diff options
author | Vincent Ambo <mail@tazj.in> | 2022-02-07T23·05+0300 |
---|---|---|
committer | clbot <clbot@tvl.fyi> | 2022-02-07T23·09+0000 |
commit | 5aa5d282eac56a21e74611c1cdbaa97bb5db2dca (patch) | |
tree | 8cc5dce8157a1470ff76719dd15d65f648a05522 /third_party/abseil_cpp/absl/strings/internal/charconv_bigint.h | |
parent | a25675804c4f429fab5ee5201fe25e89865dfd13 (diff) |
chore(3p/abseil_cpp): unvendor abseil_cpp r/3786
we weren't actually using these sources anymore, okay? Change-Id: If701571d9716de308d3512e1eb22c35db0877a66 Reviewed-on: https://cl.tvl.fyi/c/depot/+/5248 Tested-by: BuildkiteCI Reviewed-by: grfn <grfn@gws.fyi> Autosubmit: tazjin <tazjin@tvl.su>
Diffstat (limited to 'third_party/abseil_cpp/absl/strings/internal/charconv_bigint.h')
-rw-r--r-- | third_party/abseil_cpp/absl/strings/internal/charconv_bigint.h | 423 |
1 files changed, 0 insertions, 423 deletions
diff --git a/third_party/abseil_cpp/absl/strings/internal/charconv_bigint.h b/third_party/abseil_cpp/absl/strings/internal/charconv_bigint.h deleted file mode 100644 index 8f702976a80d..000000000000 --- a/third_party/abseil_cpp/absl/strings/internal/charconv_bigint.h +++ /dev/null @@ -1,423 +0,0 @@ -// Copyright 2018 The Abseil Authors. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// https://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#ifndef ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_ -#define ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_ - -#include <algorithm> -#include <cstdint> -#include <iostream> -#include <string> - -#include "absl/base/config.h" -#include "absl/strings/ascii.h" -#include "absl/strings/internal/charconv_parse.h" -#include "absl/strings/string_view.h" - -namespace absl { -ABSL_NAMESPACE_BEGIN -namespace strings_internal { - -// The largest power that 5 that can be raised to, and still fit in a uint32_t. -constexpr int kMaxSmallPowerOfFive = 13; -// The largest power that 10 that can be raised to, and still fit in a uint32_t. -constexpr int kMaxSmallPowerOfTen = 9; - -ABSL_DLL extern const uint32_t - kFiveToNth[kMaxSmallPowerOfFive + 1]; -ABSL_DLL extern const uint32_t kTenToNth[kMaxSmallPowerOfTen + 1]; - -// Large, fixed-width unsigned integer. -// -// Exact rounding for decimal-to-binary floating point conversion requires very -// large integer math, but a design goal of absl::from_chars is to avoid -// allocating memory. The integer precision needed for decimal-to-binary -// conversions is large but bounded, so a huge fixed-width integer class -// suffices. -// -// This is an intentionally limited big integer class. Only needed operations -// are implemented. All storage lives in an array data member, and all -// arithmetic is done in-place, to avoid requiring separate storage for operand -// and result. -// -// This is an internal class. Some methods live in the .cc file, and are -// instantiated only for the values of max_words we need. -template <int max_words> -class BigUnsigned { - public: - static_assert(max_words == 4 || max_words == 84, - "unsupported max_words value"); - - BigUnsigned() : size_(0), words_{} {} - explicit constexpr BigUnsigned(uint64_t v) - : size_((v >> 32) ? 2 : v ? 1 : 0), - words_{static_cast<uint32_t>(v & 0xffffffffu), - static_cast<uint32_t>(v >> 32)} {} - - // Constructs a BigUnsigned from the given string_view containing a decimal - // value. If the input string is not a decimal integer, constructs a 0 - // instead. - explicit BigUnsigned(absl::string_view sv) : size_(0), words_{} { - // Check for valid input, returning a 0 otherwise. This is reasonable - // behavior only because this constructor is for unit tests. - if (std::find_if_not(sv.begin(), sv.end(), ascii_isdigit) != sv.end() || - sv.empty()) { - return; - } - int exponent_adjust = - ReadDigits(sv.data(), sv.data() + sv.size(), Digits10() + 1); - if (exponent_adjust > 0) { - MultiplyByTenToTheNth(exponent_adjust); - } - } - - // Loads the mantissa value of a previously-parsed float. - // - // Returns the associated decimal exponent. The value of the parsed float is - // exactly *this * 10**exponent. - int ReadFloatMantissa(const ParsedFloat& fp, int significant_digits); - - // Returns the number of decimal digits of precision this type provides. All - // numbers with this many decimal digits or fewer are representable by this - // type. - // - // Analagous to std::numeric_limits<BigUnsigned>::digits10. - static constexpr int Digits10() { - // 9975007/1035508 is very slightly less than log10(2**32). - return static_cast<uint64_t>(max_words) * 9975007 / 1035508; - } - - // Shifts left by the given number of bits. - void ShiftLeft(int count) { - if (count > 0) { - const int word_shift = count / 32; - if (word_shift >= max_words) { - SetToZero(); - return; - } - size_ = (std::min)(size_ + word_shift, max_words); - count %= 32; - if (count == 0) { - std::copy_backward(words_, words_ + size_ - word_shift, words_ + size_); - } else { - for (int i = (std::min)(size_, max_words - 1); i > word_shift; --i) { - words_[i] = (words_[i - word_shift] << count) | - (words_[i - word_shift - 1] >> (32 - count)); - } - words_[word_shift] = words_[0] << count; - // Grow size_ if necessary. - if (size_ < max_words && words_[size_]) { - ++size_; - } - } - std::fill(words_, words_ + word_shift, 0u); - } - } - - - // Multiplies by v in-place. - void MultiplyBy(uint32_t v) { - if (size_ == 0 || v == 1) { - return; - } - if (v == 0) { - SetToZero(); - return; - } - const uint64_t factor = v; - uint64_t window = 0; - for (int i = 0; i < size_; ++i) { - window += factor * words_[i]; - words_[i] = window & 0xffffffff; - window >>= 32; - } - // If carry bits remain and there's space for them, grow size_. - if (window && size_ < max_words) { - words_[size_] = window & 0xffffffff; - ++size_; - } - } - - void MultiplyBy(uint64_t v) { - uint32_t words[2]; - words[0] = static_cast<uint32_t>(v); - words[1] = static_cast<uint32_t>(v >> 32); - if (words[1] == 0) { - MultiplyBy(words[0]); - } else { - MultiplyBy(2, words); - } - } - - // Multiplies in place by 5 to the power of n. n must be non-negative. - void MultiplyByFiveToTheNth(int n) { - while (n >= kMaxSmallPowerOfFive) { - MultiplyBy(kFiveToNth[kMaxSmallPowerOfFive]); - n -= kMaxSmallPowerOfFive; - } - if (n > 0) { - MultiplyBy(kFiveToNth[n]); - } - } - - // Multiplies in place by 10 to the power of n. n must be non-negative. - void MultiplyByTenToTheNth(int n) { - if (n > kMaxSmallPowerOfTen) { - // For large n, raise to a power of 5, then shift left by the same amount. - // (10**n == 5**n * 2**n.) This requires fewer multiplications overall. - MultiplyByFiveToTheNth(n); - ShiftLeft(n); - } else if (n > 0) { - // We can do this more quickly for very small N by using a single - // multiplication. - MultiplyBy(kTenToNth[n]); - } - } - - // Returns the value of 5**n, for non-negative n. This implementation uses - // a lookup table, and is faster then seeding a BigUnsigned with 1 and calling - // MultiplyByFiveToTheNth(). - static BigUnsigned FiveToTheNth(int n); - - // Multiplies by another BigUnsigned, in-place. - template <int M> - void MultiplyBy(const BigUnsigned<M>& other) { - MultiplyBy(other.size(), other.words()); - } - - void SetToZero() { - std::fill(words_, words_ + size_, 0u); - size_ = 0; - } - - // Returns the value of the nth word of this BigUnsigned. This is - // range-checked, and returns 0 on out-of-bounds accesses. - uint32_t GetWord(int index) const { - if (index < 0 || index >= size_) { - return 0; - } - return words_[index]; - } - - // Returns this integer as a decimal string. This is not used in the decimal- - // to-binary conversion; it is intended to aid in testing. - std::string ToString() const; - - int size() const { return size_; } - const uint32_t* words() const { return words_; } - - private: - // Reads the number between [begin, end), possibly containing a decimal point, - // into this BigUnsigned. - // - // Callers are required to ensure [begin, end) contains a valid number, with - // one or more decimal digits and at most one decimal point. This routine - // will behave unpredictably if these preconditions are not met. - // - // Only the first `significant_digits` digits are read. Digits beyond this - // limit are "sticky": If the final significant digit is 0 or 5, and if any - // dropped digit is nonzero, then that final significant digit is adjusted up - // to 1 or 6. This adjustment allows for precise rounding. - // - // Returns `exponent_adjustment`, a power-of-ten exponent adjustment to - // account for the decimal point and for dropped significant digits. After - // this function returns, - // actual_value_of_parsed_string ~= *this * 10**exponent_adjustment. - int ReadDigits(const char* begin, const char* end, int significant_digits); - - // Performs a step of big integer multiplication. This computes the full - // (64-bit-wide) values that should be added at the given index (step), and - // adds to that location in-place. - // - // Because our math all occurs in place, we must multiply starting from the - // highest word working downward. (This is a bit more expensive due to the - // extra carries involved.) - // - // This must be called in steps, for each word to be calculated, starting from - // the high end and working down to 0. The first value of `step` should be - // `std::min(original_size + other.size_ - 2, max_words - 1)`. - // The reason for this expression is that multiplying the i'th word from one - // multiplicand and the j'th word of another multiplicand creates a - // two-word-wide value to be stored at the (i+j)'th element. The highest - // word indices we will access are `original_size - 1` from this object, and - // `other.size_ - 1` from our operand. Therefore, - // `original_size + other.size_ - 2` is the first step we should calculate, - // but limited on an upper bound by max_words. - - // Working from high-to-low ensures that we do not overwrite the portions of - // the initial value of *this which are still needed for later steps. - // - // Once called with step == 0, *this contains the result of the - // multiplication. - // - // `original_size` is the size_ of *this before the first call to - // MultiplyStep(). `other_words` and `other_size` are the contents of our - // operand. `step` is the step to perform, as described above. - void MultiplyStep(int original_size, const uint32_t* other_words, - int other_size, int step); - - void MultiplyBy(int other_size, const uint32_t* other_words) { - const int original_size = size_; - const int first_step = - (std::min)(original_size + other_size - 2, max_words - 1); - for (int step = first_step; step >= 0; --step) { - MultiplyStep(original_size, other_words, other_size, step); - } - } - - // Adds a 32-bit value to the index'th word, with carry. - void AddWithCarry(int index, uint32_t value) { - if (value) { - while (index < max_words && value > 0) { - words_[index] += value; - // carry if we overflowed in this word: - if (value > words_[index]) { - value = 1; - ++index; - } else { - value = 0; - } - } - size_ = (std::min)(max_words, (std::max)(index + 1, size_)); - } - } - - void AddWithCarry(int index, uint64_t value) { - if (value && index < max_words) { - uint32_t high = value >> 32; - uint32_t low = value & 0xffffffff; - words_[index] += low; - if (words_[index] < low) { - ++high; - if (high == 0) { - // Carry from the low word caused our high word to overflow. - // Short circuit here to do the right thing. - AddWithCarry(index + 2, static_cast<uint32_t>(1)); - return; - } - } - if (high > 0) { - AddWithCarry(index + 1, high); - } else { - // Normally 32-bit AddWithCarry() sets size_, but since we don't call - // it when `high` is 0, do it ourselves here. - size_ = (std::min)(max_words, (std::max)(index + 1, size_)); - } - } - } - - // Divide this in place by a constant divisor. Returns the remainder of the - // division. - template <uint32_t divisor> - uint32_t DivMod() { - uint64_t accumulator = 0; - for (int i = size_ - 1; i >= 0; --i) { - accumulator <<= 32; - accumulator += words_[i]; - // accumulator / divisor will never overflow an int32_t in this loop - words_[i] = static_cast<uint32_t>(accumulator / divisor); - accumulator = accumulator % divisor; - } - while (size_ > 0 && words_[size_ - 1] == 0) { - --size_; - } - return static_cast<uint32_t>(accumulator); - } - - // The number of elements in words_ that may carry significant values. - // All elements beyond this point are 0. - // - // When size_ is 0, this BigUnsigned stores the value 0. - // When size_ is nonzero, is *not* guaranteed that words_[size_ - 1] is - // nonzero. This can occur due to overflow truncation. - // In particular, x.size_ != y.size_ does *not* imply x != y. - int size_; - uint32_t words_[max_words]; -}; - -// Compares two big integer instances. -// -// Returns -1 if lhs < rhs, 0 if lhs == rhs, and 1 if lhs > rhs. -template <int N, int M> -int Compare(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { - int limit = (std::max)(lhs.size(), rhs.size()); - for (int i = limit - 1; i >= 0; --i) { - const uint32_t lhs_word = lhs.GetWord(i); - const uint32_t rhs_word = rhs.GetWord(i); - if (lhs_word < rhs_word) { - return -1; - } else if (lhs_word > rhs_word) { - return 1; - } - } - return 0; -} - -template <int N, int M> -bool operator==(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { - int limit = (std::max)(lhs.size(), rhs.size()); - for (int i = 0; i < limit; ++i) { - if (lhs.GetWord(i) != rhs.GetWord(i)) { - return false; - } - } - return true; -} - -template <int N, int M> -bool operator!=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { - return !(lhs == rhs); -} - -template <int N, int M> -bool operator<(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { - return Compare(lhs, rhs) == -1; -} - -template <int N, int M> -bool operator>(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { - return rhs < lhs; -} -template <int N, int M> -bool operator<=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { - return !(rhs < lhs); -} -template <int N, int M> -bool operator>=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { - return !(lhs < rhs); -} - -// Output operator for BigUnsigned, for testing purposes only. -template <int N> -std::ostream& operator<<(std::ostream& os, const BigUnsigned<N>& num) { - return os << num.ToString(); -} - -// Explicit instantiation declarations for the sizes of BigUnsigned that we -// are using. -// -// For now, the choices of 4 and 84 are arbitrary; 4 is a small value that is -// still bigger than an int128, and 84 is a large value we will want to use -// in the from_chars implementation. -// -// Comments justifying the use of 84 belong in the from_chars implementation, -// and will be added in a follow-up CL. -extern template class BigUnsigned<4>; -extern template class BigUnsigned<84>; - -} // namespace strings_internal -ABSL_NAMESPACE_END -} // namespace absl - -#endif // ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_ |