diff options
Diffstat (limited to 'absl/strings/internal')
-rw-r--r-- | absl/strings/internal/charconv_bigint.cc | 357 | ||||
-rw-r--r-- | absl/strings/internal/charconv_bigint.h | 426 | ||||
-rw-r--r-- | absl/strings/internal/charconv_bigint_test.cc | 203 | ||||
-rw-r--r-- | absl/strings/internal/charconv_parse.cc | 496 | ||||
-rw-r--r-- | absl/strings/internal/charconv_parse.h | 96 | ||||
-rw-r--r-- | absl/strings/internal/charconv_parse_test.cc | 357 |
6 files changed, 1935 insertions, 0 deletions
diff --git a/absl/strings/internal/charconv_bigint.cc b/absl/strings/internal/charconv_bigint.cc new file mode 100644 index 000000000000..3e7296e7068a --- /dev/null +++ b/absl/strings/internal/charconv_bigint.cc @@ -0,0 +1,357 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/strings/internal/charconv_bigint.h" + +#include <algorithm> +#include <cassert> +#include <string> + +namespace absl { +namespace strings_internal { + +namespace { + +// Table containing some large powers of 5, for fast computation. + +// Constant step size for entries in the kLargePowersOfFive table. Each entry +// is larger than the previous entry by a factor of 5**kLargePowerOfFiveStep +// (or 5**27). +// +// In other words, the Nth entry in the table is 5**(27*N). +// +// 5**27 is the largest power of 5 that fits in 64 bits. +constexpr int kLargePowerOfFiveStep = 27; + +// The largest legal index into the kLargePowersOfFive table. +// +// In other words, the largest precomputed power of 5 is 5**(27*20). +constexpr int kLargestPowerOfFiveIndex = 20; + +// Table of powers of (5**27), up to (5**27)**20 == 5**540. +// +// Used to generate large powers of 5 while limiting the number of repeated +// multiplications required. +// +// clang-format off +const uint32_t kLargePowersOfFive[] = { +// 5**27 (i=1), start=0, end=2 + 0xfa10079dU, 0x6765c793U, +// 5**54 (i=2), start=2, end=6 + 0x97d9f649U, 0x6664242dU, 0x29939b14U, 0x29c30f10U, +// 5**81 (i=3), start=6, end=12 + 0xc4f809c5U, 0x7bf3f22aU, 0x67bdae34U, 0xad340517U, 0x369d1b5fU, 0x10de1593U, +// 5**108 (i=4), start=12, end=20 + 0x92b260d1U, 0x9efff7c7U, 0x81de0ec6U, 0xaeba5d56U, 0x410664a4U, 0x4f40737aU, + 0x20d3846fU, 0x06d00f73U, +// 5**135 (i=5), start=20, end=30 + 0xff1b172dU, 0x13a1d71cU, 0xefa07617U, 0x7f682d3dU, 0xff8c90c0U, 0x3f0131e7U, + 0x3fdcb9feU, 0x917b0177U, 0x16c407a7U, 0x02c06b9dU, +// 5**162 (i=6), start=30, end=42 + 0x960f7199U, 0x056667ecU, 0xe07aefd8U, 0x80f2b9ccU, 0x8273f5e3U, 0xeb9a214aU, + 0x40b38005U, 0x0e477ad4U, 0x277d08e6U, 0xfa28b11eU, 0xd3f7d784U, 0x011c835bU, +// 5**189 (i=7), start=42, end=56 + 0xf723d9d5U, 0x3282d3f3U, 0xe00857d1U, 0x69659d25U, 0x2cf117cfU, 0x24da6d07U, + 0x954d1417U, 0x3e5d8cedU, 0x7a8bb766U, 0xfd785ae6U, 0x645436d2U, 0x40c78b34U, + 0x94151217U, 0x0072e9f7U, +// 5**216 (i=8), start=56, end=72 + 0x2b416aa1U, 0x7893c5a7U, 0xe37dc6d4U, 0x2bad2beaU, 0xf0fc846cU, 0x7575ae4bU, + 0x62587b14U, 0x83b67a34U, 0x02110cdbU, 0xf7992f55U, 0x00deb022U, 0xa4a23becU, + 0x8af5c5cdU, 0xb85b654fU, 0x818df38bU, 0x002e69d2U, +// 5**243 (i=9), start=72, end=90 + 0x3518cbbdU, 0x20b0c15fU, 0x38756c2fU, 0xfb5dc3ddU, 0x22ad2d94U, 0xbf35a952U, + 0xa699192aU, 0x9a613326U, 0xad2a9cedU, 0xd7f48968U, 0xe87dfb54U, 0xc8f05db6U, + 0x5ef67531U, 0x31c1ab49U, 0xe202ac9fU, 0x9b2957b5U, 0xa143f6d3U, 0x0012bf07U, +// 5**270 (i=10), start=90, end=110 + 0x8b971de9U, 0x21aba2e1U, 0x63944362U, 0x57172336U, 0xd9544225U, 0xfb534166U, + 0x08c563eeU, 0x14640ee2U, 0x24e40d31U, 0x02b06537U, 0x03887f14U, 0x0285e533U, + 0xb744ef26U, 0x8be3a6c4U, 0x266979b4U, 0x6761ece2U, 0xd9cb39e4U, 0xe67de319U, + 0x0d39e796U, 0x00079250U, +// 5**297 (i=11), start=110, end=132 + 0x260eb6e5U, 0xf414a796U, 0xee1a7491U, 0xdb9368ebU, 0xf50c105bU, 0x59157750U, + 0x9ed2fb5cU, 0xf6e56d8bU, 0xeaee8d23U, 0x0f319f75U, 0x2aa134d6U, 0xac2908e9U, + 0xd4413298U, 0x02f02a55U, 0x989d5a7aU, 0x70dde184U, 0xba8040a7U, 0x03200981U, + 0xbe03b11cU, 0x3c1c2a18U, 0xd60427a1U, 0x00030ee0U, +// 5**324 (i=12), start=132, end=156 + 0xce566d71U, 0xf1c4aa25U, 0x4e93ca53U, 0xa72283d0U, 0x551a73eaU, 0x3d0538e2U, + 0x8da4303fU, 0x6a58de60U, 0x0e660221U, 0x49cf61a6U, 0x8d058fc1U, 0xb9d1a14cU, + 0x4bab157dU, 0xc85c6932U, 0x518c8b9eU, 0x9b92b8d0U, 0x0d8a0e21U, 0xbd855df9U, + 0xb3ea59a1U, 0x8da29289U, 0x4584d506U, 0x3752d80fU, 0xb72569c6U, 0x00013c33U, +// 5**351 (i=13), start=156, end=182 + 0x190f354dU, 0x83695cfeU, 0xe5a4d0c7U, 0xb60fb7e8U, 0xee5bbcc4U, 0xb922054cU, + 0xbb4f0d85U, 0x48394028U, 0x1d8957dbU, 0x0d7edb14U, 0x4ecc7587U, 0x505e9e02U, + 0x4c87f36bU, 0x99e66bd6U, 0x44b9ed35U, 0x753037d4U, 0xe5fe5f27U, 0x2742c203U, + 0x13b2ed2bU, 0xdc525d2cU, 0xe6fde59aU, 0x77ffb18fU, 0x13c5752cU, 0x08a84bccU, + 0x859a4940U, 0x00007fb6U, +// 5**378 (i=14), start=182, end=210 + 0x4f98cb39U, 0xa60edbbcU, 0x83b5872eU, 0xa501acffU, 0x9cc76f78U, 0xbadd4c73U, + 0x43e989faU, 0xca7acf80U, 0x2e0c824fU, 0xb19f4ffcU, 0x092fd81cU, 0xe4eb645bU, + 0xa1ff84c2U, 0x8a5a83baU, 0xa8a1fae9U, 0x1db43609U, 0xb0fed50bU, 0x0dd7d2bdU, + 0x7d7accd8U, 0x91fa640fU, 0x37dcc6c5U, 0x1c417fd5U, 0xe4d462adU, 0xe8a43399U, + 0x131bf9a5U, 0x8df54d29U, 0x36547dc1U, 0x00003395U, +// 5**405 (i=15), start=210, end=240 + 0x5bd330f5U, 0x77d21967U, 0x1ac481b7U, 0x6be2f7ceU, 0x7f4792a9U, 0xe84c2c52U, + 0x84592228U, 0x9dcaf829U, 0xdab44ce1U, 0x3d0c311bU, 0x532e297dU, 0x4704e8b4U, + 0x9cdc32beU, 0x41e64d9dU, 0x7717bea1U, 0xa824c00dU, 0x08f50b27U, 0x0f198d77U, + 0x49bbfdf0U, 0x025c6c69U, 0xd4e55cd3U, 0xf083602bU, 0xb9f0fecdU, 0xc0864aeaU, + 0x9cb98681U, 0xaaf620e9U, 0xacb6df30U, 0x4faafe66U, 0x8af13c3bU, 0x000014d5U, +// 5**432 (i=16), start=240, end=272 + 0x682bb941U, 0x89a9f297U, 0xcba75d7bU, 0x404217b1U, 0xb4e519e9U, 0xa1bc162bU, + 0xf7f5910aU, 0x98715af5U, 0x2ff53e57U, 0xe3ef118cU, 0x490c4543U, 0xbc9b1734U, + 0x2affbe4dU, 0x4cedcb4cU, 0xfb14e99eU, 0x35e34212U, 0xece39c24U, 0x07673ab3U, + 0xe73115ddU, 0xd15d38e7U, 0x093eed3bU, 0xf8e7eac5U, 0x78a8cc80U, 0x25227aacU, + 0x3f590551U, 0x413da1cbU, 0xdf643a55U, 0xab65ad44U, 0xd70b23d7U, 0xc672cd76U, + 0x3364ea62U, 0x0000086aU, +// 5**459 (i=17), start=272, end=306 + 0x22f163ddU, 0x23cf07acU, 0xbe2af6c2U, 0xf412f6f6U, 0xc3ff541eU, 0x6eeaf7deU, + 0xa47047e0U, 0x408cda92U, 0x0f0eeb08U, 0x56deba9dU, 0xcfc6b090U, 0x8bbbdf04U, + 0x3933cdb3U, 0x9e7bb67dU, 0x9f297035U, 0x38946244U, 0xee1d37bbU, 0xde898174U, + 0x63f3559dU, 0x705b72fbU, 0x138d27d9U, 0xf8603a78U, 0x735eec44U, 0xe30987d5U, + 0xc6d38070U, 0x9cfe548eU, 0x9ff01422U, 0x7c564aa8U, 0x91cc60baU, 0xcbc3565dU, + 0x7550a50bU, 0x6909aeadU, 0x13234c45U, 0x00000366U, +// 5**486 (i=18), start=306, end=342 + 0x17954989U, 0x3a7d7709U, 0x98042de5U, 0xa9011443U, 0x45e723c2U, 0x269ffd6fU, + 0x58852a46U, 0xaaa1042aU, 0x2eee8153U, 0xb2b6c39eU, 0xaf845b65U, 0xf6c365d7U, + 0xe4cffb2bU, 0xc840e90cU, 0xabea8abbU, 0x5c58f8d2U, 0x5c19fa3aU, 0x4670910aU, + 0x4449f21cU, 0xefa645b3U, 0xcc427decU, 0x083c3d73U, 0x467cb413U, 0x6fe10ae4U, + 0x3caffc72U, 0x9f8da55eU, 0x5e5c8ea7U, 0x490594bbU, 0xf0871b0bU, 0xdd89816cU, + 0x8e931df8U, 0xe85ce1c9U, 0xcca090a5U, 0x575fa16bU, 0x6b9f106cU, 0x0000015fU, +// 5**513 (i=19), start=342, end=380 + 0xee20d805U, 0x57bc3c07U, 0xcdea624eU, 0xd3f0f52dU, 0x9924b4f4U, 0xcf968640U, + 0x61d41962U, 0xe87fb464U, 0xeaaf51c7U, 0x564c8b60U, 0xccda4028U, 0x529428bbU, + 0x313a1fa8U, 0x96bd0f94U, 0x7a82ebaaU, 0xad99e7e9U, 0xf2668cd4U, 0xbe33a45eU, + 0xfd0db669U, 0x87ee369fU, 0xd3ec20edU, 0x9c4d7db7U, 0xdedcf0d8U, 0x7cd2ca64U, + 0xe25a6577U, 0x61003fd4U, 0xe56f54ccU, 0x10b7c748U, 0x40526e5eU, 0x7300ae87U, + 0x5c439261U, 0x2c0ff469U, 0xbf723f12U, 0xb2379b61U, 0xbf59b4f5U, 0xc91b1c3fU, + 0xf0046d27U, 0x0000008dU, +// 5**540 (i=20), start=380, end=420 + 0x525c9e11U, 0xf4e0eb41U, 0xebb2895dU, 0x5da512f9U, 0x7d9b29d4U, 0x452f4edcU, + 0x0b90bc37U, 0x341777cbU, 0x63d269afU, 0x1da77929U, 0x0a5c1826U, 0x77991898U, + 0x5aeddf86U, 0xf853a877U, 0x538c31ccU, 0xe84896daU, 0xb7a0010bU, 0x17ef4de5U, + 0xa52a2adeU, 0x029fd81cU, 0x987ce701U, 0x27fefd77U, 0xdb46c66fU, 0x5d301900U, + 0x496998c0U, 0xbb6598b9U, 0x5eebb607U, 0xe547354aU, 0xdf4a2f7eU, 0xf06c4955U, + 0x96242ffaU, 0x1775fb27U, 0xbecc58ceU, 0xebf2a53bU, 0x3eaad82aU, 0xf41137baU, + 0x573e6fbaU, 0xfb4866b8U, 0x54002148U, 0x00000039U, +}; +// clang-format on + +// Returns a pointer to the big integer data for (5**27)**i. i must be +// between 1 and 20, inclusive. +const uint32_t* LargePowerOfFiveData(int i) { + return kLargePowersOfFive + i * (i - 1); +} + +// Returns the size of the big integer data for (5**27)**i, in words. i must be +// between 1 and 20, inclusive. +int LargePowerOfFiveSize(int i) { return 2 * i; } +} // namespace + +const uint32_t kFiveToNth[14] = { + 1, 5, 25, 125, 625, 3125, 15625, + 78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125, +}; + +const uint32_t kTenToNth[10] = { + 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, +}; + +template <int max_words> +int BigUnsigned<max_words>::ReadFloatMantissa(const ParsedFloat& fp, + int significant_digits) { + SetToZero(); + assert(fp.type == FloatType::kNumber); + + if (fp.subrange_begin == nullptr) { + // We already exactly parsed the mantissa, so no more work is necessary. + words_[0] = fp.mantissa & 0xffffffffu; + words_[1] = fp.mantissa >> 32; + if (words_[1]) { + size_ = 2; + } else if (words_[0]) { + size_ = 1; + } + return fp.exponent; + } + int exponent_adjust = + ReadDigits(fp.subrange_begin, fp.subrange_end, significant_digits); + return fp.literal_exponent + exponent_adjust; +} + +template <int max_words> +int BigUnsigned<max_words>::ReadDigits(const char* begin, const char* end, + int significant_digits) { + assert(significant_digits <= Digits10() + 1); + SetToZero(); + + bool after_decimal_point = false; + // Discard any leading zeroes before the decimal point + while (begin < end && *begin == '0') { + ++begin; + } + int dropped_digits = 0; + // Discard any trailing zeroes. These may or may not be after the decimal + // point. + while (begin < end && *std::prev(end) == '0') { + --end; + ++dropped_digits; + } + if (begin < end && *std::prev(end) == '.') { + // If the std::string ends in '.', either before or after dropping zeroes, then + // drop the decimal point and look for more digits to drop. + dropped_digits = 0; + --end; + while (begin < end && *std::prev(end) == '0') { + --end; + ++dropped_digits; + } + } else if (dropped_digits) { + // We dropped digits, and aren't sure if they're before or after the decimal + // point. Figure that out now. + const char* dp = std::find(begin, end, '.'); + if (dp != end) { + // The dropped trailing digits were after the decimal point, so don't + // count them. + dropped_digits = 0; + } + } + // Any non-fraction digits we dropped need to be accounted for in our exponent + // adjustment. + int exponent_adjust = dropped_digits; + + uint32_t queued = 0; + int digits_queued = 0; + for (; begin != end && significant_digits > 0; ++begin) { + if (*begin == '.') { + after_decimal_point = true; + continue; + } + if (after_decimal_point) { + // For each fractional digit we emit in our parsed integer, adjust our + // decimal exponent to compensate. + --exponent_adjust; + } + int digit = (*begin - '0'); + --significant_digits; + if (significant_digits == 0 && std::next(begin) != end && + (digit == 0 || digit == 5)) { + // If this is the very last significant digit, but insignificant digits + // remain, we know that the last of those remaining significant digits is + // nonzero. (If it wasn't, we would have stripped it before we got here.) + // So if this final digit is a 0 or 5, adjust it upward by 1. + // + // This adjustment is what allows incredibly large mantissas ending in + // 500000...000000000001 to correctly round up, rather than to nearest. + ++digit; + } + queued = 10 * queued + digit; + ++digits_queued; + if (digits_queued == kMaxSmallPowerOfTen) { + MultiplyBy(kTenToNth[kMaxSmallPowerOfTen]); + AddWithCarry(0, queued); + queued = digits_queued = 0; + } + } + // Encode any remaining digits. + if (digits_queued) { + MultiplyBy(kTenToNth[digits_queued]); + AddWithCarry(0, queued); + } + + // If any insignificant digits remain, we will drop them. But if we have not + // yet read the decimal point, then we have to adjust the exponent to account + // for the dropped digits. + if (begin < end && !after_decimal_point) { + // This call to std::find will result in a pointer either to the decimal + // point, or to the end of our buffer if there was none. + // + // Either way, [begin, decimal_point) will contain the set of dropped digits + // that require an exponent adjustment. + const char* decimal_point = std::find(begin, end, '.'); + exponent_adjust += (decimal_point - begin); + } + return exponent_adjust; +} + +template <int max_words> +/* static */ BigUnsigned<max_words> BigUnsigned<max_words>::FiveToTheNth( + int n) { + BigUnsigned answer(1u); + + // Seed from the table of large powers, if possible. + bool first_pass = true; + while (n >= kLargePowerOfFiveStep) { + int big_power = + std::min(n / kLargePowerOfFiveStep, kLargestPowerOfFiveIndex); + if (first_pass) { + // just copy, rather than multiplying by 1 + std::copy( + LargePowerOfFiveData(big_power), + LargePowerOfFiveData(big_power) + LargePowerOfFiveSize(big_power), + answer.words_); + answer.size_ = LargePowerOfFiveSize(big_power); + first_pass = false; + } else { + answer.MultiplyBy(LargePowerOfFiveSize(big_power), + LargePowerOfFiveData(big_power)); + } + n -= kLargePowerOfFiveStep * big_power; + } + answer.MultiplyByFiveToTheNth(n); + return answer; +} + +template <int max_words> +void BigUnsigned<max_words>::MultiplyStep(int original_size, + const uint32_t* other_words, + int other_size, int step) { + int this_i = std::min(original_size - 1, step); + int other_i = step - this_i; + + uint64_t this_word = 0; + uint64_t carry = 0; + for (; this_i >= 0 && other_i < other_size; --this_i, ++other_i) { + uint64_t product = words_[this_i]; + product *= other_words[other_i]; + this_word += product; + carry += (this_word >> 32); + this_word &= 0xffffffff; + } + AddWithCarry(step + 1, carry); + words_[step] = this_word & 0xffffffff; + if (this_word > 0 && size_ <= step) { + size_ = step + 1; + } +} + +template <int max_words> +std::string BigUnsigned<max_words>::ToString() const { + BigUnsigned<max_words> copy = *this; + std::string result; + // Build result in reverse order + while (copy.size() > 0) { + int next_digit = copy.DivMod<10>(); + result.push_back('0' + next_digit); + } + if (result.empty()) { + result.push_back('0'); + } + std::reverse(result.begin(), result.end()); + return result; +} + +template class BigUnsigned<4>; +template class BigUnsigned<84>; + +} // namespace strings_internal +} // namespace absl diff --git a/absl/strings/internal/charconv_bigint.h b/absl/strings/internal/charconv_bigint.h new file mode 100644 index 000000000000..aa70af2c2894 --- /dev/null +++ b/absl/strings/internal/charconv_bigint.h @@ -0,0 +1,426 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_ +#define ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_ + +#include <algorithm> +#include <cstdint> +#include <iostream> +#include <string> + +#include "absl/strings/ascii.h" +#include "absl/strings/internal/charconv_parse.h" +#include "absl/strings/string_view.h" + +namespace absl { +namespace strings_internal { + +// The largest power that 5 that can be raised to, and still fit in a uint32_t. +constexpr int kMaxSmallPowerOfFive = 13; +// The largest power that 10 that can be raised to, and still fit in a uint32_t. +constexpr int kMaxSmallPowerOfTen = 9; + +extern const uint32_t kFiveToNth[kMaxSmallPowerOfFive + 1]; +extern const uint32_t kTenToNth[kMaxSmallPowerOfTen + 1]; + +// Large, fixed-width unsigned integer. +// +// Exact rounding for decimal-to-binary floating point conversion requires very +// large integer math, but a design goal of absl::from_chars is to avoid +// allocating memory. The integer precision needed for decimal-to-binary +// conversions is large but bounded, so a huge fixed-width integer class +// suffices. +// +// This is an intentionally limited big integer class. Only needed operations +// are implemented. All storage lives in an array data member, and all +// arithmetic is done in-place, to avoid requiring separate storage for operand +// and result. +// +// This is an internal class. Some methods live in the .cc file, and are +// instantiated only for the values of max_words we need. +template <int max_words> +class BigUnsigned { + public: + static_assert(max_words == 4 || max_words == 84, + "unsupported max_words value"); + + BigUnsigned() : size_(0), words_{} {} + explicit BigUnsigned(uint32_t v) : size_(v > 0 ? 1 : 0), words_{v} {} + explicit BigUnsigned(uint64_t v) + : size_(0), + words_{static_cast<uint32_t>(v & 0xffffffff), + static_cast<uint32_t>(v >> 32)} { + if (words_[1]) { + size_ = 2; + } else if (words_[0]) { + size_ = 1; + } + } + + // Constructs a BigUnsigned from the given string_view containing a decimal + // value. If the input std::string is not a decimal integer, constructs a 0 + // instead. + explicit BigUnsigned(absl::string_view sv) : size_(0), words_{} { + // Check for valid input, returning a 0 otherwise. This is reasonable + // behavior only because this constructor is for unit tests. + if (std::find_if_not(sv.begin(), sv.end(), ascii_isdigit) != sv.end() || + sv.empty()) { + return; + } + int exponent_adjust = + ReadDigits(sv.data(), sv.data() + sv.size(), Digits10() + 1); + if (exponent_adjust > 0) { + MultiplyByTenToTheNth(exponent_adjust); + } + } + + // Loads the mantissa value of a previously-parsed float. + // + // Returns the associated decimal exponent. The value of the parsed float is + // exactly *this * 10**exponent. + int ReadFloatMantissa(const ParsedFloat& fp, int significant_digits); + + // Returns the number of decimal digits of precision this type provides. All + // numbers with this many decimal digits or fewer are representable by this + // type. + // + // Analagous to std::numeric_limits<BigUnsigned>::digits10. + static constexpr int Digits10() { + // 9975007/1035508 is very slightly less than log10(2**32). + return static_cast<uint64_t>(max_words) * 9975007 / 1035508; + } + + // Shifts left by the given number of bits. + void ShiftLeft(int count) { + if (count > 0) { + const int word_shift = count / 32; + if (word_shift >= max_words) { + SetToZero(); + return; + } + size_ = std::min(size_ + word_shift, max_words); + count %= 32; + if (count == 0) { + std::copy_backward(words_, words_ + size_ - word_shift, words_ + size_); + } else { + for (int i = std::min(size_, max_words - 1); i > word_shift; --i) { + words_[i] = (words_[i - word_shift] << count) | + (words_[i - word_shift - 1] >> (32 - count)); + } + words_[word_shift] = words_[0] << count; + // Grow size_ if necessary. + if (size_ < max_words && words_[size_]) { + ++size_; + } + } + std::fill(words_, words_ + word_shift, 0u); + } + } + + + // Multiplies by v in-place. + void MultiplyBy(uint32_t v) { + if (size_ == 0 || v == 1) { + return; + } + if (v == 0) { + SetToZero(); + return; + } + const uint64_t factor = v; + uint64_t window = 0; + for (int i = 0; i < size_; ++i) { + window += factor * words_[i]; + words_[i] = window & 0xffffffff; + window >>= 32; + } + // If carry bits remain and there's space for them, grow size_. + if (window && size_ < max_words) { + words_[size_] = window & 0xffffffff; + ++size_; + } + } + + void MultiplyBy(uint64_t v) { + uint32_t words[2]; + words[0] = static_cast<uint32_t>(v); + words[1] = static_cast<uint32_t>(v >> 32); + if (words[1] == 0) { + MultiplyBy(words[0]); + } else { + MultiplyBy(2, words); + } + } + + // Multiplies in place by 5 to the power of n. n must be non-negative. + void MultiplyByFiveToTheNth(int n) { + while (n >= kMaxSmallPowerOfFive) { + MultiplyBy(kFiveToNth[kMaxSmallPowerOfFive]); + n -= kMaxSmallPowerOfFive; + } + if (n > 0) { + MultiplyBy(kFiveToNth[n]); + } + } + + // Multiplies in place by 10 to the power of n. n must be non-negative. + void MultiplyByTenToTheNth(int n) { + if (n > kMaxSmallPowerOfTen) { + // For large n, raise to a power of 5, then shift left by the same amount. + // (10**n == 5**n * 2**n.) This requires fewer multiplications overall. + MultiplyByFiveToTheNth(n); + ShiftLeft(n); + } else if (n > 0) { + // We can do this more quickly for very small N by using a single + // multiplication. + MultiplyBy(kTenToNth[n]); + } + } + + // Returns the value of 5**n, for non-negative n. This implementation uses + // a lookup table, and is faster then seeding a BigUnsigned with 1 and calling + // MultiplyByFiveToTheNth(). + static BigUnsigned FiveToTheNth(int n); + + // Multiplies by another BigUnsigned, in-place. + template <int M> + void MultiplyBy(const BigUnsigned<M>& other) { + MultiplyBy(other.size(), other.words()); + } + + void SetToZero() { + std::fill(words_, words_ + size_, 0u); + size_ = 0; + } + + // Returns the value of the nth word of this BigUnsigned. This is + // range-checked, and returns 0 on out-of-bounds accesses. + uint32_t GetWord(int index) const { + if (index < 0 || index >= size_) { + return 0; + } + return words_[index]; + } + + // Returns this integer as a decimal std::string. This is not used in the decimal- + // to-binary conversion; it is intended to aid in testing. + std::string ToString() const; + + int size() const { return size_; } + const uint32_t* words() const { return words_; } + + private: + // Reads the number between [begin, end), possibly containing a decimal point, + // into this BigUnsigned. + // + // Callers are required to ensure [begin, end) contains a valid number, with + // one or more decimal digits and at most one decimal point. This routine + // will behave unpredictably if these preconditions are not met. + // + // Only the first `significant_digits` digits are read. Digits beyond this + // limit are "sticky": If the final significant digit is 0 or 5, and if any + // dropped digit is nonzero, then that final significant digit is adjusted up + // to 1 or 6. This adjustment allows for precise rounding. + // + // Returns `exponent_adjustment`, a power-of-ten exponent adjustment to + // account for the decimal point and for dropped significant digits. After + // this function returns, + // actual_value_of_parsed_string ~= *this * 10**exponent_adjustment. + int ReadDigits(const char* begin, const char* end, int significant_digits); + + // Performs a step of big integer multiplication. This computes the full + // (64-bit-wide) values that should be added at the given index (step), and + // adds to that location in-place. + // + // Because our math all occurs in place, we must multiply starting from the + // highest word working downward. (This is a bit more expensive due to the + // extra carries involved.) + // + // This must be called in steps, for each word to be calculated, starting from + // the high end and working down to 0. The first value of `step` should be + // `std::min(original_size + other.size_ - 2, max_words - 1)`. + // The reason for this expression is that multiplying the i'th word from one + // multiplicand and the j'th word of another multiplicand creates a + // two-word-wide value to be stored at the (i+j)'th element. The highest + // word indices we will access are `original_size - 1` from this object, and + // `other.size_ - 1` from our operand. Therefore, + // `original_size + other.size_ - 2` is the first step we should calculate, + // but limited on an upper bound by max_words. + + // Working from high-to-low ensures that we do not overwrite the portions of + // the initial value of *this which are still needed for later steps. + // + // Once called with step == 0, *this contains the result of the + // multiplication. + // + // `original_size` is the size_ of *this before the first call to + // MultiplyStep(). `other_words` and `other_size` are the contents of our + // operand. `step` is the step to perform, as described above. + void MultiplyStep(int original_size, const uint32_t* other_words, + int other_size, int step); + + void MultiplyBy(int other_size, const uint32_t* other_words) { + const int original_size = size_; + const int first_step = + std::min(original_size + other_size - 2, max_words - 1); + for (int step = first_step; step >= 0; --step) { + MultiplyStep(original_size, other_words, other_size, step); + } + } + + // Adds a 32-bit value to the index'th word, with carry. + void AddWithCarry(int index, uint32_t value) { + if (value) { + while (index < max_words && value > 0) { + words_[index] += value; + // carry if we overflowed in this word: + if (value > words_[index]) { + value = 1; + ++index; + } else { + value = 0; + } + } + size_ = std::min(max_words, std::max(index + 1, size_)); + } + } + + void AddWithCarry(int index, uint64_t value) { + if (value && index < max_words) { + uint32_t high = value >> 32; + uint32_t low = value & 0xffffffff; + words_[index] += low; + if (words_[index] < low) { + ++high; + if (high == 0) { + // Carry from the low word caused our high word to overflow. + // Short circuit here to do the right thing. + AddWithCarry(index + 2, static_cast<uint32_t>(1)); + return; + } + } + if (high > 0) { + AddWithCarry(index + 1, high); + } else { + // Normally 32-bit AddWithCarry() sets size_, but since we don't call + // it when `high` is 0, do it ourselves here. + size_ = std::min(max_words, std::max(index + 1, size_)); + } + } + } + + // Divide this in place by a constant divisor. Returns the remainder of the + // division. + template <uint32_t divisor> + uint32_t DivMod() { + uint64_t accumulator = 0; + for (int i = size_ - 1; i >= 0; --i) { + accumulator <<= 32; + accumulator += words_[i]; + // accumulator / divisor will never overflow an int32_t in this loop + words_[i] = static_cast<uint32_t>(accumulator / divisor); + accumulator = accumulator % divisor; + } + while (size_ > 0 && words_[size_ - 1] == 0) { + --size_; + } + return static_cast<uint32_t>(accumulator); + } + + // The number of elements in words_ that may carry significant values. + // All elements beyond this point are 0. + // + // When size_ is 0, this BigUnsigned stores the value 0. + // When size_ is nonzero, is *not* guaranteed that words_[size_ - 1] is + // nonzero. This can occur due to overflow truncation. + // In particular, x.size_ != y.size_ does *not* imply x != y. + int size_; + uint32_t words_[max_words]; +}; + +// Compares two big integer instances. +// +// Returns -1 if lhs < rhs, 0 if lhs == rhs, and 1 if lhs > rhs. +template <int N, int M> +int Compare(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { + int limit = std::max(lhs.size(), rhs.size()); + for (int i = limit - 1; i >= 0; --i) { + const uint32_t lhs_word = lhs.GetWord(i); + const uint32_t rhs_word = rhs.GetWord(i); + if (lhs_word < rhs_word) { + return -1; + } else if (lhs_word > rhs_word) { + return 1; + } + } + return 0; +} + +template <int N, int M> +bool operator==(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { + int limit = std::max(lhs.size(), rhs.size()); + for (int i = 0; i < limit; ++i) { + if (lhs.GetWord(i) != rhs.GetWord(i)) { + return false; + } + } + return true; +} + +template <int N, int M> +bool operator!=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { + return !(lhs == rhs); +} + +template <int N, int M> +bool operator<(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { + return Compare(lhs, rhs) == -1; +} + +template <int N, int M> +bool operator>(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { + return rhs < lhs; +} +template <int N, int M> +bool operator<=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { + return !(rhs < lhs); +} +template <int N, int M> +bool operator>=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { + return !(lhs < rhs); +} + +// Output operator for BigUnsigned, for testing purposes only. +template <int N> +std::ostream& operator<<(std::ostream& os, const BigUnsigned<N>& num) { + return os << num.ToString(); +} + +// Explicit instantiation declarations for the sizes of BigUnsigned that we +// are using. +// +// For now, the choices of 4 and 84 are arbitrary; 4 is a small value that is +// still bigger than an int128, and 84 is a large value we will want to use +// in the from_chars implementation. +// +// Comments justifying the use of 84 belong in the from_chars implementation, +// and will be added in a follow-up CL. +extern template class BigUnsigned<4>; +extern template class BigUnsigned<84>; + +} // namespace strings_internal +} // namespace absl + +#endif // ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_ diff --git a/absl/strings/internal/charconv_bigint_test.cc b/absl/strings/internal/charconv_bigint_test.cc new file mode 100644 index 000000000000..9b6357888fbf --- /dev/null +++ b/absl/strings/internal/charconv_bigint_test.cc @@ -0,0 +1,203 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/strings/internal/charconv_bigint.h" + +#include <string> + +#include "gtest/gtest.h" + +namespace absl { +namespace strings_internal { + +TEST(BigUnsigned, ShiftLeft) { + { + // Check that 3 * 2**100 is calculated correctly + BigUnsigned<4> num(3u); + num.ShiftLeft(100); + EXPECT_EQ(num, BigUnsigned<4>("3802951800684688204490109616128")); + } + { + // Test that overflow is truncated properly. + // 15 is 4 bits long, and BigUnsigned<4> is a 128-bit bigint. + // Shifting left by 125 bits should truncate off the high bit, so that + // 15 << 125 == 7 << 125 + // after truncation. + BigUnsigned<4> a(15u); + BigUnsigned<4> b(7u); + BigUnsigned<4> c(3u); + a.ShiftLeft(125); + b.ShiftLeft(125); + c.ShiftLeft(125); + EXPECT_EQ(a, b); + EXPECT_NE(a, c); + } + { + // Same test, larger bigint: + BigUnsigned<84> a(15u); + BigUnsigned<84> b(7u); + BigUnsigned<84> c(3u); + a.ShiftLeft(84 * 32 - 3); + b.ShiftLeft(84 * 32 - 3); + c.ShiftLeft(84 * 32 - 3); + EXPECT_EQ(a, b); + EXPECT_NE(a, c); + } + { + // Check that incrementally shifting has the same result as doing it all at + // once (attempting to capture corner cases.) + const std::string seed = "1234567890123456789012345678901234567890"; + BigUnsigned<84> a(seed); + for (int i = 1; i <= 84 * 32; ++i) { + a.ShiftLeft(1); + BigUnsigned<84> b(seed); + b.ShiftLeft(i); + EXPECT_EQ(a, b); + } + // And we should have fully rotated all bits off by now: + EXPECT_EQ(a, BigUnsigned<84>(0u)); + } +} + +TEST(BigUnsigned, MultiplyByUint32) { + const BigUnsigned<84> factorial_100( + "933262154439441526816992388562667004907159682643816214685929638952175999" + "932299156089414639761565182862536979208272237582511852109168640000000000" + "00000000000000"); + BigUnsigned<84> a(1u); + for (uint32_t i = 1; i <= 100; ++i) { + a.MultiplyBy(i); + } + EXPECT_EQ(a, BigUnsigned<84>(factorial_100)); +} + +TEST(BigUnsigned, MultiplyByBigUnsigned) { + { + // Put the terms of factorial_200 into two bigints, and multiply them + // together. + const BigUnsigned<84> factorial_200( + "7886578673647905035523632139321850622951359776871732632947425332443594" + "4996340334292030428401198462390417721213891963883025764279024263710506" + "1926624952829931113462857270763317237396988943922445621451664240254033" + "2918641312274282948532775242424075739032403212574055795686602260319041" + "7032406235170085879617892222278962370389737472000000000000000000000000" + "0000000000000000000000000"); + BigUnsigned<84> evens(1u); + BigUnsigned<84> odds(1u); + for (uint32_t i = 1; i < 200; i += 2) { + odds.MultiplyBy(i); + evens.MultiplyBy(i + 1); + } + evens.MultiplyBy(odds); + EXPECT_EQ(evens, factorial_200); + } + { + // Multiply various powers of 10 together. + for (int a = 0 ; a < 700; a += 25) { + SCOPED_TRACE(a); + BigUnsigned<84> a_value("3" + std::string(a, '0')); + for (int b = 0; b < (700 - a); b += 25) { + SCOPED_TRACE(b); + BigUnsigned<84> b_value("2" + std::string(b, '0')); + BigUnsigned<84> expected_product("6" + std::string(a + b, '0')); + b_value.MultiplyBy(a_value); + EXPECT_EQ(b_value, expected_product); + } + } + } +} + +TEST(BigUnsigned, MultiplyByOverflow) { + { + // Check that multiplcation overflow predictably truncates. + + // A big int with all bits on. + BigUnsigned<4> all_bits_on("340282366920938463463374607431768211455"); + // Modulo 2**128, this is equal to -1. Therefore the square of this, + // modulo 2**128, should be 1. + all_bits_on.MultiplyBy(all_bits_on); + EXPECT_EQ(all_bits_on, BigUnsigned<4>(1u)); + } + { + // Try multiplying a large bigint by 2**50, and compare the result to + // shifting. + BigUnsigned<4> value_1("12345678901234567890123456789012345678"); + BigUnsigned<4> value_2("12345678901234567890123456789012345678"); + BigUnsigned<4> two_to_fiftieth(1u); + two_to_fiftieth.ShiftLeft(50); + + value_1.ShiftLeft(50); + value_2.MultiplyBy(two_to_fiftieth); + EXPECT_EQ(value_1, value_2); + } +} + +TEST(BigUnsigned, FiveToTheNth) { + { + // Sanity check that MultiplyByFiveToTheNth gives consistent answers, up to + // and including overflow. + for (int i = 0; i < 1160; ++i) { + SCOPED_TRACE(i); + BigUnsigned<84> value_1(123u); + BigUnsigned<84> value_2(123u); + value_1.MultiplyByFiveToTheNth(i); + for (int j = 0; j < i; j++) { + value_2.MultiplyBy(5u); + } + EXPECT_EQ(value_1, value_2); + } + } + { + // Check that the faster, table-lookup-based static method returns the same + // result that multiplying in-place would return, up to and including + // overflow. + for (int i = 0; i < 1160; ++i) { + SCOPED_TRACE(i); + BigUnsigned<84> value_1(1u); + value_1.MultiplyByFiveToTheNth(i); + BigUnsigned<84> value_2 = BigUnsigned<84>::FiveToTheNth(i); + EXPECT_EQ(value_1, value_2); + } + } +} + +TEST(BigUnsigned, TenToTheNth) { + { + // Sanity check MultiplyByTenToTheNth. + for (int i = 0; i < 800; ++i) { + SCOPED_TRACE(i); + BigUnsigned<84> value_1(123u); + BigUnsigned<84> value_2(123u); + value_1.MultiplyByTenToTheNth(i); + for (int j = 0; j < i; j++) { + value_2.MultiplyBy(10u); + } + EXPECT_EQ(value_1, value_2); + } + } + { + // Alternate testing approach, taking advantage of the decimal parser. + for (int i = 0; i < 200; ++i) { + SCOPED_TRACE(i); + BigUnsigned<84> value_1(135u); + value_1.MultiplyByTenToTheNth(i); + BigUnsigned<84> value_2("135" + std::string(i, '0')); + EXPECT_EQ(value_1, value_2); + } + } +} + + +} // namespace strings_internal +} // namespace absl diff --git a/absl/strings/internal/charconv_parse.cc b/absl/strings/internal/charconv_parse.cc new file mode 100644 index 000000000000..a04cc67669a7 --- /dev/null +++ b/absl/strings/internal/charconv_parse.cc @@ -0,0 +1,496 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/strings/internal/charconv_parse.h" +#include "absl/strings/charconv.h" + +#include <cassert> +#include <cstdint> +#include <limits> + +#include "absl/strings/internal/memutil.h" + +namespace absl { +namespace { + +// ParseFloat<10> will read the first 19 significant digits of the mantissa. +// This number was chosen for multiple reasons. +// +// (a) First, for whatever integer type we choose to represent the mantissa, we +// want to choose the largest possible number of decimal digits for that integer +// type. We are using uint64_t, which can express any 19-digit unsigned +// integer. +// +// (b) Second, we need to parse enough digits that the binary value of any +// mantissa we capture has more bits of resolution than the mantissa +// representation in the target float. Our algorithm requires at least 3 bits +// of headway, but 19 decimal digits give a little more than that. +// +// The following static assertions verify the above comments: +constexpr int kDecimalMantissaDigitsMax = 19; + +static_assert(std::numeric_limits<uint64_t>::digits10 == + kDecimalMantissaDigitsMax, + "(a) above"); + +// IEEE doubles, which we assume in Abseil, have 53 binary bits of mantissa. +static_assert(std::numeric_limits<double>::is_iec559, "IEEE double assumed"); +static_assert(std::numeric_limits<double>::radix == 2, "IEEE double fact"); +static_assert(std::numeric_limits<double>::digits == 53, "IEEE double fact"); + +// The lowest valued 19-digit decimal mantissa we can read still contains +// sufficient information to reconstruct a binary mantissa. +static_assert(1000000000000000000u > (uint64_t(1) << (53 + 3)), "(b) above"); + +// ParseFloat<16> will read the first 15 significant digits of the mantissa. +// +// Because a base-16-to-base-2 conversion can be done exactly, we do not need +// to maximize the number of scanned hex digits to improve our conversion. What +// is required is to scan two more bits than the mantissa can represent, so that +// we always round correctly. +// +// (One extra bit does not suffice to perform correct rounding, since a number +// exactly halfway between two representable floats has unique rounding rules, +// so we need to differentiate between a "halfway between" number and a "closer +// to the larger value" number.) +constexpr int kHexadecimalMantissaDigitsMax = 15; + +// The minimum number of significant bits that will be read from +// kHexadecimalMantissaDigitsMax hex digits. We must subtract by three, since +// the most significant digit can be a "1", which only contributes a single +// significant bit. +constexpr int kGuaranteedHexadecimalMantissaBitPrecision = + 4 * kHexadecimalMantissaDigitsMax - 3; + +static_assert(kGuaranteedHexadecimalMantissaBitPrecision > + std::numeric_limits<double>::digits + 2, + "kHexadecimalMantissaDigitsMax too small"); + +// We also impose a limit on the number of significant digits we will read from +// an exponent, to avoid having to deal with integer overflow. We use 9 for +// this purpose. +// +// If we read a 9 digit exponent, the end result of the conversion will +// necessarily be infinity or zero, depending on the sign of the exponent. +// Therefore we can just drop extra digits on the floor without any extra +// logic. +constexpr int kDecimalExponentDigitsMax = 9; +static_assert(std::numeric_limits<int>::digits10 >= kDecimalExponentDigitsMax, + "int type too small"); + +// To avoid incredibly large inputs causing integer overflow for our exponent, +// we impose an arbitrary but very large limit on the number of significant +// digits we will accept. The implementation refuses to match a std::string with +// more consecutive significant mantissa digits than this. +constexpr int kDecimalDigitLimit = 50000000; + +// Corresponding limit for hexadecimal digit inputs. This is one fourth the +// amount of kDecimalDigitLimit, since each dropped hexadecimal digit requires +// a binary exponent adjustment of 4. +constexpr int kHexadecimalDigitLimit = kDecimalDigitLimit / 4; + +// The largest exponent we can read is 999999999 (per +// kDecimalExponentDigitsMax), and the largest exponent adjustment we can get +// from dropped mantissa digits is 2 * kDecimalDigitLimit, and the sum of these +// comfortably fits in an integer. +// +// We count kDecimalDigitLimit twice because there are independent limits for +// numbers before and after the decimal point. (In the case where there are no +// significant digits before the decimal point, there are independent limits for +// post-decimal-point leading zeroes and for significant digits.) +static_assert(999999999 + 2 * kDecimalDigitLimit < + std::numeric_limits<int>::max(), + "int type too small"); +static_assert(999999999 + 2 * (4 * kHexadecimalDigitLimit) < + std::numeric_limits<int>::max(), + "int type too small"); + +// Returns true if the provided bitfield allows parsing an exponent value +// (e.g., "1.5e100"). +bool AllowExponent(chars_format flags) { + bool fixed = (flags & chars_format::fixed) == chars_format::fixed; + bool scientific = + (flags & chars_format::scientific) == chars_format::scientific; + return scientific || !fixed; +} + +// Returns true if the provided bitfield requires an exponent value be present. +bool RequireExponent(chars_format flags) { + bool fixed = (flags & chars_format::fixed) == chars_format::fixed; + bool scientific = + (flags & chars_format::scientific) == chars_format::scientific; + return scientific && !fixed; +} + +const int8_t kAsciiToInt[256] = { + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, + 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1}; + +// Returns true if `ch` is a digit in the given base +template <int base> +bool IsDigit(char ch); + +// Converts a valid `ch` to its digit value in the given base. +template <int base> +unsigned ToDigit(char ch); + +// Returns true if `ch` is the exponent delimiter for the given base. +template <int base> +bool IsExponentCharacter(char ch); + +// Returns the maximum number of significant digits we will read for a float +// in the given base. +template <int base> +constexpr int MantissaDigitsMax(); + +// Returns the largest consecutive run of digits we will accept when parsing a +// number in the given base. +template <int base> +constexpr int DigitLimit(); + +// Returns the amount the exponent must be adjusted by for each dropped digit. +// (For decimal this is 1, since the digits are in base 10 and the exponent base +// is also 10, but for hexadecimal this is 4, since the digits are base 16 but +// the exponent base is 2.) +template <int base> +constexpr int DigitMagnitude(); + +template <> +bool IsDigit<10>(char ch) { + return ch >= '0' && ch <= '9'; +} +template <> +bool IsDigit<16>(char ch) { + return kAsciiToInt[static_cast<unsigned char>(ch)] >= 0; +} + +template <> +unsigned ToDigit<10>(char ch) { + return ch - '0'; +} +template <> +unsigned ToDigit<16>(char ch) { + return kAsciiToInt[static_cast<unsigned char>(ch)]; +} + +template <> +bool IsExponentCharacter<10>(char ch) { + return ch == 'e' || ch == 'E'; +} + +template <> +bool IsExponentCharacter<16>(char ch) { + return ch == 'p' || ch == 'P'; +} + +template <> +constexpr int MantissaDigitsMax<10>() { + return kDecimalMantissaDigitsMax; +} +template <> +constexpr int MantissaDigitsMax<16>() { + return kHexadecimalMantissaDigitsMax; +} + +template <> +constexpr int DigitLimit<10>() { + return kDecimalDigitLimit; +} +template <> +constexpr int DigitLimit<16>() { + return kHexadecimalDigitLimit; +} + +template <> +constexpr int DigitMagnitude<10>() { + return 1; +} +template <> +constexpr int DigitMagnitude<16>() { + return 4; +} + +// Reads decimal digits from [begin, end) into *out. Returns the number of +// digits consumed. +// +// After max_digits has been read, keeps consuming characters, but no longer +// adjusts *out. If a nonzero digit is dropped this way, *dropped_nonzero_digit +// is set; otherwise, it is left unmodified. +// +// If no digits are matched, returns 0 and leaves *out unchanged. +// +// ConsumeDigits does not protect against overflow on *out; max_digits must +// be chosen with respect to type T to avoid the possibility of overflow. +template <int base, typename T> +std::size_t ConsumeDigits(const char* begin, const char* end, int max_digits, + T* out, bool* dropped_nonzero_digit) { + if (base == 10) { + assert(max_digits <= std::numeric_limits<T>::digits10); + } else if (base == 16) { + assert(max_digits * 4 <= std::numeric_limits<T>::digits); + } + const char* const original_begin = begin; + T accumulator = *out; + const char* significant_digits_end = + (end - begin > max_digits) ? begin + max_digits : end; + while (begin < significant_digits_end && IsDigit<base>(*begin)) { + // Do not guard against *out overflow; max_digits was chosen to avoid this. + // Do assert against it, to detect problems in debug builds. + auto digit = static_cast<T>(ToDigit<base>(*begin)); + assert(accumulator * base >= accumulator); + accumulator *= base; + assert(accumulator + digit >= accumulator); + accumulator += digit; + ++begin; + } + bool dropped_nonzero = false; + while (begin < end && IsDigit<base>(*begin)) { + dropped_nonzero = dropped_nonzero || (*begin != '0'); + ++begin; + } + if (dropped_nonzero && dropped_nonzero_digit != nullptr) { + *dropped_nonzero_digit = true; + } + *out = accumulator; + return begin - original_begin; +} + +// Returns true if `v` is one of the chars allowed inside parentheses following +// a NaN. +bool IsNanChar(char v) { + return (v == '_') || (v >= '0' && v <= '9') || (v >= 'a' && v <= 'z') || + (v >= 'A' && v <= 'Z'); +} + +// Checks the range [begin, end) for a strtod()-formatted infinity or NaN. If +// one is found, sets `out` appropriately and returns true. +bool ParseInfinityOrNan(const char* begin, const char* end, + strings_internal::ParsedFloat* out) { + if (end - begin < 3) { + return false; + } + switch (*begin) { + case 'i': + case 'I': { + // An infinity std::string consists of the characters "inf" or "infinity", + // case insensitive. + if (strings_internal::memcasecmp(begin + 1, "nf", 2) != 0) { + return false; + } + out->type = strings_internal::FloatType::kInfinity; + if (end - begin >= 8 && + strings_internal::memcasecmp(begin + 3, "inity", 5) == 0) { + out->end = begin + 8; + } else { + out->end = begin + 3; + } + return true; + } + case 'n': + case 'N': { + // A NaN consists of the characters "nan", case insensitive, optionally + // followed by a parenthesized sequence of zero or more alphanumeric + // characters and/or underscores. + if (strings_internal::memcasecmp(begin + 1, "an", 2) != 0) { + return false; + } + out->type = strings_internal::FloatType::kNan; + out->end = begin + 3; + // NaN is allowed to be followed by a parenthesized std::string, consisting of + // only the characters [a-zA-Z0-9_]. Match that if it's present. + begin += 3; + if (begin < end && *begin == '(') { + const char* nan_begin = begin + 1; + while (nan_begin < end && IsNanChar(*nan_begin)) { + ++nan_begin; + } + if (nan_begin < end && *nan_begin == ')') { + // We found an extra NaN specifier range + out->subrange_begin = begin + 1; + out->subrange_end = nan_begin; + out->end = nan_begin + 1; + } + } + return true; + } + default: + return false; + } +} +} // namespace + +namespace strings_internal { + +template <int base> +strings_internal::ParsedFloat ParseFloat(const char* begin, const char* end, + chars_format format_flags) { + strings_internal::ParsedFloat result; + + // Exit early if we're given an empty range. + if (begin == end) return result; + + // Handle the infinity and NaN cases. + if (ParseInfinityOrNan(begin, end, &result)) { + return result; + } + + const char* const mantissa_begin = begin; + while (begin < end && *begin == '0') { + ++begin; // skip leading zeros + } + uint64_t mantissa = 0; + + int exponent_adjustment = 0; + bool mantissa_is_inexact = false; + std::size_t pre_decimal_digits = ConsumeDigits<base>( + begin, end, MantissaDigitsMax<base>(), &mantissa, &mantissa_is_inexact); + begin += pre_decimal_digits; + int digits_left; + if (pre_decimal_digits >= DigitLimit<base>()) { + // refuse to parse pathological inputs + return result; + } else if (pre_decimal_digits > MantissaDigitsMax<base>()) { + // We dropped some non-fraction digits on the floor. Adjust our exponent + // to compensate. + exponent_adjustment = + static_cast<int>(pre_decimal_digits - MantissaDigitsMax<base>()); + digits_left = 0; + } else { + digits_left = + static_cast<int>(MantissaDigitsMax<base>() - pre_decimal_digits); + } + if (begin < end && *begin == '.') { + ++begin; + if (mantissa == 0) { + // If we haven't seen any nonzero digits yet, keep skipping zeros. We + // have to adjust the exponent to reflect the changed place value. + const char* begin_zeros = begin; + while (begin < end && *begin == '0') { + ++begin; + } + std::size_t zeros_skipped = begin - begin_zeros; + if (zeros_skipped >= DigitLimit<base>()) { + // refuse to parse pathological inputs + return result; + } + exponent_adjustment -= static_cast<int>(zeros_skipped); + } + std::size_t post_decimal_digits = ConsumeDigits<base>( + begin, end, digits_left, &mantissa, &mantissa_is_inexact); + begin += post_decimal_digits; + + // Since `mantissa` is an integer, each significant digit we read after + // the decimal point requires an adjustment to the exponent. "1.23e0" will + // be stored as `mantissa` == 123 and `exponent` == -2 (that is, + // "123e-2"). + if (post_decimal_digits >= DigitLimit<base>()) { + // refuse to parse pathological inputs + return result; + } else if (post_decimal_digits > digits_left) { + exponent_adjustment -= digits_left; + } else { + exponent_adjustment -= post_decimal_digits; + } + } + // If we've found no mantissa whatsoever, this isn't a number. + if (mantissa_begin == begin) { + return result; + } + // A bare "." doesn't count as a mantissa either. + if (begin - mantissa_begin == 1 && *mantissa_begin == '.') { + return result; + } + + if (mantissa_is_inexact) { + // We dropped significant digits on the floor. Handle this appropriately. + if (base == 10) { + // If we truncated significant decimal digits, store the full range of the + // mantissa for future big integer math for exact rounding. + result.subrange_begin = mantissa_begin; + result.subrange_end = begin; + } else if (base == 16) { + // If we truncated hex digits, reflect this fact by setting the low + // ("sticky") bit. This allows for correct rounding in all cases. + mantissa |= 1; + } + } + result.mantissa = mantissa; + + const char* const exponent_begin = begin; + result.literal_exponent = 0; + bool found_exponent = false; + if (AllowExponent(format_flags) && begin < end && + IsExponentCharacter<base>(*begin)) { + bool negative_exponent = false; + ++begin; + if (begin < end && *begin == '-') { + negative_exponent = true; + ++begin; + } else if (begin < end && *begin == '+') { + ++begin; + } + const char* const exponent_digits_begin = begin; + // Exponent is always expressed in decimal, even for hexadecimal floats. + begin += ConsumeDigits<10>(begin, end, kDecimalExponentDigitsMax, + &result.literal_exponent, nullptr); + if (begin == exponent_digits_begin) { + // there were no digits where we expected an exponent. We failed to read + // an exponent and should not consume the 'e' after all. Rewind 'begin'. + found_exponent = false; + begin = exponent_begin; + } else { + found_exponent = true; + if (negative_exponent) { + result.literal_exponent = -result.literal_exponent; + } + } + } + + if (!found_exponent && RequireExponent(format_flags)) { + // Provided flags required an exponent, but none was found. This results + // in a failure to scan. + return result; + } + + // Success! + result.type = strings_internal::FloatType::kNumber; + if (result.mantissa > 0) { + result.exponent = result.literal_exponent + + (DigitMagnitude<base>() * exponent_adjustment); + } else { + result.exponent = 0; + } + result.end = begin; + return result; +} + +template ParsedFloat ParseFloat<10>(const char* begin, const char* end, + chars_format format_flags); +template ParsedFloat ParseFloat<16>(const char* begin, const char* end, + chars_format format_flags); + +} // namespace strings_internal +} // namespace absl diff --git a/absl/strings/internal/charconv_parse.h b/absl/strings/internal/charconv_parse.h new file mode 100644 index 000000000000..7a5c0874b804 --- /dev/null +++ b/absl/strings/internal/charconv_parse.h @@ -0,0 +1,96 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_STRINGS_INTERNAL_CHARCONV_PARSE_H_ +#define ABSL_STRINGS_INTERNAL_CHARCONV_PARSE_H_ + +#include <cstdint> + +#include "absl/strings/charconv.h" + +namespace absl { +namespace strings_internal { + +// Enum indicating whether a parsed float is a number or special value. +enum class FloatType { kNumber, kInfinity, kNan }; + +// The decomposed parts of a parsed `float` or `double`. +struct ParsedFloat { + // Representation of the parsed mantissa, with the decimal point adjusted to + // make it an integer. + // + // During decimal scanning, this contains 19 significant digits worth of + // mantissa value. If digits beyond this point are found, they + // are truncated, and if any of these dropped digits are nonzero, then + // `mantissa` is inexact, and the full mantissa is stored in [subrange_begin, + // subrange_end). + // + // During hexadecimal scanning, this contains 15 significant hex digits worth + // of mantissa value. Digits beyond this point are sticky -- they are + // truncated, but if any dropped digits are nonzero, the low bit of mantissa + // will be set. (This allows for precise rounding, and avoids the need + // to store the full mantissa in [subrange_begin, subrange_end).) + uint64_t mantissa = 0; + + // Floating point expontent. This reflects any decimal point adjustments and + // any truncated digits from the mantissa. The absolute value of the parsed + // number is represented by mantissa * (base ** exponent), where base==10 for + // decimal floats, and base==2 for hexadecimal floats. + int exponent = 0; + + // The literal exponent value scanned from the input, or 0 if none was + // present. This does not reflect any adjustments applied to mantissa. + int literal_exponent = 0; + + // The type of number scanned. + FloatType type = FloatType::kNumber; + + // When non-null, [subrange_begin, subrange_end) marks a range of characters + // that require further processing. The meaning is dependent on float type. + // If type == kNumber and this is set, this is a "wide input": the input + // mantissa contained more than 19 digits. The range contains the full + // mantissa. It plus `literal_exponent` need to be examined to find the best + // floating point match. + // If type == kNan and this is set, the range marks the contents of a + // matched parenthesized character region after the NaN. + const char* subrange_begin = nullptr; + const char* subrange_end = nullptr; + + // One-past-the-end of the successfully parsed region, or nullptr if no + // matching pattern was found. + const char* end = nullptr; +}; + +// Read the floating point number in the provided range, and populate +// ParsedFloat accordingly. +// +// format_flags is a bitmask value specifying what patterns this API will match. +// `scientific` and `fixed` are honored per std::from_chars rules +// ([utility.from.chars], C++17): if exactly one of these bits is set, then an +// exponent is required, or dislallowed, respectively. +// +// Template parameter `base` must be either 10 or 16. For base 16, a "0x" is +// *not* consumed. The `hex` bit from format_flags is ignored by ParseFloat. +template <int base> +ParsedFloat ParseFloat(const char* begin, const char* end, + absl::chars_format format_flags); + +extern template ParsedFloat ParseFloat<10>(const char* begin, const char* end, + absl::chars_format format_flags); +extern template ParsedFloat ParseFloat<16>(const char* begin, const char* end, + absl::chars_format format_flags); + +} // namespace strings_internal +} // namespace absl +#endif // ABSL_STRINGS_INTERNAL_CHARCONV_PARSE_H_ diff --git a/absl/strings/internal/charconv_parse_test.cc b/absl/strings/internal/charconv_parse_test.cc new file mode 100644 index 000000000000..1ff86004973a --- /dev/null +++ b/absl/strings/internal/charconv_parse_test.cc @@ -0,0 +1,357 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/strings/internal/charconv_parse.h" + +#include <string> +#include <utility> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/base/internal/raw_logging.h" +#include "absl/strings/str_cat.h" + +using absl::chars_format; +using absl::strings_internal::FloatType; +using absl::strings_internal::ParsedFloat; +using absl::strings_internal::ParseFloat; + +namespace { + +// Check that a given std::string input is parsed to the expected mantissa and +// exponent. +// +// Input std::string `s` must contain a '$' character. It marks the end of the +// characters that should be consumed by the match. It is stripped from the +// input to ParseFloat. +// +// If input std::string `s` contains '[' and ']' characters, these mark the region +// of characters that should be marked as the "subrange". For NaNs, this is +// the location of the extended NaN std::string. For numbers, this is the location +// of the full, over-large mantissa. +template <int base> +void ExpectParsedFloat(std::string s, absl::chars_format format_flags, + FloatType expected_type, uint64_t expected_mantissa, + int expected_exponent, + int expected_literal_exponent = -999) { + SCOPED_TRACE(s); + + int begin_subrange = -1; + int end_subrange = -1; + // If s contains '[' and ']', then strip these characters and set the subrange + // indices appropriately. + std::string::size_type open_bracket_pos = s.find('['); + if (open_bracket_pos != std::string::npos) { + begin_subrange = static_cast<int>(open_bracket_pos); + s.replace(open_bracket_pos, 1, ""); + std::string::size_type close_bracket_pos = s.find(']'); + ABSL_RAW_CHECK(close_bracket_pos != absl::string_view::npos, + "Test input contains [ without matching ]"); + end_subrange = static_cast<int>(close_bracket_pos); + s.replace(close_bracket_pos, 1, ""); + } + const std::string::size_type expected_characters_matched = s.find('$'); + ABSL_RAW_CHECK(expected_characters_matched != std::string::npos, + "Input std::string must contain $"); + s.replace(expected_characters_matched, 1, ""); + + ParsedFloat parsed = + ParseFloat<base>(s.data(), s.data() + s.size(), format_flags); + + EXPECT_NE(parsed.end, nullptr); + if (parsed.end == nullptr) { + return; // The following tests are not useful if we fully failed to parse + } + EXPECT_EQ(parsed.type, expected_type); + if (begin_subrange == -1) { + EXPECT_EQ(parsed.subrange_begin, nullptr); + EXPECT_EQ(parsed.subrange_end, nullptr); + } else { + EXPECT_EQ(parsed.subrange_begin, s.data() + begin_subrange); + EXPECT_EQ(parsed.subrange_end, s.data() + end_subrange); + } + if (parsed.type == FloatType::kNumber) { + EXPECT_EQ(parsed.mantissa, expected_mantissa); + EXPECT_EQ(parsed.exponent, expected_exponent); + if (expected_literal_exponent != -999) { + EXPECT_EQ(parsed.literal_exponent, expected_literal_exponent); + } + } + auto characters_matched = static_cast<int>(parsed.end - s.data()); + EXPECT_EQ(characters_matched, expected_characters_matched); +} + +// Check that a given std::string input is parsed to the expected mantissa and +// exponent. +// +// Input std::string `s` must contain a '$' character. It marks the end of the +// characters that were consumed by the match. +template <int base> +void ExpectNumber(std::string s, absl::chars_format format_flags, + uint64_t expected_mantissa, int expected_exponent, + int expected_literal_exponent = -999) { + ExpectParsedFloat<base>(std::move(s), format_flags, FloatType::kNumber, + expected_mantissa, expected_exponent, + expected_literal_exponent); +} + +// Check that a given std::string input is parsed to the given special value. +// +// This tests against both number bases, since infinities and NaNs have +// identical representations in both modes. +void ExpectSpecial(const std::string& s, absl::chars_format format_flags, + FloatType type) { + ExpectParsedFloat<10>(s, format_flags, type, 0, 0); + ExpectParsedFloat<16>(s, format_flags, type, 0, 0); +} + +// Check that a given input std::string is not matched by Float. +template <int base> +void ExpectFailedParse(absl::string_view s, absl::chars_format format_flags) { + ParsedFloat parsed = + ParseFloat<base>(s.data(), s.data() + s.size(), format_flags); + EXPECT_EQ(parsed.end, nullptr); +} + +TEST(ParseFloat, SimpleValue) { + // Test that various forms of floating point numbers all parse correctly. + ExpectNumber<10>("1.23456789e5$", chars_format::general, 123456789, -3); + ExpectNumber<10>("1.23456789e+5$", chars_format::general, 123456789, -3); + ExpectNumber<10>("1.23456789E5$", chars_format::general, 123456789, -3); + ExpectNumber<10>("1.23456789e05$", chars_format::general, 123456789, -3); + ExpectNumber<10>("123.456789e3$", chars_format::general, 123456789, -3); + ExpectNumber<10>("0.000123456789e9$", chars_format::general, 123456789, -3); + ExpectNumber<10>("123456.789$", chars_format::general, 123456789, -3); + ExpectNumber<10>("123456789e-3$", chars_format::general, 123456789, -3); + + ExpectNumber<16>("1.234abcdefp28$", chars_format::general, 0x1234abcdef, -8); + ExpectNumber<16>("1.234abcdefp+28$", chars_format::general, 0x1234abcdef, -8); + ExpectNumber<16>("1.234ABCDEFp28$", chars_format::general, 0x1234abcdef, -8); + ExpectNumber<16>("1.234AbCdEfP0028$", chars_format::general, 0x1234abcdef, + -8); + ExpectNumber<16>("123.4abcdefp20$", chars_format::general, 0x1234abcdef, -8); + ExpectNumber<16>("0.0001234abcdefp44$", chars_format::general, 0x1234abcdef, + -8); + ExpectNumber<16>("1234abcd.ef$", chars_format::general, 0x1234abcdef, -8); + ExpectNumber<16>("1234abcdefp-8$", chars_format::general, 0x1234abcdef, -8); + + // ExpectNumber does not attempt to drop trailing zeroes. + ExpectNumber<10>("0001.2345678900e005$", chars_format::general, 12345678900, + -5); + ExpectNumber<16>("0001.234abcdef000p28$", chars_format::general, + 0x1234abcdef000, -20); + + // Ensure non-matching characters after a number are ignored, even when they + // look like potentially matching characters. + ExpectNumber<10>("1.23456789e5$ ", chars_format::general, 123456789, -3); + ExpectNumber<10>("1.23456789e5$e5e5", chars_format::general, 123456789, -3); + ExpectNumber<10>("1.23456789e5$.25", chars_format::general, 123456789, -3); + ExpectNumber<10>("1.23456789e5$-", chars_format::general, 123456789, -3); + ExpectNumber<10>("1.23456789e5$PUPPERS!!!", chars_format::general, 123456789, + -3); + ExpectNumber<10>("123456.789$efghij", chars_format::general, 123456789, -3); + ExpectNumber<10>("123456.789$e", chars_format::general, 123456789, -3); + ExpectNumber<10>("123456.789$p5", chars_format::general, 123456789, -3); + ExpectNumber<10>("123456.789$.10", chars_format::general, 123456789, -3); + + ExpectNumber<16>("1.234abcdefp28$ ", chars_format::general, 0x1234abcdef, + -8); + ExpectNumber<16>("1.234abcdefp28$p28", chars_format::general, 0x1234abcdef, + -8); + ExpectNumber<16>("1.234abcdefp28$.125", chars_format::general, 0x1234abcdef, + -8); + ExpectNumber<16>("1.234abcdefp28$-", chars_format::general, 0x1234abcdef, -8); + ExpectNumber<16>("1.234abcdefp28$KITTEHS!!!", chars_format::general, + 0x1234abcdef, -8); + ExpectNumber<16>("1234abcd.ef$ghijk", chars_format::general, 0x1234abcdef, + -8); + ExpectNumber<16>("1234abcd.ef$p", chars_format::general, 0x1234abcdef, -8); + ExpectNumber<16>("1234abcd.ef$.10", chars_format::general, 0x1234abcdef, -8); + + // Ensure we can read a full resolution mantissa without overflow. + ExpectNumber<10>("9999999999999999999$", chars_format::general, + 9999999999999999999u, 0); + ExpectNumber<16>("fffffffffffffff$", chars_format::general, + 0xfffffffffffffffu, 0); + + // Check that zero is consistently read. + ExpectNumber<10>("0$", chars_format::general, 0, 0); + ExpectNumber<16>("0$", chars_format::general, 0, 0); + ExpectNumber<10>("000000000000000000000000000000000000000$", + chars_format::general, 0, 0); + ExpectNumber<16>("000000000000000000000000000000000000000$", + chars_format::general, 0, 0); + ExpectNumber<10>("0000000000000000000000.000000000000000000$", + chars_format::general, 0, 0); + ExpectNumber<16>("0000000000000000000000.000000000000000000$", + chars_format::general, 0, 0); + ExpectNumber<10>("0.00000000000000000000000000000000e123456$", + chars_format::general, 0, 0); + ExpectNumber<16>("0.00000000000000000000000000000000p123456$", + chars_format::general, 0, 0); +} + +TEST(ParseFloat, LargeDecimalMantissa) { + // After 19 significant decimal digits in the mantissa, ParsedFloat will + // truncate additional digits. We need to test that: + // 1) the truncation to 19 digits happens + // 2) the returned exponent reflects the dropped significant digits + // 3) a correct literal_exponent is set + // + // If and only if a significant digit is found after 19 digits, then the + // entirety of the mantissa in case the exact value is needed to make a + // rounding decision. The [ and ] characters below denote where such a + // subregion was marked by by ParseFloat. They are not part of the input. + + // Mark a capture group only if a dropped digit is significant (nonzero). + ExpectNumber<10>("100000000000000000000000000$", chars_format::general, + 1000000000000000000, + /* adjusted exponent */ 8); + + ExpectNumber<10>("123456789123456789100000000$", chars_format::general, + 1234567891234567891, + /* adjusted exponent */ 8); + + ExpectNumber<10>("[123456789123456789123456789]$", chars_format::general, + 1234567891234567891, + /* adjusted exponent */ 8, + /* literal exponent */ 0); + + ExpectNumber<10>("[123456789123456789100000009]$", chars_format::general, + 1234567891234567891, + /* adjusted exponent */ 8, + /* literal exponent */ 0); + + ExpectNumber<10>("[123456789123456789120000000]$", chars_format::general, + 1234567891234567891, + /* adjusted exponent */ 8, + /* literal exponent */ 0); + + // Leading zeroes should not count towards the 19 significant digit limit + ExpectNumber<10>("[00000000123456789123456789123456789]$", + chars_format::general, 1234567891234567891, + /* adjusted exponent */ 8, + /* literal exponent */ 0); + + ExpectNumber<10>("00000000123456789123456789100000000$", + chars_format::general, 1234567891234567891, + /* adjusted exponent */ 8); + + // Truncated digits after the decimal point should not cause a further + // exponent adjustment. + ExpectNumber<10>("1.234567891234567891e123$", chars_format::general, + 1234567891234567891, 105); + ExpectNumber<10>("[1.23456789123456789123456789]e123$", chars_format::general, + 1234567891234567891, + /* adjusted exponent */ 105, + /* literal exponent */ 123); + + // Ensure we truncate, and not round. (The from_chars algorithm we use + // depends on our guess missing low, if it misses, so we need the rounding + // error to be downward.) + ExpectNumber<10>("[1999999999999999999999]$", chars_format::general, + 1999999999999999999, + /* adjusted exponent */ 3, + /* literal exponent */ 0); +} + +TEST(ParseFloat, LargeHexadecimalMantissa) { + // After 15 significant hex digits in the mantissa, ParsedFloat will treat + // additional digits as sticky, We need to test that: + // 1) The truncation to 15 digits happens + // 2) The returned exponent reflects the dropped significant digits + // 3) If a nonzero digit is dropped, the low bit of mantissa is set. + + ExpectNumber<16>("123456789abcdef123456789abcdef$", chars_format::general, + 0x123456789abcdef, 60); + + // Leading zeroes should not count towards the 15 significant digit limit + ExpectNumber<16>("000000123456789abcdef123456789abcdef$", + chars_format::general, 0x123456789abcdef, 60); + + // Truncated digits after the radix point should not cause a further + // exponent adjustment. + ExpectNumber<16>("1.23456789abcdefp100$", chars_format::general, + 0x123456789abcdef, 44); + ExpectNumber<16>("1.23456789abcdef123456789abcdefp100$", + chars_format::general, 0x123456789abcdef, 44); + + // test sticky digit behavior. The low bit should be set iff any dropped + // digit is nonzero. + ExpectNumber<16>("123456789abcdee123456789abcdee$", chars_format::general, + 0x123456789abcdef, 60); + ExpectNumber<16>("123456789abcdee000000000000001$", chars_format::general, + 0x123456789abcdef, 60); + ExpectNumber<16>("123456789abcdee000000000000000$", chars_format::general, + 0x123456789abcdee, 60); +} + +TEST(ParseFloat, ScientificVsFixed) { + // In fixed mode, an exponent is never matched (but the remainder of the + // number will be matched.) + ExpectNumber<10>("1.23456789$e5", chars_format::fixed, 123456789, -8); + ExpectNumber<10>("123456.789$", chars_format::fixed, 123456789, -3); + ExpectNumber<16>("1.234abcdef$p28", chars_format::fixed, 0x1234abcdef, -36); + ExpectNumber<16>("1234abcd.ef$", chars_format::fixed, 0x1234abcdef, -8); + + // In scientific mode, numbers don't match *unless* they have an exponent. + ExpectNumber<10>("1.23456789e5$", chars_format::scientific, 123456789, -3); + ExpectFailedParse<10>("-123456.789$", chars_format::scientific); + ExpectNumber<16>("1.234abcdefp28$", chars_format::scientific, 0x1234abcdef, + -8); + ExpectFailedParse<16>("1234abcd.ef$", chars_format::scientific); +} + +TEST(ParseFloat, Infinity) { + ExpectFailedParse<10>("in", chars_format::general); + ExpectFailedParse<16>("in", chars_format::general); + ExpectFailedParse<10>("inx", chars_format::general); + ExpectFailedParse<16>("inx", chars_format::general); + ExpectSpecial("inf$", chars_format::general, FloatType::kInfinity); + ExpectSpecial("Inf$", chars_format::general, FloatType::kInfinity); + ExpectSpecial("INF$", chars_format::general, FloatType::kInfinity); + ExpectSpecial("inf$inite", chars_format::general, FloatType::kInfinity); + ExpectSpecial("iNfInItY$", chars_format::general, FloatType::kInfinity); + ExpectSpecial("infinity$!!!", chars_format::general, FloatType::kInfinity); +} + +TEST(ParseFloat, NaN) { + ExpectFailedParse<10>("na", chars_format::general); + ExpectFailedParse<16>("na", chars_format::general); + ExpectFailedParse<10>("nah", chars_format::general); + ExpectFailedParse<16>("nah", chars_format::general); + ExpectSpecial("nan$", chars_format::general, FloatType::kNan); + ExpectSpecial("NaN$", chars_format::general, FloatType::kNan); + ExpectSpecial("nAn$", chars_format::general, FloatType::kNan); + ExpectSpecial("NAN$", chars_format::general, FloatType::kNan); + ExpectSpecial("NaN$aNaNaNaNaBatman!", chars_format::general, FloatType::kNan); + + // A parenthesized sequence of the characters [a-zA-Z0-9_] is allowed to + // appear after an NaN. Check that this is allowed, and that the correct + // characters are grouped. + // + // (The characters [ and ] in the pattern below delimit the expected matched + // subgroup; they are not part of the input passed to ParseFloat.) + ExpectSpecial("nan([0xabcdef])$", chars_format::general, FloatType::kNan); + ExpectSpecial("nan([0xabcdef])$...", chars_format::general, FloatType::kNan); + ExpectSpecial("nan([0xabcdef])$)...", chars_format::general, FloatType::kNan); + ExpectSpecial("nan([])$", chars_format::general, FloatType::kNan); + ExpectSpecial("nan([aAzZ09_])$", chars_format::general, FloatType::kNan); + // If the subgroup contains illegal characters, don't match it at all. + ExpectSpecial("nan$(bad-char)", chars_format::general, FloatType::kNan); + // Also cope with a missing close paren. + ExpectSpecial("nan$(0xabcdef", chars_format::general, FloatType::kNan); +} + +} // namespace |