diff options
Diffstat (limited to 'absl/container/internal')
-rw-r--r-- | absl/container/internal/hashtablez_sampler.cc | 289 | ||||
-rw-r--r-- | absl/container/internal/hashtablez_sampler.h | 236 | ||||
-rw-r--r-- | absl/container/internal/hashtablez_sampler_test.cc | 307 | ||||
-rw-r--r-- | absl/container/internal/raw_hash_set.h | 53 | ||||
-rw-r--r-- | absl/container/internal/raw_hash_set_test.cc | 22 |
5 files changed, 892 insertions, 15 deletions
diff --git a/absl/container/internal/hashtablez_sampler.cc b/absl/container/internal/hashtablez_sampler.cc new file mode 100644 index 000000000000..6cc10c201c34 --- /dev/null +++ b/absl/container/internal/hashtablez_sampler.cc @@ -0,0 +1,289 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/hashtablez_sampler.h" + +#include <atomic> +#include <cassert> +#include <functional> +#include <limits> + +#include "absl/base/attributes.h" +#include "absl/container/internal/have_sse.h" +#include "absl/debugging/stacktrace.h" +#include "absl/memory/memory.h" +#include "absl/synchronization/mutex.h" + +namespace absl { +namespace container_internal { +constexpr int HashtablezInfo::kMaxStackDepth; + +namespace { +ABSL_CONST_INIT std::atomic<bool> g_hashtablez_enabled{ + false +}; +ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_sample_parameter{1 << 10}; +ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_max_samples{1 << 20}; + +// Returns the next pseudo-random value. +// pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48 +// This is the lrand64 generator. +uint64_t NextRandom(uint64_t rnd) { + const uint64_t prng_mult = uint64_t{0x5DEECE66D}; + const uint64_t prng_add = 0xB; + const uint64_t prng_mod_power = 48; + const uint64_t prng_mod_mask = ~(~uint64_t{0} << prng_mod_power); + return (prng_mult * rnd + prng_add) & prng_mod_mask; +} + +// Generates a geometric variable with the specified mean. +// This is done by generating a random number between 0 and 1 and applying +// the inverse cumulative distribution function for an exponential. +// Specifically: Let m be the inverse of the sample period, then +// the probability distribution function is m*exp(-mx) so the CDF is +// p = 1 - exp(-mx), so +// q = 1 - p = exp(-mx) +// log_e(q) = -mx +// -log_e(q)/m = x +// log_2(q) * (-log_e(2) * 1/m) = x +// In the code, q is actually in the range 1 to 2**26, hence the -26 below +// +int64_t GetGeometricVariable(int64_t mean) { +#if ABSL_HAVE_THREAD_LOCAL + thread_local +#else // ABSL_HAVE_THREAD_LOCAL + // SampleSlow and hence GetGeometricVariable is guarded by a single mutex when + // there are not thread locals. Thus, a single global rng is acceptable for + // that case. + static +#endif // ABSL_HAVE_THREAD_LOCAL + uint64_t rng = []() { + // We don't get well distributed numbers from this so we call + // NextRandom() a bunch to mush the bits around. We use a global_rand + // to handle the case where the same thread (by memory address) gets + // created and destroyed repeatedly. + ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0); + uint64_t r = reinterpret_cast<uint64_t>(&rng) + + global_rand.fetch_add(1, std::memory_order_relaxed); + for (int i = 0; i < 20; ++i) { + r = NextRandom(r); + } + return r; + }(); + + rng = NextRandom(rng); + + // Take the top 26 bits as the random number + // (This plus the 1<<58 sampling bound give a max possible step of + // 5194297183973780480 bytes.) + const uint64_t prng_mod_power = 48; // Number of bits in prng + // The uint32_t cast is to prevent a (hard-to-reproduce) NAN + // under piii debug for some binaries. + double q = static_cast<uint32_t>(rng >> (prng_mod_power - 26)) + 1.0; + // Put the computed p-value through the CDF of a geometric. + double interval = (std::log2(q) - 26) * (-std::log(2.0) * mean); + + // Very large values of interval overflow int64_t. If we happen to + // hit such improbable condition, we simply cheat and clamp interval + // to largest supported value. + if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) { + return std::numeric_limits<int64_t>::max() / 2; + } + + // Small values of interval are equivalent to just sampling next time. + if (interval < 1) { + return 1; + } + return static_cast<int64_t>(interval); +} + +} // namespace + +HashtablezSampler& HashtablezSampler::Global() { + static auto* sampler = new HashtablezSampler(); + return *sampler; +} + +HashtablezInfo::HashtablezInfo() { PrepareForSampling(); } +HashtablezInfo::~HashtablezInfo() = default; + +void HashtablezInfo::PrepareForSampling() { + capacity.store(0, std::memory_order_relaxed); + size.store(0, std::memory_order_relaxed); + num_erases.store(0, std::memory_order_relaxed); + max_probe_length.store(0, std::memory_order_relaxed); + total_probe_length.store(0, std::memory_order_relaxed); + hashes_bitwise_or.store(0, std::memory_order_relaxed); + hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed); + + create_time = absl::Now(); + // The inliner makes hardcoded skip_count difficult (especially when combined + // with LTO). We use the ability to exclude stacks by regex when encoding + // instead. + depth = absl::GetStackTrace(stack, HashtablezInfo::kMaxStackDepth, + /* skip_count= */ 0); + dead = nullptr; +} + +HashtablezSampler::HashtablezSampler() + : dropped_samples_(0), size_estimate_(0), all_(nullptr) { + absl::MutexLock l(&graveyard_.init_mu); + graveyard_.dead = &graveyard_; +} + +HashtablezSampler::~HashtablezSampler() { + HashtablezInfo* s = all_.load(std::memory_order_acquire); + while (s != nullptr) { + HashtablezInfo* next = s->next; + delete s; + s = next; + } +} + +void HashtablezSampler::PushNew(HashtablezInfo* sample) { + sample->next = all_.load(std::memory_order_relaxed); + while (!all_.compare_exchange_weak(sample->next, sample, + std::memory_order_release, + std::memory_order_relaxed)) { + } +} + +void HashtablezSampler::PushDead(HashtablezInfo* sample) { + absl::MutexLock graveyard_lock(&graveyard_.init_mu); + absl::MutexLock sample_lock(&sample->init_mu); + sample->dead = graveyard_.dead; + graveyard_.dead = sample; +} + +HashtablezInfo* HashtablezSampler::PopDead() { + absl::MutexLock graveyard_lock(&graveyard_.init_mu); + + // The list is circular, so eventually it collapses down to + // graveyard_.dead == &graveyard_ + // when it is empty. + HashtablezInfo* sample = graveyard_.dead; + if (sample == &graveyard_) return nullptr; + + absl::MutexLock sample_lock(&sample->init_mu); + graveyard_.dead = sample->dead; + sample->PrepareForSampling(); + return sample; +} + +HashtablezInfo* HashtablezSampler::Register() { + int64_t size = size_estimate_.fetch_add(1, std::memory_order_relaxed); + if (size > g_hashtablez_max_samples.load(std::memory_order_relaxed)) { + size_estimate_.fetch_sub(1, std::memory_order_relaxed); + dropped_samples_.fetch_add(1, std::memory_order_relaxed); + return nullptr; + } + + HashtablezInfo* sample = PopDead(); + if (sample == nullptr) { + // Resurrection failed. Hire a new warlock. + sample = new HashtablezInfo(); + PushNew(sample); + } + + return sample; +} + +void HashtablezSampler::Unregister(HashtablezInfo* sample) { + PushDead(sample); + size_estimate_.fetch_sub(1, std::memory_order_relaxed); +} + +int64_t HashtablezSampler::Iterate( + const std::function<void(const HashtablezInfo& stack)>& f) { + HashtablezInfo* s = all_.load(std::memory_order_acquire); + while (s != nullptr) { + absl::MutexLock l(&s->init_mu); + if (s->dead == nullptr) { + f(*s); + } + s = s->next; + } + + return dropped_samples_.load(std::memory_order_relaxed); +} + +HashtablezInfo* SampleSlow(int64_t* next_sample) { + bool first = *next_sample < 0; + *next_sample = GetGeometricVariable( + g_hashtablez_sample_parameter.load(std::memory_order_relaxed)); + + // g_hashtablez_enabled can be dynamically flipped, we need to set a threshold + // low enough that we will start sampling in a reasonable time, so we just use + // the default sampling rate. + if (!g_hashtablez_enabled.load(std::memory_order_relaxed)) return nullptr; + + // We will only be negative on our first count, so we should just retry in + // that case. + if (first) { + if (ABSL_PREDICT_TRUE(--*next_sample > 0)) return nullptr; + return SampleSlow(next_sample); + } + + return HashtablezSampler::Global().Register(); +} + +void UnsampleSlow(HashtablezInfo* info) { + HashtablezSampler::Global().Unregister(info); +} + +void RecordInsertSlow(HashtablezInfo* info, size_t hash, + size_t distance_from_desired) { + // SwissTables probe in groups of 16, so scale this to count items probes and + // not offset from desired. + size_t probe_length = distance_from_desired; +#if SWISSTABLE_HAVE_SSE2 + probe_length /= 16; +#else + probe_length /= 8; +#endif + + info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed); + info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed); + info->max_probe_length.store( + std::max(info->max_probe_length.load(std::memory_order_relaxed), + probe_length), + std::memory_order_relaxed); + info->total_probe_length.fetch_add(probe_length, std::memory_order_relaxed); + info->size.fetch_add(1, std::memory_order_relaxed); +} + +void SetHashtablezEnabled(bool enabled) { + g_hashtablez_enabled.store(enabled, std::memory_order_release); +} + +void SetHashtablezSampleParameter(int32_t rate) { + if (rate > 0) { + g_hashtablez_sample_parameter.store(rate, std::memory_order_release); + } else { + ABSL_RAW_LOG(ERROR, "Invalid hashtablez sample rate: %lld", + static_cast<long long>(rate)); // NOLINT(runtime/int) + } +} + +void SetHashtablezMaxSamples(int32_t max) { + if (max > 0) { + g_hashtablez_max_samples.store(max, std::memory_order_release); + } else { + ABSL_RAW_LOG(ERROR, "Invalid hashtablez max samples: %lld", + static_cast<long long>(max)); // NOLINT(runtime/int) + } +} + +} // namespace container_internal +} // namespace absl diff --git a/absl/container/internal/hashtablez_sampler.h b/absl/container/internal/hashtablez_sampler.h new file mode 100644 index 000000000000..4aea3ffa67de --- /dev/null +++ b/absl/container/internal/hashtablez_sampler.h @@ -0,0 +1,236 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// This is a low level library to sample hashtables and collect runtime +// statistics about them. +// +// `HashtablezSampler` controls the lifecycle of `HashtablezInfo` objects which +// store information about a single sample. +// +// `Record*` methods store information into samples. +// `Sample()` and `Unsample()` make use of a single global sampler with +// properties controlled by the flags hashtablez_enabled, +// hashtablez_sample_rate, and hashtablez_max_samples. + +#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLEZ_SAMPLER_H_ +#define ABSL_CONTAINER_INTERNAL_HASHTABLEZ_SAMPLER_H_ + +#include <atomic> +#include <functional> +#include <memory> +#include <vector> + +#include "absl/base/optimization.h" +#include "absl/synchronization/mutex.h" +#include "absl/utility/utility.h" + +namespace absl { +namespace container_internal { + +// Stores information about a sampled hashtable. All mutations to this *must* +// be made through `Record*` functions below. All reads from this *must* only +// occur in the callback to `HashtablezSampler::Iterate`. +struct HashtablezInfo { + // Constructs the object but does not fill in any fields. + HashtablezInfo(); + ~HashtablezInfo(); + HashtablezInfo(const HashtablezInfo&) = delete; + HashtablezInfo& operator=(const HashtablezInfo&) = delete; + + // Puts the object into a clean state, fills in the logically `const` members, + // blocking for any readers that are currently sampling the object. + void PrepareForSampling() EXCLUSIVE_LOCKS_REQUIRED(init_mu); + + // These fields are mutated by the various Record* APIs and need to be + // thread-safe. + std::atomic<size_t> capacity; + std::atomic<size_t> size; + std::atomic<size_t> num_erases; + std::atomic<size_t> max_probe_length; + std::atomic<size_t> total_probe_length; + std::atomic<size_t> hashes_bitwise_or; + std::atomic<size_t> hashes_bitwise_and; + + // `HashtablezSampler` maintains intrusive linked lists for all samples. See + // comments on `HashtablezSampler::all_` for details on these. `init_mu` + // guards the ability to restore the sample to a pristine state. This + // prevents races with sampling and resurrecting an object. + absl::Mutex init_mu; + HashtablezInfo* next; + HashtablezInfo* dead GUARDED_BY(init_mu); + + // All of the fields below are set by `PrepareForSampling`, they must not be + // mutated in `Record*` functions. They are logically `const` in that sense. + // These are guarded by init_mu, but that is not externalized to clients, who + // can only read them during `HashtablezSampler::Iterate` which will hold the + // lock. + static constexpr int kMaxStackDepth = 64; + absl::Time create_time; + int32_t depth; + void* stack[kMaxStackDepth]; +}; + +inline void RecordStorageChangedSlow(HashtablezInfo* info, size_t size, + size_t capacity) { + info->size.store(size, std::memory_order_relaxed); + info->capacity.store(capacity, std::memory_order_relaxed); +} + +void RecordInsertSlow(HashtablezInfo* info, size_t hash, + size_t distance_from_desired); + +inline void RecordEraseSlow(HashtablezInfo* info) { + info->size.fetch_sub(1, std::memory_order_relaxed); + info->num_erases.fetch_add(1, std::memory_order_relaxed); +} + +HashtablezInfo* SampleSlow(int64_t* next_sample); +void UnsampleSlow(HashtablezInfo* info); + +class HashtablezInfoHandle { + public: + explicit HashtablezInfoHandle() : info_(nullptr) {} + explicit HashtablezInfoHandle(HashtablezInfo* info) : info_(info) {} + ~HashtablezInfoHandle() { + if (ABSL_PREDICT_TRUE(info_ == nullptr)) return; + UnsampleSlow(info_); + } + + HashtablezInfoHandle(const HashtablezInfoHandle&) = delete; + HashtablezInfoHandle& operator=(const HashtablezInfoHandle&) = delete; + + HashtablezInfoHandle(HashtablezInfoHandle&& o) noexcept + : info_(absl::exchange(o.info_, nullptr)) {} + HashtablezInfoHandle& operator=(HashtablezInfoHandle&& o) noexcept { + if (ABSL_PREDICT_FALSE(info_ != nullptr)) { + UnsampleSlow(info_); + } + info_ = absl::exchange(o.info_, nullptr); + return *this; + } + + inline void RecordStorageChanged(size_t size, size_t capacity) { + if (ABSL_PREDICT_TRUE(info_ == nullptr)) return; + RecordStorageChangedSlow(info_, size, capacity); + } + + inline void RecordInsert(size_t hash, size_t distance_from_desired) { + if (ABSL_PREDICT_TRUE(info_ == nullptr)) return; + RecordInsertSlow(info_, hash, distance_from_desired); + } + + inline void RecordErase() { + if (ABSL_PREDICT_TRUE(info_ == nullptr)) return; + RecordEraseSlow(info_); + } + + friend inline void swap(HashtablezInfoHandle& lhs, + HashtablezInfoHandle& rhs) { + std::swap(lhs.info_, rhs.info_); + } + + private: + friend class HashtablezInfoHandlePeer; + HashtablezInfo* info_; +}; + +// Returns an RAII sampling handle that manages registration and unregistation +// with the global sampler. +inline HashtablezInfoHandle Sample() { +#if ABSL_HAVE_THREAD_LOCAL + thread_local int64_t next_sample = 0; +#else // ABSL_HAVE_THREAD_LOCAL + static auto* mu = new absl::Mutex; + static int64_t next_sample = 0; + absl::MutexLock l(mu); +#endif // ABSL_HAVE_THREAD_LOCAL + + if (ABSL_PREDICT_TRUE(--next_sample > 0)) { + return HashtablezInfoHandle(nullptr); + } + return HashtablezInfoHandle(SampleSlow(&next_sample)); +} + +// Holds samples and their associated stack traces with a soft limit of +// `SetHashtablezMaxSamples()`. +// +// Thread safe. +class HashtablezSampler { + public: + // Returns a global Sampler. + static HashtablezSampler& Global(); + + HashtablezSampler(); + ~HashtablezSampler(); + + // Registers for sampling. Returns an opaque registration info. + HashtablezInfo* Register(); + + // Unregisters the sample. + void Unregister(HashtablezInfo* sample); + + // Iterates over all the registered `StackInfo`s. Returning the number of + // samples that have been dropped. + int64_t Iterate(const std::function<void(const HashtablezInfo& stack)>& f); + + private: + void PushNew(HashtablezInfo* sample); + void PushDead(HashtablezInfo* sample); + HashtablezInfo* PopDead(); + + std::atomic<size_t> dropped_samples_; + std::atomic<size_t> size_estimate_; + + // Intrusive lock free linked lists for tracking samples. + // + // `all_` records all samples (they are never removed from this list) and is + // terminated with a `nullptr`. + // + // `graveyard_.dead` is a circular linked list. When it is empty, + // `graveyard_.dead == &graveyard`. The list is circular so that + // every item on it (even the last) has a non-null dead pointer. This allows + // `Iterate` to determine if a given sample is live or dead using only + // information on the sample itself. + // + // For example, nodes [A, B, C, D, E] with [A, C, E] alive and [B, D] dead + // looks like this (G is the Graveyard): + // + // +---+ +---+ +---+ +---+ +---+ + // all -->| A |--->| B |--->| C |--->| D |--->| E | + // | | | | | | | | | | + // +---+ | | +->| |-+ | | +->| |-+ | | + // | G | +---+ | +---+ | +---+ | +---+ | +---+ + // | | | | | | + // | | --------+ +--------+ | + // +---+ | + // ^ | + // +--------------------------------------+ + // + std::atomic<HashtablezInfo*> all_; + HashtablezInfo graveyard_; +}; + +// Enables or disables sampling for Swiss tables. +void SetHashtablezEnabled(bool enabled); + +// Sets the rate at which Swiss tables will be sampled. +void SetHashtablezSampleParameter(int32_t rate); + +// Sets a soft max for the number of samples that will be kept. +void SetHashtablezMaxSamples(int32_t max); + +} // namespace container_internal +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_HASHTABLEZ_SAMPLER_H_ diff --git a/absl/container/internal/hashtablez_sampler_test.cc b/absl/container/internal/hashtablez_sampler_test.cc new file mode 100644 index 000000000000..31e7641a1222 --- /dev/null +++ b/absl/container/internal/hashtablez_sampler_test.cc @@ -0,0 +1,307 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/internal/hashtablez_sampler.h" + +#include <atomic> +#include <limits> +#include <random> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/base/attributes.h" +#include "absl/container/internal/have_sse.h" +#include "absl/synchronization/blocking_counter.h" +#include "absl/synchronization/internal/thread_pool.h" +#include "absl/synchronization/mutex.h" +#include "absl/synchronization/notification.h" +#include "absl/time/clock.h" +#include "absl/time/time.h" + +#if SWISSTABLE_HAVE_SSE2 +constexpr int kProbeLength = 16; +#else +constexpr int kProbeLength = 8; +#endif + +namespace absl { +namespace container_internal { +class HashtablezInfoHandlePeer { + public: + static bool IsSampled(const HashtablezInfoHandle& h) { + return h.info_ != nullptr; + } + + static HashtablezInfo* GetInfo(HashtablezInfoHandle* h) { return h->info_; } +}; + +namespace { +using ::absl::synchronization_internal::ThreadPool; +using ::testing::IsEmpty; +using ::testing::UnorderedElementsAre; + +std::vector<size_t> GetSizes(HashtablezSampler* s) { + std::vector<size_t> res; + s->Iterate([&](const HashtablezInfo& info) { + res.push_back(info.size.load(std::memory_order_acquire)); + }); + return res; +} + +HashtablezInfo* Register(HashtablezSampler* s, size_t size) { + auto* info = s->Register(); + assert(info != nullptr); + info->size.store(size); + return info; +} + +TEST(HashtablezInfoTest, PrepareForSampling) { + absl::Time test_start = absl::Now(); + HashtablezInfo info; + absl::MutexLock l(&info.init_mu); + info.PrepareForSampling(); + + EXPECT_EQ(info.capacity.load(), 0); + EXPECT_EQ(info.size.load(), 0); + EXPECT_EQ(info.num_erases.load(), 0); + EXPECT_EQ(info.max_probe_length.load(), 0); + EXPECT_EQ(info.total_probe_length.load(), 0); + EXPECT_EQ(info.hashes_bitwise_or.load(), 0); + EXPECT_EQ(info.hashes_bitwise_and.load(), ~size_t{}); + EXPECT_GE(info.create_time, test_start); + + info.capacity.store(1, std::memory_order_relaxed); + info.size.store(1, std::memory_order_relaxed); + info.num_erases.store(1, std::memory_order_relaxed); + info.max_probe_length.store(1, std::memory_order_relaxed); + info.total_probe_length.store(1, std::memory_order_relaxed); + info.hashes_bitwise_or.store(1, std::memory_order_relaxed); + info.hashes_bitwise_and.store(1, std::memory_order_relaxed); + info.create_time = test_start - absl::Hours(20); + + info.PrepareForSampling(); + EXPECT_EQ(info.capacity.load(), 0); + EXPECT_EQ(info.size.load(), 0); + EXPECT_EQ(info.num_erases.load(), 0); + EXPECT_EQ(info.max_probe_length.load(), 0); + EXPECT_EQ(info.total_probe_length.load(), 0); + EXPECT_EQ(info.hashes_bitwise_or.load(), 0); + EXPECT_EQ(info.hashes_bitwise_and.load(), ~size_t{}); + EXPECT_GE(info.create_time, test_start); +} + +TEST(HashtablezInfoTest, RecordStorageChanged) { + HashtablezInfo info; + absl::MutexLock l(&info.init_mu); + info.PrepareForSampling(); + RecordStorageChangedSlow(&info, 17, 47); + EXPECT_EQ(info.size.load(), 17); + EXPECT_EQ(info.capacity.load(), 47); + RecordStorageChangedSlow(&info, 20, 20); + EXPECT_EQ(info.size.load(), 20); + EXPECT_EQ(info.capacity.load(), 20); +} + +TEST(HashtablezInfoTest, RecordInsert) { + HashtablezInfo info; + absl::MutexLock l(&info.init_mu); + info.PrepareForSampling(); + EXPECT_EQ(info.max_probe_length.load(), 0); + RecordInsertSlow(&info, 0x0000FF00, 6 * kProbeLength); + EXPECT_EQ(info.max_probe_length.load(), 6); + EXPECT_EQ(info.hashes_bitwise_and.load(), 0x0000FF00); + EXPECT_EQ(info.hashes_bitwise_or.load(), 0x0000FF00); + RecordInsertSlow(&info, 0x000FF000, 4 * kProbeLength); + EXPECT_EQ(info.max_probe_length.load(), 6); + EXPECT_EQ(info.hashes_bitwise_and.load(), 0x0000F000); + EXPECT_EQ(info.hashes_bitwise_or.load(), 0x000FFF00); + RecordInsertSlow(&info, 0x00FF0000, 12 * kProbeLength); + EXPECT_EQ(info.max_probe_length.load(), 12); + EXPECT_EQ(info.hashes_bitwise_and.load(), 0x00000000); + EXPECT_EQ(info.hashes_bitwise_or.load(), 0x00FFFF00); +} + +TEST(HashtablezInfoTest, RecordErase) { + HashtablezInfo info; + absl::MutexLock l(&info.init_mu); + info.PrepareForSampling(); + EXPECT_EQ(info.num_erases.load(), 0); + EXPECT_EQ(info.size.load(), 0); + RecordInsertSlow(&info, 0x0000FF00, 6 * kProbeLength); + EXPECT_EQ(info.size.load(), 1); + RecordEraseSlow(&info); + EXPECT_EQ(info.size.load(), 0); + EXPECT_EQ(info.num_erases.load(), 1); +} + +TEST(HashtablezSamplerTest, SmallSampleParameter) { + SetHashtablezEnabled(true); + SetHashtablezSampleParameter(100); + + for (int i = 0; i < 1000; ++i) { + int64_t next_sample = 0; + HashtablezInfo* sample = SampleSlow(&next_sample); + EXPECT_GT(next_sample, 0); + EXPECT_NE(sample, nullptr); + UnsampleSlow(sample); + } +} + +TEST(HashtablezSamplerTest, LargeSampleParameter) { + SetHashtablezEnabled(true); + SetHashtablezSampleParameter(std::numeric_limits<int32_t>::max()); + + for (int i = 0; i < 1000; ++i) { + int64_t next_sample = 0; + HashtablezInfo* sample = SampleSlow(&next_sample); + EXPECT_GT(next_sample, 0); + EXPECT_NE(sample, nullptr); + UnsampleSlow(sample); + } +} + +TEST(HashtablezSamplerTest, Sample) { + SetHashtablezEnabled(true); + SetHashtablezSampleParameter(100); + int64_t num_sampled = 0; + int64_t total = 0; + double sample_rate; + for (int i = 0; i < 1000000; ++i) { + HashtablezInfoHandle h = Sample(); + ++total; + if (HashtablezInfoHandlePeer::IsSampled(h)) { + ++num_sampled; + } + sample_rate = static_cast<double>(num_sampled) / total; + if (0.005 < sample_rate && sample_rate < 0.015) break; + } + EXPECT_NEAR(sample_rate, 0.01, 0.005); +} + +TEST(HashtablezSamplerTest, Handle) { + auto& sampler = HashtablezSampler::Global(); + HashtablezInfoHandle h(sampler.Register()); + auto* info = HashtablezInfoHandlePeer::GetInfo(&h); + info->hashes_bitwise_and.store(0x12345678, std::memory_order_relaxed); + + bool found = false; + sampler.Iterate([&](const HashtablezInfo& h) { + if (&h == info) { + EXPECT_EQ(h.hashes_bitwise_and.load(), 0x12345678); + found = true; + } + }); + EXPECT_TRUE(found); + + h = HashtablezInfoHandle(); + found = false; + sampler.Iterate([&](const HashtablezInfo& h) { + if (&h == info) { + // this will only happen if some other thread has resurrected the info + // the old handle was using. + if (h.hashes_bitwise_and.load() == 0x12345678) { + found = true; + } + } + }); + EXPECT_FALSE(found); +} + +TEST(HashtablezSamplerTest, Registration) { + HashtablezSampler sampler; + auto* info1 = Register(&sampler, 1); + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(1)); + + auto* info2 = Register(&sampler, 2); + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(1, 2)); + info1->size.store(3); + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(3, 2)); + + sampler.Unregister(info1); + sampler.Unregister(info2); +} + +TEST(HashtablezSamplerTest, Unregistration) { + HashtablezSampler sampler; + std::vector<HashtablezInfo*> infos; + for (size_t i = 0; i < 3; ++i) { + infos.push_back(Register(&sampler, i)); + } + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 1, 2)); + + sampler.Unregister(infos[1]); + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2)); + + infos.push_back(Register(&sampler, 3)); + infos.push_back(Register(&sampler, 4)); + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2, 3, 4)); + sampler.Unregister(infos[3]); + EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2, 4)); + + sampler.Unregister(infos[0]); + sampler.Unregister(infos[2]); + sampler.Unregister(infos[4]); + EXPECT_THAT(GetSizes(&sampler), IsEmpty()); +} + +TEST(HashtablezSamplerTest, MultiThreaded) { + HashtablezSampler sampler; + Notification stop; + ThreadPool pool(10); + + for (int i = 0; i < 10; ++i) { + pool.Schedule([&sampler, &stop]() { + std::random_device rd; + std::mt19937 gen(rd()); + + std::vector<HashtablezInfo*> infoz; + while (!stop.HasBeenNotified()) { + if (infoz.empty()) { + infoz.push_back(sampler.Register()); + } + switch (std::uniform_int_distribution<>(0, 2)(gen)) { + case 0: { + infoz.push_back(sampler.Register()); + break; + } + case 1: { + size_t p = + std::uniform_int_distribution<>(0, infoz.size() - 1)(gen); + HashtablezInfo* info = infoz[p]; + infoz[p] = infoz.back(); + infoz.pop_back(); + sampler.Unregister(info); + break; + } + case 2: { + absl::Duration oldest = absl::ZeroDuration(); + sampler.Iterate([&](const HashtablezInfo& info) { + oldest = std::max(oldest, absl::Now() - info.create_time); + }); + ASSERT_GE(oldest, absl::ZeroDuration()); + break; + } + } + } + }); + } + // The threads will hammer away. Give it a little bit of time for tsan to + // spot errors. + absl::SleepFor(absl::Seconds(3)); + stop.Notify(); +} + +} // namespace +} // namespace container_internal +} // namespace absl diff --git a/absl/container/internal/raw_hash_set.h b/absl/container/internal/raw_hash_set.h index b7b5ef8c7b44..34d69d7af2fc 100644 --- a/absl/container/internal/raw_hash_set.h +++ b/absl/container/internal/raw_hash_set.h @@ -109,6 +109,7 @@ #include "absl/container/internal/container_memory.h" #include "absl/container/internal/hash_policy_traits.h" #include "absl/container/internal/hashtable_debug_hooks.h" +#include "absl/container/internal/hashtablez_sampler.h" #include "absl/container/internal/have_sse.h" #include "absl/container/internal/layout.h" #include "absl/memory/memory.h" @@ -943,9 +944,10 @@ class raw_hash_set { // than a full `insert`. for (const auto& v : that) { const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v); - const size_t i = find_first_non_full(hash); - set_ctrl(i, H2(hash)); - emplace_at(i, v); + auto target = find_first_non_full(hash); + set_ctrl(target.offset, H2(hash)); + emplace_at(target.offset, v); + infoz_.RecordInsert(hash, target.probe_length); } size_ = that.size(); growth_left() -= that.size(); @@ -959,6 +961,7 @@ class raw_hash_set { slots_(absl::exchange(that.slots_, nullptr)), size_(absl::exchange(that.size_, 0)), capacity_(absl::exchange(that.capacity_, 0)), + infoz_(absl::exchange(that.infoz_, HashtablezInfoHandle())), // Hash, equality and allocator are copied instead of moved because // `that` must be left valid. If Hash is std::function<Key>, moving it // would create a nullptr functor that cannot be called. @@ -979,6 +982,7 @@ class raw_hash_set { std::swap(size_, that.size_); std::swap(capacity_, that.capacity_); std::swap(growth_left(), that.growth_left()); + std::swap(infoz_, that.infoz_); } else { reserve(that.size()); // Note: this will copy elements of dense_set and unordered_set instead of @@ -1049,6 +1053,7 @@ class raw_hash_set { growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor); } assert(empty()); + infoz_.RecordStorageChanged(size_, capacity_); } // This overload kicks in when the argument is an rvalue of insertable and @@ -1323,6 +1328,7 @@ class raw_hash_set { swap(growth_left(), that.growth_left()); swap(hash_ref(), that.hash_ref()); swap(eq_ref(), that.eq_ref()); + swap(infoz_, that.infoz_); if (AllocTraits::propagate_on_container_swap::value) { swap(alloc_ref(), that.alloc_ref()); } else { @@ -1333,7 +1339,11 @@ class raw_hash_set { void rehash(size_t n) { if (n == 0 && capacity_ == 0) return; - if (n == 0 && size_ == 0) return destroy_slots(); + if (n == 0 && size_ == 0) { + destroy_slots(); + infoz_.RecordStorageChanged(size_, capacity_); + return; + } auto m = NormalizeCapacity((std::max)(n, NumSlotsFast(size()))); // n == 0 unconditionally rehashes as per the standard. if (n == 0 || m > capacity_) { @@ -1550,10 +1560,15 @@ class raw_hash_set { set_ctrl(index, was_never_full ? kEmpty : kDeleted); growth_left() += was_never_full; + infoz_.RecordErase(); } void initialize_slots() { assert(capacity_); + if (slots_ == nullptr) { + infoz_ = Sample(); + } + auto layout = MakeLayout(capacity_); char* mem = static_cast<char*>( Allocate<Layout::Alignment()>(&alloc_ref(), layout.AllocSize())); @@ -1561,6 +1576,7 @@ class raw_hash_set { slots_ = layout.template Pointer<1>(mem); reset_ctrl(); growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor) - size_; + infoz_.RecordStorageChanged(size_, capacity_); } void destroy_slots() { @@ -1593,7 +1609,7 @@ class raw_hash_set { if (IsFull(old_ctrl[i])) { size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, PolicyTraits::element(old_slots + i)); - size_t new_i = find_first_non_full(hash); + size_t new_i = find_first_non_full(hash).offset; set_ctrl(new_i, H2(hash)); PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i); } @@ -1633,7 +1649,7 @@ class raw_hash_set { if (!IsDeleted(ctrl_[i])) continue; size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, PolicyTraits::element(slots_ + i)); - size_t new_i = find_first_non_full(hash); + size_t new_i = find_first_non_full(hash).offset; // Verify if the old and new i fall within the same group wrt the hash. // If they do, we don't need to move the object as it falls already in the @@ -1706,7 +1722,11 @@ class raw_hash_set { // - the input is already a set // - there are enough slots // - the element with the hash is not in the table - size_t find_first_non_full(size_t hash) { + struct FindInfo { + size_t offset; + size_t probe_length; + }; + FindInfo find_first_non_full(size_t hash) { auto seq = probe(hash); while (true) { Group g{ctrl_ + seq.offset()}; @@ -1718,11 +1738,11 @@ class raw_hash_set { // the group. // TODO(kfm,sbenza): revisit after we do unconditional mixing if (ShouldInsertBackwards(hash, ctrl_)) - return seq.offset(mask.HighestBitSet()); + return {seq.offset(mask.HighestBitSet()), seq.index()}; else - return seq.offset(mask.LowestBitSet()); + return {seq.offset(mask.LowestBitSet()), seq.index()}; #else - return seq.offset(mask.LowestBitSet()); + return {seq.offset(mask.LowestBitSet()), seq.index()}; #endif } assert(seq.index() < capacity_ && "full table!"); @@ -1762,15 +1782,17 @@ class raw_hash_set { } size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE { - size_t target = find_first_non_full(hash); - if (ABSL_PREDICT_FALSE(growth_left() == 0 && !IsDeleted(ctrl_[target]))) { + auto target = find_first_non_full(hash); + if (ABSL_PREDICT_FALSE(growth_left() == 0 && + !IsDeleted(ctrl_[target.offset]))) { rehash_and_grow_if_necessary(); target = find_first_non_full(hash); } ++size_; - growth_left() -= IsEmpty(ctrl_[target]); - set_ctrl(target, H2(hash)); - return target; + growth_left() -= IsEmpty(ctrl_[target.offset]); + set_ctrl(target.offset, H2(hash)); + infoz_.RecordInsert(hash, target.probe_length); + return target.offset; } // Constructs the value in the space pointed by the iterator. This only works @@ -1847,6 +1869,7 @@ class raw_hash_set { slot_type* slots_ = nullptr; // [capacity * slot_type] size_t size_ = 0; // number of full slots size_t capacity_ = 0; // total number of slots + HashtablezInfoHandle infoz_; absl::container_internal::CompressedTuple<size_t /* growth_left */, hasher, key_equal, allocator_type> settings_{0, hasher{}, key_equal{}, allocator_type{}}; diff --git a/absl/container/internal/raw_hash_set_test.cc b/absl/container/internal/raw_hash_set_test.cc index 5ad4904f9713..78b627556d74 100644 --- a/absl/container/internal/raw_hash_set_test.cc +++ b/absl/container/internal/raw_hash_set_test.cc @@ -342,6 +342,7 @@ TEST(Table, EmptyFunctorOptimization) { size_t size; size_t capacity; size_t growth_left; + void* infoz; }; struct StatelessHash { size_t operator()(absl::string_view) const { return 0; } @@ -1798,6 +1799,27 @@ TEST(TableDeathTest, EraseOfEndAsserts) { EXPECT_DEATH_IF_SUPPORTED(t.erase(t.end()), kDeathMsg); } +TEST(RawHashSamplerTest, Sample) { + // Enable the feature even if the prod default is off. + SetHashtablezEnabled(true); + SetHashtablezSampleParameter(100); + + auto& sampler = HashtablezSampler::Global(); + size_t start_size = 0; + start_size += sampler.Iterate([&](const HashtablezInfo&) { ++start_size; }); + + std::vector<IntTable> tables; + for (int i = 0; i < 1000000; ++i) { + tables.emplace_back(); + tables.back().insert(1); + } + size_t end_size = 0; + end_size += sampler.Iterate([&](const HashtablezInfo&) { ++end_size; }); + + EXPECT_NEAR((end_size - start_size) / static_cast<double>(tables.size()), + 0.01, 0.005); +} + #ifdef ADDRESS_SANITIZER TEST(Sanitizer, PoisoningUnused) { IntTable t; |