diff options
author | Vincent Ambo <tazjin@google.com> | 2020-05-20T01·32+0100 |
---|---|---|
committer | Vincent Ambo <tazjin@google.com> | 2020-05-20T01·32+0100 |
commit | fc8dc48020ac5b52731d0828a96ea4d2526c77ba (patch) | |
tree | 353204eea3268095a9ad3f5345720f32c2615c69 /third_party/abseil_cpp/absl/synchronization/internal/graphcycles.cc | |
parent | ffb2ae54beb5796cd408fbe15d2d2da09ff37adf (diff) | |
parent | 768eb2ca2857342673fcd462792ce04b8bac3fa3 (diff) |
Add 'third_party/abseil_cpp/' from commit '768eb2ca2857342673fcd462792ce04b8bac3fa3' r/781
git-subtree-dir: third_party/abseil_cpp git-subtree-mainline: ffb2ae54beb5796cd408fbe15d2d2da09ff37adf git-subtree-split: 768eb2ca2857342673fcd462792ce04b8bac3fa3
Diffstat (limited to 'third_party/abseil_cpp/absl/synchronization/internal/graphcycles.cc')
-rw-r--r-- | third_party/abseil_cpp/absl/synchronization/internal/graphcycles.cc | 697 |
1 files changed, 697 insertions, 0 deletions
diff --git a/third_party/abseil_cpp/absl/synchronization/internal/graphcycles.cc b/third_party/abseil_cpp/absl/synchronization/internal/graphcycles.cc new file mode 100644 index 000000000000..19f9aab5b1a5 --- /dev/null +++ b/third_party/abseil_cpp/absl/synchronization/internal/graphcycles.cc @@ -0,0 +1,697 @@ +// Copyright 2017 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// GraphCycles provides incremental cycle detection on a dynamic +// graph using the following algorithm: +// +// A dynamic topological sort algorithm for directed acyclic graphs +// David J. Pearce, Paul H. J. Kelly +// Journal of Experimental Algorithmics (JEA) JEA Homepage archive +// Volume 11, 2006, Article No. 1.7 +// +// Brief summary of the algorithm: +// +// (1) Maintain a rank for each node that is consistent +// with the topological sort of the graph. I.e., path from x to y +// implies rank[x] < rank[y]. +// (2) When a new edge (x->y) is inserted, do nothing if rank[x] < rank[y]. +// (3) Otherwise: adjust ranks in the neighborhood of x and y. + +#include "absl/base/attributes.h" +// This file is a no-op if the required LowLevelAlloc support is missing. +#include "absl/base/internal/low_level_alloc.h" +#ifndef ABSL_LOW_LEVEL_ALLOC_MISSING + +#include "absl/synchronization/internal/graphcycles.h" + +#include <algorithm> +#include <array> +#include "absl/base/internal/hide_ptr.h" +#include "absl/base/internal/raw_logging.h" +#include "absl/base/internal/spinlock.h" + +// Do not use STL. This module does not use standard memory allocation. + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace synchronization_internal { + +namespace { + +// Avoid LowLevelAlloc's default arena since it calls malloc hooks in +// which people are doing things like acquiring Mutexes. +ABSL_CONST_INIT static absl::base_internal::SpinLock arena_mu( + absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY); +ABSL_CONST_INIT static base_internal::LowLevelAlloc::Arena* arena; + +static void InitArenaIfNecessary() { + arena_mu.Lock(); + if (arena == nullptr) { + arena = base_internal::LowLevelAlloc::NewArena(0); + } + arena_mu.Unlock(); +} + +// Number of inlined elements in Vec. Hash table implementation +// relies on this being a power of two. +static const uint32_t kInline = 8; + +// A simple LowLevelAlloc based resizable vector with inlined storage +// for a few elements. T must be a plain type since constructor +// and destructor are not run on elements of type T managed by Vec. +template <typename T> +class Vec { + public: + Vec() { Init(); } + ~Vec() { Discard(); } + + void clear() { + Discard(); + Init(); + } + + bool empty() const { return size_ == 0; } + uint32_t size() const { return size_; } + T* begin() { return ptr_; } + T* end() { return ptr_ + size_; } + const T& operator[](uint32_t i) const { return ptr_[i]; } + T& operator[](uint32_t i) { return ptr_[i]; } + const T& back() const { return ptr_[size_-1]; } + void pop_back() { size_--; } + + void push_back(const T& v) { + if (size_ == capacity_) Grow(size_ + 1); + ptr_[size_] = v; + size_++; + } + + void resize(uint32_t n) { + if (n > capacity_) Grow(n); + size_ = n; + } + + void fill(const T& val) { + for (uint32_t i = 0; i < size(); i++) { + ptr_[i] = val; + } + } + + // Guarantees src is empty at end. + // Provided for the hash table resizing code below. + void MoveFrom(Vec<T>* src) { + if (src->ptr_ == src->space_) { + // Need to actually copy + resize(src->size_); + std::copy(src->ptr_, src->ptr_ + src->size_, ptr_); + src->size_ = 0; + } else { + Discard(); + ptr_ = src->ptr_; + size_ = src->size_; + capacity_ = src->capacity_; + src->Init(); + } + } + + private: + T* ptr_; + T space_[kInline]; + uint32_t size_; + uint32_t capacity_; + + void Init() { + ptr_ = space_; + size_ = 0; + capacity_ = kInline; + } + + void Discard() { + if (ptr_ != space_) base_internal::LowLevelAlloc::Free(ptr_); + } + + void Grow(uint32_t n) { + while (capacity_ < n) { + capacity_ *= 2; + } + size_t request = static_cast<size_t>(capacity_) * sizeof(T); + T* copy = static_cast<T*>( + base_internal::LowLevelAlloc::AllocWithArena(request, arena)); + std::copy(ptr_, ptr_ + size_, copy); + Discard(); + ptr_ = copy; + } + + Vec(const Vec&) = delete; + Vec& operator=(const Vec&) = delete; +}; + +// A hash set of non-negative int32_t that uses Vec for its underlying storage. +class NodeSet { + public: + NodeSet() { Init(); } + + void clear() { Init(); } + bool contains(int32_t v) const { return table_[FindIndex(v)] == v; } + + bool insert(int32_t v) { + uint32_t i = FindIndex(v); + if (table_[i] == v) { + return false; + } + if (table_[i] == kEmpty) { + // Only inserting over an empty cell increases the number of occupied + // slots. + occupied_++; + } + table_[i] = v; + // Double when 75% full. + if (occupied_ >= table_.size() - table_.size()/4) Grow(); + return true; + } + + void erase(uint32_t v) { + uint32_t i = FindIndex(v); + if (static_cast<uint32_t>(table_[i]) == v) { + table_[i] = kDel; + } + } + + // Iteration: is done via HASH_FOR_EACH + // Example: + // HASH_FOR_EACH(elem, node->out) { ... } +#define HASH_FOR_EACH(elem, eset) \ + for (int32_t elem, _cursor = 0; (eset).Next(&_cursor, &elem); ) + bool Next(int32_t* cursor, int32_t* elem) { + while (static_cast<uint32_t>(*cursor) < table_.size()) { + int32_t v = table_[*cursor]; + (*cursor)++; + if (v >= 0) { + *elem = v; + return true; + } + } + return false; + } + + private: + enum : int32_t { kEmpty = -1, kDel = -2 }; + Vec<int32_t> table_; + uint32_t occupied_; // Count of non-empty slots (includes deleted slots) + + static uint32_t Hash(uint32_t a) { return a * 41; } + + // Return index for storing v. May return an empty index or deleted index + int FindIndex(int32_t v) const { + // Search starting at hash index. + const uint32_t mask = table_.size() - 1; + uint32_t i = Hash(v) & mask; + int deleted_index = -1; // If >= 0, index of first deleted element we see + while (true) { + int32_t e = table_[i]; + if (v == e) { + return i; + } else if (e == kEmpty) { + // Return any previously encountered deleted slot. + return (deleted_index >= 0) ? deleted_index : i; + } else if (e == kDel && deleted_index < 0) { + // Keep searching since v might be present later. + deleted_index = i; + } + i = (i + 1) & mask; // Linear probing; quadratic is slightly slower. + } + } + + void Init() { + table_.clear(); + table_.resize(kInline); + table_.fill(kEmpty); + occupied_ = 0; + } + + void Grow() { + Vec<int32_t> copy; + copy.MoveFrom(&table_); + occupied_ = 0; + table_.resize(copy.size() * 2); + table_.fill(kEmpty); + + for (const auto& e : copy) { + if (e >= 0) insert(e); + } + } + + NodeSet(const NodeSet&) = delete; + NodeSet& operator=(const NodeSet&) = delete; +}; + +// We encode a node index and a node version in GraphId. The version +// number is incremented when the GraphId is freed which automatically +// invalidates all copies of the GraphId. + +inline GraphId MakeId(int32_t index, uint32_t version) { + GraphId g; + g.handle = + (static_cast<uint64_t>(version) << 32) | static_cast<uint32_t>(index); + return g; +} + +inline int32_t NodeIndex(GraphId id) { + return static_cast<uint32_t>(id.handle & 0xfffffffful); +} + +inline uint32_t NodeVersion(GraphId id) { + return static_cast<uint32_t>(id.handle >> 32); +} + +struct Node { + int32_t rank; // rank number assigned by Pearce-Kelly algorithm + uint32_t version; // Current version number + int32_t next_hash; // Next entry in hash table + bool visited; // Temporary marker used by depth-first-search + uintptr_t masked_ptr; // User-supplied pointer + NodeSet in; // List of immediate predecessor nodes in graph + NodeSet out; // List of immediate successor nodes in graph + int priority; // Priority of recorded stack trace. + int nstack; // Depth of recorded stack trace. + void* stack[40]; // stack[0,nstack-1] holds stack trace for node. +}; + +// Hash table for pointer to node index lookups. +class PointerMap { + public: + explicit PointerMap(const Vec<Node*>* nodes) : nodes_(nodes) { + table_.fill(-1); + } + + int32_t Find(void* ptr) { + auto masked = base_internal::HidePtr(ptr); + for (int32_t i = table_[Hash(ptr)]; i != -1;) { + Node* n = (*nodes_)[i]; + if (n->masked_ptr == masked) return i; + i = n->next_hash; + } + return -1; + } + + void Add(void* ptr, int32_t i) { + int32_t* head = &table_[Hash(ptr)]; + (*nodes_)[i]->next_hash = *head; + *head = i; + } + + int32_t Remove(void* ptr) { + // Advance through linked list while keeping track of the + // predecessor slot that points to the current entry. + auto masked = base_internal::HidePtr(ptr); + for (int32_t* slot = &table_[Hash(ptr)]; *slot != -1; ) { + int32_t index = *slot; + Node* n = (*nodes_)[index]; + if (n->masked_ptr == masked) { + *slot = n->next_hash; // Remove n from linked list + n->next_hash = -1; + return index; + } + slot = &n->next_hash; + } + return -1; + } + + private: + // Number of buckets in hash table for pointer lookups. + static constexpr uint32_t kHashTableSize = 8171; // should be prime + + const Vec<Node*>* nodes_; + std::array<int32_t, kHashTableSize> table_; + + static uint32_t Hash(void* ptr) { + return reinterpret_cast<uintptr_t>(ptr) % kHashTableSize; + } +}; + +} // namespace + +struct GraphCycles::Rep { + Vec<Node*> nodes_; + Vec<int32_t> free_nodes_; // Indices for unused entries in nodes_ + PointerMap ptrmap_; + + // Temporary state. + Vec<int32_t> deltaf_; // Results of forward DFS + Vec<int32_t> deltab_; // Results of backward DFS + Vec<int32_t> list_; // All nodes to reprocess + Vec<int32_t> merged_; // Rank values to assign to list_ entries + Vec<int32_t> stack_; // Emulates recursion stack for depth-first searches + + Rep() : ptrmap_(&nodes_) {} +}; + +static Node* FindNode(GraphCycles::Rep* rep, GraphId id) { + Node* n = rep->nodes_[NodeIndex(id)]; + return (n->version == NodeVersion(id)) ? n : nullptr; +} + +GraphCycles::GraphCycles() { + InitArenaIfNecessary(); + rep_ = new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Rep), arena)) + Rep; +} + +GraphCycles::~GraphCycles() { + for (auto* node : rep_->nodes_) { + node->Node::~Node(); + base_internal::LowLevelAlloc::Free(node); + } + rep_->Rep::~Rep(); + base_internal::LowLevelAlloc::Free(rep_); +} + +bool GraphCycles::CheckInvariants() const { + Rep* r = rep_; + NodeSet ranks; // Set of ranks seen so far. + for (uint32_t x = 0; x < r->nodes_.size(); x++) { + Node* nx = r->nodes_[x]; + void* ptr = base_internal::UnhidePtr<void>(nx->masked_ptr); + if (ptr != nullptr && static_cast<uint32_t>(r->ptrmap_.Find(ptr)) != x) { + ABSL_RAW_LOG(FATAL, "Did not find live node in hash table %u %p", x, ptr); + } + if (nx->visited) { + ABSL_RAW_LOG(FATAL, "Did not clear visited marker on node %u", x); + } + if (!ranks.insert(nx->rank)) { + ABSL_RAW_LOG(FATAL, "Duplicate occurrence of rank %d", nx->rank); + } + HASH_FOR_EACH(y, nx->out) { + Node* ny = r->nodes_[y]; + if (nx->rank >= ny->rank) { + ABSL_RAW_LOG(FATAL, "Edge %u->%d has bad rank assignment %d->%d", x, y, + nx->rank, ny->rank); + } + } + } + return true; +} + +GraphId GraphCycles::GetId(void* ptr) { + int32_t i = rep_->ptrmap_.Find(ptr); + if (i != -1) { + return MakeId(i, rep_->nodes_[i]->version); + } else if (rep_->free_nodes_.empty()) { + Node* n = + new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Node), arena)) + Node; + n->version = 1; // Avoid 0 since it is used by InvalidGraphId() + n->visited = false; + n->rank = rep_->nodes_.size(); + n->masked_ptr = base_internal::HidePtr(ptr); + n->nstack = 0; + n->priority = 0; + rep_->nodes_.push_back(n); + rep_->ptrmap_.Add(ptr, n->rank); + return MakeId(n->rank, n->version); + } else { + // Preserve preceding rank since the set of ranks in use must be + // a permutation of [0,rep_->nodes_.size()-1]. + int32_t r = rep_->free_nodes_.back(); + rep_->free_nodes_.pop_back(); + Node* n = rep_->nodes_[r]; + n->masked_ptr = base_internal::HidePtr(ptr); + n->nstack = 0; + n->priority = 0; + rep_->ptrmap_.Add(ptr, r); + return MakeId(r, n->version); + } +} + +void GraphCycles::RemoveNode(void* ptr) { + int32_t i = rep_->ptrmap_.Remove(ptr); + if (i == -1) { + return; + } + Node* x = rep_->nodes_[i]; + HASH_FOR_EACH(y, x->out) { + rep_->nodes_[y]->in.erase(i); + } + HASH_FOR_EACH(y, x->in) { + rep_->nodes_[y]->out.erase(i); + } + x->in.clear(); + x->out.clear(); + x->masked_ptr = base_internal::HidePtr<void>(nullptr); + if (x->version == std::numeric_limits<uint32_t>::max()) { + // Cannot use x any more + } else { + x->version++; // Invalidates all copies of node. + rep_->free_nodes_.push_back(i); + } +} + +void* GraphCycles::Ptr(GraphId id) { + Node* n = FindNode(rep_, id); + return n == nullptr ? nullptr + : base_internal::UnhidePtr<void>(n->masked_ptr); +} + +bool GraphCycles::HasNode(GraphId node) { + return FindNode(rep_, node) != nullptr; +} + +bool GraphCycles::HasEdge(GraphId x, GraphId y) const { + Node* xn = FindNode(rep_, x); + return xn && FindNode(rep_, y) && xn->out.contains(NodeIndex(y)); +} + +void GraphCycles::RemoveEdge(GraphId x, GraphId y) { + Node* xn = FindNode(rep_, x); + Node* yn = FindNode(rep_, y); + if (xn && yn) { + xn->out.erase(NodeIndex(y)); + yn->in.erase(NodeIndex(x)); + // No need to update the rank assignment since a previous valid + // rank assignment remains valid after an edge deletion. + } +} + +static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound); +static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound); +static void Reorder(GraphCycles::Rep* r); +static void Sort(const Vec<Node*>&, Vec<int32_t>* delta); +static void MoveToList( + GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst); + +bool GraphCycles::InsertEdge(GraphId idx, GraphId idy) { + Rep* r = rep_; + const int32_t x = NodeIndex(idx); + const int32_t y = NodeIndex(idy); + Node* nx = FindNode(r, idx); + Node* ny = FindNode(r, idy); + if (nx == nullptr || ny == nullptr) return true; // Expired ids + + if (nx == ny) return false; // Self edge + if (!nx->out.insert(y)) { + // Edge already exists. + return true; + } + + ny->in.insert(x); + + if (nx->rank <= ny->rank) { + // New edge is consistent with existing rank assignment. + return true; + } + + // Current rank assignments are incompatible with the new edge. Recompute. + // We only need to consider nodes that fall in the range [ny->rank,nx->rank]. + if (!ForwardDFS(r, y, nx->rank)) { + // Found a cycle. Undo the insertion and tell caller. + nx->out.erase(y); + ny->in.erase(x); + // Since we do not call Reorder() on this path, clear any visited + // markers left by ForwardDFS. + for (const auto& d : r->deltaf_) { + r->nodes_[d]->visited = false; + } + return false; + } + BackwardDFS(r, x, ny->rank); + Reorder(r); + return true; +} + +static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound) { + // Avoid recursion since stack space might be limited. + // We instead keep a stack of nodes to visit. + r->deltaf_.clear(); + r->stack_.clear(); + r->stack_.push_back(n); + while (!r->stack_.empty()) { + n = r->stack_.back(); + r->stack_.pop_back(); + Node* nn = r->nodes_[n]; + if (nn->visited) continue; + + nn->visited = true; + r->deltaf_.push_back(n); + + HASH_FOR_EACH(w, nn->out) { + Node* nw = r->nodes_[w]; + if (nw->rank == upper_bound) { + return false; // Cycle + } + if (!nw->visited && nw->rank < upper_bound) { + r->stack_.push_back(w); + } + } + } + return true; +} + +static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound) { + r->deltab_.clear(); + r->stack_.clear(); + r->stack_.push_back(n); + while (!r->stack_.empty()) { + n = r->stack_.back(); + r->stack_.pop_back(); + Node* nn = r->nodes_[n]; + if (nn->visited) continue; + + nn->visited = true; + r->deltab_.push_back(n); + + HASH_FOR_EACH(w, nn->in) { + Node* nw = r->nodes_[w]; + if (!nw->visited && lower_bound < nw->rank) { + r->stack_.push_back(w); + } + } + } +} + +static void Reorder(GraphCycles::Rep* r) { + Sort(r->nodes_, &r->deltab_); + Sort(r->nodes_, &r->deltaf_); + + // Adds contents of delta lists to list_ (backwards deltas first). + r->list_.clear(); + MoveToList(r, &r->deltab_, &r->list_); + MoveToList(r, &r->deltaf_, &r->list_); + + // Produce sorted list of all ranks that will be reassigned. + r->merged_.resize(r->deltab_.size() + r->deltaf_.size()); + std::merge(r->deltab_.begin(), r->deltab_.end(), + r->deltaf_.begin(), r->deltaf_.end(), + r->merged_.begin()); + + // Assign the ranks in order to the collected list. + for (uint32_t i = 0; i < r->list_.size(); i++) { + r->nodes_[r->list_[i]]->rank = r->merged_[i]; + } +} + +static void Sort(const Vec<Node*>& nodes, Vec<int32_t>* delta) { + struct ByRank { + const Vec<Node*>* nodes; + bool operator()(int32_t a, int32_t b) const { + return (*nodes)[a]->rank < (*nodes)[b]->rank; + } + }; + ByRank cmp; + cmp.nodes = &nodes; + std::sort(delta->begin(), delta->end(), cmp); +} + +static void MoveToList( + GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst) { + for (auto& v : *src) { + int32_t w = v; + v = r->nodes_[w]->rank; // Replace v entry with its rank + r->nodes_[w]->visited = false; // Prepare for future DFS calls + dst->push_back(w); + } +} + +int GraphCycles::FindPath(GraphId idx, GraphId idy, int max_path_len, + GraphId path[]) const { + Rep* r = rep_; + if (FindNode(r, idx) == nullptr || FindNode(r, idy) == nullptr) return 0; + const int32_t x = NodeIndex(idx); + const int32_t y = NodeIndex(idy); + + // Forward depth first search starting at x until we hit y. + // As we descend into a node, we push it onto the path. + // As we leave a node, we remove it from the path. + int path_len = 0; + + NodeSet seen; + r->stack_.clear(); + r->stack_.push_back(x); + while (!r->stack_.empty()) { + int32_t n = r->stack_.back(); + r->stack_.pop_back(); + if (n < 0) { + // Marker to indicate that we are leaving a node + path_len--; + continue; + } + + if (path_len < max_path_len) { + path[path_len] = MakeId(n, rep_->nodes_[n]->version); + } + path_len++; + r->stack_.push_back(-1); // Will remove tentative path entry + + if (n == y) { + return path_len; + } + + HASH_FOR_EACH(w, r->nodes_[n]->out) { + if (seen.insert(w)) { + r->stack_.push_back(w); + } + } + } + + return 0; +} + +bool GraphCycles::IsReachable(GraphId x, GraphId y) const { + return FindPath(x, y, 0, nullptr) > 0; +} + +void GraphCycles::UpdateStackTrace(GraphId id, int priority, + int (*get_stack_trace)(void** stack, int)) { + Node* n = FindNode(rep_, id); + if (n == nullptr || n->priority >= priority) { + return; + } + n->nstack = (*get_stack_trace)(n->stack, ABSL_ARRAYSIZE(n->stack)); + n->priority = priority; +} + +int GraphCycles::GetStackTrace(GraphId id, void*** ptr) { + Node* n = FindNode(rep_, id); + if (n == nullptr) { + *ptr = nullptr; + return 0; + } else { + *ptr = n->stack; + return n->nstack; + } +} + +} // namespace synchronization_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_LOW_LEVEL_ALLOC_MISSING |