about summary refs log tree commit diff
path: root/absl/random/internal/randen_hwaes.cc
diff options
context:
space:
mode:
Diffstat (limited to 'absl/random/internal/randen_hwaes.cc')
-rw-r--r--absl/random/internal/randen_hwaes.cc398
1 files changed, 166 insertions, 232 deletions
diff --git a/absl/random/internal/randen_hwaes.cc b/absl/random/internal/randen_hwaes.cc
index e23844f12e56..9966486fde92 100644
--- a/absl/random/internal/randen_hwaes.cc
+++ b/absl/random/internal/randen_hwaes.cc
@@ -24,6 +24,7 @@
 
 #include "absl/base/attributes.h"
 #include "absl/random/internal/platform.h"
+#include "absl/random/internal/randen_traits.h"
 
 // ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain
 // a hardware accelerated implementation of randen, or whether it
@@ -115,8 +116,16 @@ ABSL_NAMESPACE_END
 // Accelerated implementations are supported.
 // We need the per-architecture includes and defines.
 //
+namespace {
 
-#include "absl/random/internal/randen_traits.h"
+using absl::random_internal::RandenTraits;
+
+// Randen operates on 128-bit vectors.
+struct alignas(16) u64x2 {
+  uint64_t data[2];
+};
+
+}  // namespace
 
 // TARGET_CRYPTO defines a crypto attribute for each architecture.
 //
@@ -150,7 +159,6 @@ ABSL_NAMESPACE_END
 using Vector128 = __vector unsigned long long;  // NOLINT(runtime/int)
 
 namespace {
-
 inline ABSL_TARGET_CRYPTO Vector128 ReverseBytes(const Vector128& v) {
   // Reverses the bytes of the vector.
   const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8,
@@ -177,14 +185,9 @@ inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
 }
 
 // Enables native loads in the round loop by pre-swapping.
-inline ABSL_TARGET_CRYPTO void SwapEndian(uint64_t* state) {
-  using absl::random_internal::RandenTraits;
-  constexpr size_t kLanes = 2;
-  constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks;
-
-  for (uint32_t branch = 0; branch < kFeistelBlocks; ++branch) {
-    const Vector128 v = ReverseBytes(Vector128Load(state + kLanes * branch));
-    Vector128Store(v, state + kLanes * branch);
+inline ABSL_TARGET_CRYPTO void SwapEndian(u64x2* state) {
+  for (uint32_t block = 0; block < RandenTraits::kFeistelBlocks; ++block) {
+    Vector128Store(ReverseBytes(Vector128Load(state + block)), state + block);
   }
 }
 
@@ -251,7 +254,7 @@ inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
   return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key;
 }
 
-inline ABSL_TARGET_CRYPTO void SwapEndian(uint64_t*) {}
+inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {}
 
 }  // namespace
 
@@ -297,39 +300,12 @@ inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
   return Vector128(_mm_aesenc_si128(state.data(), round_key.data()));
 }
 
-inline ABSL_TARGET_CRYPTO void SwapEndian(uint64_t*) {}
+inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {}
 
 }  // namespace
 
 #endif
 
-namespace {
-
-// u64x2 is a 128-bit, (2 x uint64_t lanes) struct used to store
-// the randen_keys.
-struct alignas(16) u64x2 {
-  constexpr u64x2(uint64_t hi, uint64_t lo)
-#if defined(ABSL_ARCH_PPC)
-      // This has been tested with PPC running in little-endian mode;
-      // We byte-swap the u64x2 structure from little-endian to big-endian
-      // because altivec always runs in big-endian mode.
-      : v{__builtin_bswap64(hi), __builtin_bswap64(lo)} {
-#else
-      : v{lo, hi} {
-#endif
-  }
-
-  constexpr bool operator==(const u64x2& other) const {
-    return v[0] == other.v[0] && v[1] == other.v[1];
-  }
-
-  constexpr bool operator!=(const u64x2& other) const {
-    return !(*this == other);
-  }
-
-  uint64_t v[2];
-};  // namespace
-
 #ifdef __clang__
 #pragma clang diagnostic push
 #pragma clang diagnostic ignored "-Wunknown-pragmas"
@@ -338,7 +314,6 @@ struct alignas(16) u64x2 {
 // At this point, all of the platform-specific features have been defined /
 // implemented.
 //
-// REQUIRES: using u64x2 = ...
 // REQUIRES: using Vector128 = ...
 // REQUIRES: Vector128 Vector128Load(void*) {...}
 // REQUIRES: void Vector128Store(Vector128, void*) {...}
@@ -347,94 +322,50 @@ struct alignas(16) u64x2 {
 //
 // PROVIDES: absl::random_internal::RandenHwAes::Absorb
 // PROVIDES: absl::random_internal::RandenHwAes::Generate
-
-// RANDen = RANDom generator or beetroots in Swiss German.
-// 'Strong' (well-distributed, unpredictable, backtracking-resistant) random
-// generator, faster in some benchmarks than std::mt19937_64 and pcg64_c32.
-//
-// High-level summary:
-// 1) Reverie (see "A Robust and Sponge-Like PRNG with Improved Efficiency") is
-//    a sponge-like random generator that requires a cryptographic permutation.
-//    It improves upon "Provably Robust Sponge-Based PRNGs and KDFs" by
-//    achieving backtracking resistance with only one Permute() per buffer.
-//
-// 2) "Simpira v2: A Family of Efficient Permutations Using the AES Round
-//    Function" constructs up to 1024-bit permutations using an improved
-//    Generalized Feistel network with 2-round AES-128 functions. This Feistel
-//    block shuffle achieves diffusion faster and is less vulnerable to
-//    sliced-biclique attacks than the Type-2 cyclic shuffle.
-//
-// 3) "Improving the Generalized Feistel" and "New criterion for diffusion
-//    property" extends the same kind of improved Feistel block shuffle to 16
-//    branches, which enables a 2048-bit permutation.
-//
-// We combine these three ideas and also change Simpira's subround keys from
-// structured/low-entropy counters to digits of Pi.
-
-// Randen constants.
-using absl::random_internal::RandenTraits;
-constexpr size_t kStateBytes = RandenTraits::kStateBytes;
-constexpr size_t kCapacityBytes = RandenTraits::kCapacityBytes;
-constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks;
-constexpr size_t kFeistelRounds = RandenTraits::kFeistelRounds;
-constexpr size_t kFeistelFunctions = RandenTraits::kFeistelFunctions;
-
-// Independent keys (272 = 2.1 KiB) for the first AES subround of each function.
-constexpr size_t kKeys = kFeistelRounds * kFeistelFunctions;
-
-// INCLUDE keys.
-#include "absl/random/internal/randen-keys.inc"
-
-static_assert(kKeys == kRoundKeys, "kKeys and kRoundKeys must be equal");
-static_assert(round_keys[kKeys - 1] != u64x2(0, 0),
-              "Too few round_keys initializers");
-
-// Number of uint64_t lanes per 128-bit vector;
-constexpr size_t kLanes = 2;
+namespace {
 
 // Block shuffles applies a shuffle to the entire state between AES rounds.
 // Improved odd-even shuffle from "New criterion for diffusion property".
-inline ABSL_TARGET_CRYPTO void BlockShuffle(uint64_t* state) {
-  static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks.");
-
-  constexpr size_t shuffle[kFeistelBlocks] = {7,  2, 13, 4,  11, 8,  3, 6,
-                                              15, 0, 9,  10, 1,  14, 5, 12};
-
-  // The fully unrolled loop without the memcpy improves the speed by about
-  // 30% over the equivalent loop.
-  const Vector128 v0 = Vector128Load(state + kLanes * shuffle[0]);
-  const Vector128 v1 = Vector128Load(state + kLanes * shuffle[1]);
-  const Vector128 v2 = Vector128Load(state + kLanes * shuffle[2]);
-  const Vector128 v3 = Vector128Load(state + kLanes * shuffle[3]);
-  const Vector128 v4 = Vector128Load(state + kLanes * shuffle[4]);
-  const Vector128 v5 = Vector128Load(state + kLanes * shuffle[5]);
-  const Vector128 v6 = Vector128Load(state + kLanes * shuffle[6]);
-  const Vector128 v7 = Vector128Load(state + kLanes * shuffle[7]);
-  const Vector128 w0 = Vector128Load(state + kLanes * shuffle[8]);
-  const Vector128 w1 = Vector128Load(state + kLanes * shuffle[9]);
-  const Vector128 w2 = Vector128Load(state + kLanes * shuffle[10]);
-  const Vector128 w3 = Vector128Load(state + kLanes * shuffle[11]);
-  const Vector128 w4 = Vector128Load(state + kLanes * shuffle[12]);
-  const Vector128 w5 = Vector128Load(state + kLanes * shuffle[13]);
-  const Vector128 w6 = Vector128Load(state + kLanes * shuffle[14]);
-  const Vector128 w7 = Vector128Load(state + kLanes * shuffle[15]);
-
-  Vector128Store(v0, state + kLanes * 0);
-  Vector128Store(v1, state + kLanes * 1);
-  Vector128Store(v2, state + kLanes * 2);
-  Vector128Store(v3, state + kLanes * 3);
-  Vector128Store(v4, state + kLanes * 4);
-  Vector128Store(v5, state + kLanes * 5);
-  Vector128Store(v6, state + kLanes * 6);
-  Vector128Store(v7, state + kLanes * 7);
-  Vector128Store(w0, state + kLanes * 8);
-  Vector128Store(w1, state + kLanes * 9);
-  Vector128Store(w2, state + kLanes * 10);
-  Vector128Store(w3, state + kLanes * 11);
-  Vector128Store(w4, state + kLanes * 12);
-  Vector128Store(w5, state + kLanes * 13);
-  Vector128Store(w6, state + kLanes * 14);
-  Vector128Store(w7, state + kLanes * 15);
+inline ABSL_TARGET_CRYPTO void BlockShuffle(u64x2* state) {
+  static_assert(RandenTraits::kFeistelBlocks == 16,
+                "Expecting 16 FeistelBlocks.");
+
+  constexpr size_t shuffle[RandenTraits::kFeistelBlocks] = {
+      7, 2, 13, 4, 11, 8, 3, 6, 15, 0, 9, 10, 1, 14, 5, 12};
+
+  const Vector128 v0 = Vector128Load(state + shuffle[0]);
+  const Vector128 v1 = Vector128Load(state + shuffle[1]);
+  const Vector128 v2 = Vector128Load(state + shuffle[2]);
+  const Vector128 v3 = Vector128Load(state + shuffle[3]);
+  const Vector128 v4 = Vector128Load(state + shuffle[4]);
+  const Vector128 v5 = Vector128Load(state + shuffle[5]);
+  const Vector128 v6 = Vector128Load(state + shuffle[6]);
+  const Vector128 v7 = Vector128Load(state + shuffle[7]);
+  const Vector128 w0 = Vector128Load(state + shuffle[8]);
+  const Vector128 w1 = Vector128Load(state + shuffle[9]);
+  const Vector128 w2 = Vector128Load(state + shuffle[10]);
+  const Vector128 w3 = Vector128Load(state + shuffle[11]);
+  const Vector128 w4 = Vector128Load(state + shuffle[12]);
+  const Vector128 w5 = Vector128Load(state + shuffle[13]);
+  const Vector128 w6 = Vector128Load(state + shuffle[14]);
+  const Vector128 w7 = Vector128Load(state + shuffle[15]);
+
+  Vector128Store(v0, state + 0);
+  Vector128Store(v1, state + 1);
+  Vector128Store(v2, state + 2);
+  Vector128Store(v3, state + 3);
+  Vector128Store(v4, state + 4);
+  Vector128Store(v5, state + 5);
+  Vector128Store(v6, state + 6);
+  Vector128Store(v7, state + 7);
+  Vector128Store(w0, state + 8);
+  Vector128Store(w1, state + 9);
+  Vector128Store(w2, state + 10);
+  Vector128Store(w3, state + 11);
+  Vector128Store(w4, state + 12);
+  Vector128Store(w5, state + 13);
+  Vector128Store(w6, state + 14);
+  Vector128Store(w7, state + 15);
 }
 
 // Feistel round function using two AES subrounds. Very similar to F()
@@ -443,27 +374,28 @@ inline ABSL_TARGET_CRYPTO void BlockShuffle(uint64_t* state) {
 // parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel
 // XORs are 'free' (included in the second AES instruction).
 inline ABSL_TARGET_CRYPTO const u64x2* FeistelRound(
-    uint64_t* state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
-  static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks.");
+    u64x2* state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
+  static_assert(RandenTraits::kFeistelBlocks == 16,
+                "Expecting 16 FeistelBlocks.");
 
   // MSVC does a horrible job at unrolling loops.
   // So we unroll the loop by hand to improve the performance.
-  const Vector128 s0 = Vector128Load(state + kLanes * 0);
-  const Vector128 s1 = Vector128Load(state + kLanes * 1);
-  const Vector128 s2 = Vector128Load(state + kLanes * 2);
-  const Vector128 s3 = Vector128Load(state + kLanes * 3);
-  const Vector128 s4 = Vector128Load(state + kLanes * 4);
-  const Vector128 s5 = Vector128Load(state + kLanes * 5);
-  const Vector128 s6 = Vector128Load(state + kLanes * 6);
-  const Vector128 s7 = Vector128Load(state + kLanes * 7);
-  const Vector128 s8 = Vector128Load(state + kLanes * 8);
-  const Vector128 s9 = Vector128Load(state + kLanes * 9);
-  const Vector128 s10 = Vector128Load(state + kLanes * 10);
-  const Vector128 s11 = Vector128Load(state + kLanes * 11);
-  const Vector128 s12 = Vector128Load(state + kLanes * 12);
-  const Vector128 s13 = Vector128Load(state + kLanes * 13);
-  const Vector128 s14 = Vector128Load(state + kLanes * 14);
-  const Vector128 s15 = Vector128Load(state + kLanes * 15);
+  const Vector128 s0 = Vector128Load(state + 0);
+  const Vector128 s1 = Vector128Load(state + 1);
+  const Vector128 s2 = Vector128Load(state + 2);
+  const Vector128 s3 = Vector128Load(state + 3);
+  const Vector128 s4 = Vector128Load(state + 4);
+  const Vector128 s5 = Vector128Load(state + 5);
+  const Vector128 s6 = Vector128Load(state + 6);
+  const Vector128 s7 = Vector128Load(state + 7);
+  const Vector128 s8 = Vector128Load(state + 8);
+  const Vector128 s9 = Vector128Load(state + 9);
+  const Vector128 s10 = Vector128Load(state + 10);
+  const Vector128 s11 = Vector128Load(state + 11);
+  const Vector128 s12 = Vector128Load(state + 12);
+  const Vector128 s13 = Vector128Load(state + 13);
+  const Vector128 s14 = Vector128Load(state + 14);
+  const Vector128 s15 = Vector128Load(state + 15);
 
   // Encode even blocks with keys.
   const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0));
@@ -486,14 +418,14 @@ inline ABSL_TARGET_CRYPTO const u64x2* FeistelRound(
   const Vector128 o15 = AesRound(e14, s15);
 
   // Store odd blocks. (These will be shuffled later).
-  Vector128Store(o1, state + kLanes * 1);
-  Vector128Store(o3, state + kLanes * 3);
-  Vector128Store(o5, state + kLanes * 5);
-  Vector128Store(o7, state + kLanes * 7);
-  Vector128Store(o9, state + kLanes * 9);
-  Vector128Store(o11, state + kLanes * 11);
-  Vector128Store(o13, state + kLanes * 13);
-  Vector128Store(o15, state + kLanes * 15);
+  Vector128Store(o1, state + 1);
+  Vector128Store(o3, state + 3);
+  Vector128Store(o5, state + 5);
+  Vector128Store(o7, state + 7);
+  Vector128Store(o9, state + 9);
+  Vector128Store(o11, state + 11);
+  Vector128Store(o13, state + 13);
+  Vector128Store(o15, state + 15);
 
   return keys + 8;
 }
@@ -503,16 +435,13 @@ inline ABSL_TARGET_CRYPTO const u64x2* FeistelRound(
 // 2^64 queries if the round function is a PRF. This is similar to the b=8 case
 // of Simpira v2, but more efficient than its generic construction for b=16.
 inline ABSL_TARGET_CRYPTO void Permute(
-    const void* ABSL_RANDOM_INTERNAL_RESTRICT keys, uint64_t* state) {
-  const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys128 =
-      static_cast<const u64x2*>(keys);
-
+    u64x2* state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
   // (Successfully unrolled; the first iteration jumps into the second half)
 #ifdef __clang__
 #pragma clang loop unroll_count(2)
 #endif
-  for (size_t round = 0; round < kFeistelRounds; ++round) {
-    keys128 = FeistelRound(state, keys128);
+  for (size_t round = 0; round < RandenTraits::kFeistelRounds; ++round) {
+    keys = FeistelRound(state, keys);
     BlockShuffle(state);
   }
 }
@@ -528,96 +457,101 @@ bool HasRandenHwAesImplementation() { return true; }
 const void* ABSL_TARGET_CRYPTO RandenHwAes::GetKeys() {
   // Round keys for one AES per Feistel round and branch.
   // The canonical implementation uses first digits of Pi.
-  return round_keys;
+#if defined(ABSL_ARCH_PPC)
+  return kRandenRoundKeysBE;
+#else
+  return kRandenRoundKeys;
+#endif
 }
 
 // NOLINTNEXTLINE
 void ABSL_TARGET_CRYPTO RandenHwAes::Absorb(const void* seed_void,
                                             void* state_void) {
-  auto* state = static_cast<uint64_t*>(state_void);
-  const auto* seed = static_cast<const uint64_t*>(seed_void);
-
-  constexpr size_t kCapacityBlocks = kCapacityBytes / sizeof(Vector128);
-  constexpr size_t kStateBlocks = kStateBytes / sizeof(Vector128);
-
-  static_assert(kCapacityBlocks * sizeof(Vector128) == kCapacityBytes,
-                "Not i*V");
-  static_assert(kCapacityBlocks == 1, "Unexpected Randen kCapacityBlocks");
-  static_assert(kStateBlocks == 16, "Unexpected Randen kStateBlocks");
-
-  Vector128 b1 = Vector128Load(state + kLanes * 1);
-  b1 ^= Vector128Load(seed + kLanes * 0);
-  Vector128Store(b1, state + kLanes * 1);
-
-  Vector128 b2 = Vector128Load(state + kLanes * 2);
-  b2 ^= Vector128Load(seed + kLanes * 1);
-  Vector128Store(b2, state + kLanes * 2);
-
-  Vector128 b3 = Vector128Load(state + kLanes * 3);
-  b3 ^= Vector128Load(seed + kLanes * 2);
-  Vector128Store(b3, state + kLanes * 3);
-
-  Vector128 b4 = Vector128Load(state + kLanes * 4);
-  b4 ^= Vector128Load(seed + kLanes * 3);
-  Vector128Store(b4, state + kLanes * 4);
-
-  Vector128 b5 = Vector128Load(state + kLanes * 5);
-  b5 ^= Vector128Load(seed + kLanes * 4);
-  Vector128Store(b5, state + kLanes * 5);
-
-  Vector128 b6 = Vector128Load(state + kLanes * 6);
-  b6 ^= Vector128Load(seed + kLanes * 5);
-  Vector128Store(b6, state + kLanes * 6);
-
-  Vector128 b7 = Vector128Load(state + kLanes * 7);
-  b7 ^= Vector128Load(seed + kLanes * 6);
-  Vector128Store(b7, state + kLanes * 7);
-
-  Vector128 b8 = Vector128Load(state + kLanes * 8);
-  b8 ^= Vector128Load(seed + kLanes * 7);
-  Vector128Store(b8, state + kLanes * 8);
-
-  Vector128 b9 = Vector128Load(state + kLanes * 9);
-  b9 ^= Vector128Load(seed + kLanes * 8);
-  Vector128Store(b9, state + kLanes * 9);
-
-  Vector128 b10 = Vector128Load(state + kLanes * 10);
-  b10 ^= Vector128Load(seed + kLanes * 9);
-  Vector128Store(b10, state + kLanes * 10);
-
-  Vector128 b11 = Vector128Load(state + kLanes * 11);
-  b11 ^= Vector128Load(seed + kLanes * 10);
-  Vector128Store(b11, state + kLanes * 11);
-
-  Vector128 b12 = Vector128Load(state + kLanes * 12);
-  b12 ^= Vector128Load(seed + kLanes * 11);
-  Vector128Store(b12, state + kLanes * 12);
-
-  Vector128 b13 = Vector128Load(state + kLanes * 13);
-  b13 ^= Vector128Load(seed + kLanes * 12);
-  Vector128Store(b13, state + kLanes * 13);
-
-  Vector128 b14 = Vector128Load(state + kLanes * 14);
-  b14 ^= Vector128Load(seed + kLanes * 13);
-  Vector128Store(b14, state + kLanes * 14);
-
-  Vector128 b15 = Vector128Load(state + kLanes * 15);
-  b15 ^= Vector128Load(seed + kLanes * 14);
-  Vector128Store(b15, state + kLanes * 15);
+  static_assert(RandenTraits::kCapacityBytes / sizeof(Vector128) == 1,
+                "Unexpected Randen kCapacityBlocks");
+  static_assert(RandenTraits::kStateBytes / sizeof(Vector128) == 16,
+                "Unexpected Randen kStateBlocks");
+
+  auto* state =
+      reinterpret_cast<u64x2 * ABSL_RANDOM_INTERNAL_RESTRICT>(state_void);
+  const auto* seed =
+      reinterpret_cast<const u64x2 * ABSL_RANDOM_INTERNAL_RESTRICT>(seed_void);
+
+  Vector128 b1 = Vector128Load(state + 1);
+  b1 ^= Vector128Load(seed + 0);
+  Vector128Store(b1, state + 1);
+
+  Vector128 b2 = Vector128Load(state + 2);
+  b2 ^= Vector128Load(seed + 1);
+  Vector128Store(b2, state + 2);
+
+  Vector128 b3 = Vector128Load(state + 3);
+  b3 ^= Vector128Load(seed + 2);
+  Vector128Store(b3, state + 3);
+
+  Vector128 b4 = Vector128Load(state + 4);
+  b4 ^= Vector128Load(seed + 3);
+  Vector128Store(b4, state + 4);
+
+  Vector128 b5 = Vector128Load(state + 5);
+  b5 ^= Vector128Load(seed + 4);
+  Vector128Store(b5, state + 5);
+
+  Vector128 b6 = Vector128Load(state + 6);
+  b6 ^= Vector128Load(seed + 5);
+  Vector128Store(b6, state + 6);
+
+  Vector128 b7 = Vector128Load(state + 7);
+  b7 ^= Vector128Load(seed + 6);
+  Vector128Store(b7, state + 7);
+
+  Vector128 b8 = Vector128Load(state + 8);
+  b8 ^= Vector128Load(seed + 7);
+  Vector128Store(b8, state + 8);
+
+  Vector128 b9 = Vector128Load(state + 9);
+  b9 ^= Vector128Load(seed + 8);
+  Vector128Store(b9, state + 9);
+
+  Vector128 b10 = Vector128Load(state + 10);
+  b10 ^= Vector128Load(seed + 9);
+  Vector128Store(b10, state + 10);
+
+  Vector128 b11 = Vector128Load(state + 11);
+  b11 ^= Vector128Load(seed + 10);
+  Vector128Store(b11, state + 11);
+
+  Vector128 b12 = Vector128Load(state + 12);
+  b12 ^= Vector128Load(seed + 11);
+  Vector128Store(b12, state + 12);
+
+  Vector128 b13 = Vector128Load(state + 13);
+  b13 ^= Vector128Load(seed + 12);
+  Vector128Store(b13, state + 13);
+
+  Vector128 b14 = Vector128Load(state + 14);
+  b14 ^= Vector128Load(seed + 13);
+  Vector128Store(b14, state + 14);
+
+  Vector128 b15 = Vector128Load(state + 15);
+  b15 ^= Vector128Load(seed + 14);
+  Vector128Store(b15, state + 15);
 }
 
 // NOLINTNEXTLINE
-void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys,
+void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys_void,
                                               void* state_void) {
-  static_assert(kCapacityBytes == sizeof(Vector128), "Capacity mismatch");
+  static_assert(RandenTraits::kCapacityBytes == sizeof(Vector128),
+                "Capacity mismatch");
 
-  auto* state = static_cast<uint64_t*>(state_void);
+  auto* state = reinterpret_cast<u64x2*>(state_void);
+  const auto* keys = reinterpret_cast<const u64x2*>(keys_void);
 
   const Vector128 prev_inner = Vector128Load(state);
 
   SwapEndian(state);
 
-  Permute(keys, state);
+  Permute(state, keys);
 
   SwapEndian(state);