diff options
Diffstat (limited to 'absl/strings/internal/str_format/float_conversion.cc')
-rw-r--r-- | absl/strings/internal/str_format/float_conversion.cc | 694 |
1 files changed, 672 insertions, 22 deletions
diff --git a/absl/strings/internal/str_format/float_conversion.cc b/absl/strings/internal/str_format/float_conversion.cc index d6858cfffd95..cdccc86f551c 100644 --- a/absl/strings/internal/str_format/float_conversion.cc +++ b/absl/strings/internal/str_format/float_conversion.cc @@ -1,12 +1,22 @@ #include "absl/strings/internal/str_format/float_conversion.h" #include <string.h> + #include <algorithm> #include <cassert> #include <cmath> +#include <limits> #include <string> +#include "absl/base/attributes.h" #include "absl/base/config.h" +#include "absl/base/internal/bits.h" +#include "absl/base/optimization.h" +#include "absl/functional/function_ref.h" +#include "absl/meta/type_traits.h" +#include "absl/numeric/int128.h" +#include "absl/types/optional.h" +#include "absl/types/span.h" namespace absl { ABSL_NAMESPACE_BEGIN @@ -14,13 +24,640 @@ namespace str_format_internal { namespace { -char *CopyStringTo(string_view v, char *out) { +// The code below wants to avoid heap allocations. +// To do so it needs to allocate memory on the stack. +// `StackArray` will allocate memory on the stack in the form of a uint32_t +// array and call the provided callback with said memory. +// It will allocate memory in increments of 512 bytes. We could allocate the +// largest needed unconditionally, but that is more than we need in most of +// cases. This way we use less stack in the common cases. +class StackArray { + using Func = absl::FunctionRef<void(absl::Span<uint32_t>)>; + static constexpr size_t kStep = 512 / sizeof(uint32_t); + // 5 steps is 2560 bytes, which is enough to hold a long double with the + // largest/smallest exponents. + // The operations below will static_assert their particular maximum. + static constexpr size_t kNumSteps = 5; + + // We do not want this function to be inlined. + // Otherwise the caller will allocate the stack space unnecessarily for all + // the variants even though it only calls one. + template <size_t steps> + ABSL_ATTRIBUTE_NOINLINE static void RunWithCapacityImpl(Func f) { + uint32_t values[steps * kStep]{}; + f(absl::MakeSpan(values)); + } + + public: + static constexpr size_t kMaxCapacity = kStep * kNumSteps; + + static void RunWithCapacity(size_t capacity, Func f) { + assert(capacity <= kMaxCapacity); + const size_t step = (capacity + kStep - 1) / kStep; + assert(step <= kNumSteps); + switch (step) { + case 1: + return RunWithCapacityImpl<1>(f); + case 2: + return RunWithCapacityImpl<2>(f); + case 3: + return RunWithCapacityImpl<3>(f); + case 4: + return RunWithCapacityImpl<4>(f); + case 5: + return RunWithCapacityImpl<5>(f); + } + + assert(false && "Invalid capacity"); + } +}; + +// Calculates `10 * (*v) + carry` and stores the result in `*v` and returns +// the carry. +template <typename Int> +inline Int MultiplyBy10WithCarry(Int *v, Int carry) { + using BiggerInt = absl::conditional_t<sizeof(Int) == 4, uint64_t, uint128>; + BiggerInt tmp = 10 * static_cast<BiggerInt>(*v) + carry; + *v = static_cast<Int>(tmp); + return static_cast<Int>(tmp >> (sizeof(Int) * 8)); +} + +// Calculates `(2^64 * carry + *v) / 10`. +// Stores the quotient in `*v` and returns the remainder. +// Requires: `0 <= carry <= 9` +inline uint64_t DivideBy10WithCarry(uint64_t *v, uint64_t carry) { + constexpr uint64_t divisor = 10; + // 2^64 / divisor = chunk_quotient + chunk_remainder / divisor + constexpr uint64_t chunk_quotient = (uint64_t{1} << 63) / (divisor / 2); + constexpr uint64_t chunk_remainder = uint64_t{} - chunk_quotient * divisor; + + const uint64_t mod = *v % divisor; + const uint64_t next_carry = chunk_remainder * carry + mod; + *v = *v / divisor + carry * chunk_quotient + next_carry / divisor; + return next_carry % divisor; +} + +// Generates the decimal representation for an integer of the form `v * 2^exp`, +// where `v` and `exp` are both positive integers. +// It generates the digits from the left (ie the most significant digit first) +// to allow for direct printing into the sink. +// +// Requires `0 <= exp` and `exp <= numeric_limits<long double>::max_exponent`. +class BinaryToDecimal { + static constexpr int ChunksNeeded(int exp) { + // We will left shift a uint128 by `exp` bits, so we need `128+exp` total + // bits. Round up to 32. + // See constructor for details about adding `10%` to the value. + return (128 + exp + 31) / 32 * 11 / 10; + } + + public: + // Run the conversion for `v * 2^exp` and call `f(binary_to_decimal)`. + // This function will allocate enough stack space to perform the conversion. + static void RunConversion(uint128 v, int exp, + absl::FunctionRef<void(BinaryToDecimal)> f) { + assert(exp > 0); + assert(exp <= std::numeric_limits<long double>::max_exponent); + static_assert( + StackArray::kMaxCapacity >= + ChunksNeeded(std::numeric_limits<long double>::max_exponent), + ""); + + StackArray::RunWithCapacity( + ChunksNeeded(exp), + [=](absl::Span<uint32_t> input) { f(BinaryToDecimal(input, v, exp)); }); + } + + int TotalDigits() const { + return static_cast<int>((decimal_end_ - decimal_start_) * kDigitsPerChunk + + CurrentDigits().size()); + } + + // See the current block of digits. + absl::string_view CurrentDigits() const { + return absl::string_view(digits_ + kDigitsPerChunk - size_, size_); + } + + // Advance the current view of digits. + // Returns `false` when no more digits are available. + bool AdvanceDigits() { + if (decimal_start_ >= decimal_end_) return false; + + uint32_t w = data_[decimal_start_++]; + for (size_ = 0; size_ < kDigitsPerChunk; w /= 10) { + digits_[kDigitsPerChunk - ++size_] = w % 10 + '0'; + } + return true; + } + + private: + BinaryToDecimal(absl::Span<uint32_t> data, uint128 v, int exp) : data_(data) { + // We need to print the digits directly into the sink object without + // buffering them all first. To do this we need two things: + // - to know the total number of digits to do padding when necessary + // - to generate the decimal digits from the left. + // + // In order to do this, we do a two pass conversion. + // On the first pass we convert the binary representation of the value into + // a decimal representation in which each uint32_t chunk holds up to 9 + // decimal digits. In the second pass we take each decimal-holding-uint32_t + // value and generate the ascii decimal digits into `digits_`. + // + // The binary and decimal representations actually share the same memory + // region. As we go converting the chunks from binary to decimal we free + // them up and reuse them for the decimal representation. One caveat is that + // the decimal representation is around 7% less efficient in space than the + // binary one. We allocate an extra 10% memory to account for this. See + // ChunksNeeded for this calculation. + int chunk_index = exp / 32; + decimal_start_ = decimal_end_ = ChunksNeeded(exp); + const int offset = exp % 32; + // Left shift v by exp bits. + data_[chunk_index] = static_cast<uint32_t>(v << offset); + for (v >>= (32 - offset); v; v >>= 32) + data_[++chunk_index] = static_cast<uint32_t>(v); + + while (chunk_index >= 0) { + // While we have more than one chunk available, go in steps of 1e9. + // `data_[chunk_index]` holds the highest non-zero binary chunk, so keep + // the variable updated. + uint32_t carry = 0; + for (int i = chunk_index; i >= 0; --i) { + uint64_t tmp = uint64_t{data_[i]} + (uint64_t{carry} << 32); + data_[i] = static_cast<uint32_t>(tmp / uint64_t{1000000000}); + carry = static_cast<uint32_t>(tmp % uint64_t{1000000000}); + } + + // If the highest chunk is now empty, remove it from view. + if (data_[chunk_index] == 0) --chunk_index; + + --decimal_start_; + assert(decimal_start_ != chunk_index); + data_[decimal_start_] = carry; + } + + // Fill the first set of digits. The first chunk might not be complete, so + // handle differently. + for (uint32_t first = data_[decimal_start_++]; first != 0; first /= 10) { + digits_[kDigitsPerChunk - ++size_] = first % 10 + '0'; + } + } + + private: + static constexpr size_t kDigitsPerChunk = 9; + + int decimal_start_; + int decimal_end_; + + char digits_[kDigitsPerChunk]; + int size_ = 0; + + absl::Span<uint32_t> data_; +}; + +// Converts a value of the form `x * 2^-exp` into a sequence of decimal digits. +// Requires `-exp < 0` and +// `-exp >= limits<long double>::min_exponent - limits<long double>::digits`. +class FractionalDigitGenerator { + public: + // Run the conversion for `v * 2^exp` and call `f(generator)`. + // This function will allocate enough stack space to perform the conversion. + static void RunConversion( + uint128 v, int exp, absl::FunctionRef<void(FractionalDigitGenerator)> f) { + assert(-exp < 0); + assert(-exp >= std::numeric_limits<long double>::min_exponent - 128); + static_assert( + StackArray::kMaxCapacity >= + (128 - std::numeric_limits<long double>::min_exponent + 31) / 32, + ""); + StackArray::RunWithCapacity((exp + 31) / 32, + [=](absl::Span<uint32_t> input) { + f(FractionalDigitGenerator(input, v, exp)); + }); + } + + // Returns true if there are any more non-zero digits left. + bool HasMoreDigits() const { return next_digit_ != 0 || chunk_index_ >= 0; } + + // Returns true if the remainder digits are greater than 5000... + bool IsGreaterThanHalf() const { + return next_digit_ > 5 || (next_digit_ == 5 && chunk_index_ >= 0); + } + // Returns true if the remainder digits are exactly 5000... + bool IsExactlyHalf() const { return next_digit_ == 5 && chunk_index_ < 0; } + + struct Digits { + int digit_before_nine; + int num_nines; + }; + + // Get the next set of digits. + // They are composed by a non-9 digit followed by a runs of zero or more 9s. + Digits GetDigits() { + Digits digits{next_digit_, 0}; + + next_digit_ = GetOneDigit(); + while (next_digit_ == 9) { + ++digits.num_nines; + next_digit_ = GetOneDigit(); + } + + return digits; + } + + private: + // Return the next digit. + int GetOneDigit() { + if (chunk_index_ < 0) return 0; + + uint32_t carry = 0; + for (int i = chunk_index_; i >= 0; --i) { + carry = MultiplyBy10WithCarry(&data_[i], carry); + } + // If the lowest chunk is now empty, remove it from view. + if (data_[chunk_index_] == 0) --chunk_index_; + return carry; + } + + FractionalDigitGenerator(absl::Span<uint32_t> data, uint128 v, int exp) + : chunk_index_(exp / 32), data_(data) { + const int offset = exp % 32; + // Right shift `v` by `exp` bits. + data_[chunk_index_] = static_cast<uint32_t>(v << (32 - offset)); + v >>= offset; + // Make sure we don't overflow the data. We already calculated that + // non-zero bits fit, so we might not have space for leading zero bits. + for (int pos = chunk_index_; v; v >>= 32) + data_[--pos] = static_cast<uint32_t>(v); + + // Fill next_digit_, as GetDigits expects it to be populated always. + next_digit_ = GetOneDigit(); + } + + int next_digit_; + int chunk_index_; + absl::Span<uint32_t> data_; +}; + +// Count the number of leading zero bits. +int LeadingZeros(uint64_t v) { return base_internal::CountLeadingZeros64(v); } +int LeadingZeros(uint128 v) { + auto high = static_cast<uint64_t>(v >> 64); + auto low = static_cast<uint64_t>(v); + return high != 0 ? base_internal::CountLeadingZeros64(high) + : 64 + base_internal::CountLeadingZeros64(low); +} + +// Round up the text digits starting at `p`. +// The buffer must have an extra digit that is known to not need rounding. +// This is done below by having an extra '0' digit on the left. +void RoundUp(char *p) { + while (*p == '9' || *p == '.') { + if (*p == '9') *p = '0'; + --p; + } + ++*p; +} + +// Check the previous digit and round up or down to follow the round-to-even +// policy. +void RoundToEven(char *p) { + if (*p == '.') --p; + if (*p % 2 == 1) RoundUp(p); +} + +// Simple integral decimal digit printing for values that fit in 64-bits. +// Returns the pointer to the last written digit. +char *PrintIntegralDigitsFromRightFast(uint64_t v, char *p) { + do { + *--p = DivideBy10WithCarry(&v, 0) + '0'; + } while (v != 0); + return p; +} + +// Simple integral decimal digit printing for values that fit in 128-bits. +// Returns the pointer to the last written digit. +char *PrintIntegralDigitsFromRightFast(uint128 v, char *p) { + auto high = static_cast<uint64_t>(v >> 64); + auto low = static_cast<uint64_t>(v); + + while (high != 0) { + uint64_t carry = DivideBy10WithCarry(&high, 0); + carry = DivideBy10WithCarry(&low, carry); + *--p = carry + '0'; + } + return PrintIntegralDigitsFromRightFast(low, p); +} + +// Simple fractional decimal digit printing for values that fir in 64-bits after +// shifting. +// Performs rounding if necessary to fit within `precision`. +// Returns the pointer to one after the last character written. +char *PrintFractionalDigitsFast(uint64_t v, char *start, int exp, + int precision) { + char *p = start; + v <<= (64 - exp); + while (precision > 0) { + if (!v) return p; + *p++ = MultiplyBy10WithCarry(&v, uint64_t{0}) + '0'; + --precision; + } + + // We need to round. + if (v < 0x8000000000000000) { + // We round down, so nothing to do. + } else if (v > 0x8000000000000000) { + // We round up. + RoundUp(p - 1); + } else { + RoundToEven(p - 1); + } + + assert(precision == 0); + // Precision can only be zero here. + return p; +} + +// Simple fractional decimal digit printing for values that fir in 128-bits +// after shifting. +// Performs rounding if necessary to fit within `precision`. +// Returns the pointer to one after the last character written. +char *PrintFractionalDigitsFast(uint128 v, char *start, int exp, + int precision) { + char *p = start; + v <<= (128 - exp); + auto high = static_cast<uint64_t>(v >> 64); + auto low = static_cast<uint64_t>(v); + + // While we have digits to print and `low` is not empty, do the long + // multiplication. + while (precision > 0 && low != 0) { + uint64_t carry = MultiplyBy10WithCarry(&low, uint64_t{0}); + carry = MultiplyBy10WithCarry(&high, carry); + + *p++ = carry + '0'; + --precision; + } + + // Now `low` is empty, so use a faster approach for the rest of the digits. + // This block is pretty much the same as the main loop for the 64-bit case + // above. + while (precision > 0) { + if (!high) return p; + *p++ = MultiplyBy10WithCarry(&high, uint64_t{0}) + '0'; + --precision; + } + + // We need to round. + if (high < 0x8000000000000000) { + // We round down, so nothing to do. + } else if (high > 0x8000000000000000 || low != 0) { + // We round up. + RoundUp(p - 1); + } else { + RoundToEven(p - 1); + } + + assert(precision == 0); + // Precision can only be zero here. + return p; +} + +struct FormatState { + char sign_char; + int precision; + const FormatConversionSpecImpl &conv; + FormatSinkImpl *sink; + + // In `alt` mode (flag #) we keep the `.` even if there are no fractional + // digits. In non-alt mode, we strip it. + bool ShouldPrintDot() const { return precision != 0 || conv.has_alt_flag(); } +}; + +struct Padding { + int left_spaces; + int zeros; + int right_spaces; +}; + +Padding ExtraWidthToPadding(int total_size, const FormatState &state) { + int missing_chars = std::max(state.conv.width() - total_size, 0); + if (state.conv.has_left_flag()) { + return {0, 0, missing_chars}; + } else if (state.conv.has_zero_flag()) { + return {0, missing_chars, 0}; + } else { + return {missing_chars, 0, 0}; + } +} + +void FinalPrint(absl::string_view data, int trailing_zeros, + const FormatState &state) { + if (state.conv.width() < 0) { + // No width specified. Fast-path. + if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); + state.sink->Append(data); + state.sink->Append(trailing_zeros, '0'); + return; + } + + auto padding = + ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) + + static_cast<int>(data.size()) + trailing_zeros, + state); + + state.sink->Append(padding.left_spaces, ' '); + if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); + state.sink->Append(padding.zeros, '0'); + state.sink->Append(data); + state.sink->Append(trailing_zeros, '0'); + state.sink->Append(padding.right_spaces, ' '); +} + +// Fastpath %f formatter for when the shifted value fits in a simple integral +// type. +// Prints `v*2^exp` with the options from `state`. +template <typename Int> +void FormatFFast(Int v, int exp, const FormatState &state) { + constexpr int input_bits = sizeof(Int) * 8; + + static constexpr size_t integral_size = + /* in case we need to round up an extra digit */ 1 + + /* decimal digits for uint128 */ 40 + 1; + char buffer[integral_size + /* . */ 1 + /* max digits uint128 */ 128]; + buffer[integral_size] = '.'; + char *const integral_digits_end = buffer + integral_size; + char *integral_digits_start; + char *const fractional_digits_start = buffer + integral_size + 1; + char *fractional_digits_end = fractional_digits_start; + + if (exp >= 0) { + const int total_bits = input_bits - LeadingZeros(v) + exp; + integral_digits_start = + total_bits <= 64 + ? PrintIntegralDigitsFromRightFast(static_cast<uint64_t>(v) << exp, + integral_digits_end) + : PrintIntegralDigitsFromRightFast(static_cast<uint128>(v) << exp, + integral_digits_end); + } else { + exp = -exp; + + integral_digits_start = PrintIntegralDigitsFromRightFast( + exp < input_bits ? v >> exp : 0, integral_digits_end); + // PrintFractionalDigits may pull a carried 1 all the way up through the + // integral portion. + integral_digits_start[-1] = '0'; + + fractional_digits_end = + exp <= 64 ? PrintFractionalDigitsFast(v, fractional_digits_start, exp, + state.precision) + : PrintFractionalDigitsFast(static_cast<uint128>(v), + fractional_digits_start, exp, + state.precision); + // There was a carry, so include the first digit too. + if (integral_digits_start[-1] != '0') --integral_digits_start; + } + + size_t size = fractional_digits_end - integral_digits_start; + + // In `alt` mode (flag #) we keep the `.` even if there are no fractional + // digits. In non-alt mode, we strip it. + if (!state.ShouldPrintDot()) --size; + FinalPrint(absl::string_view(integral_digits_start, size), + static_cast<int>(state.precision - (fractional_digits_end - + fractional_digits_start)), + state); +} + +// Slow %f formatter for when the shifted value does not fit in a uint128, and +// `exp > 0`. +// Prints `v*2^exp` with the options from `state`. +// This one is guaranteed to not have fractional digits, so we don't have to +// worry about anything after the `.`. +void FormatFPositiveExpSlow(uint128 v, int exp, const FormatState &state) { + BinaryToDecimal::RunConversion(v, exp, [&](BinaryToDecimal btd) { + const int total_digits = + btd.TotalDigits() + (state.ShouldPrintDot() ? state.precision + 1 : 0); + + const auto padding = ExtraWidthToPadding( + total_digits + (state.sign_char != '\0' ? 1 : 0), state); + + state.sink->Append(padding.left_spaces, ' '); + if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); + state.sink->Append(padding.zeros, '0'); + + do { + state.sink->Append(btd.CurrentDigits()); + } while (btd.AdvanceDigits()); + + if (state.ShouldPrintDot()) state.sink->Append(1, '.'); + state.sink->Append(state.precision, '0'); + state.sink->Append(padding.right_spaces, ' '); + }); +} + +// Slow %f formatter for when the shifted value does not fit in a uint128, and +// `exp < 0`. +// Prints `v*2^exp` with the options from `state`. +// This one is guaranteed to be < 1.0, so we don't have to worry about integral +// digits. +void FormatFNegativeExpSlow(uint128 v, int exp, const FormatState &state) { + const int total_digits = + /* 0 */ 1 + (state.ShouldPrintDot() ? state.precision + 1 : 0); + auto padding = + ExtraWidthToPadding(total_digits + (state.sign_char ? 1 : 0), state); + padding.zeros += 1; + state.sink->Append(padding.left_spaces, ' '); + if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); + state.sink->Append(padding.zeros, '0'); + + if (state.ShouldPrintDot()) state.sink->Append(1, '.'); + + // Print digits + int digits_to_go = state.precision; + + FractionalDigitGenerator::RunConversion( + v, exp, [&](FractionalDigitGenerator digit_gen) { + // There are no digits to print here. + if (state.precision == 0) return; + + // We go one digit at a time, while keeping track of runs of nines. + // The runs of nines are used to perform rounding when necessary. + + while (digits_to_go > 0 && digit_gen.HasMoreDigits()) { + auto digits = digit_gen.GetDigits(); + + // Now we have a digit and a run of nines. + // See if we can print them all. + if (digits.num_nines + 1 < digits_to_go) { + // We don't have to round yet, so print them. + state.sink->Append(1, digits.digit_before_nine + '0'); + state.sink->Append(digits.num_nines, '9'); + digits_to_go -= digits.num_nines + 1; + + } else { + // We can't print all the nines, see where we have to truncate. + + bool round_up = false; + if (digits.num_nines + 1 > digits_to_go) { + // We round up at a nine. No need to print them. + round_up = true; + } else { + // We can fit all the nines, but truncate just after it. + if (digit_gen.IsGreaterThanHalf()) { + round_up = true; + } else if (digit_gen.IsExactlyHalf()) { + // Round to even + round_up = + digits.num_nines != 0 || digits.digit_before_nine % 2 == 1; + } + } + + if (round_up) { + state.sink->Append(1, digits.digit_before_nine + '1'); + --digits_to_go; + // The rest will be zeros. + } else { + state.sink->Append(1, digits.digit_before_nine + '0'); + state.sink->Append(digits_to_go - 1, '9'); + digits_to_go = 0; + } + return; + } + } + }); + + state.sink->Append(digits_to_go, '0'); + state.sink->Append(padding.right_spaces, ' '); +} + +template <typename Int> +void FormatF(Int mantissa, int exp, const FormatState &state) { + if (exp >= 0) { + const int total_bits = sizeof(Int) * 8 - LeadingZeros(mantissa) + exp; + + // Fallback to the slow stack-based approach if we can't do it in a 64 or + // 128 bit state. + if (ABSL_PREDICT_FALSE(total_bits > 128)) { + return FormatFPositiveExpSlow(mantissa, exp, state); + } + } else { + // Fallback to the slow stack-based approach if we can't do it in a 64 or + // 128 bit state. + if (ABSL_PREDICT_FALSE(exp < -128)) { + return FormatFNegativeExpSlow(mantissa, -exp, state); + } + } + return FormatFFast(mantissa, exp, state); +} + +char *CopyStringTo(absl::string_view v, char *out) { std::memcpy(out, v.data(), v.size()); return out + v.size(); } template <typename Float> -bool FallbackToSnprintf(const Float v, const ConversionSpec &conv, +bool FallbackToSnprintf(const Float v, const FormatConversionSpecImpl &conv, FormatSinkImpl *sink) { int w = conv.width() >= 0 ? conv.width() : 0; int p = conv.precision() >= 0 ? conv.precision() : -1; @@ -38,12 +675,12 @@ bool FallbackToSnprintf(const Float v, const ConversionSpec &conv, assert(fp < fmt + sizeof(fmt)); } std::string space(512, '\0'); - string_view result; + absl::string_view result; while (true) { int n = snprintf(&space[0], space.size(), fmt, w, p, v); if (n < 0) return false; if (static_cast<size_t>(n) < space.size()) { - result = string_view(space.data(), n); + result = absl::string_view(space.data(), n); break; } space.resize(n + 1); @@ -96,9 +733,10 @@ enum class FormatStyle { Fixed, Precision }; // Otherwise, return false. template <typename Float> bool ConvertNonNumericFloats(char sign_char, Float v, - const ConversionSpec &conv, FormatSinkImpl *sink) { + const FormatConversionSpecImpl &conv, + FormatSinkImpl *sink) { char text[4], *ptr = text; - if (sign_char) *ptr++ = sign_char; + if (sign_char != '\0') *ptr++ = sign_char; if (std::isnan(v)) { ptr = std::copy_n( FormatConversionCharIsUpper(conv.conversion_char()) ? "NAN" : "nan", 3, @@ -172,7 +810,12 @@ constexpr bool CanFitMantissa() { template <typename Float> struct Decomposed { - Float mantissa; + using MantissaType = + absl::conditional_t<std::is_same<long double, Float>::value, uint128, + uint64_t>; + static_assert(std::numeric_limits<Float>::digits <= sizeof(MantissaType) * 8, + ""); + MantissaType mantissa; int exponent; }; @@ -183,7 +826,8 @@ Decomposed<Float> Decompose(Float v) { Float m = std::frexp(v, &exp); m = std::ldexp(m, std::numeric_limits<Float>::digits); exp -= std::numeric_limits<Float>::digits; - return {m, exp}; + + return {static_cast<typename Decomposed<Float>::MantissaType>(m), exp}; } // Print 'digits' as decimal. @@ -352,8 +996,9 @@ bool FloatToBuffer(Decomposed<Float> decomposed, int precision, Buffer *out, return false; } -void WriteBufferToSink(char sign_char, string_view str, - const ConversionSpec &conv, FormatSinkImpl *sink) { +void WriteBufferToSink(char sign_char, absl::string_view str, + const FormatConversionSpecImpl &conv, + FormatSinkImpl *sink) { int left_spaces = 0, zeros = 0, right_spaces = 0; int missing_chars = conv.width() >= 0 ? std::max(conv.width() - static_cast<int>(str.size()) - @@ -369,14 +1014,14 @@ void WriteBufferToSink(char sign_char, string_view str, } sink->Append(left_spaces, ' '); - if (sign_char) sink->Append(1, sign_char); + if (sign_char != '\0') sink->Append(1, sign_char); sink->Append(zeros, '0'); sink->Append(str); sink->Append(right_spaces, ' '); } template <typename Float> -bool FloatToSink(const Float v, const ConversionSpec &conv, +bool FloatToSink(const Float v, const FormatConversionSpecImpl &conv, FormatSinkImpl *sink) { // Print the sign or the sign column. Float abs_v = v; @@ -407,11 +1052,9 @@ bool FloatToSink(const Float v, const ConversionSpec &conv, if (c == FormatConversionCharInternal::f || c == FormatConversionCharInternal::F) { - if (!FloatToBuffer<FormatStyle::Fixed>(decomposed, precision, &buffer, - nullptr)) { - return FallbackToSnprintf(v, conv, sink); - } - if (!conv.has_alt_flag() && buffer.back() == '.') buffer.pop_back(); + FormatF(decomposed.mantissa, decomposed.exponent, + {sign_char, precision, conv, sink}); + return true; } else if (c == FormatConversionCharInternal::e || c == FormatConversionCharInternal::E) { if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer, @@ -462,25 +1105,32 @@ bool FloatToSink(const Float v, const ConversionSpec &conv, } WriteBufferToSink(sign_char, - string_view(buffer.begin, buffer.end - buffer.begin), conv, - sink); + absl::string_view(buffer.begin, buffer.end - buffer.begin), + conv, sink); return true; } } // namespace -bool ConvertFloatImpl(long double v, const ConversionSpec &conv, +bool ConvertFloatImpl(long double v, const FormatConversionSpecImpl &conv, FormatSinkImpl *sink) { + if (std::numeric_limits<long double>::digits == + 2 * std::numeric_limits<double>::digits) { + // This is the `double-double` representation of `long double`. + // We do not handle it natively. Fallback to snprintf. + return FallbackToSnprintf(v, conv, sink); + } + return FloatToSink(v, conv, sink); } -bool ConvertFloatImpl(float v, const ConversionSpec &conv, +bool ConvertFloatImpl(float v, const FormatConversionSpecImpl &conv, FormatSinkImpl *sink) { return FloatToSink(v, conv, sink); } -bool ConvertFloatImpl(double v, const ConversionSpec &conv, +bool ConvertFloatImpl(double v, const FormatConversionSpecImpl &conv, FormatSinkImpl *sink) { return FloatToSink(v, conv, sink); } |