about summary refs log tree commit diff
path: root/absl/container/internal/hashtablez_sampler.cc
diff options
context:
space:
mode:
Diffstat (limited to 'absl/container/internal/hashtablez_sampler.cc')
-rw-r--r--absl/container/internal/hashtablez_sampler.cc289
1 files changed, 289 insertions, 0 deletions
diff --git a/absl/container/internal/hashtablez_sampler.cc b/absl/container/internal/hashtablez_sampler.cc
new file mode 100644
index 000000000000..6cc10c201c34
--- /dev/null
+++ b/absl/container/internal/hashtablez_sampler.cc
@@ -0,0 +1,289 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/internal/hashtablez_sampler.h"
+
+#include <atomic>
+#include <cassert>
+#include <functional>
+#include <limits>
+
+#include "absl/base/attributes.h"
+#include "absl/container/internal/have_sse.h"
+#include "absl/debugging/stacktrace.h"
+#include "absl/memory/memory.h"
+#include "absl/synchronization/mutex.h"
+
+namespace absl {
+namespace container_internal {
+constexpr int HashtablezInfo::kMaxStackDepth;
+
+namespace {
+ABSL_CONST_INIT std::atomic<bool> g_hashtablez_enabled{
+   false
+};
+ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_sample_parameter{1 << 10};
+ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_max_samples{1 << 20};
+
+// Returns the next pseudo-random value.
+// pRNG is: aX+b mod c with a = 0x5DEECE66D, b =  0xB, c = 1<<48
+// This is the lrand64 generator.
+uint64_t NextRandom(uint64_t rnd) {
+  const uint64_t prng_mult = uint64_t{0x5DEECE66D};
+  const uint64_t prng_add = 0xB;
+  const uint64_t prng_mod_power = 48;
+  const uint64_t prng_mod_mask = ~(~uint64_t{0} << prng_mod_power);
+  return (prng_mult * rnd + prng_add) & prng_mod_mask;
+}
+
+// Generates a geometric variable with the specified mean.
+// This is done by generating a random number between 0 and 1 and applying
+// the inverse cumulative distribution function for an exponential.
+// Specifically: Let m be the inverse of the sample period, then
+// the probability distribution function is m*exp(-mx) so the CDF is
+// p = 1 - exp(-mx), so
+// q = 1 - p = exp(-mx)
+// log_e(q) = -mx
+// -log_e(q)/m = x
+// log_2(q) * (-log_e(2) * 1/m) = x
+// In the code, q is actually in the range 1 to 2**26, hence the -26 below
+//
+int64_t GetGeometricVariable(int64_t mean) {
+#if ABSL_HAVE_THREAD_LOCAL
+  thread_local
+#else   // ABSL_HAVE_THREAD_LOCAL
+  // SampleSlow and hence GetGeometricVariable is guarded by a single mutex when
+  // there are not thread locals.  Thus, a single global rng is acceptable for
+  // that case.
+  static
+#endif  // ABSL_HAVE_THREAD_LOCAL
+      uint64_t rng = []() {
+        // We don't get well distributed numbers from this so we call
+        // NextRandom() a bunch to mush the bits around.  We use a global_rand
+        // to handle the case where the same thread (by memory address) gets
+        // created and destroyed repeatedly.
+        ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0);
+        uint64_t r = reinterpret_cast<uint64_t>(&rng) +
+                   global_rand.fetch_add(1, std::memory_order_relaxed);
+        for (int i = 0; i < 20; ++i) {
+          r = NextRandom(r);
+        }
+        return r;
+      }();
+
+  rng = NextRandom(rng);
+
+  // Take the top 26 bits as the random number
+  // (This plus the 1<<58 sampling bound give a max possible step of
+  // 5194297183973780480 bytes.)
+  const uint64_t prng_mod_power = 48;  // Number of bits in prng
+  // The uint32_t cast is to prevent a (hard-to-reproduce) NAN
+  // under piii debug for some binaries.
+  double q = static_cast<uint32_t>(rng >> (prng_mod_power - 26)) + 1.0;
+  // Put the computed p-value through the CDF of a geometric.
+  double interval = (std::log2(q) - 26) * (-std::log(2.0) * mean);
+
+  // Very large values of interval overflow int64_t. If we happen to
+  // hit such improbable condition, we simply cheat and clamp interval
+  // to largest supported value.
+  if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) {
+    return std::numeric_limits<int64_t>::max() / 2;
+  }
+
+  // Small values of interval are equivalent to just sampling next time.
+  if (interval < 1) {
+    return 1;
+  }
+  return static_cast<int64_t>(interval);
+}
+
+}  // namespace
+
+HashtablezSampler& HashtablezSampler::Global() {
+  static auto* sampler = new HashtablezSampler();
+  return *sampler;
+}
+
+HashtablezInfo::HashtablezInfo() { PrepareForSampling(); }
+HashtablezInfo::~HashtablezInfo() = default;
+
+void HashtablezInfo::PrepareForSampling() {
+  capacity.store(0, std::memory_order_relaxed);
+  size.store(0, std::memory_order_relaxed);
+  num_erases.store(0, std::memory_order_relaxed);
+  max_probe_length.store(0, std::memory_order_relaxed);
+  total_probe_length.store(0, std::memory_order_relaxed);
+  hashes_bitwise_or.store(0, std::memory_order_relaxed);
+  hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed);
+
+  create_time = absl::Now();
+  // The inliner makes hardcoded skip_count difficult (especially when combined
+  // with LTO).  We use the ability to exclude stacks by regex when encoding
+  // instead.
+  depth = absl::GetStackTrace(stack, HashtablezInfo::kMaxStackDepth,
+                              /* skip_count= */ 0);
+  dead = nullptr;
+}
+
+HashtablezSampler::HashtablezSampler()
+    : dropped_samples_(0), size_estimate_(0), all_(nullptr) {
+  absl::MutexLock l(&graveyard_.init_mu);
+  graveyard_.dead = &graveyard_;
+}
+
+HashtablezSampler::~HashtablezSampler() {
+  HashtablezInfo* s = all_.load(std::memory_order_acquire);
+  while (s != nullptr) {
+    HashtablezInfo* next = s->next;
+    delete s;
+    s = next;
+  }
+}
+
+void HashtablezSampler::PushNew(HashtablezInfo* sample) {
+  sample->next = all_.load(std::memory_order_relaxed);
+  while (!all_.compare_exchange_weak(sample->next, sample,
+                                     std::memory_order_release,
+                                     std::memory_order_relaxed)) {
+  }
+}
+
+void HashtablezSampler::PushDead(HashtablezInfo* sample) {
+  absl::MutexLock graveyard_lock(&graveyard_.init_mu);
+  absl::MutexLock sample_lock(&sample->init_mu);
+  sample->dead = graveyard_.dead;
+  graveyard_.dead = sample;
+}
+
+HashtablezInfo* HashtablezSampler::PopDead() {
+  absl::MutexLock graveyard_lock(&graveyard_.init_mu);
+
+  // The list is circular, so eventually it collapses down to
+  //   graveyard_.dead == &graveyard_
+  // when it is empty.
+  HashtablezInfo* sample = graveyard_.dead;
+  if (sample == &graveyard_) return nullptr;
+
+  absl::MutexLock sample_lock(&sample->init_mu);
+  graveyard_.dead = sample->dead;
+  sample->PrepareForSampling();
+  return sample;
+}
+
+HashtablezInfo* HashtablezSampler::Register() {
+  int64_t size = size_estimate_.fetch_add(1, std::memory_order_relaxed);
+  if (size > g_hashtablez_max_samples.load(std::memory_order_relaxed)) {
+    size_estimate_.fetch_sub(1, std::memory_order_relaxed);
+    dropped_samples_.fetch_add(1, std::memory_order_relaxed);
+    return nullptr;
+  }
+
+  HashtablezInfo* sample = PopDead();
+  if (sample == nullptr) {
+    // Resurrection failed.  Hire a new warlock.
+    sample = new HashtablezInfo();
+    PushNew(sample);
+  }
+
+  return sample;
+}
+
+void HashtablezSampler::Unregister(HashtablezInfo* sample) {
+  PushDead(sample);
+  size_estimate_.fetch_sub(1, std::memory_order_relaxed);
+}
+
+int64_t HashtablezSampler::Iterate(
+    const std::function<void(const HashtablezInfo& stack)>& f) {
+  HashtablezInfo* s = all_.load(std::memory_order_acquire);
+  while (s != nullptr) {
+    absl::MutexLock l(&s->init_mu);
+    if (s->dead == nullptr) {
+      f(*s);
+    }
+    s = s->next;
+  }
+
+  return dropped_samples_.load(std::memory_order_relaxed);
+}
+
+HashtablezInfo* SampleSlow(int64_t* next_sample) {
+  bool first = *next_sample < 0;
+  *next_sample = GetGeometricVariable(
+      g_hashtablez_sample_parameter.load(std::memory_order_relaxed));
+
+  // g_hashtablez_enabled can be dynamically flipped, we need to set a threshold
+  // low enough that we will start sampling in a reasonable time, so we just use
+  // the default sampling rate.
+  if (!g_hashtablez_enabled.load(std::memory_order_relaxed)) return nullptr;
+
+  // We will only be negative on our first count, so we should just retry in
+  // that case.
+  if (first) {
+    if (ABSL_PREDICT_TRUE(--*next_sample > 0)) return nullptr;
+    return SampleSlow(next_sample);
+  }
+
+  return HashtablezSampler::Global().Register();
+}
+
+void UnsampleSlow(HashtablezInfo* info) {
+  HashtablezSampler::Global().Unregister(info);
+}
+
+void RecordInsertSlow(HashtablezInfo* info, size_t hash,
+                      size_t distance_from_desired) {
+  // SwissTables probe in groups of 16, so scale this to count items probes and
+  // not offset from desired.
+  size_t probe_length = distance_from_desired;
+#if SWISSTABLE_HAVE_SSE2
+  probe_length /= 16;
+#else
+  probe_length /= 8;
+#endif
+
+  info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed);
+  info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed);
+  info->max_probe_length.store(
+      std::max(info->max_probe_length.load(std::memory_order_relaxed),
+               probe_length),
+      std::memory_order_relaxed);
+  info->total_probe_length.fetch_add(probe_length, std::memory_order_relaxed);
+  info->size.fetch_add(1, std::memory_order_relaxed);
+}
+
+void SetHashtablezEnabled(bool enabled) {
+  g_hashtablez_enabled.store(enabled, std::memory_order_release);
+}
+
+void SetHashtablezSampleParameter(int32_t rate) {
+  if (rate > 0) {
+    g_hashtablez_sample_parameter.store(rate, std::memory_order_release);
+  } else {
+    ABSL_RAW_LOG(ERROR, "Invalid hashtablez sample rate: %lld",
+                 static_cast<long long>(rate));  // NOLINT(runtime/int)
+  }
+}
+
+void SetHashtablezMaxSamples(int32_t max) {
+  if (max > 0) {
+    g_hashtablez_max_samples.store(max, std::memory_order_release);
+  } else {
+    ABSL_RAW_LOG(ERROR, "Invalid hashtablez max samples: %lld",
+                 static_cast<long long>(max));  // NOLINT(runtime/int)
+  }
+}
+
+}  // namespace container_internal
+}  // namespace absl