about summary refs log tree commit diff
path: root/absl/strings/internal/str_format/float_conversion.cc
diff options
context:
space:
mode:
Diffstat (limited to 'absl/strings/internal/str_format/float_conversion.cc')
-rw-r--r--absl/strings/internal/str_format/float_conversion.cc694
1 files changed, 672 insertions, 22 deletions
diff --git a/absl/strings/internal/str_format/float_conversion.cc b/absl/strings/internal/str_format/float_conversion.cc
index d6858cfffd95..cdccc86f551c 100644
--- a/absl/strings/internal/str_format/float_conversion.cc
+++ b/absl/strings/internal/str_format/float_conversion.cc
@@ -1,12 +1,22 @@
 #include "absl/strings/internal/str_format/float_conversion.h"
 
 #include <string.h>
+
 #include <algorithm>
 #include <cassert>
 #include <cmath>
+#include <limits>
 #include <string>
 
+#include "absl/base/attributes.h"
 #include "absl/base/config.h"
+#include "absl/base/internal/bits.h"
+#include "absl/base/optimization.h"
+#include "absl/functional/function_ref.h"
+#include "absl/meta/type_traits.h"
+#include "absl/numeric/int128.h"
+#include "absl/types/optional.h"
+#include "absl/types/span.h"
 
 namespace absl {
 ABSL_NAMESPACE_BEGIN
@@ -14,13 +24,640 @@ namespace str_format_internal {
 
 namespace {
 
-char *CopyStringTo(string_view v, char *out) {
+// The code below wants to avoid heap allocations.
+// To do so it needs to allocate memory on the stack.
+// `StackArray` will allocate memory on the stack in the form of a uint32_t
+// array and call the provided callback with said memory.
+// It will allocate memory in increments of 512 bytes. We could allocate the
+// largest needed unconditionally, but that is more than we need in most of
+// cases. This way we use less stack in the common cases.
+class StackArray {
+  using Func = absl::FunctionRef<void(absl::Span<uint32_t>)>;
+  static constexpr size_t kStep = 512 / sizeof(uint32_t);
+  // 5 steps is 2560 bytes, which is enough to hold a long double with the
+  // largest/smallest exponents.
+  // The operations below will static_assert their particular maximum.
+  static constexpr size_t kNumSteps = 5;
+
+  // We do not want this function to be inlined.
+  // Otherwise the caller will allocate the stack space unnecessarily for all
+  // the variants even though it only calls one.
+  template <size_t steps>
+  ABSL_ATTRIBUTE_NOINLINE static void RunWithCapacityImpl(Func f) {
+    uint32_t values[steps * kStep]{};
+    f(absl::MakeSpan(values));
+  }
+
+ public:
+  static constexpr size_t kMaxCapacity = kStep * kNumSteps;
+
+  static void RunWithCapacity(size_t capacity, Func f) {
+    assert(capacity <= kMaxCapacity);
+    const size_t step = (capacity + kStep - 1) / kStep;
+    assert(step <= kNumSteps);
+    switch (step) {
+      case 1:
+        return RunWithCapacityImpl<1>(f);
+      case 2:
+        return RunWithCapacityImpl<2>(f);
+      case 3:
+        return RunWithCapacityImpl<3>(f);
+      case 4:
+        return RunWithCapacityImpl<4>(f);
+      case 5:
+        return RunWithCapacityImpl<5>(f);
+    }
+
+    assert(false && "Invalid capacity");
+  }
+};
+
+// Calculates `10 * (*v) + carry` and stores the result in `*v` and returns
+// the carry.
+template <typename Int>
+inline Int MultiplyBy10WithCarry(Int *v, Int carry) {
+  using BiggerInt = absl::conditional_t<sizeof(Int) == 4, uint64_t, uint128>;
+  BiggerInt tmp = 10 * static_cast<BiggerInt>(*v) + carry;
+  *v = static_cast<Int>(tmp);
+  return static_cast<Int>(tmp >> (sizeof(Int) * 8));
+}
+
+// Calculates `(2^64 * carry + *v) / 10`.
+// Stores the quotient in `*v` and returns the remainder.
+// Requires: `0 <= carry <= 9`
+inline uint64_t DivideBy10WithCarry(uint64_t *v, uint64_t carry) {
+  constexpr uint64_t divisor = 10;
+  // 2^64 / divisor = chunk_quotient + chunk_remainder / divisor
+  constexpr uint64_t chunk_quotient = (uint64_t{1} << 63) / (divisor / 2);
+  constexpr uint64_t chunk_remainder = uint64_t{} - chunk_quotient * divisor;
+
+  const uint64_t mod = *v % divisor;
+  const uint64_t next_carry = chunk_remainder * carry + mod;
+  *v = *v / divisor + carry * chunk_quotient + next_carry / divisor;
+  return next_carry % divisor;
+}
+
+// Generates the decimal representation for an integer of the form `v * 2^exp`,
+// where `v` and `exp` are both positive integers.
+// It generates the digits from the left (ie the most significant digit first)
+// to allow for direct printing into the sink.
+//
+// Requires `0 <= exp` and `exp <= numeric_limits<long double>::max_exponent`.
+class BinaryToDecimal {
+  static constexpr int ChunksNeeded(int exp) {
+    // We will left shift a uint128 by `exp` bits, so we need `128+exp` total
+    // bits. Round up to 32.
+    // See constructor for details about adding `10%` to the value.
+    return (128 + exp + 31) / 32 * 11 / 10;
+  }
+
+ public:
+  // Run the conversion for `v * 2^exp` and call `f(binary_to_decimal)`.
+  // This function will allocate enough stack space to perform the conversion.
+  static void RunConversion(uint128 v, int exp,
+                            absl::FunctionRef<void(BinaryToDecimal)> f) {
+    assert(exp > 0);
+    assert(exp <= std::numeric_limits<long double>::max_exponent);
+    static_assert(
+        StackArray::kMaxCapacity >=
+            ChunksNeeded(std::numeric_limits<long double>::max_exponent),
+        "");
+
+    StackArray::RunWithCapacity(
+        ChunksNeeded(exp),
+        [=](absl::Span<uint32_t> input) { f(BinaryToDecimal(input, v, exp)); });
+  }
+
+  int TotalDigits() const {
+    return static_cast<int>((decimal_end_ - decimal_start_) * kDigitsPerChunk +
+                            CurrentDigits().size());
+  }
+
+  // See the current block of digits.
+  absl::string_view CurrentDigits() const {
+    return absl::string_view(digits_ + kDigitsPerChunk - size_, size_);
+  }
+
+  // Advance the current view of digits.
+  // Returns `false` when no more digits are available.
+  bool AdvanceDigits() {
+    if (decimal_start_ >= decimal_end_) return false;
+
+    uint32_t w = data_[decimal_start_++];
+    for (size_ = 0; size_ < kDigitsPerChunk; w /= 10) {
+      digits_[kDigitsPerChunk - ++size_] = w % 10 + '0';
+    }
+    return true;
+  }
+
+ private:
+  BinaryToDecimal(absl::Span<uint32_t> data, uint128 v, int exp) : data_(data) {
+    // We need to print the digits directly into the sink object without
+    // buffering them all first. To do this we need two things:
+    // - to know the total number of digits to do padding when necessary
+    // - to generate the decimal digits from the left.
+    //
+    // In order to do this, we do a two pass conversion.
+    // On the first pass we convert the binary representation of the value into
+    // a decimal representation in which each uint32_t chunk holds up to 9
+    // decimal digits.  In the second pass we take each decimal-holding-uint32_t
+    // value and generate the ascii decimal digits into `digits_`.
+    //
+    // The binary and decimal representations actually share the same memory
+    // region. As we go converting the chunks from binary to decimal we free
+    // them up and reuse them for the decimal representation. One caveat is that
+    // the decimal representation is around 7% less efficient in space than the
+    // binary one. We allocate an extra 10% memory to account for this. See
+    // ChunksNeeded for this calculation.
+    int chunk_index = exp / 32;
+    decimal_start_ = decimal_end_ = ChunksNeeded(exp);
+    const int offset = exp % 32;
+    // Left shift v by exp bits.
+    data_[chunk_index] = static_cast<uint32_t>(v << offset);
+    for (v >>= (32 - offset); v; v >>= 32)
+      data_[++chunk_index] = static_cast<uint32_t>(v);
+
+    while (chunk_index >= 0) {
+      // While we have more than one chunk available, go in steps of 1e9.
+      // `data_[chunk_index]` holds the highest non-zero binary chunk, so keep
+      // the variable updated.
+      uint32_t carry = 0;
+      for (int i = chunk_index; i >= 0; --i) {
+        uint64_t tmp = uint64_t{data_[i]} + (uint64_t{carry} << 32);
+        data_[i] = static_cast<uint32_t>(tmp / uint64_t{1000000000});
+        carry = static_cast<uint32_t>(tmp % uint64_t{1000000000});
+      }
+
+      // If the highest chunk is now empty, remove it from view.
+      if (data_[chunk_index] == 0) --chunk_index;
+
+      --decimal_start_;
+      assert(decimal_start_ != chunk_index);
+      data_[decimal_start_] = carry;
+    }
+
+    // Fill the first set of digits. The first chunk might not be complete, so
+    // handle differently.
+    for (uint32_t first = data_[decimal_start_++]; first != 0; first /= 10) {
+      digits_[kDigitsPerChunk - ++size_] = first % 10 + '0';
+    }
+  }
+
+ private:
+  static constexpr size_t kDigitsPerChunk = 9;
+
+  int decimal_start_;
+  int decimal_end_;
+
+  char digits_[kDigitsPerChunk];
+  int size_ = 0;
+
+  absl::Span<uint32_t> data_;
+};
+
+// Converts a value of the form `x * 2^-exp` into a sequence of decimal digits.
+// Requires `-exp < 0` and
+// `-exp >= limits<long double>::min_exponent - limits<long double>::digits`.
+class FractionalDigitGenerator {
+ public:
+  // Run the conversion for `v * 2^exp` and call `f(generator)`.
+  // This function will allocate enough stack space to perform the conversion.
+  static void RunConversion(
+      uint128 v, int exp, absl::FunctionRef<void(FractionalDigitGenerator)> f) {
+    assert(-exp < 0);
+    assert(-exp >= std::numeric_limits<long double>::min_exponent - 128);
+    static_assert(
+        StackArray::kMaxCapacity >=
+            (128 - std::numeric_limits<long double>::min_exponent + 31) / 32,
+        "");
+    StackArray::RunWithCapacity((exp + 31) / 32,
+                                [=](absl::Span<uint32_t> input) {
+                                  f(FractionalDigitGenerator(input, v, exp));
+                                });
+  }
+
+  // Returns true if there are any more non-zero digits left.
+  bool HasMoreDigits() const { return next_digit_ != 0 || chunk_index_ >= 0; }
+
+  // Returns true if the remainder digits are greater than 5000...
+  bool IsGreaterThanHalf() const {
+    return next_digit_ > 5 || (next_digit_ == 5 && chunk_index_ >= 0);
+  }
+  // Returns true if the remainder digits are exactly 5000...
+  bool IsExactlyHalf() const { return next_digit_ == 5 && chunk_index_ < 0; }
+
+  struct Digits {
+    int digit_before_nine;
+    int num_nines;
+  };
+
+  // Get the next set of digits.
+  // They are composed by a non-9 digit followed by a runs of zero or more 9s.
+  Digits GetDigits() {
+    Digits digits{next_digit_, 0};
+
+    next_digit_ = GetOneDigit();
+    while (next_digit_ == 9) {
+      ++digits.num_nines;
+      next_digit_ = GetOneDigit();
+    }
+
+    return digits;
+  }
+
+ private:
+  // Return the next digit.
+  int GetOneDigit() {
+    if (chunk_index_ < 0) return 0;
+
+    uint32_t carry = 0;
+    for (int i = chunk_index_; i >= 0; --i) {
+      carry = MultiplyBy10WithCarry(&data_[i], carry);
+    }
+    // If the lowest chunk is now empty, remove it from view.
+    if (data_[chunk_index_] == 0) --chunk_index_;
+    return carry;
+  }
+
+  FractionalDigitGenerator(absl::Span<uint32_t> data, uint128 v, int exp)
+      : chunk_index_(exp / 32), data_(data) {
+    const int offset = exp % 32;
+    // Right shift `v` by `exp` bits.
+    data_[chunk_index_] = static_cast<uint32_t>(v << (32 - offset));
+    v >>= offset;
+    // Make sure we don't overflow the data. We already calculated that
+    // non-zero bits fit, so we might not have space for leading zero bits.
+    for (int pos = chunk_index_; v; v >>= 32)
+      data_[--pos] = static_cast<uint32_t>(v);
+
+    // Fill next_digit_, as GetDigits expects it to be populated always.
+    next_digit_ = GetOneDigit();
+  }
+
+  int next_digit_;
+  int chunk_index_;
+  absl::Span<uint32_t> data_;
+};
+
+// Count the number of leading zero bits.
+int LeadingZeros(uint64_t v) { return base_internal::CountLeadingZeros64(v); }
+int LeadingZeros(uint128 v) {
+  auto high = static_cast<uint64_t>(v >> 64);
+  auto low = static_cast<uint64_t>(v);
+  return high != 0 ? base_internal::CountLeadingZeros64(high)
+                   : 64 + base_internal::CountLeadingZeros64(low);
+}
+
+// Round up the text digits starting at `p`.
+// The buffer must have an extra digit that is known to not need rounding.
+// This is done below by having an extra '0' digit on the left.
+void RoundUp(char *p) {
+  while (*p == '9' || *p == '.') {
+    if (*p == '9') *p = '0';
+    --p;
+  }
+  ++*p;
+}
+
+// Check the previous digit and round up or down to follow the round-to-even
+// policy.
+void RoundToEven(char *p) {
+  if (*p == '.') --p;
+  if (*p % 2 == 1) RoundUp(p);
+}
+
+// Simple integral decimal digit printing for values that fit in 64-bits.
+// Returns the pointer to the last written digit.
+char *PrintIntegralDigitsFromRightFast(uint64_t v, char *p) {
+  do {
+    *--p = DivideBy10WithCarry(&v, 0) + '0';
+  } while (v != 0);
+  return p;
+}
+
+// Simple integral decimal digit printing for values that fit in 128-bits.
+// Returns the pointer to the last written digit.
+char *PrintIntegralDigitsFromRightFast(uint128 v, char *p) {
+  auto high = static_cast<uint64_t>(v >> 64);
+  auto low = static_cast<uint64_t>(v);
+
+  while (high != 0) {
+    uint64_t carry = DivideBy10WithCarry(&high, 0);
+    carry = DivideBy10WithCarry(&low, carry);
+    *--p = carry + '0';
+  }
+  return PrintIntegralDigitsFromRightFast(low, p);
+}
+
+// Simple fractional decimal digit printing for values that fir in 64-bits after
+// shifting.
+// Performs rounding if necessary to fit within `precision`.
+// Returns the pointer to one after the last character written.
+char *PrintFractionalDigitsFast(uint64_t v, char *start, int exp,
+                                int precision) {
+  char *p = start;
+  v <<= (64 - exp);
+  while (precision > 0) {
+    if (!v) return p;
+    *p++ = MultiplyBy10WithCarry(&v, uint64_t{0}) + '0';
+    --precision;
+  }
+
+  // We need to round.
+  if (v < 0x8000000000000000) {
+    // We round down, so nothing to do.
+  } else if (v > 0x8000000000000000) {
+    // We round up.
+    RoundUp(p - 1);
+  } else {
+    RoundToEven(p - 1);
+  }
+
+  assert(precision == 0);
+  // Precision can only be zero here.
+  return p;
+}
+
+// Simple fractional decimal digit printing for values that fir in 128-bits
+// after shifting.
+// Performs rounding if necessary to fit within `precision`.
+// Returns the pointer to one after the last character written.
+char *PrintFractionalDigitsFast(uint128 v, char *start, int exp,
+                                int precision) {
+  char *p = start;
+  v <<= (128 - exp);
+  auto high = static_cast<uint64_t>(v >> 64);
+  auto low = static_cast<uint64_t>(v);
+
+  // While we have digits to print and `low` is not empty, do the long
+  // multiplication.
+  while (precision > 0 && low != 0) {
+    uint64_t carry = MultiplyBy10WithCarry(&low, uint64_t{0});
+    carry = MultiplyBy10WithCarry(&high, carry);
+
+    *p++ = carry + '0';
+    --precision;
+  }
+
+  // Now `low` is empty, so use a faster approach for the rest of the digits.
+  // This block is pretty much the same as the main loop for the 64-bit case
+  // above.
+  while (precision > 0) {
+    if (!high) return p;
+    *p++ = MultiplyBy10WithCarry(&high, uint64_t{0}) + '0';
+    --precision;
+  }
+
+  // We need to round.
+  if (high < 0x8000000000000000) {
+    // We round down, so nothing to do.
+  } else if (high > 0x8000000000000000 || low != 0) {
+    // We round up.
+    RoundUp(p - 1);
+  } else {
+    RoundToEven(p - 1);
+  }
+
+  assert(precision == 0);
+  // Precision can only be zero here.
+  return p;
+}
+
+struct FormatState {
+  char sign_char;
+  int precision;
+  const FormatConversionSpecImpl &conv;
+  FormatSinkImpl *sink;
+
+  // In `alt` mode (flag #) we keep the `.` even if there are no fractional
+  // digits. In non-alt mode, we strip it.
+  bool ShouldPrintDot() const { return precision != 0 || conv.has_alt_flag(); }
+};
+
+struct Padding {
+  int left_spaces;
+  int zeros;
+  int right_spaces;
+};
+
+Padding ExtraWidthToPadding(int total_size, const FormatState &state) {
+  int missing_chars = std::max(state.conv.width() - total_size, 0);
+  if (state.conv.has_left_flag()) {
+    return {0, 0, missing_chars};
+  } else if (state.conv.has_zero_flag()) {
+    return {0, missing_chars, 0};
+  } else {
+    return {missing_chars, 0, 0};
+  }
+}
+
+void FinalPrint(absl::string_view data, int trailing_zeros,
+                const FormatState &state) {
+  if (state.conv.width() < 0) {
+    // No width specified. Fast-path.
+    if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
+    state.sink->Append(data);
+    state.sink->Append(trailing_zeros, '0');
+    return;
+  }
+
+  auto padding =
+      ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) +
+                              static_cast<int>(data.size()) + trailing_zeros,
+                          state);
+
+  state.sink->Append(padding.left_spaces, ' ');
+  if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
+  state.sink->Append(padding.zeros, '0');
+  state.sink->Append(data);
+  state.sink->Append(trailing_zeros, '0');
+  state.sink->Append(padding.right_spaces, ' ');
+}
+
+// Fastpath %f formatter for when the shifted value fits in a simple integral
+// type.
+// Prints `v*2^exp` with the options from `state`.
+template <typename Int>
+void FormatFFast(Int v, int exp, const FormatState &state) {
+  constexpr int input_bits = sizeof(Int) * 8;
+
+  static constexpr size_t integral_size =
+      /* in case we need to round up an extra digit */ 1 +
+      /* decimal digits for uint128 */ 40 + 1;
+  char buffer[integral_size + /* . */ 1 + /* max digits uint128 */ 128];
+  buffer[integral_size] = '.';
+  char *const integral_digits_end = buffer + integral_size;
+  char *integral_digits_start;
+  char *const fractional_digits_start = buffer + integral_size + 1;
+  char *fractional_digits_end = fractional_digits_start;
+
+  if (exp >= 0) {
+    const int total_bits = input_bits - LeadingZeros(v) + exp;
+    integral_digits_start =
+        total_bits <= 64
+            ? PrintIntegralDigitsFromRightFast(static_cast<uint64_t>(v) << exp,
+                                               integral_digits_end)
+            : PrintIntegralDigitsFromRightFast(static_cast<uint128>(v) << exp,
+                                               integral_digits_end);
+  } else {
+    exp = -exp;
+
+    integral_digits_start = PrintIntegralDigitsFromRightFast(
+        exp < input_bits ? v >> exp : 0, integral_digits_end);
+    // PrintFractionalDigits may pull a carried 1 all the way up through the
+    // integral portion.
+    integral_digits_start[-1] = '0';
+
+    fractional_digits_end =
+        exp <= 64 ? PrintFractionalDigitsFast(v, fractional_digits_start, exp,
+                                              state.precision)
+                  : PrintFractionalDigitsFast(static_cast<uint128>(v),
+                                              fractional_digits_start, exp,
+                                              state.precision);
+    // There was a carry, so include the first digit too.
+    if (integral_digits_start[-1] != '0') --integral_digits_start;
+  }
+
+  size_t size = fractional_digits_end - integral_digits_start;
+
+  // In `alt` mode (flag #) we keep the `.` even if there are no fractional
+  // digits. In non-alt mode, we strip it.
+  if (!state.ShouldPrintDot()) --size;
+  FinalPrint(absl::string_view(integral_digits_start, size),
+             static_cast<int>(state.precision - (fractional_digits_end -
+                                                 fractional_digits_start)),
+             state);
+}
+
+// Slow %f formatter for when the shifted value does not fit in a uint128, and
+// `exp > 0`.
+// Prints `v*2^exp` with the options from `state`.
+// This one is guaranteed to not have fractional digits, so we don't have to
+// worry about anything after the `.`.
+void FormatFPositiveExpSlow(uint128 v, int exp, const FormatState &state) {
+  BinaryToDecimal::RunConversion(v, exp, [&](BinaryToDecimal btd) {
+    const int total_digits =
+        btd.TotalDigits() + (state.ShouldPrintDot() ? state.precision + 1 : 0);
+
+    const auto padding = ExtraWidthToPadding(
+        total_digits + (state.sign_char != '\0' ? 1 : 0), state);
+
+    state.sink->Append(padding.left_spaces, ' ');
+    if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
+    state.sink->Append(padding.zeros, '0');
+
+    do {
+      state.sink->Append(btd.CurrentDigits());
+    } while (btd.AdvanceDigits());
+
+    if (state.ShouldPrintDot()) state.sink->Append(1, '.');
+    state.sink->Append(state.precision, '0');
+    state.sink->Append(padding.right_spaces, ' ');
+  });
+}
+
+// Slow %f formatter for when the shifted value does not fit in a uint128, and
+// `exp < 0`.
+// Prints `v*2^exp` with the options from `state`.
+// This one is guaranteed to be < 1.0, so we don't have to worry about integral
+// digits.
+void FormatFNegativeExpSlow(uint128 v, int exp, const FormatState &state) {
+  const int total_digits =
+      /* 0 */ 1 + (state.ShouldPrintDot() ? state.precision + 1 : 0);
+  auto padding =
+      ExtraWidthToPadding(total_digits + (state.sign_char ? 1 : 0), state);
+  padding.zeros += 1;
+  state.sink->Append(padding.left_spaces, ' ');
+  if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
+  state.sink->Append(padding.zeros, '0');
+
+  if (state.ShouldPrintDot()) state.sink->Append(1, '.');
+
+  // Print digits
+  int digits_to_go = state.precision;
+
+  FractionalDigitGenerator::RunConversion(
+      v, exp, [&](FractionalDigitGenerator digit_gen) {
+        // There are no digits to print here.
+        if (state.precision == 0) return;
+
+        // We go one digit at a time, while keeping track of runs of nines.
+        // The runs of nines are used to perform rounding when necessary.
+
+        while (digits_to_go > 0 && digit_gen.HasMoreDigits()) {
+          auto digits = digit_gen.GetDigits();
+
+          // Now we have a digit and a run of nines.
+          // See if we can print them all.
+          if (digits.num_nines + 1 < digits_to_go) {
+            // We don't have to round yet, so print them.
+            state.sink->Append(1, digits.digit_before_nine + '0');
+            state.sink->Append(digits.num_nines, '9');
+            digits_to_go -= digits.num_nines + 1;
+
+          } else {
+            // We can't print all the nines, see where we have to truncate.
+
+            bool round_up = false;
+            if (digits.num_nines + 1 > digits_to_go) {
+              // We round up at a nine. No need to print them.
+              round_up = true;
+            } else {
+              // We can fit all the nines, but truncate just after it.
+              if (digit_gen.IsGreaterThanHalf()) {
+                round_up = true;
+              } else if (digit_gen.IsExactlyHalf()) {
+                // Round to even
+                round_up =
+                    digits.num_nines != 0 || digits.digit_before_nine % 2 == 1;
+              }
+            }
+
+            if (round_up) {
+              state.sink->Append(1, digits.digit_before_nine + '1');
+              --digits_to_go;
+              // The rest will be zeros.
+            } else {
+              state.sink->Append(1, digits.digit_before_nine + '0');
+              state.sink->Append(digits_to_go - 1, '9');
+              digits_to_go = 0;
+            }
+            return;
+          }
+        }
+      });
+
+  state.sink->Append(digits_to_go, '0');
+  state.sink->Append(padding.right_spaces, ' ');
+}
+
+template <typename Int>
+void FormatF(Int mantissa, int exp, const FormatState &state) {
+  if (exp >= 0) {
+    const int total_bits = sizeof(Int) * 8 - LeadingZeros(mantissa) + exp;
+
+    // Fallback to the slow stack-based approach if we can't do it in a 64 or
+    // 128 bit state.
+    if (ABSL_PREDICT_FALSE(total_bits > 128)) {
+      return FormatFPositiveExpSlow(mantissa, exp, state);
+    }
+  } else {
+    // Fallback to the slow stack-based approach if we can't do it in a 64 or
+    // 128 bit state.
+    if (ABSL_PREDICT_FALSE(exp < -128)) {
+      return FormatFNegativeExpSlow(mantissa, -exp, state);
+    }
+  }
+  return FormatFFast(mantissa, exp, state);
+}
+
+char *CopyStringTo(absl::string_view v, char *out) {
   std::memcpy(out, v.data(), v.size());
   return out + v.size();
 }
 
 template <typename Float>
-bool FallbackToSnprintf(const Float v, const ConversionSpec &conv,
+bool FallbackToSnprintf(const Float v, const FormatConversionSpecImpl &conv,
                         FormatSinkImpl *sink) {
   int w = conv.width() >= 0 ? conv.width() : 0;
   int p = conv.precision() >= 0 ? conv.precision() : -1;
@@ -38,12 +675,12 @@ bool FallbackToSnprintf(const Float v, const ConversionSpec &conv,
     assert(fp < fmt + sizeof(fmt));
   }
   std::string space(512, '\0');
-  string_view result;
+  absl::string_view result;
   while (true) {
     int n = snprintf(&space[0], space.size(), fmt, w, p, v);
     if (n < 0) return false;
     if (static_cast<size_t>(n) < space.size()) {
-      result = string_view(space.data(), n);
+      result = absl::string_view(space.data(), n);
       break;
     }
     space.resize(n + 1);
@@ -96,9 +733,10 @@ enum class FormatStyle { Fixed, Precision };
 // Otherwise, return false.
 template <typename Float>
 bool ConvertNonNumericFloats(char sign_char, Float v,
-                             const ConversionSpec &conv, FormatSinkImpl *sink) {
+                             const FormatConversionSpecImpl &conv,
+                             FormatSinkImpl *sink) {
   char text[4], *ptr = text;
-  if (sign_char) *ptr++ = sign_char;
+  if (sign_char != '\0') *ptr++ = sign_char;
   if (std::isnan(v)) {
     ptr = std::copy_n(
         FormatConversionCharIsUpper(conv.conversion_char()) ? "NAN" : "nan", 3,
@@ -172,7 +810,12 @@ constexpr bool CanFitMantissa() {
 
 template <typename Float>
 struct Decomposed {
-  Float mantissa;
+  using MantissaType =
+      absl::conditional_t<std::is_same<long double, Float>::value, uint128,
+                          uint64_t>;
+  static_assert(std::numeric_limits<Float>::digits <= sizeof(MantissaType) * 8,
+                "");
+  MantissaType mantissa;
   int exponent;
 };
 
@@ -183,7 +826,8 @@ Decomposed<Float> Decompose(Float v) {
   Float m = std::frexp(v, &exp);
   m = std::ldexp(m, std::numeric_limits<Float>::digits);
   exp -= std::numeric_limits<Float>::digits;
-  return {m, exp};
+
+  return {static_cast<typename Decomposed<Float>::MantissaType>(m), exp};
 }
 
 // Print 'digits' as decimal.
@@ -352,8 +996,9 @@ bool FloatToBuffer(Decomposed<Float> decomposed, int precision, Buffer *out,
   return false;
 }
 
-void WriteBufferToSink(char sign_char, string_view str,
-                       const ConversionSpec &conv, FormatSinkImpl *sink) {
+void WriteBufferToSink(char sign_char, absl::string_view str,
+                       const FormatConversionSpecImpl &conv,
+                       FormatSinkImpl *sink) {
   int left_spaces = 0, zeros = 0, right_spaces = 0;
   int missing_chars =
       conv.width() >= 0 ? std::max(conv.width() - static_cast<int>(str.size()) -
@@ -369,14 +1014,14 @@ void WriteBufferToSink(char sign_char, string_view str,
   }
 
   sink->Append(left_spaces, ' ');
-  if (sign_char) sink->Append(1, sign_char);
+  if (sign_char != '\0') sink->Append(1, sign_char);
   sink->Append(zeros, '0');
   sink->Append(str);
   sink->Append(right_spaces, ' ');
 }
 
 template <typename Float>
-bool FloatToSink(const Float v, const ConversionSpec &conv,
+bool FloatToSink(const Float v, const FormatConversionSpecImpl &conv,
                  FormatSinkImpl *sink) {
   // Print the sign or the sign column.
   Float abs_v = v;
@@ -407,11 +1052,9 @@ bool FloatToSink(const Float v, const ConversionSpec &conv,
 
   if (c == FormatConversionCharInternal::f ||
       c == FormatConversionCharInternal::F) {
-    if (!FloatToBuffer<FormatStyle::Fixed>(decomposed, precision, &buffer,
-                                           nullptr)) {
-      return FallbackToSnprintf(v, conv, sink);
-    }
-    if (!conv.has_alt_flag() && buffer.back() == '.') buffer.pop_back();
+    FormatF(decomposed.mantissa, decomposed.exponent,
+            {sign_char, precision, conv, sink});
+    return true;
   } else if (c == FormatConversionCharInternal::e ||
              c == FormatConversionCharInternal::E) {
     if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
@@ -462,25 +1105,32 @@ bool FloatToSink(const Float v, const ConversionSpec &conv,
   }
 
   WriteBufferToSink(sign_char,
-                    string_view(buffer.begin, buffer.end - buffer.begin), conv,
-                    sink);
+                    absl::string_view(buffer.begin, buffer.end - buffer.begin),
+                    conv, sink);
 
   return true;
 }
 
 }  // namespace
 
-bool ConvertFloatImpl(long double v, const ConversionSpec &conv,
+bool ConvertFloatImpl(long double v, const FormatConversionSpecImpl &conv,
                       FormatSinkImpl *sink) {
+  if (std::numeric_limits<long double>::digits ==
+      2 * std::numeric_limits<double>::digits) {
+    // This is the `double-double` representation of `long double`.
+    // We do not handle it natively. Fallback to snprintf.
+    return FallbackToSnprintf(v, conv, sink);
+  }
+
   return FloatToSink(v, conv, sink);
 }
 
-bool ConvertFloatImpl(float v, const ConversionSpec &conv,
+bool ConvertFloatImpl(float v, const FormatConversionSpecImpl &conv,
                       FormatSinkImpl *sink) {
   return FloatToSink(v, conv, sink);
 }
 
-bool ConvertFloatImpl(double v, const ConversionSpec &conv,
+bool ConvertFloatImpl(double v, const FormatConversionSpecImpl &conv,
                       FormatSinkImpl *sink) {
   return FloatToSink(v, conv, sink);
 }