diff options
Diffstat (limited to 'absl/base/internal/exponential_biased.h')
-rw-r--r-- | absl/base/internal/exponential_biased.h | 77 |
1 files changed, 77 insertions, 0 deletions
diff --git a/absl/base/internal/exponential_biased.h b/absl/base/internal/exponential_biased.h new file mode 100644 index 000000000000..cac2d8ad84ff --- /dev/null +++ b/absl/base/internal/exponential_biased.h @@ -0,0 +1,77 @@ +// Copyright 2019 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_ +#define ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_ + +#include <stdint.h> + +namespace absl { +namespace base_internal { + +// ExponentialBiased provides a small and fast random number generator for a +// rounded exponential distribution. This generator doesn't requires very little +// state doesn't impose synchronization overhead, which makes it useful in some +// specialized scenarios. +// +// For the generated variable X, X ~ floor(Exponential(1/mean)). The floor +// operation introduces a small amount of bias, but the distribution is useful +// to generate a wait time. That is, if an operation is supposed to happen on +// average to 1/mean events, then the generated variable X will describe how +// many events to skip before performing the operation and computing a new X. +// +// The mathematically precise distribution to use for integer wait times is a +// Geometric distribution, but a Geometric distribution takes slightly more time +// to compute and when the mean is large (say, 100+), the Geometric distribution +// is hard to distinguish from the result of ExponentialBiased. +// +// This class is thread-compatible. +class ExponentialBiased { + public: + // The number of bits set by NextRandom. + static constexpr int kPrngNumBits = 48; + + // Generates the floor of an exponentially distributed random variable by + // rounding the value down to the nearest integer. The result will be in the + // range [0, int64_t max / 2]. + int64_t Get(int64_t mean); + + // Computes a random number in the range [0, 1<<(kPrngNumBits+1) - 1] + // + // This is public to enable testing. + static uint64_t NextRandom(uint64_t rnd); + + private: + void Initialize(); + + uint64_t rng_{0}; + bool initialized_{false}; +}; + +// Returns the next prng value. +// pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48 +// This is the lrand64 generator. +inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) { + const uint64_t prng_mult = uint64_t{0x5DEECE66D}; + const uint64_t prng_add = 0xB; + const uint64_t prng_mod_power = 48; + const uint64_t prng_mod_mask = + ~((~static_cast<uint64_t>(0)) << prng_mod_power); + return (prng_mult * rnd + prng_add) & prng_mod_mask; +} + +} // namespace base_internal +} // namespace absl + +#endif // ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_ |