba75d7bU, 0x404217b1U, 0xb4e519e9U, 0xa1bc162bU,
+  0xf7f5910aU, 0x98715af5U, 0x2ff53e57U, 0xe3ef118cU, 0x490c4543U, 0xbc9b1734U,
+  0x2affbe4dU, 0x4cedcb4cU, 0xfb14e99eU, 0x35e34212U, 0xece39c24U, 0x07673ab3U,
+  0xe73115ddU, 0xd15d38e7U, 0x093eed3bU, 0xf8e7eac5U, 0x78a8cc80U, 0x25227aacU,
+  0x3f590551U, 0x413da1cbU, 0xdf643a55U, 0xab65ad44U, 0xd70b23d7U, 0xc672cd76U,
+  0x3364ea62U, 0x0000086aU,
+// 5**459 (i=17), start=272, end=306
+  0x22f163ddU, 0x23cf07acU, 0xbe2af6c2U, 0xf412f6f6U, 0xc3ff541eU, 0x6eeaf7deU,
+  0xa47047e0U, 0x408cda92U, 0x0f0eeb08U, 0x56deba9dU, 0xcfc6b090U, 0x8bbbdf04U,
+  0x3933cdb3U, 0x9e7bb67dU, 0x9f297035U, 0x38946244U, 0xee1d37bbU, 0xde898174U,
+  0x63f3559dU, 0x705b72fbU, 0x138d27d9U, 0xf8603a78U, 0x735eec44U, 0xe30987d5U,
+  0xc6d38070U, 0x9cfe548eU, 0x9ff01422U, 0x7c564aa8U, 0x91cc60baU, 0xcbc3565dU,
+  0x7550a50bU, 0x6909aeadU, 0x13234c45U, 0x00000366U,
+// 5**486 (i=18), start=306, end=342
+  0x17954989U, 0x3a7d7709U, 0x98042de5U, 0xa9011443U, 0x45e723c2U, 0x269ffd6fU,
+  0x58852a46U, 0xaaa1042aU, 0x2eee8153U, 0xb2b6c39eU, 0xaf845b65U, 0xf6c365d7U,
+  0xe4cffb2bU, 0xc840e90cU, 0xabea8abbU, 0x5c58f8d2U, 0x5c19fa3aU, 0x4670910aU,
+  0x4449f21cU, 0xefa645b3U, 0xcc427decU, 0x083c3d73U, 0x467cb413U, 0x6fe10ae4U,
+  0x3caffc72U, 0x9f8da55eU, 0x5e5c8ea7U, 0x490594bbU, 0xf0871b0bU, 0xdd89816cU,
+  0x8e931df8U, 0xe85ce1c9U, 0xcca090a5U, 0x575fa16bU, 0x6b9f106cU, 0x0000015fU,
+// 5**513 (i=19), start=342, end=380
+  0xee20d805U, 0x57bc3c07U, 0xcdea624eU, 0xd3f0f52dU, 0x9924b4f4U, 0xcf968640U,
+  0x61d41962U, 0xe87fb464U, 0xeaaf51c7U, 0x564c8b60U, 0xccda4028U, 0x529428bbU,
+  0x313a1fa8U, 0x96bd0f94U, 0x7a82ebaaU, 0xad99e7e9U, 0xf2668cd4U, 0xbe33a45eU,
+  0xfd0db669U, 0x87ee369fU, 0xd3ec20edU, 0x9c4d7db7U, 0xdedcf0d8U, 0x7cd2ca64U,
+  0xe25a6577U, 0x61003fd4U, 0xe56f54ccU, 0x10b7c748U, 0x40526e5eU, 0x7300ae87U,
+  0x5c439261U, 0x2c0ff469U, 0xbf723f12U, 0xb2379b61U, 0xbf59b4f5U, 0xc91b1c3fU,
+  0xf0046d27U, 0x0000008dU,
+// 5**540 (i=20), start=380, end=420
+  0x525c9e11U, 0xf4e0eb41U, 0xebb2895dU, 0x5da512f9U, 0x7d9b29d4U, 0x452f4edcU,
+  0x0b90bc37U, 0x341777cbU, 0x63d269afU, 0x1da77929U, 0x0a5c1826U, 0x77991898U,
+  0x5aeddf86U, 0xf853a877U, 0x538c31ccU, 0xe84896daU, 0xb7a0010bU, 0x17ef4de5U,
+  0xa52a2adeU, 0x029fd81cU, 0x987ce701U, 0x27fefd77U, 0xdb46c66fU, 0x5d301900U,
+  0x496998c0U, 0xbb6598b9U, 0x5eebb607U, 0xe547354aU, 0xdf4a2f7eU, 0xf06c4955U,
+  0x96242ffaU, 0x1775fb27U, 0xbecc58ceU, 0xebf2a53bU, 0x3eaad82aU, 0xf41137baU,
+  0x573e6fbaU, 0xfb4866b8U, 0x54002148U, 0x00000039U,
+};
+// clang-format on
+
+// Returns a pointer to the big integer data for (5**27)**i.  i must be
+// between 1 and 20, inclusive.
+const uint32_t* LargePowerOfFiveData(int i) {
+  return kLargePowersOfFive + i * (i - 1);
+}
+
+// Returns the size of the big integer data for (5**27)**i, in words.  i must be
+// between 1 and 20, inclusive.
+int LargePowerOfFiveSize(int i) { return 2 * i; }
+}  // namespace
+
+const uint32_t kFiveToNth[14] = {
+    1,     5,      25,      125,     625,      3125,      15625,
+    78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125,
+};
+
+const uint32_t kTenToNth[10] = {
+    1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000,
+};
+
+template <int max_words>
+int BigUnsigned<max_words>::ReadFloatMantissa(const ParsedFloat& fp,
+                                              int significant_digits) {
+  SetToZero();
+  assert(fp.type == FloatType::kNumber);
+
+  if (fp.subrange_begin == nullptr) {
+    // We already exactly parsed the mantissa, so no more work is necessary.
+    words_[0] = fp.mantissa & 0xffffffffu;
+    words_[1] = fp.mantissa >> 32;
+    if (words_[1]) {
+      size_ = 2;
+    } else if (words_[0]) {
+      size_ = 1;
+    }
+    return fp.exponent;
+  }
+  int exponent_adjust =
+      ReadDigits(fp.subrange_begin, fp.subrange_end, significant_digits);
+  return fp.literal_exponent + exponent_adjust;
+}
+
+template <int max_words>
+int BigUnsigned<max_words>::ReadDigits(const char* begin, const char* end,
+                                       int significant_digits) {
+  assert(significant_digits <= Digits10() + 1);
+  SetToZero();
+
+  bool after_decimal_point = false;
+  // Discard any leading zeroes before the decimal point
+  while (begin < end && *begin == '0') {
+    ++begin;
+  }
+  int dropped_digits = 0;
+  // Discard any trailing zeroes.  These may or may not be after the decimal
+  // point.
+  while (begin < end && *std::prev(end) == '0') {
+    --end;
+    ++dropped_digits;
+  }
+  if (begin < end && *std::prev(end) == '.') {
+    // If the std::string ends in '.', either before or after dropping zeroes, then
+    // drop the decimal point and look for more digits to drop.
+    dropped_digits = 0;
+    --end;
+    while (begin < end && *std::prev(end) == '0') {
+      --end;
+      ++dropped_digits;
+    }
+  } else if (dropped_digits) {
+    // We dropped digits, and aren't sure if they're before or after the decimal
+    // point.  Figure that out now.
+    const char* dp = std::find(begin, end, '.');
+    if (dp != end) {
+      // The dropped trailing digits were after the decimal point, so don't
+      // count them.
+      dropped_digits = 0;
+    }
+  }
+  // Any non-fraction digits we dropped need to be accounted for in our exponent
+  // adjustment.
+  int exponent_adjust = dropped_digits;
+
+  uint32_t queued = 0;
+  int digits_queued = 0;
+  for (; begin != end && significant_digits > 0; ++begin) {
+    if (*begin == '.') {
+      after_decimal_point = true;
+      continue;
+    }
+    if (after_decimal_point) {
+      // For each fractional digit we emit in our parsed integer, adjust our
+      // decimal exponent to compensate.
+      --exponent_adjust;
+    }
+    int digit = (*begin - '0');
+    --significant_digits;
+    if (significant_digits == 0 && std::next(begin) != end &&
+        (digit == 0 || digit == 5)) {
+      // If this is the very last significant digit, but insignificant digits
+      // remain, we know that the last of those remaining significant digits is
+      // nonzero.  (If it wasn't, we would have stripped it before we got here.)
+      // So if this final digit is a 0 or 5, adjust it upward by 1.
+      //
+      // This adjustment is what allows incredibly large mantissas ending in
+      // 500000...000000000001 to correctly round up, rather than to nearest.
+      ++digit;
+    }
+    queued = 10 * queued + digit;
+    ++digits_queued;
+    if (digits_queued == kMaxSmallPowerOfTen) {
+      MultiplyBy(kTenToNth[kMaxSmallPowerOfTen]);
+      AddWithCarry(0, queued);
+      queued = digits_queued = 0;
+    }
+  }
+  // Encode any remaining digits.
+  if (digits_queued) {
+    MultiplyBy(kTenToNth[digits_queued]);
+    AddWithCarry(0, queued);
+  }
+
+  // If any insignificant digits remain, we will drop them.  But if we have not
+  // yet read the decimal point, then we have to adjust the exponent to account
+  // for the dropped digits.
+  if (begin < end && !after_decimal_point) {
+    // This call to std::find will result in a pointer either to the decimal
+    // point, or to the end of our buffer if there was none.
+    //
+    // Either way, [begin, decimal_point) will contain the set of dropped digits
+    // that require an exponent adjustment.
+    const char* decimal_point = std::find(begin, end, '.');
+    exponent_adjust += (decimal_point - begin);
+  }
+  return exponent_adjust;
+}
+
+template <int max_words>
+/* static */ BigUnsigned<max_words> BigUnsigned<max_words>::FiveToTheNth(
+    int n) {
+  BigUnsigned answer(1u);
+
+  // Seed from the table of large powers, if possible.
+  bool first_pass = true;
+  while (n >= kLargePowerOfFiveStep) {
+    int big_power =
+        std::min(n / kLargePowerOfFiveStep, kLargestPowerOfFiveIndex);
+    if (first_pass) {
+      // just copy, rather than multiplying by 1
+      std::copy(
+          LargePowerOfFiveData(big_power),
+          LargePowerOfFiveData(big_power) + LargePowerOfFiveSize(big_power),
+          answer.words_);
+      answer.size_ = LargePowerOfFiveSize(big_power);
+      first_pass = false;
+    } else {
+      answer.MultiplyBy(LargePowerOfFiveSize(big_power),
+                        LargePowerOfFiveData(big_power));
+    }
+    n -= kLargePowerOfFiveStep * big_power;
+  }
+  answer.MultiplyByFiveToTheNth(n);
+  return answer;
+}
+
+template <int max_words>
+void BigUnsigned<max_words>::MultiplyStep(int original_size,
+                                          const uint32_t* other_words,
+                                          int other_size, int step) {
+  int this_i = std::min(original_size - 1, step);
+  int other_i = step - this_i;
+
+  uint64_t this_word = 0;
+  uint64_t carry = 0;
+  for (; this_i >= 0 && other_i < other_size; --this_i, ++other_i) {
+    uint64_t product = words_[this_i];
+    product *= other_words[other_i];
+    this_word += product;
+    carry += (this_word >> 32);
+    this_word &= 0xffffffff;
+  }
+  AddWithCarry(step + 1, carry);
+  words_[step] = this_word & 0xffffffff;
+  if (this_word > 0 && size_ <= step) {
+    size_ = step + 1;
+  }
+}
+
+template <int max_words>
+std::string BigUnsigned<max_words>::ToString() const {
+  BigUnsigned<max_words> copy = *this;
+  std::string result;
+  // Build result in reverse order
+  while (copy.size() > 0) {
+    int next_digit = copy.DivMod<10>();
+    result.push_back('0' + next_digit);
+  }
+  if (result.empty()) {
+    result.push_back('0');
+  }
+  std::reverse(result.begin(), result.end());
+  return result;
+}
+
+template class BigUnsigned<4>;
+template class BigUnsigned<84>;
+
+}  // namespace strings_internal
+}  // namespace absl
diff --git a/absl/strings/internal/charconv_bigint.h b/absl/strings/internal/charconv_bigint.h
new file mode 100644
index 000000000000..aa70af2c2894
--- /dev/null
+++ b/absl/strings/internal/charconv_bigint.h
@@ -0,0 +1,426 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
+#define ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
+
+#include <algorithm>
+#include <cstdint>
+#include <iostream>
+#include <string>
+
+#include "absl/strings/ascii.h"
+#include "absl/strings/internal/charconv_parse.h"
+#include "absl/strings/string_view.h"
+
+namespace absl {
+namespace strings_internal {
+
+// The largest power that 5 that can be raised to, and still fit in a uint32_t.
+constexpr int kMaxSmallPowerOfFive = 13;
+// The largest power that 10 that can be raised to, and still fit in a uint32_t.
+constexpr int kMaxSmallPowerOfTen = 9;
+
+extern const uint32_t kFiveToNth[kMaxSmallPowerOfFive + 1];
+extern const uint32_t kTenToNth[kMaxSmallPowerOfTen + 1];
+
+// Large, fixed-width unsigned integer.
+//
+// Exact rounding for decimal-to-binary floating point conversion requires very
+// large integer math, but a design goal of absl::from_chars is to avoid
+// allocating memory.  The integer precision needed for decimal-to-binary
+// conversions is large but bounded, so a huge fixed-width integer class
+// suffices.
+//
+// This is an intentionally limited big integer class.  Only needed operations
+// are implemented.  All storage lives in an array data member, and all
+// arithmetic is done in-place, to avoid requiring separate storage for operand
+// and result.
+//
+// This is an internal class.  Some methods live in the .cc file, and are
+// instantiated only for the values of max_words we need.
+template <int max_words>
+class BigUnsigned {
+ public:
+  static_assert(max_words == 4 || max_words == 84,
+                "unsupported max_words value");
+
+  BigUnsigned() : size_(0), words_{} {}
+  explicit BigUnsigned(uint32_t v) : size_(v > 0 ? 1 : 0), words_{v} {}
+  explicit BigUnsigned(uint64_t v)
+      : size_(0),
+        words_{static_cast<uint32_t>(v & 0xffffffff),
+               static_cast<uint32_t>(v >> 32)} {
+    if (words_[1]) {
+      size_ = 2;
+    } else if (words_[0]) {
+      size_ = 1;
+    }
+  }
+
+  // Constructs a BigUnsigned from the given string_view containing a decimal
+  // value.  If the input std::string is not a decimal integer, constructs a 0
+  // instead.
+  explicit BigUnsigned(absl::string_view sv) : size_(0), words_{} {
+    // Check for valid input, returning a 0 otherwise.  This is reasonable
+    // behavior only because this constructor is for unit tests.
+    if (std::find_if_not(sv.begin(), sv.end(), ascii_isdigit) != sv.end() ||
+        sv.empty()) {
+      return;
+    }
+    int exponent_adjust =
+        ReadDigits(sv.data(), sv.data() + sv.size(), Digits10() + 1);
+    if (exponent_adjust > 0) {
+      MultiplyByTenToTheNth(exponent_adjust);
+    }
+  }
+
+  // Loads the mantissa value of a previously-parsed float.
+  //
+  // Returns the associated decimal exponent.  The value of the parsed float is
+  // exactly *this * 10**exponent.
+  int ReadFloatMantissa(const ParsedFloat& fp, int significant_digits);
+
+  // Returns the number of decimal digits of precision this type provides.  All
+  // numbers with this many decimal digits or fewer are representable by this
+  // type.
+  //
+  // Analagous to std::numeric_limits<BigUnsigned>::digits10.
+  static constexpr int Digits10() {
+    // 9975007/1035508 is very slightly less than log10(2**32).
+    return static_cast<uint64_t>(max_words) * 9975007 / 1035508;
+  }
+
+  // Shifts left by the given number of bits.
+  void ShiftLeft(int count) {
+    if (count > 0) {
+      const int word_shift = count / 32;
+      if (word_shift >= max_words) {
+        SetToZero();
+        return;
+      }
+      size_ = std::min(size_ + word_shift, max_words);
+      count %= 32;
+      if (count == 0) {
+        std::copy_backward(words_, words_ + size_ - word_shift, words_ + size_);
+      } else {
+        for (int i = std::min(size_, max_words - 1); i > word_shift; --i) {
+          words_[i] = (words_[i - word_shift] << count) |
+                      (words_[i - word_shift - 1] >> (32 - count));
+        }
+        words_[word_shift] = words_[0] << count;
+        // Grow size_ if necessary.
+        if (size_ < max_words && words_[size_]) {
+          ++size_;
+        }
+      }
+      std::fill(words_, words_ + word_shift, 0u);
+    }
+  }
+
+
+  // Multiplies by v in-place.
+  void MultiplyBy(uint32_t v) {
+    if (size_ == 0 || v == 1) {
+      return;
+    }
+    if (v == 0) {
+      SetToZero();
+      return;
+    }
+    const uint64_t factor = v;
+    uint64_t window = 0;
+    for (int i = 0; i < size_; ++i) {
+      window += factor * words_[i];
+      words_[i] = window & 0xffffffff;
+      window >>= 32;
+    }
+    // If carry bits remain and there's space for them, grow size_.
+    if (window && size_ < max_words) {
+      words_[size_] = window & 0xffffffff;
+      ++size_;
+    }
+  }
+
+  void MultiplyBy(uint64_t v) {
+    uint32_t words[2];
+    words[0] = static_cast<uint32_t>(v);
+    words[1] = static_cast<uint32_t>(v >> 32);
+    if (words[1] == 0) {
+      MultiplyBy(words[0]);
+    } else {
+      MultiplyBy(2, words);
+    }
+  }
+
+  // Multiplies in place by 5 to the power of n.  n must be non-negative.
+  void MultiplyByFiveToTheNth(int n) {
+    while (n >= kMaxSmallPowerOfFive) {
+      MultiplyBy(kFiveToNth[kMaxSmallPowerOfFive]);
+      n -= kMaxSmallPowerOfFive;
+    }
+    if (n > 0) {
+      MultiplyBy(kFiveToNth[n]);
+    }
+  }
+
+  // Multiplies in place by 10 to the power of n.  n must be non-negative.
+  void MultiplyByTenToTheNth(int n) {
+    if (n > kMaxSmallPowerOfTen) {
+      // For large n, raise to a power of 5, then shift left by the same amount.
+      // (10**n == 5**n * 2**n.)  This requires fewer multiplications overall.
+      MultiplyByFiveToTheNth(n);
+      ShiftLeft(n);
+    } else if (n > 0) {
+      // We can do this more quickly for very small N by using a single
+      // multiplication.
+      MultiplyBy(kTenToNth[n]);
+    }
+  }
+
+  // Returns the value of 5**n, for non-negative n.  This implementation uses
+  // a lookup table, and is faster then seeding a BigUnsigned with 1 and calling
+  // MultiplyByFiveToTheNth().
+  static BigUnsigned FiveToTheNth(int n);
+
+  // Multiplies by another BigUnsigned, in-place.
+  template <int M>
+  void MultiplyBy(const BigUnsigned<M>& other) {
+    MultiplyBy(other.size(), other.words());
+  }
+
+  void SetToZero() {
+    std::fill(words_, words_ + size_, 0u);
+    size_ = 0;
+  }
+
+  // Returns the value of the nth word of this BigUnsigned.  This is
+  // range-checked, and returns 0 on out-of-bounds accesses.
+  uint32_t GetWord(int index) const {
+    if (index < 0 || index >= size_) {
+      return 0;
+    }
+    return words_[index];
+  }
+
+  // Returns this integer as a decimal std::string.  This is not used in the decimal-
+  // to-binary conversion; it is intended to aid in testing.
+  std::string ToString() const;
+
+  int size() const { return size_; }
+  const uint32_t* words() const { return words_; }
+
+ private:
+  // Reads the number between [begin, end), possibly containing a decimal point,
+  // into this BigUnsigned.
+  //
+  // Callers are required to ensure [begin, end) contains a valid number, with
+  // one or more decimal digits and at most one decimal point.  This routine
+  // will behave unpredictably if these preconditions are not met.
+  //
+  // Only the first `significant_digits` digits are read.  Digits beyond this
+  // limit are "sticky": If the final significant digit is 0 or 5, and if any
+  // dropped digit is nonzero, then that final significant digit is adjusted up
+  // to 1 or 6.  This adjustment allows for precise rounding.
+  //
+  // Returns `exponent_adjustment`, a power-of-ten exponent adjustment to
+  // account for the decimal point and for dropped significant digits.  After
+  // this function returns,
+  //   actual_value_of_parsed_string ~= *this * 10**exponent_adjustment.
+  int ReadDigits(const char* begin, const char* end, int significant_digits);
+
+  // Performs a step of big integer multiplication.  This computes the full
+  // (64-bit-wide) values that should be added at the given index (step), and
+  // adds to that location in-place.
+  //
+  // Because our math all occurs in place, we must multiply starting from the
+  // highest word working downward.  (This is a bit more expensive due to the
+  // extra carries involved.)
+  //
+  // This must be called in steps, for each word to be calculated, starting from
+  // the high end and working down to 0.  The first value of `step` should be
+  //   `std::min(original_size + other.size_ - 2, max_words - 1)`.
+  // The reason for this expression is that multiplying the i'th word from one
+  // multiplicand and the j'th word of another multiplicand creates a
+  // two-word-wide value to be stored at the (i+j)'th element.  The highest
+  // word indices we will access are `original_size - 1` from this object, and
+  // `other.size_ - 1` from our operand.  Therefore,
+  // `original_size + other.size_ - 2` is the first step we should calculate,
+  // but limited on an upper bound by max_words.
+
+  // Working from high-to-low ensures that we do not overwrite the portions of
+  // the initial value of *this which are still needed for later steps.
+  //
+  // Once called with step == 0, *this contains the result of the
+  // multiplication.
+  //
+  // `original_size` is the size_ of *this before the first call to
+  // MultiplyStep().  `other_words` and `other_size` are the contents of our
+  // operand.  `step` is the step to perform, as described above.
+  void MultiplyStep(int original_size, const uint32_t* other_words,
+                    int other_size, int step);
+
+  void MultiplyBy(int other_size, const uint32_t* other_words) {
+    const int original_size = size_;
+    const int first_step =
+        std::min(original_size + other_size - 2, max_words - 1);
+    for (int step = first_step; step >= 0; --step) {
+      MultiplyStep(original_size, other_words, other_size, step);
+    }
+  }
+
+  // Adds a 32-bit value to the index'th word, with carry.
+  void AddWithCarry(int index, uint32_t value) {
+    if (value) {
+      while (index < max_words && value > 0) {
+        words_[index] += value;
+        // carry if we overflowed in this word:
+        if (value > words_[index]) {
+          value = 1;
+          ++index;
+        } else {
+          value = 0;
+        }
+      }
+      size_ = std::min(max_words, std::max(index + 1, size_));
+    }
+  }
+
+  void AddWithCarry(int index, uint64_t value) {
+    if (value && index < max_words) {
+      uint32_t high = value >> 32;
+      uint32_t low = value & 0xffffffff;
+      words_[index] += low;
+      if (words_[index] < low) {
+        ++high;
+        if (high == 0) {
+          // Carry from the low word caused our high word to overflow.
+          // Short circuit here to do the right thing.
+          AddWithCarry(index + 2, static_cast<uint32_t>(1));
+          return;
+        }
+      }
+      if (high > 0) {
+        AddWithCarry(index + 1, high);
+      } else {
+        // Normally 32-bit AddWithCarry() sets size_, but since we don't call
+        // it when `high` is 0, do it ourselves here.
+        size_ = std::min(max_words, std::max(index + 1, size_));
+      }
+    }
+  }
+
+  // Divide this in place by a constant divisor.  Returns the remainder of the
+  // division.
+  template <uint32_t divisor>
+  uint32_t DivMod() {
+    uint64_t accumulator = 0;
+    for (int i = size_ - 1; i >= 0; --i) {
+      accumulator <<= 32;
+      accumulator += words_[i];
+      // accumulator / divisor will never overflow an int32_t in this loop
+      words_[i] = static_cast<uint32_t>(accumulator / divisor);
+      accumulator = accumulator % divisor;
+    }
+    while (size_ > 0 && words_[size_ - 1] == 0) {
+      --size_;
+    }
+    return static_cast<uint32_t>(accumulator);
+  }
+
+  // The number of elements in words_ that may carry significant values.
+  // All elements beyond this point are 0.
+  //
+  // When size_ is 0, this BigUnsigned stores the value 0.
+  // When size_ is nonzero, is *not* guaranteed that words_[size_ - 1] is
+  // nonzero.  This can occur due to overflow truncation.
+  // In particular, x.size_ != y.size_ does *not* imply x != y.
+  int size_;
+  uint32_t words_[max_words];
+};
+
+// Compares two big integer instances.
+//
+// Returns -1 if lhs < rhs, 0 if lhs == rhs, and 1 if lhs > rhs.
+template <int N, int M>
+int Compare(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
+  int limit = std::max(lhs.size(), rhs.size());
+  for (int i = limit - 1; i >= 0; --i) {
+    const uint32_t lhs_word = lhs.GetWord(i);
+    const uint32_t rhs_word = rhs.GetWord(i);
+    if (lhs_word < rhs_word) {
+      return -1;
+    } else if (lhs_word > rhs_word) {
+      return 1;
+    }
+  }
+  return 0;
+}
+
+template <int N, int M>
+bool operator==(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
+  int limit = std::max(lhs.size(), rhs.size());
+  for (int i = 0; i < limit; ++i) {
+    if (lhs.GetWord(i) != rhs.GetWord(i)) {
+      return false;
+    }
+  }
+  return true;
+}
+
+template <int N, int M>
+bool operator!=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
+  return !(lhs == rhs);
+}
+
+template <int N, int M>
+bool operator<(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
+  return Compare(lhs, rhs) == -1;
+}
+
+template <int N, int M>
+bool operator>(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
+  return rhs < lhs;
+}
+template <int N, int M>
+bool operator<=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
+  return !(rhs < lhs);
+}
+template <int N, int M>
+bool operator>=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
+  return !(lhs < rhs);
+}
+
+// Output operator for BigUnsigned, for testing purposes only.
+template <int N>
+std::ostream& operator<<(std::ostream& os, const BigUnsigned<N>& num) {
+  return os << num.ToString();
+}
+
+// Explicit instantiation declarations for the sizes of BigUnsigned that we
+// are using.
+//
+// For now, the choices of 4 and 84 are arbitrary; 4 is a small value that is
+// still bigger than an int128, and 84 is a large value we will want to use
+// in the from_chars implementation.
+//
+// Comments justifying the use of 84 belong in the from_chars implementation,
+// and will be added in a follow-up CL.
+extern template class BigUnsigned<4>;
+extern template class BigUnsigned<84>;
+
+}  // namespace strings_internal
+}  // namespace absl
+
+#endif  // ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
diff --git a/absl/strings/internal/charconv_bigint_test.cc b/absl/strings/internal/charconv_bigint_test.cc
new file mode 100644
index 000000000000..9b6357888fbf
--- /dev/null
+++ b/absl/strings/internal/charconv_bigint_test.cc
@@ -0,0 +1,203 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/strings/internal/charconv_bigint.h"
+
+#include <string>
+
+#include "gtest/gtest.h"
+
+namespace absl {
+namespace strings_internal {
+
+TEST(BigUnsigned, ShiftLeft) {
+  {
+    // Check that 3 * 2**100 is calculated correctly
+    BigUnsigned<4> num(3u);
+    num.ShiftLeft(100);
+    EXPECT_EQ(num, BigUnsigned<4>("3802951800684688204490109616128"));
+  }
+  {
+    // Test that overflow is truncated properly.
+    // 15 is 4 bits long, and BigUnsigned<4> is a 128-bit bigint.
+    // Shifting left by 125 bits should truncate off the high bit, so that
+    //   15 << 125 == 7 << 125
+    // after truncation.
+    BigUnsigned<4> a(15u);
+    BigUnsigned<4> b(7u);
+    BigUnsigned<4> c(3u);
+    a.ShiftLeft(125);
+    b.ShiftLeft(125);
+    c.ShiftLeft(125);
+    EXPECT_EQ(a, b);
+    EXPECT_NE(a, c);
+  }
+  {
+    // Same test, larger bigint:
+    BigUnsigned<84> a(15u);
+    BigUnsigned<84> b(7u);
+    BigUnsigned<84> c(3u);
+    a.ShiftLeft(84 * 32 - 3);
+    b.ShiftLeft(84 * 32 - 3);
+    c.ShiftLeft(84 * 32 - 3);
+    EXPECT_EQ(a, b);
+    EXPECT_NE(a, c);
+  }
+  {
+    // Check that incrementally shifting has the same result as doing it all at
+    // once (attempting to capture corner cases.)
+    const std::string seed = "1234567890123456789012345678901234567890";
+    BigUnsigned<84> a(seed);
+    for (int i = 1; i <= 84 * 32; ++i) {
+      a.ShiftLeft(1);
+      BigUnsigned<84> b(seed);
+      b.ShiftLeft(i);
+      EXPECT_EQ(a, b);
+    }
+    // And we should have fully rotated all bits off by now:
+    EXPECT_EQ(a, BigUnsigned<84>(0u));
+  }
+}
+
+TEST(BigUnsigned, MultiplyByUint32) {
+  const BigUnsigned<84> factorial_100(
+      "933262154439441526816992388562667004907159682643816214685929638952175999"
+      "932299156089414639761565182862536979208272237582511852109168640000000000"
+      "00000000000000");
+  BigUnsigned<84> a(1u);
+  for (uint32_t i = 1; i <= 100; ++i) {
+    a.MultiplyBy(i);
+  }
+  EXPECT_EQ(a, BigUnsigned<84>(factorial_100));
+}
+
+TEST(BigUnsigned, MultiplyByBigUnsigned) {
+  {
+    // Put the terms of factorial_200 into two bigints, and multiply them
+    // together.
+    const BigUnsigned<84> factorial_200(
+        "7886578673647905035523632139321850622951359776871732632947425332443594"
+        "4996340334292030428401198462390417721213891963883025764279024263710506"
+        "1926624952829931113462857270763317237396988943922445621451664240254033"
+        "2918641312274282948532775242424075739032403212574055795686602260319041"
+        "7032406235170085879617892222278962370389737472000000000000000000000000"
+        "0000000000000000000000000");
+    BigUnsigned<84> evens(1u);
+    BigUnsigned<84> odds(1u);
+    for (uint32_t i = 1; i < 200; i += 2) {
+      odds.MultiplyBy(i);
+      evens.MultiplyBy(i + 1);
+    }
+    evens.MultiplyBy(odds);
+    EXPECT_EQ(evens, factorial_200);
+  }
+  {
+    // Multiply various powers of 10 together.
+    for (int a = 0 ; a < 700; a += 25) {
+      SCOPED_TRACE(a);
+      BigUnsigned<84> a_value("3" + std::string(a, '0'));
+      for (int b = 0; b < (700 - a); b += 25) {
+        SCOPED_TRACE(b);
+        BigUnsigned<84> b_value("2" + std::string(b, '0'));
+        BigUnsigned<84> expected_product("6" + std::string(a + b, '0'));
+        b_value.MultiplyBy(a_value);
+        EXPECT_EQ(b_value, expected_product);
+      }
+    }
+  }
+}
+
+TEST(BigUnsigned, MultiplyByOverflow) {
+  {
+    // Check that multiplcation overflow predictably truncates.
+
+    // A big int with all bits on.
+    BigUnsigned<4> all_bits_on("340282366920938463463374607431768211455");
+    // Modulo 2**128, this is equal to -1.  Therefore the square of this,
+    // modulo 2**128, should be 1.
+    all_bits_on.MultiplyBy(all_bits_on);
+    EXPECT_EQ(all_bits_on, BigUnsigned<4>(1u));
+  }
+  {
+    // Try multiplying a large bigint by 2**50, and compare the result to
+    // shifting.
+    BigUnsigned<4> value_1("12345678901234567890123456789012345678");
+    BigUnsigned<4> value_2("12345678901234567890123456789012345678");
+    BigUnsigned<4> two_to_fiftieth(1u);
+    two_to_fiftieth.ShiftLeft(50);
+
+    value_1.ShiftLeft(50);
+    value_2.MultiplyBy(two_to_fiftieth);
+    EXPECT_EQ(value_1, value_2);
+  }
+}
+
+TEST(BigUnsigned, FiveToTheNth) {
+  {
+    // Sanity check that MultiplyByFiveToTheNth gives consistent answers, up to
+    // and including overflow.
+    for (int i = 0; i < 1160; ++i) {
+      SCOPED_TRACE(i);
+      BigUnsigned<84> value_1(123u);
+      BigUnsigned<84> value_2(123u);
+      value_1.MultiplyByFiveToTheNth(i);
+      for (int j = 0; j < i; j++) {
+        value_2.MultiplyBy(5u);
+      }
+      EXPECT_EQ(value_1, value_2);
+    }
+  }
+  {
+    // Check that the faster, table-lookup-based static method returns the same
+    // result that multiplying in-place would return, up to and including
+    // overflow.
+    for (int i = 0; i < 1160; ++i) {
+      SCOPED_TRACE(i);
+      BigUnsigned<84> value_1(1u);
+      value_1.MultiplyByFiveToTheNth(i);
+      BigUnsigned<84> value_2 = BigUnsigned<84>::FiveToTheNth(i);
+      EXPECT_EQ(value_1, value_2);
+    }
+  }
+}
+
+TEST(BigUnsigned, TenToTheNth) {
+  {
+    // Sanity check MultiplyByTenToTheNth.
+    for (int i = 0; i < 800; ++i) {
+      SCOPED_TRACE(i);
+      BigUnsigned<84> value_1(123u);
+      BigUnsigned<84> value_2(123u);
+      value_1.MultiplyByTenToTheNth(i);
+      for (int j = 0; j < i; j++) {
+        value_2.MultiplyBy(10u);
+      }
+      EXPECT_EQ(value_1, value_2);
+    }
+  }
+  {
+    // Alternate testing approach, taking advantage of the decimal parser.
+    for (int i = 0; i < 200; ++i) {
+      SCOPED_TRACE(i);
+      BigUnsigned<84> value_1(135u);
+      value_1.MultiplyByTenToTheNth(i);
+      BigUnsigned<84> value_2("135" + std::string(i, '0'));
+      EXPECT_EQ(value_1, value_2);
+    }
+  }
+}
+
+
+}  // namespace strings_internal
+}  // namespace absl
diff --git a/absl/strings/internal/charconv_parse.cc b/absl/strings/internal/charconv_parse.cc
new file mode 100644
index 000000000000..a04cc67669a7
--- /dev/null
+++ b/absl/strings/internal/charconv_parse.cc
@@ -0,0 +1,496 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/strings/internal/charconv_parse.h"
+#include "absl/strings/charconv.h"
+
+#include <cassert>
+#include <cstdint>
+#include <limits>
+
+#include "absl/strings/internal/memutil.h"
+
+namespace absl {
+namespace {
+
+// ParseFloat<10> will read the first 19 significant digits of the mantissa.
+// This number was chosen for multiple reasons.
+//
+// (a) First, for whatever integer type we choose to represent the mantissa, we
+// want to choose the largest possible number of decimal digits for that integer
+// type.  We are using uint64_t, which can express any 19-digit unsigned
+// integer.
+//
+// (b) Second, we need to parse enough digits that the binary value of any
+// mantissa we capture has more bits of resolution than the mantissa
+// representation in the target float.  Our algorithm requires at least 3 bits
+// of headway, but 19 decimal digits give a little more than that.
+//
+// The following static assertions verify the above comments:
+constexpr int kDecimalMantissaDigitsMax = 19;
+
+static_assert(std::numeric_limits<uint64_t>::digits10 ==
+                  kDecimalMantissaDigitsMax,
+              "(a) above");
+
+// IEEE doubles, which we assume in Abseil, have 53 binary bits of mantissa.
+static_assert(std::numeric_limits<double>::is_iec559, "IEEE double assumed");
+static_assert(std::numeric_limits<double>::radix == 2, "IEEE double fact");
+static_assert(std::numeric_limits<double>::digits == 53, "IEEE double fact");
+
+// The lowest valued 19-digit decimal mantissa we can read still contains
+// sufficient information to reconstruct a binary mantissa.
+static_assert(1000000000000000000u > (uint64_t(1) << (53 + 3)), "(b) above");
+
+// ParseFloat<16> will read the first 15 significant digits of the mantissa.
+//
+// Because a base-16-to-base-2 conversion can be done exactly, we do not need
+// to maximize the number of scanned hex digits to improve our conversion.  What
+// is required is to scan two more bits than the mantissa can represent, so that
+// we always round correctly.
+//
+// (One extra bit does not suffice to perform correct rounding, since a number
+// exactly halfway between two representable floats has unique rounding rules,
+// so we need to differentiate between a "halfway between" number and a "closer
+// to the larger value" number.)
+constexpr int kHexadecimalMantissaDigitsMax = 15;
+
+// The minimum number of significant bits that will be read from
+// kHexadecimalMantissaDigitsMax hex digits.  We must subtract by three, since
+// the most significant digit can be a "1", which only contributes a single
+// significant bit.
+constexpr int kGuaranteedHexadecimalMantissaBitPrecision =
+    4 * kHexadecimalMantissaDigitsMax - 3;
+
+static_assert(kGuaranteedHexadecimalMantissaBitPrecision >
+                  std::numeric_limits<double>::digits + 2,
+              "kHexadecimalMantissaDigitsMax too small");
+
+// We also impose a limit on the number of significant digits we will read from
+// an exponent, to avoid having to deal with integer overflow.  We use 9 for
+// this purpose.
+//
+// If we read a 9 digit exponent, the end result of the conversion will
+// necessarily be infinity or zero, depending on the sign of the exponent.
+// Therefore we can just drop extra digits on the floor without any extra
+// logic.
+constexpr int kDecimalExponentDigitsMax = 9;
+static_assert(std::numeric_limits<int>::digits10 >= kDecimalExponentDigitsMax,
+              "int type too small");
+
+// To avoid incredibly large inputs causing integer overflow for our exponent,
+// we impose an arbitrary but very large limit on the number of significant
+// digits we will accept.  The implementation refuses to match a std::string with
+// more consecutive significant mantissa digits than this.
+constexpr int kDecimalDigitLimit = 50000000;
+
+// Corresponding limit for hexadecimal digit inputs.  This is one fourth the
+// amount of kDecimalDigitLimit, since each dropped hexadecimal digit requires
+// a binary exponent adjustment of 4.
+constexpr int kHexadecimalDigitLimit = kDecimalDigitLimit / 4;
+
+// The largest exponent we can read is 999999999 (per
+// kDecimalExponentDigitsMax), and the largest exponent adjustment we can get
+// from dropped mantissa digits is 2 * kDecimalDigitLimit, and the sum of these
+// comfortably fits in an integer.
+//
+// We count kDecimalDigitLimit twice because there are independent limits for
+// numbers before and after the decimal point.  (In the case where there are no
+// significant digits before the decimal point, there are independent limits for
+// post-decimal-point leading zeroes and for significant digits.)
+static_assert(999999999 + 2 * kDecimalDigitLimit <
+                  std::numeric_limits<int>::max(),
+              "int type too small");
+static_assert(999999999 + 2 * (4 * kHexadecimalDigitLimit) <
+                  std::numeric_limits<int>::max(),
+              "int type too small");
+
+// Returns true if the provided bitfield allows parsing an exponent value
+// (e.g., "1.5e100").
+bool AllowExponent(chars_format flags) {
+  bool fixed = (flags & chars_format::fixed) == chars_format::fixed;
+  bool scientific =
+      (flags & chars_format::scientific) == chars_format::scientific;
+  return scientific || !fixed;
+}
+
+// Returns true if the provided bitfield requires an exponent value be present.
+bool RequireExponent(chars_format flags) {
+  bool fixed = (flags & chars_format::fixed) == chars_format::fixed;
+  bool scientific =
+      (flags & chars_format::scientific) == chars_format::scientific;
+  return scientific && !fixed;
+}
+
+const int8_t kAsciiToInt[256] = {
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0,  1,  2,  3,  4,  5,  6,  7,  8,
+    9,  -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1};
+
+// Returns true if `ch` is a digit in the given base
+template <int base>
+bool IsDigit(char ch);
+
+// Converts a valid `ch` to its digit value in the given base.
+template <int base>
+unsigned ToDigit(char ch);
+
+// Returns true if `ch` is the exponent delimiter for the given base.
+template <int base>
+bool IsExponentCharacter(char ch);
+
+// Returns the maximum number of significant digits we will read for a float
+// in the given base.
+template <int base>
+constexpr int MantissaDigitsMax();
+
+// Returns the largest consecutive run of digits we will accept when parsing a
+// number in the given base.
+template <int base>
+constexpr int DigitLimit();
+
+// Returns the amount the exponent must be adjusted by for each dropped digit.
+// (For decimal this is 1, since the digits are in base 10 and the exponent base
+// is also 10, but for hexadecimal this is 4, since the digits are base 16 but
+// the exponent base is 2.)
+template <int base>
+constexpr int DigitMagnitude();
+
+template <>
+bool IsDigit<10>(char ch) {
+  return ch >= '0' && ch <= '9';
+}
+template <>
+bool IsDigit<16>(char ch) {
+  return kAsciiToInt[static_cast<unsigned char>(ch)] >= 0;
+}
+
+template <>
+unsigned ToDigit<10>(char ch) {
+  return ch - '0';
+}
+template <>
+unsigned ToDigit<16>(char ch) {
+  return kAsciiToInt[static_cast<unsigned char>(ch)];
+}
+
+template <>
+bool IsExponentCharacter<10>(char ch) {
+  return ch == 'e' || ch == 'E';
+}
+
+template <>
+bool IsExponentCharacter<16>(char ch) {
+  return ch == 'p' || ch == 'P';
+}
+
+template <>
+constexpr int MantissaDigitsMax<10>() {
+  return kDecimalMantissaDigitsMax;
+}
+template <>
+constexpr int MantissaDigitsMax<16>() {
+  return kHexadecimalMantissaDigitsMax;
+}
+
+template <>
+constexpr int DigitLimit<10>() {
+  return kDecimalDigitLimit;
+}
+template <>
+constexpr int DigitLimit<16>() {
+  return kHexadecimalDigitLimit;
+}
+
+template <>
+constexpr int DigitMagnitude<10>() {
+  return 1;
+}
+template <>
+constexpr int DigitMagnitude<16>() {
+  return 4;
+}
+
+// Reads decimal digits from [begin, end) into *out.  Returns the number of
+// digits consumed.
+//
+// After max_digits has been read, keeps consuming characters, but no longer
+// adjusts *out.  If a nonzero digit is dropped this way, *dropped_nonzero_digit
+// is set; otherwise, it is left unmodified.
+//
+// If no digits are matched, returns 0 and leaves *out unchanged.
+//
+// ConsumeDigits does not protect against overflow on *out; max_digits must
+// be chosen with respect to type T to avoid the possibility of overflow.
+template <int base, typename T>
+std::size_t ConsumeDigits(const char* begin, const char* end, int max_digits,
+                          T* out, bool* dropped_nonzero_digit) {
+  if (base == 10) {
+    assert(max_digits <= std::numeric_limits<T>::digits10);
+  } else if (base == 16) {
+    assert(max_digits * 4 <= std::numeric_limits<T>::digits);
+  }
+  const char* const original_begin = begin;
+  T accumulator = *out;
+  const char* significant_digits_end =
+      (end - begin > max_digits) ? begin + max_digits : end;
+  while (begin < significant_digits_end && IsDigit<base>(*begin)) {
+    // Do not guard against *out overflow; max_digits was chosen to avoid this.
+    // Do assert against it, to detect problems in debug builds.
+    auto digit = static_cast<T>(ToDigit<base>(*begin));
+    assert(accumulator * base >= accumulator);
+    accumulator *= base;
+    assert(accumulator + digit >= accumulator);
+    accumulator += digit;
+    ++begin;
+  }
+  bool dropped_nonzero = false;
+  while (begin < end && IsDigit<base>(*begin)) {
+    dropped_nonzero = dropped_nonzero || (*begin != '0');
+    ++begin;
+  }
+  if (dropped_nonzero && dropped_nonzero_digit != nullptr) {
+    *dropped_nonzero_digit = true;
+  }
+  *out = accumulator;
+  return begin - original_begin;
+}
+
+// Returns true if `v` is one of the chars allowed inside parentheses following
+// a NaN.
+bool IsNanChar(char v) {
+  return (v == '_') || (v >= '0' && v <= '9') || (v >= 'a' && v <= 'z') ||
+         (v >= 'A' && v <= 'Z');
+}
+
+// Checks the range [begin, end) for a strtod()-formatted infinity or NaN.  If
+// one is found, sets `out` appropriately and returns true.
+bool ParseInfinityOrNan(const char* begin, const char* end,
+                        strings_internal::ParsedFloat* out) {
+  if (end - begin < 3) {
+    return false;
+  }
+  switch (*begin) {
+    case 'i':
+    case 'I': {
+      // An infinity std::string consists of the characters "inf" or "infinity",
+      // case insensitive.
+      if (strings_internal::memcasecmp(begin + 1, "nf", 2) != 0) {
+        return false;
+      }
+      out->type = strings_internal::FloatType::kInfinity;
+      if (end - begin >= 8 &&
+          strings_internal::memcasecmp(begin + 3, "inity", 5) == 0) {
+        out->end = begin + 8;
+      } else {
+        out->end = begin + 3;
+      }
+      return true;
+    }
+    case 'n':
+    case 'N': {
+      // A NaN consists of the characters "nan", case insensitive, optionally
+      // followed by a parenthesized sequence of zero or more alphanumeric
+      // characters and/or underscores.
+      if (strings_internal::memcasecmp(begin + 1, "an", 2) != 0) {
+        return false;
+      }
+      out->type = strings_internal::FloatType::kNan;
+      out->end = begin + 3;
+      // NaN is allowed to be followed by a parenthesized std::string, consisting of
+      // only the characters [a-zA-Z0-9_].  Match that if it's present.
+      begin += 3;
+      if (begin < end && *begin == '(') {
+        const char* nan_begin = begin + 1;
+        while (nan_begin < end && IsNanChar(*nan_begin)) {
+          ++nan_begin;
+        }
+        if (nan_begin < end && *nan_begin == ')') {
+          // We found an extra NaN specifier range
+          out->subrange_begin = begin + 1;
+          out->subrange_end = nan_begin;
+          out->end = nan_begin + 1;
+        }
+      }
+      return true;
+    }
+    default:
+      return false;
+  }
+}
+}  // namespace
+
+namespace strings_internal {
+
+template <int base>
+strings_internal::ParsedFloat ParseFloat(const char* begin, const char* end,
+                                         chars_format format_flags) {
+  strings_internal::ParsedFloat result;
+
+  // Exit early if we're given an empty range.
+  if (begin == end) return result;
+
+  // Handle the infinity and NaN cases.
+  if (ParseInfinityOrNan(begin, end, &result)) {
+    return result;
+  }
+
+  const char* const mantissa_begin = begin;
+  while (begin < end && *begin == '0') {
+    ++begin;  // skip leading zeros
+  }
+  uint64_t mantissa = 0;
+
+  int exponent_adjustment = 0;
+  bool mantissa_is_inexact = false;
+  std::size_t pre_decimal_digits = ConsumeDigits<base>(
+      begin, end, MantissaDigitsMax<base>(), &mantissa, &mantissa_is_inexact);
+  begin += pre_decimal_digits;
+  int digits_left;
+  if (pre_decimal_digits >= DigitLimit<base>()) {
+    // refuse to parse pathological inputs
+    return result;
+  } else if (pre_decimal_digits > MantissaDigitsMax<base>()) {
+    // We dropped some non-fraction digits on the floor.  Adjust our exponent
+    // to compensate.
+    exponent_adjustment =
+        static_cast<int>(pre_decimal_digits - MantissaDigitsMax<base>());
+    digits_left = 0;
+  } else {
+    digits_left =
+        static_cast<int>(MantissaDigitsMax<base>() - pre_decimal_digits);
+  }
+  if (begin < end && *begin == '.') {
+    ++begin;
+    if (mantissa == 0) {
+      // If we haven't seen any nonzero digits yet, keep skipping zeros.  We
+      // have to adjust the exponent to reflect the changed place value.
+      const char* begin_zeros = begin;
+      while (begin < end && *begin == '0') {
+        ++begin;
+      }
+      std::size_t zeros_skipped = begin - begin_zeros;
+      if (zeros_skipped >= DigitLimit<base>()) {
+        // refuse to parse pathological inputs
+        return result;
+      }
+      exponent_adjustment -= static_cast<int>(zeros_skipped);
+    }
+    std::size_t post_decimal_digits = ConsumeDigits<base>(
+        begin, end, digits_left, &mantissa, &mantissa_is_inexact);
+    begin += post_decimal_digits;
+
+    // Since `mantissa` is an integer, each significant digit we read after
+    // the decimal point requires an adjustment to the exponent. "1.23e0" will
+    // be stored as `mantissa` == 123 and `exponent` == -2 (that is,
+    // "123e-2").
+    if (post_decimal_digits >= DigitLimit<base>()) {
+      // refuse to parse pathological inputs
+      return result;
+    } else if (post_decimal_digits > digits_left) {
+      exponent_adjustment -= digits_left;
+    } else {
+      exponent_adjustment -= post_decimal_digits;
+    }
+  }
+  // If we've found no mantissa whatsoever, this isn't a number.
+  if (mantissa_begin == begin) {
+    return result;
+  }
+  // A bare "." doesn't count as a mantissa either.
+  if (begin - mantissa_begin == 1 && *mantissa_begin == '.') {
+    return result;
+  }
+
+  if (mantissa_is_inexact) {
+    // We dropped significant digits on the floor.  Handle this appropriately.
+    if (base == 10) {
+      // If we truncated significant decimal digits, store the full range of the
+      // mantissa for future big integer math for exact rounding.
+      result.subrange_begin = mantissa_begin;
+      result.subrange_end = begin;
+    } else if (base == 16) {
+      // If we truncated hex digits, reflect this fact by setting the low
+      // ("sticky") bit.  This allows for correct rounding in all cases.
+      mantissa |= 1;
+    }
+  }
+  result.mantissa = mantissa;
+
+  const char* const exponent_begin = begin;
+  result.literal_exponent = 0;
+  bool found_exponent = false;
+  if (AllowExponent(format_flags) && begin < end &&
+      IsExponentCharacter<base>(*begin)) {
+    bool negative_exponent = false;
+    ++begin;
+    if (begin < end && *begin == '-') {
+      negative_exponent = true;
+      ++begin;
+    } else if (begin < end && *begin == '+') {
+      ++begin;
+    }
+    const char* const exponent_digits_begin = begin;
+    // Exponent is always expressed in decimal, even for hexadecimal floats.
+    begin += ConsumeDigits<10>(begin, end, kDecimalExponentDigitsMax,
+                               &result.literal_exponent, nullptr);
+    if (begin == exponent_digits_begin) {
+      // there were no digits where we expected an exponent.  We failed to read
+      // an exponent and should not consume the 'e' after all.  Rewind 'begin'.
+      found_exponent = false;
+      begin = exponent_begin;
+    } else {
+      found_exponent = true;
+      if (negative_exponent) {
+        result.literal_exponent = -result.literal_exponent;
+      }
+    }
+  }
+
+  if (!found_exponent && RequireExponent(format_flags)) {
+    // Provided flags required an exponent, but none was found.  This results
+    // in a failure to scan.
+    return result;
+  }
+
+  // Success!
+  result.type = strings_internal::FloatType::kNumber;
+  if (result.mantissa > 0) {
+    result.exponent = result.literal_exponent +
+                      (DigitMagnitude<base>() * exponent_adjustment);
+  } else {
+    result.exponent = 0;
+  }
+  result.end = begin;
+  return result;
+}
+
+template ParsedFloat ParseFloat<10>(const char* begin, const char* end,
+                                    chars_format format_flags);
+template ParsedFloat ParseFloat<16>(const char* begin, const char* end,
+                                    chars_format format_flags);
+
+}  // namespace strings_internal
+}  // namespace absl
diff --git a/absl/strings/internal/charconv_parse.h b/absl/strings/internal/charconv_parse.h
new file mode 100644
index 000000000000..7a5c0874b804
--- /dev/null
+++ b/absl/strings/internal/charconv_parse.h
@@ -0,0 +1,96 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_STRINGS_INTERNAL_CHARCONV_PARSE_H_
+#define ABSL_STRINGS_INTERNAL_CHARCONV_PARSE_H_
+
+#include <cstdint>
+
+#include "absl/strings/charconv.h"
+
+namespace absl {
+namespace strings_internal {
+
+// Enum indicating whether a parsed float is a number or special value.
+enum class FloatType { kNumber, kInfinity, kNan };
+
+// The decomposed parts of a parsed `float` or `double`.
+struct ParsedFloat {
+  // Representation of the parsed mantissa, with the decimal point adjusted to
+  // make it an integer.
+  //
+  // During decimal scanning, this contains 19 significant digits worth of
+  // mantissa value.  If digits beyond this point are found, they
+  // are truncated, and if any of these dropped digits are nonzero, then
+  // `mantissa` is inexact, and the full mantissa is stored in [subrange_begin,
+  // subrange_end).
+  //
+  // During hexadecimal scanning, this contains 15 significant hex digits worth
+  // of mantissa value.  Digits beyond this point are sticky -- they are
+  // truncated, but if any dropped digits are nonzero, the low bit of mantissa
+  // will be set.  (This allows for precise rounding, and avoids the need
+  // to store the full mantissa in [subrange_begin, subrange_end).)
+  uint64_t mantissa = 0;
+
+  // Floating point expontent.  This reflects any decimal point adjustments and
+  // any truncated digits from the mantissa.  The absolute value of the parsed
+  // number is represented by mantissa * (base ** exponent), where base==10 for
+  // decimal floats, and base==2 for hexadecimal floats.
+  int exponent = 0;
+
+  // The literal exponent value scanned from the input, or 0 if none was
+  // present.  This does not reflect any adjustments applied to mantissa.
+  int literal_exponent = 0;
+
+  // The type of number scanned.
+  FloatType type = FloatType::kNumber;
+
+  // When non-null, [subrange_begin, subrange_end) marks a range of characters
+  // that require further processing.  The meaning is dependent on float type.
+  // If type == kNumber and this is set, this is a "wide input": the input
+  // mantissa contained more than 19 digits.  The range contains the full
+  // mantissa.  It plus `literal_exponent` need to be examined to find the best
+  // floating point match.
+  // If type == kNan and this is set, the range marks the contents of a
+  // matched parenthesized character region after the NaN.
+  const char* subrange_begin = nullptr;
+  const char* subrange_end = nullptr;
+
+  // One-past-the-end of the successfully parsed region, or nullptr if no
+  // matching pattern was found.
+  const char* end = nullptr;
+};
+
+// Read the floating point number in the provided range, and populate
+// ParsedFloat accordingly.
+//
+// format_flags is a bitmask value specifying what patterns this API will match.
+// `scientific` and `fixed`  are honored per std::from_chars rules
+// ([utility.from.chars], C++17): if exactly one of these bits is set, then an
+// exponent is required, or dislallowed, respectively.
+//
+// Template parameter `base` must be either 10 or 16.  For base 16, a "0x" is
+// *not* consumed.  The `hex` bit from format_flags is ignored by ParseFloat.
+template <int base>
+ParsedFloat ParseFloat(const char* begin, const char* end,
+                       absl::chars_format format_flags);
+
+extern template ParsedFloat ParseFloat<10>(const char* begin, const char* end,
+                                           absl::chars_format format_flags);
+extern template ParsedFloat ParseFloat<16>(const char* begin, const char* end,
+                                           absl::chars_format format_flags);
+
+}  // namespace strings_internal
+}  // namespace absl
+#endif  // ABSL_STRINGS_INTERNAL_CHARCONV_PARSE_H_
diff --git a/absl/strings/internal/charconv_parse_test.cc b/absl/strings/internal/charconv_parse_test.cc
new file mode 100644
index 000000000000..1ff86004973a
--- /dev/null
+++ b/absl/strings/internal/charconv_parse_test.cc
@@ -0,0 +1,357 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/strings/internal/charconv_parse.h"
+
+#include <string>
+#include <utility>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/base/internal/raw_logging.h"
+#include "absl/strings/str_cat.h"
+
+using absl::chars_format;
+using absl::strings_internal::FloatType;
+using absl::strings_internal::ParsedFloat;
+using absl::strings_internal::ParseFloat;
+
+namespace {
+
+// Check that a given std::string input is parsed to the expected mantissa and
+// exponent.
+//
+// Input std::string `s` must contain a '$' character.  It marks the end of the
+// characters that should be consumed by the match.  It is stripped from the
+// input to ParseFloat.
+//
+// If input std::string `s` contains '[' and ']' characters, these mark the region
+// of characters that should be marked as the "subrange".  For NaNs, this is
+// the location of the extended NaN std::string.  For numbers, this is the location
+// of the full, over-large mantissa.
+template <int base>
+void ExpectParsedFloat(std::string s, absl::chars_format format_flags,
+                       FloatType expected_type, uint64_t expected_mantissa,
+                       int expected_exponent,
+                       int expected_literal_exponent = -999) {
+  SCOPED_TRACE(s);
+
+  int begin_subrange = -1;
+  int end_subrange = -1;
+  // If s contains '[' and ']', then strip these characters and set the subrange
+  // indices appropriately.
+  std::string::size_type open_bracket_pos = s.find('[');
+  if (open_bracket_pos != std::string::npos) {
+    begin_subrange = static_cast<int>(open_bracket_pos);
+    s.replace(open_bracket_pos, 1, "");
+    std::string::size_type close_bracket_pos = s.find(']');
+    ABSL_RAW_CHECK(close_bracket_pos != absl::string_view::npos,
+                   "Test input contains [ without matching ]");
+    end_subrange = static_cast<int>(close_bracket_pos);
+    s.replace(close_bracket_pos, 1, "");
+  }
+  const std::string::size_type expected_characters_matched = s.find('$');
+  ABSL_RAW_CHECK(expected_characters_matched != std::string::npos,
+                 "Input std::string must contain $");
+  s.replace(expected_characters_matched, 1, "");
+
+  ParsedFloat parsed =
+      ParseFloat<base>(s.data(), s.data() + s.size(), format_flags);
+
+  EXPECT_NE(parsed.end, nullptr);
+  if (parsed.end == nullptr) {
+    return;  // The following tests are not useful if we fully failed to parse
+  }
+  EXPECT_EQ(parsed.type, expected_type);
+  if (begin_subrange == -1) {
+    EXPECT_EQ(parsed.subrange_begin, nullptr);
+    EXPECT_EQ(parsed.subrange_end, nullptr);
+  } else {
+    EXPECT_EQ(parsed.subrange_begin, s.data() + begin_subrange);
+    EXPECT_EQ(parsed.subrange_end, s.data() + end_subrange);
+  }
+  if (parsed.type == FloatType::kNumber) {
+    EXPECT_EQ(parsed.mantissa, expected_mantissa);
+    EXPECT_EQ(parsed.exponent, expected_exponent);
+    if (expected_literal_exponent != -999) {
+      EXPECT_EQ(parsed.literal_exponent, expected_literal_exponent);
+    }
+  }
+  auto characters_matched = static_cast<int>(parsed.end - s.data());
+  EXPECT_EQ(characters_matched, expected_characters_matched);
+}
+
+// Check that a given std::string input is parsed to the expected mantissa and
+// exponent.
+//
+// Input std::string `s` must contain a '$' character.  It marks the end of the
+// characters that were consumed by the match.
+template <int base>
+void ExpectNumber(std::string s, absl::chars_format format_flags,
+                  uint64_t expected_mantissa, int expected_exponent,
+                  int expected_literal_exponent = -999) {
+  ExpectParsedFloat<base>(std::move(s), format_flags, FloatType::kNumber,
+                          expected_mantissa, expected_exponent,
+                          expected_literal_exponent);
+}
+
+// Check that a given std::string input is parsed to the given special value.
+//
+// This tests against both number bases, since infinities and NaNs have
+// identical representations in both modes.
+void ExpectSpecial(const std::string& s, absl::chars_format format_flags,
+                   FloatType type) {
+  ExpectParsedFloat<10>(s, format_flags, type, 0, 0);
+  ExpectParsedFloat<16>(s, format_flags, type, 0, 0);
+}
+
+// Check that a given input std::string is not matched by Float.
+template <int base>
+void ExpectFailedParse(absl::string_view s, absl::chars_format format_flags) {
+  ParsedFloat parsed =
+      ParseFloat<base>(s.data(), s.data() + s.size(), format_flags);
+  EXPECT_EQ(parsed.end, nullptr);
+}
+
+TEST(ParseFloat, SimpleValue) {
+  // Test that various forms of floating point numbers all parse correctly.
+  ExpectNumber<10>("1.23456789e5$", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("1.23456789e+5$", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("1.23456789E5$", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("1.23456789e05$", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("123.456789e3$", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("0.000123456789e9$", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("123456.789$", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("123456789e-3$", chars_format::general, 123456789, -3);
+
+  ExpectNumber<16>("1.234abcdefp28$", chars_format::general, 0x1234abcdef, -8);
+  ExpectNumber<16>("1.234abcdefp+28$", chars_format::general, 0x1234abcdef, -8);
+  ExpectNumber<16>("1.234ABCDEFp28$", chars_format::general, 0x1234abcdef, -8);
+  ExpectNumber<16>("1.234AbCdEfP0028$", chars_format::general, 0x1234abcdef,
+                   -8);
+  ExpectNumber<16>("123.4abcdefp20$", chars_format::general, 0x1234abcdef, -8);
+  ExpectNumber<16>("0.0001234abcdefp44$", chars_format::general, 0x1234abcdef,
+                   -8);
+  ExpectNumber<16>("1234abcd.ef$", chars_format::general, 0x1234abcdef, -8);
+  ExpectNumber<16>("1234abcdefp-8$", chars_format::general, 0x1234abcdef, -8);
+
+  // ExpectNumber does not attempt to drop trailing zeroes.
+  ExpectNumber<10>("0001.2345678900e005$", chars_format::general, 12345678900,
+                   -5);
+  ExpectNumber<16>("0001.234abcdef000p28$", chars_format::general,
+                   0x1234abcdef000, -20);
+
+  // Ensure non-matching characters after a number are ignored, even when they
+  // look like potentially matching characters.
+  ExpectNumber<10>("1.23456789e5$   ", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("1.23456789e5$e5e5", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("1.23456789e5$.25", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("1.23456789e5$-", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("1.23456789e5$PUPPERS!!!", chars_format::general, 123456789,
+                   -3);
+  ExpectNumber<10>("123456.789$efghij", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("123456.789$e", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("123456.789$p5", chars_format::general, 123456789, -3);
+  ExpectNumber<10>("123456.789$.10", chars_format::general, 123456789, -3);
+
+  ExpectNumber<16>("1.234abcdefp28$   ", chars_format::general, 0x1234abcdef,
+                   -8);
+  ExpectNumber<16>("1.234abcdefp28$p28", chars_format::general, 0x1234abcdef,
+                   -8);
+  ExpectNumber<16>("1.234abcdefp28$.125", chars_format::general, 0x1234abcdef,
+                   -8);
+  ExpectNumber<16>("1.234abcdefp28$-", chars_format::general, 0x1234abcdef, -8);
+  ExpectNumber<16>("1.234abcdefp28$KITTEHS!!!", chars_format::general,
+                   0x1234abcdef, -8);
+  ExpectNumber<16>("1234abcd.ef$ghijk", chars_format::general, 0x1234abcdef,
+                   -8);
+  ExpectNumber<16>("1234abcd.ef$p", chars_format::general, 0x1234abcdef, -8);
+  ExpectNumber<16>("1234abcd.ef$.10", chars_format::general, 0x1234abcdef, -8);
+
+  // Ensure we can read a full resolution mantissa without overflow.
+  ExpectNumber<10>("9999999999999999999$", chars_format::general,
+                   9999999999999999999u, 0);
+  ExpectNumber<16>("fffffffffffffff$", chars_format::general,
+                   0xfffffffffffffffu, 0);
+
+  // Check that zero is consistently read.
+  ExpectNumber<10>("0$", chars_format::general, 0, 0);
+  ExpectNumber<16>("0$", chars_format::general, 0, 0);
+  ExpectNumber<10>("000000000000000000000000000000000000000$",
+                   chars_format::general, 0, 0);
+  ExpectNumber<16>("000000000000000000000000000000000000000$",
+                   chars_format::general, 0, 0);
+  ExpectNumber<10>("0000000000000000000000.000000000000000000$",
+                   chars_format::general, 0, 0);
+  ExpectNumber<16>("0000000000000000000000.000000000000000000$",
+                   chars_format::general, 0, 0);
+  ExpectNumber<10>("0.00000000000000000000000000000000e123456$",
+                   chars_format::general, 0, 0);
+  ExpectNumber<16>("0.00000000000000000000000000000000p123456$",
+                   chars_format::general, 0, 0);
+}
+
+TEST(ParseFloat, LargeDecimalMantissa) {
+  // After 19 significant decimal digits in the mantissa, ParsedFloat will
+  // truncate additional digits.  We need to test that:
+  //   1) the truncation to 19 digits happens
+  //   2) the returned exponent reflects the dropped significant digits
+  //   3) a correct literal_exponent is set
+  //
+  // If and only if a significant digit is found after 19 digits, then the
+  // entirety of the mantissa in case the exact value is needed to make a
+  // rounding decision.  The [ and ] characters below denote where such a
+  // subregion was marked by by ParseFloat.  They are not part of the input.
+
+  // Mark a capture group only if a dropped digit is significant (nonzero).
+  ExpectNumber<10>("100000000000000000000000000$", chars_format::general,
+                   1000000000000000000,
+                   /* adjusted exponent */ 8);
+
+  ExpectNumber<10>("123456789123456789100000000$", chars_format::general,
+                   1234567891234567891,
+                   /* adjusted exponent */ 8);
+
+  ExpectNumber<10>("[123456789123456789123456789]$", chars_format::general,
+                   1234567891234567891,
+                   /* adjusted exponent */ 8,
+                   /* literal exponent */ 0);
+
+  ExpectNumber<10>("[123456789123456789100000009]$", chars_format::general,
+                   1234567891234567891,
+                   /* adjusted exponent */ 8,
+                   /* literal exponent */ 0);
+
+  ExpectNumber<10>("[123456789123456789120000000]$", chars_format::general,
+                   1234567891234567891,
+                   /* adjusted exponent */ 8,
+                   /* literal exponent */ 0);
+
+  // Leading zeroes should not count towards the 19 significant digit limit
+  ExpectNumber<10>("[00000000123456789123456789123456789]$",
+                   chars_format::general, 1234567891234567891,
+                   /* adjusted exponent */ 8,
+                   /* literal exponent */ 0);
+
+  ExpectNumber<10>("00000000123456789123456789100000000$",
+                   chars_format::general, 1234567891234567891,
+                   /* adjusted exponent */ 8);
+
+  // Truncated digits after the decimal point should not cause a further
+  // exponent adjustment.
+  ExpectNumber<10>("1.234567891234567891e123$", chars_format::general,
+                   1234567891234567891, 105);
+  ExpectNumber<10>("[1.23456789123456789123456789]e123$", chars_format::general,
+                   1234567891234567891,
+                   /* adjusted exponent */ 105,
+                   /* literal exponent */ 123);
+
+  // Ensure we truncate, and not round.  (The from_chars algorithm we use
+  // depends on our guess missing low, if it misses, so we need the rounding
+  // error to be downward.)
+  ExpectNumber<10>("[1999999999999999999999]$", chars_format::general,
+                   1999999999999999999,
+                   /* adjusted exponent */ 3,
+                   /* literal exponent */ 0);
+}
+
+TEST(ParseFloat, LargeHexadecimalMantissa) {
+  // After 15 significant hex digits in the mantissa, ParsedFloat will treat
+  // additional digits as sticky,  We need to test that:
+  //   1) The truncation to 15 digits happens
+  //   2) The returned exponent reflects the dropped significant digits
+  //   3) If a nonzero digit is dropped, the low bit of mantissa is set.
+
+  ExpectNumber<16>("123456789abcdef123456789abcdef$", chars_format::general,
+                   0x123456789abcdef, 60);
+
+  // Leading zeroes should not count towards the 15 significant digit limit
+  ExpectNumber<16>("000000123456789abcdef123456789abcdef$",
+                   chars_format::general, 0x123456789abcdef, 60);
+
+  // Truncated digits after the radix point should not cause a further
+  // exponent adjustment.
+  ExpectNumber<16>("1.23456789abcdefp100$", chars_format::general,
+                   0x123456789abcdef, 44);
+  ExpectNumber<16>("1.23456789abcdef123456789abcdefp100$",
+                   chars_format::general, 0x123456789abcdef, 44);
+
+  // test sticky digit behavior.  The low bit should be set iff any dropped
+  // digit is nonzero.
+  ExpectNumber<16>("123456789abcdee123456789abcdee$", chars_format::general,
+                   0x123456789abcdef, 60);
+  ExpectNumber<16>("123456789abcdee000000000000001$", chars_format::general,
+                   0x123456789abcdef, 60);
+  ExpectNumber<16>("123456789abcdee000000000000000$", chars_format::general,
+                   0x123456789abcdee, 60);
+}
+
+TEST(ParseFloat, ScientificVsFixed) {
+  // In fixed mode, an exponent is never matched (but the remainder of the
+  // number will be matched.)
+  ExpectNumber<10>("1.23456789$e5", chars_format::fixed, 123456789, -8);
+  ExpectNumber<10>("123456.789$", chars_format::fixed, 123456789, -3);
+  ExpectNumber<16>("1.234abcdef$p28", chars_format::fixed, 0x1234abcdef, -36);
+  ExpectNumber<16>("1234abcd.ef$", chars_format::fixed, 0x1234abcdef, -8);
+
+  // In scientific mode, numbers don't match *unless* they have an exponent.
+  ExpectNumber<10>("1.23456789e5$", chars_format::scientific, 123456789, -3);
+  ExpectFailedParse<10>("-123456.789$", chars_format::scientific);
+  ExpectNumber<16>("1.234abcdefp28$", chars_format::scientific, 0x1234abcdef,
+                   -8);
+  ExpectFailedParse<16>("1234abcd.ef$", chars_format::scientific);
+}
+
+TEST(ParseFloat, Infinity) {
+  ExpectFailedParse<10>("in", chars_format::general);
+  ExpectFailedParse<16>("in", chars_format::general);
+  ExpectFailedParse<10>("inx", chars_format::general);
+  ExpectFailedParse<16>("inx", chars_format::general);
+  ExpectSpecial("inf$", chars_format::general, FloatType::kInfinity);
+  ExpectSpecial("Inf$", chars_format::general, FloatType::kInfinity);
+  ExpectSpecial("INF$", chars_format::general, FloatType::kInfinity);
+  ExpectSpecial("inf$inite", chars_format::general, FloatType::kInfinity);
+  ExpectSpecial("iNfInItY$", chars_format::general, FloatType::kInfinity);
+  ExpectSpecial("infinity$!!!", chars_format::general, FloatType::kInfinity);
+}
+
+TEST(ParseFloat, NaN) {
+  ExpectFailedParse<10>("na", chars_format::general);
+  ExpectFailedParse<16>("na", chars_format::general);
+  ExpectFailedParse<10>("nah", chars_format::general);
+  ExpectFailedParse<16>("nah", chars_format::general);
+  ExpectSpecial("nan$", chars_format::general, FloatType::kNan);
+  ExpectSpecial("NaN$", chars_format::general, FloatType::kNan);
+  ExpectSpecial("nAn$", chars_format::general, FloatType::kNan);
+  ExpectSpecial("NAN$", chars_format::general, FloatType::kNan);
+  ExpectSpecial("NaN$aNaNaNaNaBatman!", chars_format::general, FloatType::kNan);
+
+  // A parenthesized sequence of the characters [a-zA-Z0-9_] is allowed to
+  // appear after an NaN.  Check that this is allowed, and that the correct
+  // characters are grouped.
+  //
+  // (The characters [ and ] in the pattern below delimit the expected matched
+  // subgroup; they are not part of the input passed to ParseFloat.)
+  ExpectSpecial("nan([0xabcdef])$", chars_format::general, FloatType::kNan);
+  ExpectSpecial("nan([0xabcdef])$...", chars_format::general, FloatType::kNan);
+  ExpectSpecial("nan([0xabcdef])$)...", chars_format::general, FloatType::kNan);
+  ExpectSpecial("nan([])$", chars_format::general, FloatType::kNan);
+  ExpectSpecial("nan([aAzZ09_])$", chars_format::general, FloatType::kNan);
+  // If the subgroup contains illegal characters, don't match it at all.
+  ExpectSpecial("nan$(bad-char)", chars_format::general, FloatType::kNan);
+  // Also cope with a missing close paren.
+  ExpectSpecial("nan$(0xabcdef", chars_format::general, FloatType::kNan);
+}
+
+}  // namespace