diff options
author | Vincent Ambo <mail@tazj.in> | 2022-02-07T23·05+0300 |
---|---|---|
committer | clbot <clbot@tvl.fyi> | 2022-02-07T23·09+0000 |
commit | 5aa5d282eac56a21e74611c1cdbaa97bb5db2dca (patch) | |
tree | 8cc5dce8157a1470ff76719dd15d65f648a05522 /third_party/abseil_cpp/absl/strings/internal/charconv_parse.cc | |
parent | a25675804c4f429fab5ee5201fe25e89865dfd13 (diff) |
chore(3p/abseil_cpp): unvendor abseil_cpp r/3786
we weren't actually using these sources anymore, okay? Change-Id: If701571d9716de308d3512e1eb22c35db0877a66 Reviewed-on: https://cl.tvl.fyi/c/depot/+/5248 Tested-by: BuildkiteCI Reviewed-by: grfn <grfn@gws.fyi> Autosubmit: tazjin <tazjin@tvl.su>
Diffstat (limited to 'third_party/abseil_cpp/absl/strings/internal/charconv_parse.cc')
-rw-r--r-- | third_party/abseil_cpp/absl/strings/internal/charconv_parse.cc | 504 |
1 files changed, 0 insertions, 504 deletions
diff --git a/third_party/abseil_cpp/absl/strings/internal/charconv_parse.cc b/third_party/abseil_cpp/absl/strings/internal/charconv_parse.cc deleted file mode 100644 index 8b11868c887a..000000000000 --- a/third_party/abseil_cpp/absl/strings/internal/charconv_parse.cc +++ /dev/null @@ -1,504 +0,0 @@ -// Copyright 2018 The Abseil Authors. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// https://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include "absl/strings/internal/charconv_parse.h" -#include "absl/strings/charconv.h" - -#include <cassert> -#include <cstdint> -#include <limits> - -#include "absl/strings/internal/memutil.h" - -namespace absl { -ABSL_NAMESPACE_BEGIN -namespace { - -// ParseFloat<10> will read the first 19 significant digits of the mantissa. -// This number was chosen for multiple reasons. -// -// (a) First, for whatever integer type we choose to represent the mantissa, we -// want to choose the largest possible number of decimal digits for that integer -// type. We are using uint64_t, which can express any 19-digit unsigned -// integer. -// -// (b) Second, we need to parse enough digits that the binary value of any -// mantissa we capture has more bits of resolution than the mantissa -// representation in the target float. Our algorithm requires at least 3 bits -// of headway, but 19 decimal digits give a little more than that. -// -// The following static assertions verify the above comments: -constexpr int kDecimalMantissaDigitsMax = 19; - -static_assert(std::numeric_limits<uint64_t>::digits10 == - kDecimalMantissaDigitsMax, - "(a) above"); - -// IEEE doubles, which we assume in Abseil, have 53 binary bits of mantissa. -static_assert(std::numeric_limits<double>::is_iec559, "IEEE double assumed"); -static_assert(std::numeric_limits<double>::radix == 2, "IEEE double fact"); -static_assert(std::numeric_limits<double>::digits == 53, "IEEE double fact"); - -// The lowest valued 19-digit decimal mantissa we can read still contains -// sufficient information to reconstruct a binary mantissa. -static_assert(1000000000000000000u > (uint64_t(1) << (53 + 3)), "(b) above"); - -// ParseFloat<16> will read the first 15 significant digits of the mantissa. -// -// Because a base-16-to-base-2 conversion can be done exactly, we do not need -// to maximize the number of scanned hex digits to improve our conversion. What -// is required is to scan two more bits than the mantissa can represent, so that -// we always round correctly. -// -// (One extra bit does not suffice to perform correct rounding, since a number -// exactly halfway between two representable floats has unique rounding rules, -// so we need to differentiate between a "halfway between" number and a "closer -// to the larger value" number.) -constexpr int kHexadecimalMantissaDigitsMax = 15; - -// The minimum number of significant bits that will be read from -// kHexadecimalMantissaDigitsMax hex digits. We must subtract by three, since -// the most significant digit can be a "1", which only contributes a single -// significant bit. -constexpr int kGuaranteedHexadecimalMantissaBitPrecision = - 4 * kHexadecimalMantissaDigitsMax - 3; - -static_assert(kGuaranteedHexadecimalMantissaBitPrecision > - std::numeric_limits<double>::digits + 2, - "kHexadecimalMantissaDigitsMax too small"); - -// We also impose a limit on the number of significant digits we will read from -// an exponent, to avoid having to deal with integer overflow. We use 9 for -// this purpose. -// -// If we read a 9 digit exponent, the end result of the conversion will -// necessarily be infinity or zero, depending on the sign of the exponent. -// Therefore we can just drop extra digits on the floor without any extra -// logic. -constexpr int kDecimalExponentDigitsMax = 9; -static_assert(std::numeric_limits<int>::digits10 >= kDecimalExponentDigitsMax, - "int type too small"); - -// To avoid incredibly large inputs causing integer overflow for our exponent, -// we impose an arbitrary but very large limit on the number of significant -// digits we will accept. The implementation refuses to match a string with -// more consecutive significant mantissa digits than this. -constexpr int kDecimalDigitLimit = 50000000; - -// Corresponding limit for hexadecimal digit inputs. This is one fourth the -// amount of kDecimalDigitLimit, since each dropped hexadecimal digit requires -// a binary exponent adjustment of 4. -constexpr int kHexadecimalDigitLimit = kDecimalDigitLimit / 4; - -// The largest exponent we can read is 999999999 (per -// kDecimalExponentDigitsMax), and the largest exponent adjustment we can get -// from dropped mantissa digits is 2 * kDecimalDigitLimit, and the sum of these -// comfortably fits in an integer. -// -// We count kDecimalDigitLimit twice because there are independent limits for -// numbers before and after the decimal point. (In the case where there are no -// significant digits before the decimal point, there are independent limits for -// post-decimal-point leading zeroes and for significant digits.) -static_assert(999999999 + 2 * kDecimalDigitLimit < - std::numeric_limits<int>::max(), - "int type too small"); -static_assert(999999999 + 2 * (4 * kHexadecimalDigitLimit) < - std::numeric_limits<int>::max(), - "int type too small"); - -// Returns true if the provided bitfield allows parsing an exponent value -// (e.g., "1.5e100"). -bool AllowExponent(chars_format flags) { - bool fixed = (flags & chars_format::fixed) == chars_format::fixed; - bool scientific = - (flags & chars_format::scientific) == chars_format::scientific; - return scientific || !fixed; -} - -// Returns true if the provided bitfield requires an exponent value be present. -bool RequireExponent(chars_format flags) { - bool fixed = (flags & chars_format::fixed) == chars_format::fixed; - bool scientific = - (flags & chars_format::scientific) == chars_format::scientific; - return scientific && !fixed; -} - -const int8_t kAsciiToInt[256] = { - -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, - -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, - -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, - 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, - -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, - -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, - -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, - -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, - -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, - -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, - -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, - -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, - -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, - -1, -1, -1, -1, -1, -1, -1, -1, -1}; - -// Returns true if `ch` is a digit in the given base -template <int base> -bool IsDigit(char ch); - -// Converts a valid `ch` to its digit value in the given base. -template <int base> -unsigned ToDigit(char ch); - -// Returns true if `ch` is the exponent delimiter for the given base. -template <int base> -bool IsExponentCharacter(char ch); - -// Returns the maximum number of significant digits we will read for a float -// in the given base. -template <int base> -constexpr int MantissaDigitsMax(); - -// Returns the largest consecutive run of digits we will accept when parsing a -// number in the given base. -template <int base> -constexpr int DigitLimit(); - -// Returns the amount the exponent must be adjusted by for each dropped digit. -// (For decimal this is 1, since the digits are in base 10 and the exponent base -// is also 10, but for hexadecimal this is 4, since the digits are base 16 but -// the exponent base is 2.) -template <int base> -constexpr int DigitMagnitude(); - -template <> -bool IsDigit<10>(char ch) { - return ch >= '0' && ch <= '9'; -} -template <> -bool IsDigit<16>(char ch) { - return kAsciiToInt[static_cast<unsigned char>(ch)] >= 0; -} - -template <> -unsigned ToDigit<10>(char ch) { - return ch - '0'; -} -template <> -unsigned ToDigit<16>(char ch) { - return kAsciiToInt[static_cast<unsigned char>(ch)]; -} - -template <> -bool IsExponentCharacter<10>(char ch) { - return ch == 'e' || ch == 'E'; -} - -template <> -bool IsExponentCharacter<16>(char ch) { - return ch == 'p' || ch == 'P'; -} - -template <> -constexpr int MantissaDigitsMax<10>() { - return kDecimalMantissaDigitsMax; -} -template <> -constexpr int MantissaDigitsMax<16>() { - return kHexadecimalMantissaDigitsMax; -} - -template <> -constexpr int DigitLimit<10>() { - return kDecimalDigitLimit; -} -template <> -constexpr int DigitLimit<16>() { - return kHexadecimalDigitLimit; -} - -template <> -constexpr int DigitMagnitude<10>() { - return 1; -} -template <> -constexpr int DigitMagnitude<16>() { - return 4; -} - -// Reads decimal digits from [begin, end) into *out. Returns the number of -// digits consumed. -// -// After max_digits has been read, keeps consuming characters, but no longer -// adjusts *out. If a nonzero digit is dropped this way, *dropped_nonzero_digit -// is set; otherwise, it is left unmodified. -// -// If no digits are matched, returns 0 and leaves *out unchanged. -// -// ConsumeDigits does not protect against overflow on *out; max_digits must -// be chosen with respect to type T to avoid the possibility of overflow. -template <int base, typename T> -int ConsumeDigits(const char* begin, const char* end, int max_digits, T* out, - bool* dropped_nonzero_digit) { - if (base == 10) { - assert(max_digits <= std::numeric_limits<T>::digits10); - } else if (base == 16) { - assert(max_digits * 4 <= std::numeric_limits<T>::digits); - } - const char* const original_begin = begin; - - // Skip leading zeros, but only if *out is zero. - // They don't cause an overflow so we don't have to count them for - // `max_digits`. - while (!*out && end != begin && *begin == '0') ++begin; - - T accumulator = *out; - const char* significant_digits_end = - (end - begin > max_digits) ? begin + max_digits : end; - while (begin < significant_digits_end && IsDigit<base>(*begin)) { - // Do not guard against *out overflow; max_digits was chosen to avoid this. - // Do assert against it, to detect problems in debug builds. - auto digit = static_cast<T>(ToDigit<base>(*begin)); - assert(accumulator * base >= accumulator); - accumulator *= base; - assert(accumulator + digit >= accumulator); - accumulator += digit; - ++begin; - } - bool dropped_nonzero = false; - while (begin < end && IsDigit<base>(*begin)) { - dropped_nonzero = dropped_nonzero || (*begin != '0'); - ++begin; - } - if (dropped_nonzero && dropped_nonzero_digit != nullptr) { - *dropped_nonzero_digit = true; - } - *out = accumulator; - return static_cast<int>(begin - original_begin); -} - -// Returns true if `v` is one of the chars allowed inside parentheses following -// a NaN. -bool IsNanChar(char v) { - return (v == '_') || (v >= '0' && v <= '9') || (v >= 'a' && v <= 'z') || - (v >= 'A' && v <= 'Z'); -} - -// Checks the range [begin, end) for a strtod()-formatted infinity or NaN. If -// one is found, sets `out` appropriately and returns true. -bool ParseInfinityOrNan(const char* begin, const char* end, - strings_internal::ParsedFloat* out) { - if (end - begin < 3) { - return false; - } - switch (*begin) { - case 'i': - case 'I': { - // An infinity string consists of the characters "inf" or "infinity", - // case insensitive. - if (strings_internal::memcasecmp(begin + 1, "nf", 2) != 0) { - return false; - } - out->type = strings_internal::FloatType::kInfinity; - if (end - begin >= 8 && - strings_internal::memcasecmp(begin + 3, "inity", 5) == 0) { - out->end = begin + 8; - } else { - out->end = begin + 3; - } - return true; - } - case 'n': - case 'N': { - // A NaN consists of the characters "nan", case insensitive, optionally - // followed by a parenthesized sequence of zero or more alphanumeric - // characters and/or underscores. - if (strings_internal::memcasecmp(begin + 1, "an", 2) != 0) { - return false; - } - out->type = strings_internal::FloatType::kNan; - out->end = begin + 3; - // NaN is allowed to be followed by a parenthesized string, consisting of - // only the characters [a-zA-Z0-9_]. Match that if it's present. - begin += 3; - if (begin < end && *begin == '(') { - const char* nan_begin = begin + 1; - while (nan_begin < end && IsNanChar(*nan_begin)) { - ++nan_begin; - } - if (nan_begin < end && *nan_begin == ')') { - // We found an extra NaN specifier range - out->subrange_begin = begin + 1; - out->subrange_end = nan_begin; - out->end = nan_begin + 1; - } - } - return true; - } - default: - return false; - } -} -} // namespace - -namespace strings_internal { - -template <int base> -strings_internal::ParsedFloat ParseFloat(const char* begin, const char* end, - chars_format format_flags) { - strings_internal::ParsedFloat result; - - // Exit early if we're given an empty range. - if (begin == end) return result; - - // Handle the infinity and NaN cases. - if (ParseInfinityOrNan(begin, end, &result)) { - return result; - } - - const char* const mantissa_begin = begin; - while (begin < end && *begin == '0') { - ++begin; // skip leading zeros - } - uint64_t mantissa = 0; - - int exponent_adjustment = 0; - bool mantissa_is_inexact = false; - int pre_decimal_digits = ConsumeDigits<base>( - begin, end, MantissaDigitsMax<base>(), &mantissa, &mantissa_is_inexact); - begin += pre_decimal_digits; - int digits_left; - if (pre_decimal_digits >= DigitLimit<base>()) { - // refuse to parse pathological inputs - return result; - } else if (pre_decimal_digits > MantissaDigitsMax<base>()) { - // We dropped some non-fraction digits on the floor. Adjust our exponent - // to compensate. - exponent_adjustment = - static_cast<int>(pre_decimal_digits - MantissaDigitsMax<base>()); - digits_left = 0; - } else { - digits_left = - static_cast<int>(MantissaDigitsMax<base>() - pre_decimal_digits); - } - if (begin < end && *begin == '.') { - ++begin; - if (mantissa == 0) { - // If we haven't seen any nonzero digits yet, keep skipping zeros. We - // have to adjust the exponent to reflect the changed place value. - const char* begin_zeros = begin; - while (begin < end && *begin == '0') { - ++begin; - } - int zeros_skipped = static_cast<int>(begin - begin_zeros); - if (zeros_skipped >= DigitLimit<base>()) { - // refuse to parse pathological inputs - return result; - } - exponent_adjustment -= static_cast<int>(zeros_skipped); - } - int post_decimal_digits = ConsumeDigits<base>( - begin, end, digits_left, &mantissa, &mantissa_is_inexact); - begin += post_decimal_digits; - - // Since `mantissa` is an integer, each significant digit we read after - // the decimal point requires an adjustment to the exponent. "1.23e0" will - // be stored as `mantissa` == 123 and `exponent` == -2 (that is, - // "123e-2"). - if (post_decimal_digits >= DigitLimit<base>()) { - // refuse to parse pathological inputs - return result; - } else if (post_decimal_digits > digits_left) { - exponent_adjustment -= digits_left; - } else { - exponent_adjustment -= post_decimal_digits; - } - } - // If we've found no mantissa whatsoever, this isn't a number. - if (mantissa_begin == begin) { - return result; - } - // A bare "." doesn't count as a mantissa either. - if (begin - mantissa_begin == 1 && *mantissa_begin == '.') { - return result; - } - - if (mantissa_is_inexact) { - // We dropped significant digits on the floor. Handle this appropriately. - if (base == 10) { - // If we truncated significant decimal digits, store the full range of the - // mantissa for future big integer math for exact rounding. - result.subrange_begin = mantissa_begin; - result.subrange_end = begin; - } else if (base == 16) { - // If we truncated hex digits, reflect this fact by setting the low - // ("sticky") bit. This allows for correct rounding in all cases. - mantissa |= 1; - } - } - result.mantissa = mantissa; - - const char* const exponent_begin = begin; - result.literal_exponent = 0; - bool found_exponent = false; - if (AllowExponent(format_flags) && begin < end && - IsExponentCharacter<base>(*begin)) { - bool negative_exponent = false; - ++begin; - if (begin < end && *begin == '-') { - negative_exponent = true; - ++begin; - } else if (begin < end && *begin == '+') { - ++begin; - } - const char* const exponent_digits_begin = begin; - // Exponent is always expressed in decimal, even for hexadecimal floats. - begin += ConsumeDigits<10>(begin, end, kDecimalExponentDigitsMax, - &result.literal_exponent, nullptr); - if (begin == exponent_digits_begin) { - // there were no digits where we expected an exponent. We failed to read - // an exponent and should not consume the 'e' after all. Rewind 'begin'. - found_exponent = false; - begin = exponent_begin; - } else { - found_exponent = true; - if (negative_exponent) { - result.literal_exponent = -result.literal_exponent; - } - } - } - - if (!found_exponent && RequireExponent(format_flags)) { - // Provided flags required an exponent, but none was found. This results - // in a failure to scan. - return result; - } - - // Success! - result.type = strings_internal::FloatType::kNumber; - if (result.mantissa > 0) { - result.exponent = result.literal_exponent + - (DigitMagnitude<base>() * exponent_adjustment); - } else { - result.exponent = 0; - } - result.end = begin; - return result; -} - -template ParsedFloat ParseFloat<10>(const char* begin, const char* end, - chars_format format_flags); -template ParsedFloat ParseFloat<16>(const char* begin, const char* end, - chars_format format_flags); - -} // namespace strings_internal -ABSL_NAMESPACE_END -} // namespace absl |