diff options
author | Vincent Ambo <mail@tazj.in> | 2021-12-13T22·51+0300 |
---|---|---|
committer | Vincent Ambo <mail@tazj.in> | 2021-12-13T23·15+0300 |
commit | 019f8fd2113df4c5247c3969c60fd4f0e08f91f7 (patch) | |
tree | 76a857f61aa88f62a30e854651e8439db77fd0ea /users/wpcarro/scratch/facebook/dijkstras.py | |
parent | 464bbcb15c09813172c79820bcf526bb10cf4208 (diff) | |
parent | 6123e976928ca3d8d93f0b2006b10b5f659eb74d (diff) |
subtree(users/wpcarro): docking briefcase at '24f5a642' r/3226
git-subtree-dir: users/wpcarro git-subtree-mainline: 464bbcb15c09813172c79820bcf526bb10cf4208 git-subtree-split: 24f5a642af3aa1627bbff977f0a101907a02c69f Change-Id: I6105b3762b79126b3488359c95978cadb3efa789
Diffstat (limited to 'users/wpcarro/scratch/facebook/dijkstras.py')
-rw-r--r-- | users/wpcarro/scratch/facebook/dijkstras.py | 38 |
1 files changed, 38 insertions, 0 deletions
diff --git a/users/wpcarro/scratch/facebook/dijkstras.py b/users/wpcarro/scratch/facebook/dijkstras.py new file mode 100644 index 000000000000..7031701994a7 --- /dev/null +++ b/users/wpcarro/scratch/facebook/dijkstras.py @@ -0,0 +1,38 @@ +from heapq import heappush, heappop +import random + +# Dijkstra's algorithm will traverse a directed graph with weighted edges. If +# the edges aren't weighted, we can pretend that each edges weighs 1. The +# algorithm will find the shortest path between points A and B. + +def dijkstra(a, b, graph): + h = [] + seen = set() + heappush(h, (0, a, [a], [])) + while h: + km, x, path, steps = heappop(h) + + if x == b: + for a, b, d in steps: + print("{} -> {} => {}".format(a, b, d)) + return path, km + + seen.add(x) + for c, dist in graph[x]: + if c not in seen: + heappush(h, (km + dist, c, path + [c], steps + [(x, c, dist)])) + return [], float('inf') + +graph = { + 1: [(3, 9), (2, 7), (6, 14)], + 2: [(1, 7), (3, 10), (4, 15)], + 3: [(1, 9), (6, 2), (4, 11), (2, 10)], + 4: [(5, 6), (2, 15), (3, 11)], + 5: [(4, 6), (6, 9)], + 6: [(5, 9), (3, 2), (1, 14)], +} + +beg = random.choice(list(graph.keys())) +end = random.choice(list(graph.keys())) +print("Searching for the shortest path from {} -> {}".format(beg, end)) +print(dijkstra(beg, end, graph)) |