about summary refs log tree commit diff
path: root/absl/memory
diff options
context:
space:
mode:
Diffstat (limited to 'absl/memory')
-rw-r--r--absl/memory/BUILD.bazel47
-rw-r--r--absl/memory/README.md22
-rw-r--r--absl/memory/memory.h622
-rw-r--r--absl/memory/memory_test.cc590
4 files changed, 1281 insertions, 0 deletions
diff --git a/absl/memory/BUILD.bazel b/absl/memory/BUILD.bazel
new file mode 100644
index 000000000000..91fc55fc460f
--- /dev/null
+++ b/absl/memory/BUILD.bazel
@@ -0,0 +1,47 @@
+#
+# Copyright 2017 The Abseil Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+load(
+    "//absl:copts.bzl",
+    "ABSL_DEFAULT_COPTS",
+    "ABSL_TEST_COPTS",
+)
+load(
+    "//absl:test_dependencies.bzl",
+    "GUNIT_MAIN_DEPS_SELECTOR",
+)
+
+package(default_visibility = ["//visibility:public"])
+
+licenses(["notice"])  # Apache 2.0
+
+cc_library(
+    name = "memory",
+    hdrs = ["memory.h"],
+    copts = ABSL_DEFAULT_COPTS,
+    deps = ["//absl/meta:type_traits"],
+)
+
+cc_test(
+    name = "memory_test",
+    srcs = ["memory_test.cc"],
+    copts = ABSL_TEST_COPTS,
+    deps = [
+        ":memory",
+        "//absl/base",
+        "//absl/base:core_headers",
+    ] + select(GUNIT_MAIN_DEPS_SELECTOR),
+)
diff --git a/absl/memory/README.md b/absl/memory/README.md
new file mode 100644
index 000000000000..72eddd9c05aa
--- /dev/null
+++ b/absl/memory/README.md
@@ -0,0 +1,22 @@
+# ABSL Memory
+
+This directory contains packages related to abstractions for managing memory
+within objects.
+
+## Library Listing
+
+Only one library target exists within this directory at this time:
+
+* **memory** (`//absl/memory:memory`) provides classes and
+  utility functions for managing memory associated with pointers.
+
+
+## Memory Library File Listing
+
+The following header files are directly included within the
+`absl::memory` library:
+
+### Smart Pointer Management
+
+* `memory.h`
+    <br/>Pointer memory management abstractions for handling unique pointers
diff --git a/absl/memory/memory.h b/absl/memory/memory.h
new file mode 100644
index 000000000000..c67996084ef6
--- /dev/null
+++ b/absl/memory/memory.h
@@ -0,0 +1,622 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: memory.h
+// -----------------------------------------------------------------------------
+//
+// This header file contains utility functions for managing the creation and
+// conversion of smart pointers. This file is an extension to the C++
+// standard <memory> library header file.
+
+#ifndef ABSL_MEMORY_MEMORY_H_
+#define ABSL_MEMORY_MEMORY_H_
+
+#include <cstddef>
+#include <limits>
+#include <memory>
+#include <new>
+#include <type_traits>
+#include <utility>
+
+#include "absl/meta/type_traits.h"
+
+namespace absl {
+
+// -----------------------------------------------------------------------------
+// Function Template: WrapUnique()
+// -----------------------------------------------------------------------------
+//
+// Transfers ownership of a raw pointer to a `std::unique_ptr`. The returned
+// value is a `std::unique_ptr` of deduced type.
+//
+// Example:
+//   X* NewX(int, int);
+//   auto x = WrapUnique(NewX(1, 2));  // 'x' is std::unique_ptr<X>.
+//
+// `absl::WrapUnique` is useful for capturing the output of a raw pointer
+// factory. However, prefer 'absl::make_unique<T>(args...) over
+// 'absl::WrapUnique(new T(args...))'.
+//
+//   auto x = WrapUnique(new X(1, 2));  // works, but nonideal.
+//   auto x = make_unique<X>(1, 2);     // safer, standard, avoids raw 'new'.
+//
+// Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid
+// expression. In particular, `absl::WrapUnique()` cannot wrap pointers to
+// arrays, functions or void, and it must not be used to capture pointers
+// obtained from array-new expressions (even though that would compile!).
+template <typename T>
+std::unique_ptr<T> WrapUnique(T* ptr) {
+  static_assert(!std::is_array<T>::value, "array types are unsupported");
+  static_assert(std::is_object<T>::value, "non-object types are unsupported");
+  return std::unique_ptr<T>(ptr);
+}
+
+namespace memory_internal {
+
+// Traits to select proper overload and return type for `absl::make_unique<>`.
+template <typename T>
+struct MakeUniqueResult {
+  using scalar = std::unique_ptr<T>;
+};
+template <typename T>
+struct MakeUniqueResult<T[]> {
+  using array = std::unique_ptr<T[]>;
+};
+template <typename T, size_t N>
+struct MakeUniqueResult<T[N]> {
+  using invalid = void;
+};
+
+}  // namespace memory_internal
+
+// -----------------------------------------------------------------------------
+// Function Template: make_unique<T>()
+// -----------------------------------------------------------------------------
+//
+// Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries
+// during the construction process. `absl::make_unique<>` also avoids redundant
+// type declarations, by avoiding the need to explicitly use the `new` operator.
+//
+// This implementation of `absl::make_unique<>` is designed for C++11 code and
+// will be replaced in C++14 by the equivalent `std::make_unique<>` abstraction.
+// `absl::make_unique<>` is designed to be 100% compatible with
+// `std::make_unique<>` so that the eventual migration will involve a simple
+// rename operation.
+//
+// For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic,
+// see Herb Sutter's explanation on
+// (Exception-Safe Function Calls)[http://herbsutter.com/gotw/_102/].
+// (In general, reviewers should treat `new T(a,b)` with scrutiny.)
+//
+// Example usage:
+//
+//    auto p = make_unique<X>(args...);  // 'p'  is a std::unique_ptr<X>
+//    auto pa = make_unique<X[]>(5);     // 'pa' is a std::unique_ptr<X[]>
+//
+// Three overloads of `absl::make_unique` are required:
+//
+//   - For non-array T:
+//
+//       Allocates a T with `new T(std::forward<Args> args...)`,
+//       forwarding all `args` to T's constructor.
+//       Returns a `std::unique_ptr<T>` owning that object.
+//
+//   - For an array of unknown bounds T[]:
+//
+//       `absl::make_unique<>` will allocate an array T of type U[] with
+//       `new U[n]()` and return a `std::unique_ptr<U[]>` owning that array.
+//
+//       Note that 'U[n]()' is different from 'U[n]', and elements will be
+//       value-initialized. Note as well that `std::unique_ptr` will perform its
+//       own destruction of the array elements upon leaving scope, even though
+//       the array [] does not have a default destructor.
+//
+//       NOTE: an array of unknown bounds T[] may still be (and often will be)
+//       initialized to have a size, and will still use this overload. E.g:
+//
+//         auto my_array = absl::make_unique<int[]>(10);
+//
+//   - For an array of known bounds T[N]:
+//
+//       `absl::make_unique<>` is deleted (like with `std::make_unique<>`) as
+//       this overload is not useful.
+//
+//       NOTE: an array of known bounds T[N] is not considered a useful
+//       construction, and may cause undefined behavior in templates. E.g:
+//
+//         auto my_array = absl::make_unique<int[10]>();
+//
+//       In those cases, of course, you can still use the overload above and
+//       simply initialize it to its desired size:
+//
+//         auto my_array = absl::make_unique<int[]>(10);
+
+// `absl::make_unique` overload for non-array types.
+template <typename T, typename... Args>
+typename memory_internal::MakeUniqueResult<T>::scalar make_unique(
+    Args&&... args) {
+  return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
+}
+
+// `absl::make_unique` overload for an array T[] of unknown bounds.
+// The array allocation needs to use the `new T[size]` form and cannot take
+// element constructor arguments. The `std::unique_ptr` will manage destructing
+// these array elements.
+template <typename T>
+typename memory_internal::MakeUniqueResult<T>::array make_unique(size_t n) {
+  return std::unique_ptr<T>(new typename absl::remove_extent_t<T>[n]());
+}
+
+// `absl::make_unique` overload for an array T[N] of known bounds.
+// This construction will be rejected.
+template <typename T, typename... Args>
+typename memory_internal::MakeUniqueResult<T>::invalid make_unique(
+    Args&&... /* args */) = delete;
+
+// -----------------------------------------------------------------------------
+// Function Template: RawPtr()
+// -----------------------------------------------------------------------------
+//
+// Extracts the raw pointer from a pointer-like 'ptr'. `absl::RawPtr` is useful
+// within templates that need to handle a complement of raw pointers,
+// `std::nullptr_t`, and smart pointers.
+template <typename T>
+auto RawPtr(T&& ptr) -> decltype(&*ptr) {
+  // ptr is a forwarding reference to support Ts with non-const operators.
+  return (ptr != nullptr) ? &*ptr : nullptr;
+}
+inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; }
+
+// -----------------------------------------------------------------------------
+// Function Template: ShareUniquePtr()
+// -----------------------------------------------------------------------------
+//
+// Transforms a `std::unique_ptr` rvalue into a `std::shared_ptr`. The returned
+// value is a `std::shared_ptr` of deduced type and ownership is transferred to
+// the shared pointer.
+//
+// Example:
+//
+//     auto up = absl::make_unique<int>(10);
+//     auto sp = absl::ShareUniquePtr(std::move(up));  // shared_ptr<int>
+//     CHECK_EQ(*sp, 10);
+//     CHECK(up == nullptr);
+//
+// Note that this conversion is correct even when T is an array type, although
+// the resulting shared pointer may not be very useful.
+//
+// Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a
+// null shared pointer does not attempt to call the deleter.
+template <typename T, typename D>
+std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) {
+  return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>();
+}
+
+// -----------------------------------------------------------------------------
+// Function Template: WeakenPtr()
+// -----------------------------------------------------------------------------
+//
+// Creates a weak pointer associated with a given shared pointer. The returned
+// value is a `std::weak_ptr` of deduced type.
+//
+// Example:
+//
+//    auto sp = std::make_shared<int>(10);
+//    auto wp = absl::WeakenPtr(sp);
+//    CHECK_EQ(sp.get(), wp.lock().get());
+//    sp.reset();
+//    CHECK(wp.lock() == nullptr);
+//
+template <typename T>
+std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) {
+  return std::weak_ptr<T>(ptr);
+}
+
+namespace memory_internal {
+
+// ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D.
+template <template <typename> class Extract, typename Obj, typename Default,
+          typename>
+struct ExtractOr {
+  using type = Default;
+};
+
+template <template <typename> class Extract, typename Obj, typename Default>
+struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> {
+  using type = Extract<Obj>;
+};
+
+template <template <typename> class Extract, typename Obj, typename Default>
+using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type;
+
+// Extractors for the features of allocators.
+template <typename T>
+using GetPointer = typename T::pointer;
+
+template <typename T>
+using GetConstPointer = typename T::const_pointer;
+
+template <typename T>
+using GetVoidPointer = typename T::void_pointer;
+
+template <typename T>
+using GetConstVoidPointer = typename T::const_void_pointer;
+
+template <typename T>
+using GetDifferenceType = typename T::difference_type;
+
+template <typename T>
+using GetSizeType = typename T::size_type;
+
+template <typename T>
+using GetPropagateOnContainerCopyAssignment =
+    typename T::propagate_on_container_copy_assignment;
+
+template <typename T>
+using GetPropagateOnContainerMoveAssignment =
+    typename T::propagate_on_container_move_assignment;
+
+template <typename T>
+using GetPropagateOnContainerSwap = typename T::propagate_on_container_swap;
+
+template <typename T>
+using GetIsAlwaysEqual = typename T::is_always_equal;
+
+template <typename T>
+struct GetFirstArg;
+
+template <template <typename...> class Class, typename T, typename... Args>
+struct GetFirstArg<Class<T, Args...>> {
+  using type = T;
+};
+
+template <typename Ptr, typename = void>
+struct ElementType {
+  using type = typename GetFirstArg<Ptr>::type;
+};
+
+template <typename T>
+struct ElementType<T, void_t<typename T::element_type>> {
+  using type = typename T::element_type;
+};
+
+template <typename T, typename U>
+struct RebindFirstArg;
+
+template <template <typename...> class Class, typename T, typename... Args,
+          typename U>
+struct RebindFirstArg<Class<T, Args...>, U> {
+  using type = Class<U, Args...>;
+};
+
+template <typename T, typename U, typename = void>
+struct RebindPtr {
+  using type = typename RebindFirstArg<T, U>::type;
+};
+
+template <typename T, typename U>
+struct RebindPtr<T, U, void_t<typename T::template rebind<U>>> {
+  using type = typename T::template rebind<U>;
+};
+
+template <typename T, typename U, typename = void>
+struct RebindAlloc {
+  using type = typename RebindFirstArg<T, U>::type;
+};
+
+template <typename T, typename U>
+struct RebindAlloc<T, U, void_t<typename T::template rebind<U>::other>> {
+  using type = typename T::template rebind<U>::other;
+};
+
+}  // namespace memory_internal
+
+// -----------------------------------------------------------------------------
+// Class Template: pointer_traits
+// -----------------------------------------------------------------------------
+//
+// An implementation of C++11's std::pointer_traits.
+//
+// Provided for portability on toolchains that have a working C++11 compiler,
+// but the standard library is lacking in C++11 support. For example, some
+// version of the Android NDK.
+//
+
+template <typename Ptr>
+struct pointer_traits {
+  using pointer = Ptr;
+
+  // element_type:
+  // Ptr::element_type if present. Otherwise T if Ptr is a template
+  // instantiation Template<T, Args...>
+  using element_type = typename memory_internal::ElementType<Ptr>::type;
+
+  // difference_type:
+  // Ptr::difference_type if present, otherwise std::ptrdiff_t
+  using difference_type =
+      memory_internal::ExtractOrT<memory_internal::GetDifferenceType, Ptr,
+                                  std::ptrdiff_t>;
+
+  // rebind:
+  // Ptr::rebind<U> if exists, otherwise Template<U, Args...> if Ptr is a
+  // template instantiation Template<T, Args...>
+  template <typename U>
+  using rebind = typename memory_internal::RebindPtr<Ptr, U>::type;
+
+  // pointer_to:
+  // Calls Ptr::pointer_to(r)
+  static pointer pointer_to(element_type& r) {  // NOLINT(runtime/references)
+    return Ptr::pointer_to(r);
+  }
+};
+
+// Specialization for T*.
+template <typename T>
+struct pointer_traits<T*> {
+  using pointer = T*;
+  using element_type = T;
+  using difference_type = std::ptrdiff_t;
+
+  template <typename U>
+  using rebind = U*;
+
+  // pointer_to:
+  // Calls std::addressof(r)
+  static pointer pointer_to(
+      element_type& r) noexcept {  // NOLINT(runtime/references)
+    return std::addressof(r);
+  }
+};
+
+// -----------------------------------------------------------------------------
+// Class Template: allocator_traits
+// -----------------------------------------------------------------------------
+//
+// A C++11 compatible implementation of C++17's std::allocator_traits.
+//
+template <typename Alloc>
+struct allocator_traits {
+  using allocator_type = Alloc;
+
+  // value_type:
+  // Alloc::value_type
+  using value_type = typename Alloc::value_type;
+
+  // pointer:
+  // Alloc::pointer if present, otherwise value_type*
+  using pointer = memory_internal::ExtractOrT<memory_internal::GetPointer,
+                                              Alloc, value_type*>;
+
+  // const_pointer:
+  // Alloc::const_pointer if present, otherwise
+  // absl::pointer_traits<pointer>::rebind<const value_type>
+  using const_pointer =
+      memory_internal::ExtractOrT<memory_internal::GetConstPointer, Alloc,
+                                  typename absl::pointer_traits<pointer>::
+                                      template rebind<const value_type>>;
+
+  // void_pointer:
+  // Alloc::void_pointer if present, otherwise
+  // absl::pointer_traits<pointer>::rebind<void>
+  using void_pointer = memory_internal::ExtractOrT<
+      memory_internal::GetVoidPointer, Alloc,
+      typename absl::pointer_traits<pointer>::template rebind<void>>;
+
+  // const_void_pointer:
+  // Alloc::const_void_pointer if present, otherwise
+  // absl::pointer_traits<pointer>::rebind<const void>
+  using const_void_pointer = memory_internal::ExtractOrT<
+      memory_internal::GetConstVoidPointer, Alloc,
+      typename absl::pointer_traits<pointer>::template rebind<const void>>;
+
+  // difference_type:
+  // Alloc::difference_type if present, otherwise
+  // absl::pointer_traits<pointer>::difference_type
+  using difference_type = memory_internal::ExtractOrT<
+      memory_internal::GetDifferenceType, Alloc,
+      typename absl::pointer_traits<pointer>::difference_type>;
+
+  // size_type:
+  // Alloc::size_type if present, otherwise
+  // std::make_unsigned<difference_type>::type
+  using size_type = memory_internal::ExtractOrT<
+      memory_internal::GetSizeType, Alloc,
+      typename std::make_unsigned<difference_type>::type>;
+
+  // propagate_on_container_copy_assignment:
+  // Alloc::propagate_on_container_copy_assignment if present, otherwise
+  // std::false_type
+  using propagate_on_container_copy_assignment = memory_internal::ExtractOrT<
+      memory_internal::GetPropagateOnContainerCopyAssignment, Alloc,
+      std::false_type>;
+
+  // propagate_on_container_move_assignment:
+  // Alloc::propagate_on_container_move_assignment if present, otherwise
+  // std::false_type
+  using propagate_on_container_move_assignment = memory_internal::ExtractOrT<
+      memory_internal::GetPropagateOnContainerMoveAssignment, Alloc,
+      std::false_type>;
+
+  // propagate_on_container_swap:
+  // Alloc::propagate_on_container_swap if present, otherwise std::false_type
+  using propagate_on_container_swap =
+      memory_internal::ExtractOrT<memory_internal::GetPropagateOnContainerSwap,
+                                  Alloc, std::false_type>;
+
+  // is_always_equal:
+  // Alloc::is_always_equal if present, otherwise std::is_empty<Alloc>::type
+  using is_always_equal =
+      memory_internal::ExtractOrT<memory_internal::GetIsAlwaysEqual, Alloc,
+                                  typename std::is_empty<Alloc>::type>;
+
+  // rebind_alloc:
+  // Alloc::rebind<T>::other if present, otherwise Alloc<T, Args> if this Alloc
+  // is Alloc<U, Args>
+  template <typename T>
+  using rebind_alloc = typename memory_internal::RebindAlloc<Alloc, T>::type;
+
+  // rebind_traits:
+  // absl::allocator_traits<rebind_alloc<T>>
+  template <typename T>
+  using rebind_traits = absl::allocator_traits<rebind_alloc<T>>;
+
+  // allocate(Alloc& a, size_type n):
+  // Calls a.allocate(n)
+  static pointer allocate(Alloc& a,  // NOLINT(runtime/references)
+                          size_type n) {
+    return a.allocate(n);
+  }
+
+  // allocate(Alloc& a, size_type n, const_void_pointer hint):
+  // Calls a.allocate(n, hint) if possible.
+  // If not possible, calls a.allocate(n)
+  static pointer allocate(Alloc& a, size_type n,  // NOLINT(runtime/references)
+                          const_void_pointer hint) {
+    return allocate_impl(0, a, n, hint);
+  }
+
+  // deallocate(Alloc& a, pointer p, size_type n):
+  // Calls a.deallocate(p, n)
+  static void deallocate(Alloc& a, pointer p,  // NOLINT(runtime/references)
+                         size_type n) {
+    a.deallocate(p, n);
+  }
+
+  // construct(Alloc& a, T* p, Args&&... args):
+  // Calls a.construct(p, std::forward<Args>(args)...) if possible.
+  // If not possible, calls
+  //   ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...)
+  template <typename T, typename... Args>
+  static void construct(Alloc& a, T* p,  // NOLINT(runtime/references)
+                        Args&&... args) {
+    construct_impl(0, a, p, std::forward<Args>(args)...);
+  }
+
+  // destroy(Alloc& a, T* p):
+  // Calls a.destroy(p) if possible. If not possible, calls p->~T().
+  template <typename T>
+  static void destroy(Alloc& a, T* p) {  // NOLINT(runtime/references)
+    destroy_impl(0, a, p);
+  }
+
+  // max_size(const Alloc& a):
+  // Returns a.max_size() if possible. If not possible, returns
+  //   std::numeric_limits<size_type>::max() / sizeof(value_type)
+  static size_type max_size(const Alloc& a) { return max_size_impl(0, a); }
+
+  // select_on_container_copy_construction(const Alloc& a):
+  // Returns a.select_on_container_copy_construction() if possible.
+  // If not possible, returns a.
+  static Alloc select_on_container_copy_construction(const Alloc& a) {
+    return select_on_container_copy_construction_impl(0, a);
+  }
+
+ private:
+  template <typename A>
+  static auto allocate_impl(int, A& a,  // NOLINT(runtime/references)
+                            size_type n, const_void_pointer hint)
+      -> decltype(a.allocate(n, hint)) {
+    return a.allocate(n, hint);
+  }
+  static pointer allocate_impl(char, Alloc& a,  // NOLINT(runtime/references)
+                               size_type n, const_void_pointer) {
+    return a.allocate(n);
+  }
+
+  template <typename A, typename... Args>
+  static auto construct_impl(int, A& a,  // NOLINT(runtime/references)
+                             Args&&... args)
+      -> decltype(a.construct(std::forward<Args>(args)...)) {
+    a.construct(std::forward<Args>(args)...);
+  }
+
+  template <typename T, typename... Args>
+  static void construct_impl(char, Alloc&, T* p, Args&&... args) {
+    ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...);
+  }
+
+  template <typename A, typename T>
+  static auto destroy_impl(int, A& a,  // NOLINT(runtime/references)
+                           T* p) -> decltype(a.destroy(p)) {
+    a.destroy(p);
+  }
+  template <typename T>
+  static void destroy_impl(char, Alloc&, T* p) {
+    p->~T();
+  }
+
+  template <typename A>
+  static auto max_size_impl(int, const A& a) -> decltype(a.max_size()) {
+    return a.max_size();
+  }
+  static size_type max_size_impl(char, const Alloc&) {
+    return std::numeric_limits<size_type>::max() / sizeof(value_type);
+  }
+
+  template <typename A>
+  static auto select_on_container_copy_construction_impl(int, const A& a)
+      -> decltype(a.select_on_container_copy_construction()) {
+    return a.select_on_container_copy_construction();
+  }
+  static Alloc select_on_container_copy_construction_impl(char,
+                                                          const Alloc& a) {
+    return a;
+  }
+};
+
+namespace memory_internal {
+
+// This template alias transforms Alloc::is_nothrow into a metafunction with
+// Alloc as a parameter so it can be used with ExtractOrT<>.
+template <typename Alloc>
+using GetIsNothrow = typename Alloc::is_nothrow;
+
+}  // namespace memory_internal
+
+// ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to
+// specify whether the default allocation function can throw or never throws.
+// If the allocation function never throws, user should define it to a non-zero
+// value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`).
+// If the allocation function can throw, user should leave it undefined or
+// define it to zero.
+//
+// allocator_is_nothrow<Alloc> is a traits class that derives from
+// Alloc::is_nothrow if present, otherwise std::false_type. It's specialized
+// for Alloc = std::allocator<T> for any type T according to the state of
+// ABSL_ALLOCATOR_NOTHROW.
+//
+// default_allocator_is_nothrow is a class that derives from std::true_type
+// when the default allocator (global operator new) never throws, and
+// std::false_type when it can throw. It is a convenience shorthand for writing
+// allocator_is_nothrow<std::allocator<T>> (T can be any type).
+// NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from
+// the same type for all T, because users should specialize neither
+// allocator_is_nothrow nor std::allocator.
+template <typename Alloc>
+struct allocator_is_nothrow
+    : memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc,
+                                  std::false_type> {};
+
+#if ABSL_ALLOCATOR_NOTHROW
+template <typename T>
+struct allocator_is_nothrow<std::allocator<T>> : std::true_type {};
+struct default_allocator_is_nothrow : std::true_type {};
+#else
+struct default_allocator_is_nothrow : std::false_type {};
+#endif
+
+}  // namespace absl
+
+#endif  // ABSL_MEMORY_MEMORY_H_
diff --git a/absl/memory/memory_test.cc b/absl/memory/memory_test.cc
new file mode 100644
index 000000000000..8a5f5522a089
--- /dev/null
+++ b/absl/memory/memory_test.cc
@@ -0,0 +1,590 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Tests for pointer utilities.
+
+#include "absl/memory/memory.h"
+
+#include <sys/types.h>
+#include <cstddef>
+#include <memory>
+#include <string>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+
+namespace {
+
+using ::testing::ElementsAre;
+using ::testing::Return;
+
+// This class creates observable behavior to verify that a destructor has
+// been called, via the instance_count variable.
+class DestructorVerifier {
+ public:
+  DestructorVerifier() { ++instance_count_;  }
+  DestructorVerifier(const DestructorVerifier&) = delete;
+  DestructorVerifier& operator=(const DestructorVerifier&) = delete;
+  ~DestructorVerifier() {  --instance_count_; }
+
+  // The number of instances of this class currently active.
+  static int instance_count() { return instance_count_; }
+
+ private:
+  // The number of instances of this class currently active.
+  static int instance_count_;
+};
+
+int DestructorVerifier::instance_count_ = 0;
+
+TEST(WrapUniqueTest, WrapUnique) {
+  // Test that the unique_ptr is constructed properly by verifying that the
+  // destructor for its payload gets called at the proper time.
+  {
+    auto dv = new DestructorVerifier;
+    EXPECT_EQ(1, DestructorVerifier::instance_count());
+    std::unique_ptr<DestructorVerifier> ptr = absl::WrapUnique(dv);
+    EXPECT_EQ(1, DestructorVerifier::instance_count());
+  }
+  EXPECT_EQ(0, DestructorVerifier::instance_count());
+}
+TEST(MakeUniqueTest, Basic) {
+  std::unique_ptr<std::string> p = absl::make_unique<std::string>();
+  EXPECT_EQ("", *p);
+  p = absl::make_unique<std::string>("hi");
+  EXPECT_EQ("hi", *p);
+}
+
+struct MoveOnly {
+  MoveOnly() = default;
+  explicit MoveOnly(int i1) : ip1{new int{i1}} {}
+  MoveOnly(int i1, int i2) : ip1{new int{i1}}, ip2{new int{i2}} {}
+  std::unique_ptr<int> ip1;
+  std::unique_ptr<int> ip2;
+};
+
+struct AcceptMoveOnly {
+  explicit AcceptMoveOnly(MoveOnly m) : m_(std::move(m)) {}
+  MoveOnly m_;
+};
+
+TEST(MakeUniqueTest, MoveOnlyTypeAndValue) {
+  using ExpectedType = std::unique_ptr<MoveOnly>;
+  {
+    auto p = absl::make_unique<MoveOnly>();
+    static_assert(std::is_same<decltype(p), ExpectedType>::value,
+                  "unexpected return type");
+    EXPECT_TRUE(!p->ip1);
+    EXPECT_TRUE(!p->ip2);
+  }
+  {
+    auto p = absl::make_unique<MoveOnly>(1);
+    static_assert(std::is_same<decltype(p), ExpectedType>::value,
+                  "unexpected return type");
+    EXPECT_TRUE(p->ip1 && *p->ip1 == 1);
+    EXPECT_TRUE(!p->ip2);
+  }
+  {
+    auto p = absl::make_unique<MoveOnly>(1, 2);
+    static_assert(std::is_same<decltype(p), ExpectedType>::value,
+                  "unexpected return type");
+    EXPECT_TRUE(p->ip1 && *p->ip1 == 1);
+    EXPECT_TRUE(p->ip2 && *p->ip2 == 2);
+  }
+}
+
+TEST(MakeUniqueTest, AcceptMoveOnly) {
+  auto p = absl::make_unique<AcceptMoveOnly>(MoveOnly());
+  p = std::unique_ptr<AcceptMoveOnly>(new AcceptMoveOnly(MoveOnly()));
+}
+
+struct ArrayWatch {
+  void* operator new[](size_t n) {
+    allocs().push_back(n);
+    return ::operator new[](n);
+  }
+  void operator delete[](void* p) {
+    return ::operator delete[](p);
+  }
+  static std::vector<size_t>& allocs() {
+    static auto& v = *new std::vector<size_t>;
+    return v;
+  }
+};
+
+TEST(Make_UniqueTest, Array) {
+  // Ensure state is clean before we start so that these tests
+  // are order-agnostic.
+  ArrayWatch::allocs().clear();
+
+  auto p = absl::make_unique<ArrayWatch[]>(5);
+  static_assert(std::is_same<decltype(p),
+                             std::unique_ptr<ArrayWatch[]>>::value,
+                "unexpected return type");
+  EXPECT_THAT(ArrayWatch::allocs(), ElementsAre(5 * sizeof(ArrayWatch)));
+}
+
+#if 0
+// TODO(billydonahue): Make a proper NC test.
+// These tests shouldn't compile.
+TEST(MakeUniqueTestNC, AcceptMoveOnlyLvalue) {
+  auto m = MoveOnly();
+  auto p = absl::make_unique<AcceptMoveOnly>(m);
+}
+TEST(MakeUniqueTestNC, KnownBoundArray) {
+  auto p = absl::make_unique<ArrayWatch[5]>();
+}
+#endif
+
+TEST(RawPtrTest, RawPointer) {
+  int i = 5;
+  EXPECT_EQ(&i, absl::RawPtr(&i));
+}
+
+TEST(RawPtrTest, SmartPointer) {
+  int* o = new int(5);
+  std::unique_ptr<int> p(o);
+  EXPECT_EQ(o, absl::RawPtr(p));
+}
+
+class IntPointerNonConstDeref {
+ public:
+  explicit IntPointerNonConstDeref(int* p) : p_(p) {}
+  friend bool operator!=(const IntPointerNonConstDeref& a, std::nullptr_t) {
+    return a.p_ != nullptr;
+  }
+  int& operator*() { return *p_; }
+
+ private:
+  std::unique_ptr<int> p_;
+};
+
+TEST(RawPtrTest, SmartPointerNonConstDereference) {
+  int* o = new int(5);
+  IntPointerNonConstDeref p(o);
+  EXPECT_EQ(o, absl::RawPtr(p));
+}
+
+TEST(RawPtrTest, NullValuedRawPointer) {
+  int* p = nullptr;
+  EXPECT_EQ(nullptr, absl::RawPtr(p));
+}
+
+TEST(RawPtrTest, NullValuedSmartPointer) {
+  std::unique_ptr<int> p;
+  EXPECT_EQ(nullptr, absl::RawPtr(p));
+}
+
+TEST(RawPtrTest, Nullptr) {
+  auto p = absl::RawPtr(nullptr);
+  EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
+  EXPECT_EQ(nullptr, p);
+}
+
+TEST(RawPtrTest, Null) {
+  auto p = absl::RawPtr(nullptr);
+  EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
+  EXPECT_EQ(nullptr, p);
+}
+
+TEST(RawPtrTest, Zero) {
+  auto p = absl::RawPtr(nullptr);
+  EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
+  EXPECT_EQ(nullptr, p);
+}
+
+TEST(ShareUniquePtrTest, Share) {
+  auto up = absl::make_unique<int>();
+  int* rp = up.get();
+  auto sp = absl::ShareUniquePtr(std::move(up));
+  EXPECT_EQ(sp.get(), rp);
+}
+
+TEST(ShareUniquePtrTest, ShareNull) {
+  struct NeverDie {
+    using pointer = void*;
+    void operator()(pointer) {
+      ASSERT_TRUE(false) << "Deleter should not have been called.";
+    }
+  };
+
+  std::unique_ptr<void, NeverDie> up;
+  auto sp = absl::ShareUniquePtr(std::move(up));
+}
+
+TEST(WeakenPtrTest, Weak) {
+  auto sp = std::make_shared<int>();
+  auto wp = absl::WeakenPtr(sp);
+  EXPECT_EQ(sp.get(), wp.lock().get());
+  sp.reset();
+  EXPECT_TRUE(wp.expired());
+}
+
+// Should not compile.
+/*
+TEST(RawPtrTest, NotAPointer) {
+  absl::RawPtr(1.5);
+}
+*/
+
+template <typename T>
+struct SmartPointer {
+  using difference_type = char;
+};
+
+struct PointerWith {
+  using element_type = int32_t;
+  using difference_type = int16_t;
+  template <typename U>
+  using rebind = SmartPointer<U>;
+
+  static PointerWith pointer_to(
+      element_type& r) {  // NOLINT(runtime/references)
+    return PointerWith{&r};
+  }
+
+  element_type* ptr;
+};
+
+template <typename... Args>
+struct PointerWithout {};
+
+TEST(PointerTraits, Types) {
+  using TraitsWith = absl::pointer_traits<PointerWith>;
+  EXPECT_TRUE((std::is_same<TraitsWith::pointer, PointerWith>::value));
+  EXPECT_TRUE((std::is_same<TraitsWith::element_type, int32_t>::value));
+  EXPECT_TRUE((std::is_same<TraitsWith::difference_type, int16_t>::value));
+  EXPECT_TRUE((
+      std::is_same<TraitsWith::rebind<int64_t>, SmartPointer<int64_t>>::value));
+
+  using TraitsWithout = absl::pointer_traits<PointerWithout<double, int>>;
+  EXPECT_TRUE((std::is_same<TraitsWithout::pointer,
+                            PointerWithout<double, int>>::value));
+  EXPECT_TRUE((std::is_same<TraitsWithout::element_type, double>::value));
+  EXPECT_TRUE(
+      (std::is_same<TraitsWithout ::difference_type, std::ptrdiff_t>::value));
+  EXPECT_TRUE((std::is_same<TraitsWithout::rebind<int64_t>,
+                            PointerWithout<int64_t, int>>::value));
+
+  using TraitsRawPtr = absl::pointer_traits<char*>;
+  EXPECT_TRUE((std::is_same<TraitsRawPtr::pointer, char*>::value));
+  EXPECT_TRUE((std::is_same<TraitsRawPtr::element_type, char>::value));
+  EXPECT_TRUE(
+      (std::is_same<TraitsRawPtr::difference_type, std::ptrdiff_t>::value));
+  EXPECT_TRUE((std::is_same<TraitsRawPtr::rebind<int64_t>, int64_t*>::value));
+}
+
+TEST(PointerTraits, Functions) {
+  int i;
+  EXPECT_EQ(&i, absl::pointer_traits<PointerWith>::pointer_to(i).ptr);
+  EXPECT_EQ(&i, absl::pointer_traits<int*>::pointer_to(i));
+}
+
+TEST(AllocatorTraits, Typedefs) {
+  struct A {
+    struct value_type {};
+  };
+  EXPECT_TRUE((
+      std::is_same<A,
+                   typename absl::allocator_traits<A>::allocator_type>::value));
+  EXPECT_TRUE(
+      (std::is_same<A::value_type,
+                    typename absl::allocator_traits<A>::value_type>::value));
+
+  struct X {};
+  struct HasPointer {
+    using value_type = X;
+    using pointer = SmartPointer<X>;
+  };
+  EXPECT_TRUE((std::is_same<SmartPointer<X>, typename absl::allocator_traits<
+                                                 HasPointer>::pointer>::value));
+  EXPECT_TRUE(
+      (std::is_same<A::value_type*,
+                    typename absl::allocator_traits<A>::pointer>::value));
+
+  EXPECT_TRUE(
+      (std::is_same<
+          SmartPointer<const X>,
+          typename absl::allocator_traits<HasPointer>::const_pointer>::value));
+  EXPECT_TRUE(
+      (std::is_same<const A::value_type*,
+                    typename absl::allocator_traits<A>::const_pointer>::value));
+
+  struct HasVoidPointer {
+    using value_type = X;
+    struct void_pointer {};
+  };
+
+  EXPECT_TRUE((std::is_same<HasVoidPointer::void_pointer,
+                            typename absl::allocator_traits<
+                                HasVoidPointer>::void_pointer>::value));
+  EXPECT_TRUE(
+      (std::is_same<SmartPointer<void>, typename absl::allocator_traits<
+                                            HasPointer>::void_pointer>::value));
+
+  struct HasConstVoidPointer {
+    using value_type = X;
+    struct const_void_pointer {};
+  };
+
+  EXPECT_TRUE(
+      (std::is_same<HasConstVoidPointer::const_void_pointer,
+                    typename absl::allocator_traits<
+                        HasConstVoidPointer>::const_void_pointer>::value));
+  EXPECT_TRUE((std::is_same<SmartPointer<const void>,
+                            typename absl::allocator_traits<
+                                HasPointer>::const_void_pointer>::value));
+
+  struct HasDifferenceType {
+    using value_type = X;
+    using difference_type = int;
+  };
+  EXPECT_TRUE(
+      (std::is_same<int, typename absl::allocator_traits<
+                             HasDifferenceType>::difference_type>::value));
+  EXPECT_TRUE((std::is_same<char, typename absl::allocator_traits<
+                                      HasPointer>::difference_type>::value));
+
+  struct HasSizeType {
+    using value_type = X;
+    using size_type = unsigned int;
+  };
+  EXPECT_TRUE((std::is_same<unsigned int, typename absl::allocator_traits<
+                                              HasSizeType>::size_type>::value));
+  EXPECT_TRUE((std::is_same<unsigned char, typename absl::allocator_traits<
+                                               HasPointer>::size_type>::value));
+
+  struct HasPropagateOnCopy {
+    using value_type = X;
+    struct propagate_on_container_copy_assignment {};
+  };
+
+  EXPECT_TRUE(
+      (std::is_same<HasPropagateOnCopy::propagate_on_container_copy_assignment,
+                    typename absl::allocator_traits<HasPropagateOnCopy>::
+                        propagate_on_container_copy_assignment>::value));
+  EXPECT_TRUE(
+      (std::is_same<std::false_type,
+                    typename absl::allocator_traits<
+                        A>::propagate_on_container_copy_assignment>::value));
+
+  struct HasPropagateOnMove {
+    using value_type = X;
+    struct propagate_on_container_move_assignment {};
+  };
+
+  EXPECT_TRUE(
+      (std::is_same<HasPropagateOnMove::propagate_on_container_move_assignment,
+                    typename absl::allocator_traits<HasPropagateOnMove>::
+                        propagate_on_container_move_assignment>::value));
+  EXPECT_TRUE(
+      (std::is_same<std::false_type,
+                    typename absl::allocator_traits<
+                        A>::propagate_on_container_move_assignment>::value));
+
+  struct HasPropagateOnSwap {
+    using value_type = X;
+    struct propagate_on_container_swap {};
+  };
+
+  EXPECT_TRUE(
+      (std::is_same<HasPropagateOnSwap::propagate_on_container_swap,
+                    typename absl::allocator_traits<HasPropagateOnSwap>::
+                        propagate_on_container_swap>::value));
+  EXPECT_TRUE(
+      (std::is_same<std::false_type, typename absl::allocator_traits<A>::
+                                         propagate_on_container_swap>::value));
+
+  struct HasIsAlwaysEqual {
+    using value_type = X;
+    struct is_always_equal {};
+  };
+
+  EXPECT_TRUE((std::is_same<HasIsAlwaysEqual::is_always_equal,
+                            typename absl::allocator_traits<
+                                HasIsAlwaysEqual>::is_always_equal>::value));
+  EXPECT_TRUE((std::is_same<std::true_type, typename absl::allocator_traits<
+                                                A>::is_always_equal>::value));
+  struct NonEmpty {
+    using value_type = X;
+    int i;
+  };
+  EXPECT_TRUE(
+      (std::is_same<std::false_type,
+                    absl::allocator_traits<NonEmpty>::is_always_equal>::value));
+}
+
+template <typename T>
+struct Rebound {};
+
+struct AllocWithRebind {
+  using value_type = int;
+  template <typename T>
+  struct rebind {
+    using other = Rebound<T>;
+  };
+};
+
+template <typename T, typename U>
+struct AllocWithoutRebind {
+  using value_type = int;
+};
+
+TEST(AllocatorTraits, Rebind) {
+  EXPECT_TRUE(
+      (std::is_same<Rebound<int>,
+                    typename absl::allocator_traits<
+                        AllocWithRebind>::template rebind_alloc<int>>::value));
+  EXPECT_TRUE(
+      (std::is_same<absl::allocator_traits<Rebound<int>>,
+                    typename absl::allocator_traits<
+                        AllocWithRebind>::template rebind_traits<int>>::value));
+
+  EXPECT_TRUE(
+      (std::is_same<AllocWithoutRebind<double, char>,
+                    typename absl::allocator_traits<AllocWithoutRebind<
+                        int, char>>::template rebind_alloc<double>>::value));
+  EXPECT_TRUE(
+      (std::is_same<absl::allocator_traits<AllocWithoutRebind<double, char>>,
+                    typename absl::allocator_traits<AllocWithoutRebind<
+                        int, char>>::template rebind_traits<double>>::value));
+}
+
+struct TestValue {
+  TestValue() {}
+  explicit TestValue(int* trace) : trace(trace) { ++*trace; }
+  ~TestValue() {
+    if (trace) --*trace;
+  }
+  int* trace = nullptr;
+};
+
+struct MinimalMockAllocator {
+  MinimalMockAllocator() : value(0) {}
+  explicit MinimalMockAllocator(int value) : value(value) {}
+  MinimalMockAllocator(const MinimalMockAllocator& other)
+      : value(other.value) {}
+  using value_type = TestValue;
+  MOCK_METHOD1(allocate, value_type*(size_t));
+  MOCK_METHOD2(deallocate, void(value_type*, size_t));
+
+  int value;
+};
+
+TEST(AllocatorTraits, FunctionsMinimal) {
+  int trace = 0;
+  int hint;
+  TestValue x(&trace);
+  MinimalMockAllocator mock;
+  using Traits = absl::allocator_traits<MinimalMockAllocator>;
+  EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x));
+  EXPECT_CALL(mock, deallocate(&x, 7));
+
+  EXPECT_EQ(&x, Traits::allocate(mock, 7));
+  Traits::allocate(mock, 7, static_cast<const void*>(&hint));
+  EXPECT_EQ(&x, Traits::allocate(mock, 7, static_cast<const void*>(&hint)));
+  Traits::deallocate(mock, &x, 7);
+
+  EXPECT_EQ(1, trace);
+  Traits::construct(mock, &x, &trace);
+  EXPECT_EQ(2, trace);
+  Traits::destroy(mock, &x);
+  EXPECT_EQ(1, trace);
+
+  EXPECT_EQ(std::numeric_limits<size_t>::max() / sizeof(TestValue),
+            Traits::max_size(mock));
+
+  EXPECT_EQ(0, mock.value);
+  EXPECT_EQ(0, Traits::select_on_container_copy_construction(mock).value);
+}
+
+struct FullMockAllocator {
+  FullMockAllocator() : value(0) {}
+  explicit FullMockAllocator(int value) : value(value) {}
+  FullMockAllocator(const FullMockAllocator& other) : value(other.value) {}
+  using value_type = TestValue;
+  MOCK_METHOD1(allocate, value_type*(size_t));
+  MOCK_METHOD2(allocate, value_type*(size_t, const void*));
+  MOCK_METHOD2(construct, void(value_type*, int*));
+  MOCK_METHOD1(destroy, void(value_type*));
+  MOCK_CONST_METHOD0(max_size, size_t());
+  MOCK_CONST_METHOD0(select_on_container_copy_construction,
+                     FullMockAllocator());
+
+  int value;
+};
+
+TEST(AllocatorTraits, FunctionsFull) {
+  int trace = 0;
+  int hint;
+  TestValue x(&trace), y;
+  FullMockAllocator mock;
+  using Traits = absl::allocator_traits<FullMockAllocator>;
+  EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x));
+  EXPECT_CALL(mock, allocate(13, &hint)).WillRepeatedly(Return(&y));
+  EXPECT_CALL(mock, construct(&x, &trace));
+  EXPECT_CALL(mock, destroy(&x));
+  EXPECT_CALL(mock, max_size()).WillRepeatedly(Return(17));
+  EXPECT_CALL(mock, select_on_container_copy_construction())
+      .WillRepeatedly(Return(FullMockAllocator(23)));
+
+  EXPECT_EQ(&x, Traits::allocate(mock, 7));
+  EXPECT_EQ(&y, Traits::allocate(mock, 13, static_cast<const void*>(&hint)));
+
+  EXPECT_EQ(1, trace);
+  Traits::construct(mock, &x, &trace);
+  EXPECT_EQ(1, trace);
+  Traits::destroy(mock, &x);
+  EXPECT_EQ(1, trace);
+
+  EXPECT_EQ(17, Traits::max_size(mock));
+
+  EXPECT_EQ(0, mock.value);
+  EXPECT_EQ(23, Traits::select_on_container_copy_construction(mock).value);
+}
+
+TEST(AllocatorNoThrowTest, DefaultAllocator) {
+#if ABSL_ALLOCATOR_NOTHROW
+  EXPECT_TRUE(absl::default_allocator_is_nothrow::value);
+#else
+  EXPECT_FALSE(absl::default_allocator_is_nothrow::value);
+#endif
+}
+
+TEST(AllocatorNoThrowTest, StdAllocator) {
+#if ABSL_ALLOCATOR_NOTHROW
+  EXPECT_TRUE(absl::allocator_is_nothrow<std::allocator<int>>::value);
+#else
+  EXPECT_FALSE(absl::allocator_is_nothrow<std::allocator<int>>::value);
+#endif
+}
+
+TEST(AllocatorNoThrowTest, CustomAllocator) {
+  struct NoThrowAllocator {
+    using is_nothrow = std::true_type;
+  };
+  struct CanThrowAllocator {
+    using is_nothrow = std::false_type;
+  };
+  struct UnspecifiedAllocator {
+  };
+  EXPECT_TRUE(absl::allocator_is_nothrow<NoThrowAllocator>::value);
+  EXPECT_FALSE(absl::allocator_is_nothrow<CanThrowAllocator>::value);
+  EXPECT_FALSE(absl::allocator_is_nothrow<UnspecifiedAllocator>::value);
+}
+
+}  // namespace