about summary refs log tree commit diff
path: root/absl/container/inlined_vector.h
diff options
context:
space:
mode:
Diffstat (limited to 'absl/container/inlined_vector.h')
-rw-r--r--absl/container/inlined_vector.h1330
1 files changed, 1330 insertions, 0 deletions
diff --git a/absl/container/inlined_vector.h b/absl/container/inlined_vector.h
new file mode 100644
index 000000000000..f060f5c5c40f
--- /dev/null
+++ b/absl/container/inlined_vector.h
@@ -0,0 +1,1330 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: inlined_vector.h
+// -----------------------------------------------------------------------------
+//
+// This header file contains the declaration and definition of an "inlined
+// vector" which behaves in an equivalent fashion to a `std::vector`, except
+// that storage for small sequences of the vector are provided inline without
+// requiring any heap allocation.
+
+// An `absl::InlinedVector<T,N>` specifies the size N at which to inline as one
+// of its template parameters. Vectors of length <= N are provided inline.
+// Typically N is very small (e.g., 4) so that sequences that are expected to be
+// short do not require allocations.
+
+// An `absl::InlinedVector` does not usually require a specific allocator; if
+// the inlined vector grows beyond its initial constraints, it will need to
+// allocate (as any normal `std::vector` would) and it will generally use the
+// default allocator in that case; optionally, a custom allocator may be
+// specified using an `absl::InlinedVector<T,N,A>` construction.
+
+#ifndef ABSL_CONTAINER_INLINED_VECTOR_H_
+#define ABSL_CONTAINER_INLINED_VECTOR_H_
+
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdlib>
+#include <cstring>
+#include <initializer_list>
+#include <iterator>
+#include <memory>
+#include <type_traits>
+#include <utility>
+
+#include "absl/algorithm/algorithm.h"
+#include "absl/base/internal/throw_delegate.h"
+#include "absl/base/optimization.h"
+#include "absl/base/port.h"
+#include "absl/memory/memory.h"
+
+namespace absl {
+
+// -----------------------------------------------------------------------------
+// InlinedVector
+// -----------------------------------------------------------------------------
+//
+// An `absl::InlinedVector` is designed to be a drop-in replacement for
+// `std::vector` for use cases where the vector's size is sufficiently small
+// that it can be inlined. If the inlined vector does grow beyond its estimated
+// size, it will trigger an initial allocation on the heap, and will behave as a
+// `std:vector`. The API of the `absl::InlinedVector` within this file is
+// designed to cover the same API footprint as covered by `std::vector`.
+template <typename T, size_t N, typename A = std::allocator<T> >
+class InlinedVector {
+  using AllocatorTraits = std::allocator_traits<A>;
+
+ public:
+  using allocator_type = A;
+  using value_type = typename allocator_type::value_type;
+  using pointer = typename allocator_type::pointer;
+  using const_pointer = typename allocator_type::const_pointer;
+  using reference = typename allocator_type::reference;
+  using const_reference = typename allocator_type::const_reference;
+  using size_type = typename allocator_type::size_type;
+  using difference_type = typename allocator_type::difference_type;
+  using iterator = pointer;
+  using const_iterator = const_pointer;
+  using reverse_iterator = std::reverse_iterator<iterator>;
+  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
+
+  InlinedVector() noexcept(noexcept(allocator_type()))
+      : allocator_and_tag_(allocator_type()) {}
+
+  explicit InlinedVector(const allocator_type& alloc) noexcept
+      : allocator_and_tag_(alloc) {}
+
+  // Create a vector with n copies of value_type().
+  explicit InlinedVector(size_type n) : allocator_and_tag_(allocator_type()) {
+    InitAssign(n);
+  }
+
+  // Create a vector with n copies of elem
+  InlinedVector(size_type n, const value_type& elem,
+                const allocator_type& alloc = allocator_type())
+      : allocator_and_tag_(alloc) {
+    InitAssign(n, elem);
+  }
+
+  // Create and initialize with the elements [first .. last).
+  // The unused enable_if argument restricts this constructor so that it is
+  // elided when value_type is an integral type.  This prevents ambiguous
+  // interpretation between a call to this constructor with two integral
+  // arguments and a call to the preceding (n, elem) constructor.
+  template <typename InputIterator>
+  InlinedVector(
+      InputIterator first, InputIterator last,
+      const allocator_type& alloc = allocator_type(),
+      typename std::enable_if<!std::is_integral<InputIterator>::value>::type* =
+          nullptr)
+      : allocator_and_tag_(alloc) {
+    AppendRange(first, last);
+  }
+
+  InlinedVector(std::initializer_list<value_type> init,
+                const allocator_type& alloc = allocator_type())
+      : allocator_and_tag_(alloc) {
+    AppendRange(init.begin(), init.end());
+  }
+
+  InlinedVector(const InlinedVector& v);
+  InlinedVector(const InlinedVector& v, const allocator_type& alloc);
+
+  InlinedVector(InlinedVector&& v) noexcept(
+      absl::allocator_is_nothrow<allocator_type>::value ||
+      std::is_nothrow_move_constructible<value_type>::value);
+  InlinedVector(InlinedVector&& v, const allocator_type& alloc) noexcept(
+      absl::allocator_is_nothrow<allocator_type>::value);
+
+  ~InlinedVector() { clear(); }
+
+  InlinedVector& operator=(const InlinedVector& v) {
+    // Optimized to avoid reallocation.
+    // Prefer reassignment to copy construction for elements.
+    if (size() < v.size()) {  // grow
+      reserve(v.size());
+      std::copy(v.begin(), v.begin() + size(), begin());
+      std::copy(v.begin() + size(), v.end(), std::back_inserter(*this));
+    } else {  // maybe shrink
+      erase(begin() + v.size(), end());
+      std::copy(v.begin(), v.end(), begin());
+    }
+    return *this;
+  }
+
+  InlinedVector& operator=(InlinedVector&& v) {
+    if (this == &v) {
+      return *this;
+    }
+    if (v.allocated()) {
+      clear();
+      tag().set_allocated_size(v.size());
+      init_allocation(v.allocation());
+      v.tag() = Tag();
+    } else {
+      if (allocated()) clear();
+      // Both are inlined now.
+      if (size() < v.size()) {
+        auto mid = std::make_move_iterator(v.begin() + size());
+        std::copy(std::make_move_iterator(v.begin()), mid, begin());
+        UninitializedCopy(mid, std::make_move_iterator(v.end()), end());
+      } else {
+        auto new_end = std::copy(std::make_move_iterator(v.begin()),
+                                 std::make_move_iterator(v.end()), begin());
+        Destroy(new_end, end());
+      }
+      tag().set_inline_size(v.size());
+    }
+    return *this;
+  }
+
+  InlinedVector& operator=(std::initializer_list<value_type> init) {
+    AssignRange(init.begin(), init.end());
+    return *this;
+  }
+
+  // InlinedVector::assign()
+  //
+  // Replaces the contents of the inlined vector with copies of those in the
+  // iterator range [first, last).
+  template <typename InputIterator>
+  void assign(
+      InputIterator first, InputIterator last,
+      typename std::enable_if<!std::is_integral<InputIterator>::value>::type* =
+          nullptr) {
+    AssignRange(first, last);
+  }
+
+  // Overload of `InlinedVector::assign()` to take values from elements of an
+  // initializer list
+  void assign(std::initializer_list<value_type> init) {
+    AssignRange(init.begin(), init.end());
+  }
+
+  // Overload of `InlinedVector::assign()` to replace the first `n` elements of
+  // the inlined vector with `elem` values.
+  void assign(size_type n, const value_type& elem) {
+    if (n <= size()) {  // Possibly shrink
+      std::fill_n(begin(), n, elem);
+      erase(begin() + n, end());
+      return;
+    }
+    // Grow
+    reserve(n);
+    std::fill_n(begin(), size(), elem);
+    if (allocated()) {
+      UninitializedFill(allocated_space() + size(), allocated_space() + n,
+                        elem);
+      tag().set_allocated_size(n);
+    } else {
+      UninitializedFill(inlined_space() + size(), inlined_space() + n, elem);
+      tag().set_inline_size(n);
+    }
+  }
+
+  // InlinedVector::size()
+  //
+  // Returns the number of elements in the inlined vector.
+  size_type size() const noexcept { return tag().size(); }
+
+  // InlinedVector::empty()
+  //
+  // Checks if the inlined vector has no elements.
+  bool empty() const noexcept { return (size() == 0); }
+
+  // InlinedVector::capacity()
+  //
+  // Returns the number of elements that can be stored in an inlined vector
+  // without requiring a reallocation of underlying memory. Note that for
+  // most inlined vectors, `capacity()` should equal its initial size `N`; for
+  // inlined vectors which exceed this capacity, they will no longer be inlined,
+  // and `capacity()` will equal its capacity on the allocated heap.
+  size_type capacity() const noexcept {
+    return allocated() ? allocation().capacity() : N;
+  }
+
+  // InlinedVector::max_size()
+  //
+  // Returns the maximum number of elements the vector can hold.
+  size_type max_size() const noexcept {
+    // One bit of the size storage is used to indicate whether the inlined
+    // vector is allocated; as a result, the maximum size of the container that
+    // we can express is half of the max for our size type.
+    return std::numeric_limits<size_type>::max() / 2;
+  }
+
+  // InlinedVector::data()
+  //
+  // Returns a const T* pointer to elements of the inlined vector. This pointer
+  // can be used to access (but not modify) the contained elements.
+  // Only results within the range `[0,size())` are defined.
+  const_pointer data() const noexcept {
+    return allocated() ? allocated_space() : inlined_space();
+  }
+
+  // Overload of InlinedVector::data() to return a T* pointer to elements of the
+  // inlined vector. This pointer can be used to access and modify the contained
+  // elements.
+  pointer data() noexcept {
+    return allocated() ? allocated_space() : inlined_space();
+  }
+
+  // InlinedVector::clear()
+  //
+  // Removes all elements from the inlined vector.
+  void clear() noexcept {
+    size_type s = size();
+    if (allocated()) {
+      Destroy(allocated_space(), allocated_space() + s);
+      allocation().Dealloc(allocator());
+    } else if (s != 0) {  // do nothing for empty vectors
+      Destroy(inlined_space(), inlined_space() + s);
+    }
+    tag() = Tag();
+  }
+
+  // InlinedVector::at()
+  //
+  // Returns the ith element of an inlined vector.
+  const value_type& at(size_type i) const {
+    if (ABSL_PREDICT_FALSE(i >= size())) {
+      base_internal::ThrowStdOutOfRange(
+          "InlinedVector::at failed bounds check");
+    }
+    return data()[i];
+  }
+
+  // InlinedVector::operator[]
+  //
+  // Returns the ith element of an inlined vector using the array operator.
+  const value_type& operator[](size_type i) const {
+    assert(i < size());
+    return data()[i];
+  }
+
+  // Overload of InlinedVector::at() to return the ith element of an inlined
+  // vector.
+  value_type& at(size_type i) {
+    if (i >= size()) {
+      base_internal::ThrowStdOutOfRange(
+          "InlinedVector::at failed bounds check");
+    }
+    return data()[i];
+  }
+
+  // Overload of InlinedVector::operator[] to return the ith element of an
+  // inlined vector.
+  value_type& operator[](size_type i) {
+    assert(i < size());
+    return data()[i];
+  }
+
+  // InlinedVector::back()
+  //
+  // Returns a reference to the last element of an inlined vector.
+  value_type& back() {
+    assert(!empty());
+    return at(size() - 1);
+  }
+
+  // Overload of InlinedVector::back() returns a reference to the last element
+  // of an inlined vector of const values.
+  const value_type& back() const {
+    assert(!empty());
+    return at(size() - 1);
+  }
+
+  // InlinedVector::front()
+  //
+  // Returns a reference to the first element of an inlined vector.
+  value_type& front() {
+    assert(!empty());
+    return at(0);
+  }
+
+  // Overload of InlinedVector::front() returns a reference to the first element
+  // of an inlined vector of const values.
+  const value_type& front() const {
+    assert(!empty());
+    return at(0);
+  }
+
+  // InlinedVector::emplace_back()
+  //
+  // Constructs and appends an object to the inlined vector.
+  template <typename... Args>
+  void emplace_back(Args&&... args) {
+    size_type s = size();
+    assert(s <= capacity());
+    if (ABSL_PREDICT_FALSE(s == capacity())) {
+      GrowAndEmplaceBack(std::forward<Args>(args)...);
+      return;
+    }
+    assert(s < capacity());
+
+    value_type* space;
+    if (allocated()) {
+      tag().set_allocated_size(s + 1);
+      space = allocated_space();
+    } else {
+      tag().set_inline_size(s + 1);
+      space = inlined_space();
+    }
+    Construct(space + s, std::forward<Args>(args)...);
+  }
+
+  // InlinedVector::push_back()
+  //
+  // Appends a const element to the inlined vector.
+  void push_back(const value_type& t) { emplace_back(t); }
+
+  // Overload of InlinedVector::push_back() to append a move-only element to the
+  // inlined vector.
+  void push_back(value_type&& t) { emplace_back(std::move(t)); }
+
+  // InlinedVector::pop_back()
+  //
+  // Removes the last element (which is destroyed) in the inlined vector.
+  void pop_back() {
+    assert(!empty());
+    size_type s = size();
+    if (allocated()) {
+      Destroy(allocated_space() + s - 1, allocated_space() + s);
+      tag().set_allocated_size(s - 1);
+    } else {
+      Destroy(inlined_space() + s - 1, inlined_space() + s);
+      tag().set_inline_size(s - 1);
+    }
+  }
+
+  // InlinedVector::resize()
+  //
+  // Resizes the inlined vector to contain `n` elements. If `n` is smaller than
+  // the inlined vector's current size, extra elements are destroyed. If `n` is
+  // larger than the initial size, new elements are value-initialized.
+  void resize(size_type n);
+
+  // Overload of InlinedVector::resize() to resize the inlined vector to contain
+  // `n` elements. If `n` is larger than the current size, enough copies of
+  // `elem` are appended to increase its size to `n`.
+  void resize(size_type n, const value_type& elem);
+
+  // InlinedVector::begin()
+  //
+  // Returns an iterator to the beginning of the inlined vector.
+  iterator begin() noexcept { return data(); }
+
+  // Overload of InlinedVector::begin() for returning a const iterator to the
+  // beginning of the inlined vector.
+  const_iterator begin() const noexcept { return data(); }
+
+  // InlinedVector::cbegin()
+  //
+  // Returns a const iterator to the beginning of the inlined vector.
+  const_iterator cbegin() const noexcept { return begin(); }
+
+  // InlinedVector::end()
+  //
+  // Returns an iterator to the end of the inlined vector.
+  iterator end() noexcept { return data() + size(); }
+
+  // Overload of InlinedVector::end() for returning a const iterator to the end
+  // of the inlined vector.
+  const_iterator end() const noexcept { return data() + size(); }
+
+  // InlinedVector::cend()
+  //
+  // Returns a const iterator to the end of the inlined vector.
+  const_iterator cend() const noexcept { return end(); }
+
+  // InlinedVector::rbegin()
+  //
+  // Returns a reverse iterator from the end of the inlined vector.
+  reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
+
+  // Overload of InlinedVector::rbegin() for returning a const reverse iterator
+  // from the end of the inlined vector.
+  const_reverse_iterator rbegin() const noexcept {
+    return const_reverse_iterator(end());
+  }
+
+  // InlinedVector::crbegin()
+  //
+  // Returns a const reverse iterator from the end of the inlined vector.
+  const_reverse_iterator crbegin() const noexcept { return rbegin(); }
+
+  // InlinedVector::rend()
+  //
+  // Returns a reverse iterator from the beginning of the inlined vector.
+  reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
+
+  // Overload of InlinedVector::rend() for returning a const reverse iterator
+  // from the beginning of the inlined vector.
+  const_reverse_iterator rend() const noexcept {
+    return const_reverse_iterator(begin());
+  }
+
+  // InlinedVector::crend()
+  //
+  // Returns a reverse iterator from the beginning of the inlined vector.
+  const_reverse_iterator crend() const noexcept { return rend(); }
+
+  // InlinedVector::emplace()
+  //
+  // Constructs and inserts an object to the inlined vector at the given
+  // `position`, returning an iterator pointing to the newly emplaced element.
+  template <typename... Args>
+  iterator emplace(const_iterator position, Args&&... args);
+
+  // InlinedVector::insert()
+  //
+  // Inserts an element of the specified value at `position`, returning an
+  // iterator pointing to the newly inserted element.
+  iterator insert(const_iterator position, const value_type& v) {
+    return emplace(position, v);
+  }
+
+  // Overload of InlinedVector::insert() for inserting an element of the
+  // specified rvalue, returning an iterator pointing to the newly inserted
+  // element.
+  iterator insert(const_iterator position, value_type&& v) {
+    return emplace(position, std::move(v));
+  }
+
+  // Overload of InlinedVector::insert() for inserting `n` elements of the
+  // specified value at `position`, returning an iterator pointing to the first
+  // of the newly inserted elements.
+  iterator insert(const_iterator position, size_type n, const value_type& v) {
+    return InsertWithCount(position, n, v);
+  }
+
+  // Overload of `InlinedVector::insert()` to disambiguate the two
+  // three-argument overloads of `insert()`, returning an iterator pointing to
+  // the first of the newly inserted elements.
+  template <typename InputIterator,
+            typename = typename std::enable_if<std::is_convertible<
+                typename std::iterator_traits<InputIterator>::iterator_category,
+                std::input_iterator_tag>::value>::type>
+  iterator insert(const_iterator position, InputIterator first,
+                  InputIterator last) {
+    using IterType =
+        typename std::iterator_traits<InputIterator>::iterator_category;
+    return InsertWithRange(position, first, last, IterType());
+  }
+
+  // Overload of InlinedVector::insert() for inserting a list of elements at
+  // `position`, returning an iterator pointing to the first of the newly
+  // inserted elements.
+  iterator insert(const_iterator position,
+                  std::initializer_list<value_type> init) {
+    return insert(position, init.begin(), init.end());
+  }
+
+  // InlinedVector::erase()
+  //
+  // Erases the element at `position` of the inlined vector, returning an
+  // iterator pointing to the following element or the container's end if the
+  // last element was erased.
+  iterator erase(const_iterator position) {
+    assert(position >= begin());
+    assert(position < end());
+
+    iterator pos = const_cast<iterator>(position);
+    std::move(pos + 1, end(), pos);
+    pop_back();
+    return pos;
+  }
+
+  // Overload of InlinedVector::erase() for erasing all elements in the
+  // iteraror range [first, last) in the inlined vector, returning an iterator
+  // pointing to the first element following the range erased, or the
+  // container's end if range included the container's last element.
+  iterator erase(const_iterator first, const_iterator last);
+
+  // InlinedVector::reserve()
+  //
+  // Enlarges the underlying representation of the inlined vector so it can hold
+  // at least `n` elements. This method does not change `size()` or the actual
+  // contents of the vector.
+  //
+  // Note that if `n` does not exceed the inlined vector's initial size `N`,
+  // `reserve()` will have no effect; if it does exceed its initial size,
+  // `reserve()` will trigger an initial allocation and move the inlined vector
+  // onto the heap. If the vector already exists on the heap and the requested
+  // size exceeds it, a reallocation will be performed.
+  void reserve(size_type n) {
+    if (n > capacity()) {
+      // Make room for new elements
+      EnlargeBy(n - size());
+    }
+  }
+
+  // InlinedVector::swap()
+  //
+  // Swaps the contents of this inlined vector with the contents of `other`.
+  void swap(InlinedVector& other);
+
+  // InlinedVector::get_allocator()
+  //
+  // Returns the allocator of this inlined vector.
+  allocator_type get_allocator() const { return allocator(); }
+
+ private:
+  static_assert(N > 0, "inlined vector with nonpositive size");
+
+  // It holds whether the vector is allocated or not in the lowest bit.
+  // The size is held in the high bits:
+  //   size_ = (size << 1) | is_allocated;
+  class Tag {
+   public:
+    Tag() : size_(0) {}
+    size_type size() const { return size_ >> 1; }
+    void add_size(size_type n) { size_ += n << 1; }
+    void set_inline_size(size_type n) { size_ = n << 1; }
+    void set_allocated_size(size_type n) { size_ = (n << 1) | 1; }
+    bool allocated() const { return size_ & 1; }
+
+   private:
+    size_type size_;
+  };
+
+  // Derives from allocator_type to use the empty base class optimization.
+  // If the allocator_type is stateless, we can 'store'
+  // our instance of it for free.
+  class AllocatorAndTag : private allocator_type {
+   public:
+    explicit AllocatorAndTag(const allocator_type& a, Tag t = Tag())
+        : allocator_type(a), tag_(t) {
+    }
+    Tag& tag() { return tag_; }
+    const Tag& tag() const { return tag_; }
+    allocator_type& allocator() { return *this; }
+    const allocator_type& allocator() const { return *this; }
+   private:
+    Tag tag_;
+  };
+
+  class Allocation {
+   public:
+    Allocation(allocator_type& a,  // NOLINT(runtime/references)
+               size_type capacity)
+        : capacity_(capacity),
+          buffer_(AllocatorTraits::allocate(a, capacity_)) {}
+
+    void Dealloc(allocator_type& a) {  // NOLINT(runtime/references)
+      AllocatorTraits::deallocate(a, buffer(), capacity());
+    }
+
+    size_type capacity() const { return capacity_; }
+    const value_type* buffer() const { return buffer_; }
+    value_type* buffer() { return buffer_; }
+
+   private:
+    size_type capacity_;
+    value_type* buffer_;
+  };
+
+  const Tag& tag() const { return allocator_and_tag_.tag(); }
+  Tag& tag() { return allocator_and_tag_.tag(); }
+
+  Allocation& allocation() {
+    return reinterpret_cast<Allocation&>(rep_.allocation_storage.allocation);
+  }
+  const Allocation& allocation() const {
+    return reinterpret_cast<const Allocation&>(
+        rep_.allocation_storage.allocation);
+  }
+  void init_allocation(const Allocation& allocation) {
+    new (&rep_.allocation_storage.allocation) Allocation(allocation);
+  }
+
+  value_type* inlined_space() {
+    return reinterpret_cast<value_type*>(&rep_.inlined_storage.inlined);
+  }
+  const value_type* inlined_space() const {
+    return reinterpret_cast<const value_type*>(&rep_.inlined_storage.inlined);
+  }
+
+  value_type* allocated_space() {
+    return allocation().buffer();
+  }
+  const value_type* allocated_space() const {
+    return allocation().buffer();
+  }
+
+  const allocator_type& allocator() const {
+    return allocator_and_tag_.allocator();
+  }
+  allocator_type& allocator() {
+    return allocator_and_tag_.allocator();
+  }
+
+  bool allocated() const { return tag().allocated(); }
+
+  // Enlarge the underlying representation so we can store size_ + delta elems.
+  // The size is not changed, and any newly added memory is not initialized.
+  void EnlargeBy(size_type delta);
+
+  // Shift all elements from position to end() n places to the right.
+  // If the vector needs to be enlarged, memory will be allocated.
+  // Returns iterators pointing to the start of the previously-initialized
+  // portion and the start of the uninitialized portion of the created gap.
+  // The number of initialized spots is pair.second - pair.first;
+  // the number of raw spots is n - (pair.second - pair.first).
+  std::pair<iterator, iterator> ShiftRight(const_iterator position,
+                                           size_type n);
+
+  void ResetAllocation(Allocation new_allocation, size_type new_size) {
+    if (allocated()) {
+      Destroy(allocated_space(), allocated_space() + size());
+      assert(begin() == allocated_space());
+      allocation().Dealloc(allocator());
+      allocation() = new_allocation;
+    } else {
+      Destroy(inlined_space(), inlined_space() + size());
+      init_allocation(new_allocation);  // bug: only init once
+    }
+    tag().set_allocated_size(new_size);
+  }
+
+  template <typename... Args>
+  void GrowAndEmplaceBack(Args&&... args) {
+    assert(size() == capacity());
+    const size_type s = size();
+
+    Allocation new_allocation(allocator(), 2 * capacity());
+
+    Construct(new_allocation.buffer() + s, std::forward<Args>(args)...);
+    UninitializedCopy(std::make_move_iterator(data()),
+                      std::make_move_iterator(data() + s),
+                      new_allocation.buffer());
+
+    ResetAllocation(new_allocation, s + 1);
+  }
+
+  void InitAssign(size_type n);
+  void InitAssign(size_type n, const value_type& t);
+
+  template <typename... Args>
+  void Construct(pointer p, Args&&... args) {
+    AllocatorTraits::construct(allocator(), p, std::forward<Args>(args)...);
+  }
+
+  template <typename Iter>
+  void UninitializedCopy(Iter src, Iter src_last, value_type* dst) {
+    for (; src != src_last; ++dst, ++src) Construct(dst, *src);
+  }
+
+  template <typename... Args>
+  void UninitializedFill(value_type* dst, value_type* dst_last,
+                         const Args&... args) {
+    for (; dst != dst_last; ++dst) Construct(dst, args...);
+  }
+
+  // Destroy [ptr, ptr_last) in place.
+  void Destroy(value_type* ptr, value_type* ptr_last);
+
+  template <typename Iter>
+  void AppendRange(Iter first, Iter last, std::input_iterator_tag) {
+    std::copy(first, last, std::back_inserter(*this));
+  }
+
+  // Faster path for forward iterators.
+  template <typename Iter>
+  void AppendRange(Iter first, Iter last, std::forward_iterator_tag);
+
+  template <typename Iter>
+  void AppendRange(Iter first, Iter last) {
+    using IterTag = typename std::iterator_traits<Iter>::iterator_category;
+    AppendRange(first, last, IterTag());
+  }
+
+  template <typename Iter>
+  void AssignRange(Iter first, Iter last, std::input_iterator_tag);
+
+  // Faster path for forward iterators.
+  template <typename Iter>
+  void AssignRange(Iter first, Iter last, std::forward_iterator_tag);
+
+  template <typename Iter>
+  void AssignRange(Iter first, Iter last) {
+    using IterTag = typename std::iterator_traits<Iter>::iterator_category;
+    AssignRange(first, last, IterTag());
+  }
+
+  iterator InsertWithCount(const_iterator position, size_type n,
+                           const value_type& v);
+
+  template <typename InputIter>
+  iterator InsertWithRange(const_iterator position, InputIter first,
+                           InputIter last, std::input_iterator_tag);
+  template <typename ForwardIter>
+  iterator InsertWithRange(const_iterator position, ForwardIter first,
+                           ForwardIter last, std::forward_iterator_tag);
+
+  AllocatorAndTag allocator_and_tag_;
+
+  // Either the inlined or allocated representation
+  union Rep {
+    // Use struct to perform indirection that solves a bizarre compilation
+    // error on Visual Studio (all known versions).
+    struct {
+      typename std::aligned_storage<sizeof(value_type),
+                                    alignof(value_type)>::type inlined[N];
+    } inlined_storage;
+    struct {
+      typename std::aligned_storage<sizeof(Allocation),
+                                    alignof(Allocation)>::type allocation;
+    } allocation_storage;
+  } rep_;
+};
+
+// -----------------------------------------------------------------------------
+// InlinedVector Non-Member Functions
+// -----------------------------------------------------------------------------
+
+// swap()
+//
+// Swaps the contents of two inlined vectors. This convenience function
+// simply calls InlinedVector::swap(other_inlined_vector).
+template <typename T, size_t N, typename A>
+void swap(InlinedVector<T, N, A>& a,
+          InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
+  a.swap(b);
+}
+
+// operator==()
+//
+// Tests the equivalency of the contents of two inlined vectors.
+template <typename T, size_t N, typename A>
+bool operator==(const InlinedVector<T, N, A>& a,
+                const InlinedVector<T, N, A>& b) {
+  return absl::equal(a.begin(), a.end(), b.begin(), b.end());
+}
+
+// operator!=()
+//
+// Tests the inequality of the contents of two inlined vectors.
+template <typename T, size_t N, typename A>
+bool operator!=(const InlinedVector<T, N, A>& a,
+                const InlinedVector<T, N, A>& b) {
+  return !(a == b);
+}
+
+// operator<()
+//
+// Tests whether the contents of one inlined vector are less than the contents
+// of another through a lexicographical comparison operation.
+template <typename T, size_t N, typename A>
+bool operator<(const InlinedVector<T, N, A>& a,
+               const InlinedVector<T, N, A>& b) {
+  return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());
+}
+
+// operator>()
+//
+// Tests whether the contents of one inlined vector are greater than the
+// contents of another through a lexicographical comparison operation.
+template <typename T, size_t N, typename A>
+bool operator>(const InlinedVector<T, N, A>& a,
+               const InlinedVector<T, N, A>& b) {
+  return b < a;
+}
+
+// operator<=()
+//
+// Tests whether the contents of one inlined vector are less than or equal to
+// the contents of another through a lexicographical comparison operation.
+template <typename T, size_t N, typename A>
+bool operator<=(const InlinedVector<T, N, A>& a,
+                const InlinedVector<T, N, A>& b) {
+  return !(b < a);
+}
+
+// operator>=()
+//
+// Tests whether the contents of one inlined vector are greater than or equal to
+// the contents of another through a lexicographical comparison operation.
+template <typename T, size_t N, typename A>
+bool operator>=(const InlinedVector<T, N, A>& a,
+                const InlinedVector<T, N, A>& b) {
+  return !(a < b);
+}
+
+// -----------------------------------------------------------------------------
+// Implementation of InlinedVector
+// -----------------------------------------------------------------------------
+//
+// Do not depend on any implementation details below this line.
+
+template <typename T, size_t N, typename A>
+InlinedVector<T, N, A>::InlinedVector(const InlinedVector& v)
+    : allocator_and_tag_(v.allocator()) {
+  reserve(v.size());
+  if (allocated()) {
+    UninitializedCopy(v.begin(), v.end(), allocated_space());
+    tag().set_allocated_size(v.size());
+  } else {
+    UninitializedCopy(v.begin(), v.end(), inlined_space());
+    tag().set_inline_size(v.size());
+  }
+}
+
+template <typename T, size_t N, typename A>
+InlinedVector<T, N, A>::InlinedVector(const InlinedVector& v,
+                                      const allocator_type& alloc)
+    : allocator_and_tag_(alloc) {
+  reserve(v.size());
+  if (allocated()) {
+    UninitializedCopy(v.begin(), v.end(), allocated_space());
+    tag().set_allocated_size(v.size());
+  } else {
+    UninitializedCopy(v.begin(), v.end(), inlined_space());
+    tag().set_inline_size(v.size());
+  }
+}
+
+template <typename T, size_t N, typename A>
+InlinedVector<T, N, A>::InlinedVector(InlinedVector&& v) noexcept(
+    absl::allocator_is_nothrow<allocator_type>::value ||
+    std::is_nothrow_move_constructible<value_type>::value)
+    : allocator_and_tag_(v.allocator_and_tag_) {
+  if (v.allocated()) {
+    // We can just steal the underlying buffer from the source.
+    // That leaves the source empty, so we clear its size.
+    init_allocation(v.allocation());
+    v.tag() = Tag();
+  } else {
+    UninitializedCopy(std::make_move_iterator(v.inlined_space()),
+                      std::make_move_iterator(v.inlined_space() + v.size()),
+                      inlined_space());
+  }
+}
+
+template <typename T, size_t N, typename A>
+InlinedVector<T, N, A>::InlinedVector(
+    InlinedVector&& v,
+    const allocator_type&
+        alloc) noexcept(absl::allocator_is_nothrow<allocator_type>::value)
+    : allocator_and_tag_(alloc) {
+  if (v.allocated()) {
+    if (alloc == v.allocator()) {
+      // We can just steal the allocation from the source.
+      tag() = v.tag();
+      init_allocation(v.allocation());
+      v.tag() = Tag();
+    } else {
+      // We need to use our own allocator
+      reserve(v.size());
+      UninitializedCopy(std::make_move_iterator(v.begin()),
+                        std::make_move_iterator(v.end()), allocated_space());
+      tag().set_allocated_size(v.size());
+    }
+  } else {
+    UninitializedCopy(std::make_move_iterator(v.inlined_space()),
+                      std::make_move_iterator(v.inlined_space() + v.size()),
+                      inlined_space());
+    tag().set_inline_size(v.size());
+  }
+}
+
+template <typename T, size_t N, typename A>
+void InlinedVector<T, N, A>::InitAssign(size_type n, const value_type& t) {
+  if (n > static_cast<size_type>(N)) {
+    Allocation new_allocation(allocator(), n);
+    init_allocation(new_allocation);
+    UninitializedFill(allocated_space(), allocated_space() + n, t);
+    tag().set_allocated_size(n);
+  } else {
+    UninitializedFill(inlined_space(), inlined_space() + n, t);
+    tag().set_inline_size(n);
+  }
+}
+
+template <typename T, size_t N, typename A>
+void InlinedVector<T, N, A>::InitAssign(size_type n) {
+  if (n > static_cast<size_type>(N)) {
+    Allocation new_allocation(allocator(), n);
+    init_allocation(new_allocation);
+    UninitializedFill(allocated_space(), allocated_space() + n);
+    tag().set_allocated_size(n);
+  } else {
+    UninitializedFill(inlined_space(), inlined_space() + n);
+    tag().set_inline_size(n);
+  }
+}
+
+template <typename T, size_t N, typename A>
+void InlinedVector<T, N, A>::resize(size_type n) {
+  size_type s = size();
+  if (n < s) {
+    erase(begin() + n, end());
+    return;
+  }
+  reserve(n);
+  assert(capacity() >= n);
+
+  // Fill new space with elements constructed in-place.
+  if (allocated()) {
+    UninitializedFill(allocated_space() + s, allocated_space() + n);
+    tag().set_allocated_size(n);
+  } else {
+    UninitializedFill(inlined_space() + s, inlined_space() + n);
+    tag().set_inline_size(n);
+  }
+}
+
+template <typename T, size_t N, typename A>
+void InlinedVector<T, N, A>::resize(size_type n, const value_type& elem) {
+  size_type s = size();
+  if (n < s) {
+    erase(begin() + n, end());
+    return;
+  }
+  reserve(n);
+  assert(capacity() >= n);
+
+  // Fill new space with copies of 'elem'.
+  if (allocated()) {
+    UninitializedFill(allocated_space() + s, allocated_space() + n, elem);
+    tag().set_allocated_size(n);
+  } else {
+    UninitializedFill(inlined_space() + s, inlined_space() + n, elem);
+    tag().set_inline_size(n);
+  }
+}
+
+template <typename T, size_t N, typename A>
+template <typename... Args>
+typename InlinedVector<T, N, A>::iterator InlinedVector<T, N, A>::emplace(
+    const_iterator position, Args&&... args) {
+  assert(position >= begin());
+  assert(position <= end());
+  if (position == end()) {
+    emplace_back(std::forward<Args>(args)...);
+    return end() - 1;
+  }
+  size_type s = size();
+  size_type idx = std::distance(cbegin(), position);
+  if (s == capacity()) {
+    EnlargeBy(1);
+  }
+  assert(s < capacity());
+  iterator pos = begin() + idx;  // Set 'pos' to a post-enlarge iterator.
+
+  pointer space;
+  if (allocated()) {
+    tag().set_allocated_size(s + 1);
+    space = allocated_space();
+  } else {
+    tag().set_inline_size(s + 1);
+    space = inlined_space();
+  }
+  Construct(space + s, std::move(space[s - 1]));
+  std::move_backward(pos, space + s - 1, space + s);
+  Destroy(pos, pos + 1);
+  Construct(pos, std::forward<Args>(args)...);
+
+  return pos;
+}
+
+template <typename T, size_t N, typename A>
+typename InlinedVector<T, N, A>::iterator InlinedVector<T, N, A>::erase(
+    const_iterator first, const_iterator last) {
+  assert(begin() <= first);
+  assert(first <= last);
+  assert(last <= end());
+
+  iterator range_start = const_cast<iterator>(first);
+  iterator range_end = const_cast<iterator>(last);
+
+  size_type s = size();
+  ptrdiff_t erase_gap = std::distance(range_start, range_end);
+  if (erase_gap > 0) {
+    pointer space;
+    if (allocated()) {
+      space = allocated_space();
+      tag().set_allocated_size(s - erase_gap);
+    } else {
+      space = inlined_space();
+      tag().set_inline_size(s - erase_gap);
+    }
+    std::move(range_end, space + s, range_start);
+    Destroy(space + s - erase_gap, space + s);
+  }
+  return range_start;
+}
+
+template <typename T, size_t N, typename A>
+void InlinedVector<T, N, A>::swap(InlinedVector& other) {
+  using std::swap;  // Augment ADL with std::swap.
+  if (&other == this) {
+    return;
+  }
+  if (allocated() && other.allocated()) {
+    // Both out of line, so just swap the tag, allocation, and allocator.
+    swap(tag(), other.tag());
+    swap(allocation(), other.allocation());
+    swap(allocator(), other.allocator());
+    return;
+  }
+  if (!allocated() && !other.allocated()) {
+    // Both inlined: swap up to smaller size, then move remaining elements.
+    InlinedVector* a = this;
+    InlinedVector* b = &other;
+    if (size() < other.size()) {
+      swap(a, b);
+    }
+
+    const size_type a_size = a->size();
+    const size_type b_size = b->size();
+    assert(a_size >= b_size);
+    // 'a' is larger. Swap the elements up to the smaller array size.
+    std::swap_ranges(a->inlined_space(),
+                     a->inlined_space() + b_size,
+                     b->inlined_space());
+
+    // Move the remaining elements: A[b_size,a_size) -> B[b_size,a_size)
+    b->UninitializedCopy(a->inlined_space() + b_size,
+                         a->inlined_space() + a_size,
+                         b->inlined_space() + b_size);
+    a->Destroy(a->inlined_space() + b_size, a->inlined_space() + a_size);
+
+    swap(a->tag(), b->tag());
+    swap(a->allocator(), b->allocator());
+    assert(b->size() == a_size);
+    assert(a->size() == b_size);
+    return;
+  }
+  // One is out of line, one is inline.
+  // We first move the elements from the inlined vector into the
+  // inlined space in the other vector.  We then put the other vector's
+  // pointer/capacity into the originally inlined vector and swap
+  // the tags.
+  InlinedVector* a = this;
+  InlinedVector* b = &other;
+  if (a->allocated()) {
+    swap(a, b);
+  }
+  assert(!a->allocated());
+  assert(b->allocated());
+  const size_type a_size = a->size();
+  const size_type b_size = b->size();
+  // In an optimized build, b_size would be unused.
+  (void)b_size;
+
+  // Made Local copies of size(), don't need tag() accurate anymore
+  swap(a->tag(), b->tag());
+
+  // Copy b_allocation out before b's union gets clobbered by inline_space.
+  Allocation b_allocation = b->allocation();
+
+  b->UninitializedCopy(a->inlined_space(), a->inlined_space() + a_size,
+                       b->inlined_space());
+  a->Destroy(a->inlined_space(), a->inlined_space() + a_size);
+
+  a->allocation() = b_allocation;
+
+  if (a->allocator() != b->allocator()) {
+    swap(a->allocator(), b->allocator());
+  }
+
+  assert(b->size() == a_size);
+  assert(a->size() == b_size);
+}
+
+template <typename T, size_t N, typename A>
+void InlinedVector<T, N, A>::EnlargeBy(size_type delta) {
+  const size_type s = size();
+  assert(s <= capacity());
+
+  size_type target = std::max(static_cast<size_type>(N), s + delta);
+
+  // Compute new capacity by repeatedly doubling current capacity
+  // TODO(psrc): Check and avoid overflow?
+  size_type new_capacity = capacity();
+  while (new_capacity < target) {
+    new_capacity <<= 1;
+  }
+
+  Allocation new_allocation(allocator(), new_capacity);
+
+  UninitializedCopy(std::make_move_iterator(data()),
+                    std::make_move_iterator(data() + s),
+                    new_allocation.buffer());
+
+  ResetAllocation(new_allocation, s);
+}
+
+template <typename T, size_t N, typename A>
+auto InlinedVector<T, N, A>::ShiftRight(const_iterator position, size_type n)
+    -> std::pair<iterator, iterator> {
+  iterator start_used = const_cast<iterator>(position);
+  iterator start_raw = const_cast<iterator>(position);
+  size_type s = size();
+  size_type required_size = s + n;
+
+  if (required_size > capacity()) {
+    // Compute new capacity by repeatedly doubling current capacity
+    size_type new_capacity = capacity();
+    while (new_capacity < required_size) {
+      new_capacity <<= 1;
+    }
+    // Move everyone into the new allocation, leaving a gap of n for the
+    // requested shift.
+    Allocation new_allocation(allocator(), new_capacity);
+    size_type index = position - begin();
+    UninitializedCopy(std::make_move_iterator(data()),
+                      std::make_move_iterator(data() + index),
+                      new_allocation.buffer());
+    UninitializedCopy(std::make_move_iterator(data() + index),
+                      std::make_move_iterator(data() + s),
+                      new_allocation.buffer() + index + n);
+    ResetAllocation(new_allocation, s);
+
+    // New allocation means our iterator is invalid, so we'll recalculate.
+    // Since the entire gap is in new space, there's no used space to reuse.
+    start_raw = begin() + index;
+    start_used = start_raw;
+  } else {
+    // If we had enough space, it's a two-part move. Elements going into
+    // previously-unoccupied space need an UninitializedCopy. Elements
+    // going into a previously-occupied space are just a move.
+    iterator pos = const_cast<iterator>(position);
+    iterator raw_space = end();
+    size_type slots_in_used_space = raw_space - pos;
+    size_type new_elements_in_used_space = std::min(n, slots_in_used_space);
+    size_type new_elements_in_raw_space = n - new_elements_in_used_space;
+    size_type old_elements_in_used_space =
+        slots_in_used_space - new_elements_in_used_space;
+
+    UninitializedCopy(std::make_move_iterator(pos + old_elements_in_used_space),
+                      std::make_move_iterator(raw_space),
+                      raw_space + new_elements_in_raw_space);
+    std::move_backward(pos, pos + old_elements_in_used_space, raw_space);
+
+    // If the gap is entirely in raw space, the used space starts where the raw
+    // space starts, leaving no elements in used space. If the gap is entirely
+    // in used space, the raw space starts at the end of the gap, leaving all
+    // elements accounted for within the used space.
+    start_used = pos;
+    start_raw = pos + new_elements_in_used_space;
+  }
+  return std::make_pair(start_used, start_raw);
+}
+
+template <typename T, size_t N, typename A>
+void InlinedVector<T, N, A>::Destroy(value_type* ptr, value_type* ptr_last) {
+  for (value_type* p = ptr; p != ptr_last; ++p) {
+    AllocatorTraits::destroy(allocator(), p);
+  }
+
+  // Overwrite unused memory with 0xab so we can catch uninitialized usage.
+  // Cast to void* to tell the compiler that we don't care that we might be
+  // scribbling on a vtable pointer.
+#ifndef NDEBUG
+  if (ptr != ptr_last) {
+    memset(reinterpret_cast<void*>(ptr), 0xab,
+           sizeof(*ptr) * (ptr_last - ptr));
+  }
+#endif
+}
+
+template <typename T, size_t N, typename A>
+template <typename Iter>
+void InlinedVector<T, N, A>::AppendRange(Iter first, Iter last,
+                                         std::forward_iterator_tag) {
+  using Length = typename std::iterator_traits<Iter>::difference_type;
+  Length length = std::distance(first, last);
+  reserve(size() + length);
+  if (allocated()) {
+    UninitializedCopy(first, last, allocated_space() + size());
+    tag().set_allocated_size(size() + length);
+  } else {
+    UninitializedCopy(first, last, inlined_space() + size());
+    tag().set_inline_size(size() + length);
+  }
+}
+
+template <typename T, size_t N, typename A>
+template <typename Iter>
+void InlinedVector<T, N, A>::AssignRange(Iter first, Iter last,
+                                         std::input_iterator_tag) {
+  // Optimized to avoid reallocation.
+  // Prefer reassignment to copy construction for elements.
+  iterator out = begin();
+  for ( ; first != last && out != end(); ++first, ++out)
+    *out = *first;
+  erase(out, end());
+  std::copy(first, last, std::back_inserter(*this));
+}
+
+template <typename T, size_t N, typename A>
+template <typename Iter>
+void InlinedVector<T, N, A>::AssignRange(Iter first, Iter last,
+                                         std::forward_iterator_tag) {
+  using Length = typename std::iterator_traits<Iter>::difference_type;
+  Length length = std::distance(first, last);
+  // Prefer reassignment to copy construction for elements.
+  if (static_cast<size_type>(length) <= size()) {
+    erase(std::copy(first, last, begin()), end());
+    return;
+  }
+  reserve(length);
+  iterator out = begin();
+  for (; out != end(); ++first, ++out) *out = *first;
+  if (allocated()) {
+    UninitializedCopy(first, last, out);
+    tag().set_allocated_size(length);
+  } else {
+    UninitializedCopy(first, last, out);
+    tag().set_inline_size(length);
+  }
+}
+
+template <typename T, size_t N, typename A>
+auto InlinedVector<T, N, A>::InsertWithCount(const_iterator position,
+                                             size_type n, const value_type& v)
+    -> iterator {
+  assert(position >= begin() && position <= end());
+  if (n == 0) return const_cast<iterator>(position);
+  std::pair<iterator, iterator> it_pair = ShiftRight(position, n);
+  std::fill(it_pair.first, it_pair.second, v);
+  UninitializedFill(it_pair.second, it_pair.first + n, v);
+  tag().add_size(n);
+  return it_pair.first;
+}
+
+template <typename T, size_t N, typename A>
+template <typename InputIter>
+auto InlinedVector<T, N, A>::InsertWithRange(const_iterator position,
+                                             InputIter first, InputIter last,
+                                             std::input_iterator_tag)
+    -> iterator {
+  assert(position >= begin() && position <= end());
+  size_type index = position - cbegin();
+  size_type i = index;
+  while (first != last) insert(begin() + i++, *first++);
+  return begin() + index;
+}
+
+// Overload of InlinedVector::InsertWithRange()
+template <typename T, size_t N, typename A>
+template <typename ForwardIter>
+auto InlinedVector<T, N, A>::InsertWithRange(const_iterator position,
+                                             ForwardIter first,
+                                             ForwardIter last,
+                                             std::forward_iterator_tag)
+    -> iterator {
+  assert(position >= begin() && position <= end());
+  if (first == last) {
+    return const_cast<iterator>(position);
+  }
+  using Length = typename std::iterator_traits<ForwardIter>::difference_type;
+  Length n = std::distance(first, last);
+  std::pair<iterator, iterator> it_pair = ShiftRight(position, n);
+  size_type used_spots = it_pair.second - it_pair.first;
+  ForwardIter open_spot = std::next(first, used_spots);
+  std::copy(first, open_spot, it_pair.first);
+  UninitializedCopy(open_spot, last, it_pair.second);
+  tag().add_size(n);
+  return it_pair.first;
+}
+
+}  // namespace absl
+
+#endif  // ABSL_CONTAINER_INLINED_VECTOR_H_