about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/random/internal
diff options
context:
space:
mode:
authorVincent Ambo <mail@tazj.in>2020-11-21T13·43+0100
committerVincent Ambo <mail@tazj.in>2020-11-21T14·48+0100
commit082c006c04343a78d87b6c6ab3608c25d6213c3f (patch)
tree16e6f04f8d1d1d2d67e8e917d5e7bb48c1b60375 /third_party/abseil_cpp/absl/random/internal
parentcc27324d0226953943f408ce3c69ad7d648e005e (diff)
merge(3p/absl): subtree merge of Abseil up to e19260f r/1889
... notably, this includes Abseil's own StatusOr type, which
conflicted with our implementation (that was taken from TensorFlow).

Change-Id: Ie7d6764b64055caaeb8dc7b6b9d066291e6b538f
Diffstat (limited to 'third_party/abseil_cpp/absl/random/internal')
-rw-r--r--third_party/abseil_cpp/absl/random/internal/BUILD.bazel24
-rw-r--r--third_party/abseil_cpp/absl/random/internal/fast_uniform_bits.h202
-rw-r--r--third_party/abseil_cpp/absl/random/internal/fast_uniform_bits_test.cc318
-rw-r--r--third_party/abseil_cpp/absl/random/internal/gaussian_distribution_gentables.cc16
-rw-r--r--third_party/abseil_cpp/absl/random/internal/generate_real_test.cc4
-rw-r--r--third_party/abseil_cpp/absl/random/internal/randen_detect.cc4
-rw-r--r--third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc1
-rw-r--r--third_party/abseil_cpp/absl/random/internal/uniform_helper.h38
-rw-r--r--third_party/abseil_cpp/absl/random/internal/uniform_helper_test.cc279
9 files changed, 637 insertions, 249 deletions
diff --git a/third_party/abseil_cpp/absl/random/internal/BUILD.bazel b/third_party/abseil_cpp/absl/random/internal/BUILD.bazel
index d81477ffb7e8..8485e28b010b 100644
--- a/third_party/abseil_cpp/absl/random/internal/BUILD.bazel
+++ b/third_party/abseil_cpp/absl/random/internal/BUILD.bazel
@@ -30,7 +30,7 @@ package(default_visibility = [
     "//absl/random:__pkg__",
 ])
 
-licenses(["notice"])  # Apache 2.0
+licenses(["notice"])
 
 cc_library(
     name = "traits",
@@ -59,7 +59,10 @@ cc_library(
     ],
     copts = ABSL_DEFAULT_COPTS,
     linkopts = ABSL_DEFAULT_LINKOPTS,
-    deps = ["//absl/base:config"],
+    deps = [
+        "//absl/base:config",
+        "//absl/meta:type_traits",
+    ],
 )
 
 cc_library(
@@ -96,6 +99,7 @@ cc_library(
     copts = ABSL_DEFAULT_COPTS,
     linkopts = select({
         "//absl:windows": [],
+        "//absl:wasm": [],
         "//conditions:default": ["-pthread"],
     }) + ABSL_DEFAULT_LINKOPTS,
     deps = [
@@ -319,10 +323,6 @@ cc_library(
         "//absl:windows": [],
         "//conditions:default": ["-Wno-pass-failed"],
     }),
-    # copts in RANDEN_HWAES_COPTS can make this target unusable as a module
-    # leading to a Clang diagnostic. Furthermore, it only has a private header
-    # anyway and thus there wouldn't be any gain from using it as a module.
-    features = ["-header_modules"],
     linkopts = ABSL_DEFAULT_LINKOPTS,
     deps = [
         ":platform",
@@ -716,3 +716,15 @@ cc_test(
         "@com_google_googletest//:gtest_main",
     ],
 )
+
+cc_test(
+    name = "uniform_helper_test",
+    size = "small",
+    srcs = ["uniform_helper_test.cc"],
+    copts = ABSL_TEST_COPTS,
+    linkopts = ABSL_DEFAULT_LINKOPTS,
+    deps = [
+        ":uniform_helper",
+        "@com_google_googletest//:gtest_main",
+    ],
+)
diff --git a/third_party/abseil_cpp/absl/random/internal/fast_uniform_bits.h b/third_party/abseil_cpp/absl/random/internal/fast_uniform_bits.h
index f13c8729f7c8..425aaf7d830c 100644
--- a/third_party/abseil_cpp/absl/random/internal/fast_uniform_bits.h
+++ b/third_party/abseil_cpp/absl/random/internal/fast_uniform_bits.h
@@ -21,6 +21,7 @@
 #include <type_traits>
 
 #include "absl/base/config.h"
+#include "absl/meta/type_traits.h"
 
 namespace absl {
 ABSL_NAMESPACE_BEGIN
@@ -38,28 +39,17 @@ constexpr bool IsPowerOfTwoOrZero(UIntType n) {
 template <typename URBG>
 constexpr typename URBG::result_type RangeSize() {
   using result_type = typename URBG::result_type;
+  static_assert((URBG::max)() != (URBG::min)(), "URBG range cannot be 0.");
   return ((URBG::max)() == (std::numeric_limits<result_type>::max)() &&
           (URBG::min)() == std::numeric_limits<result_type>::lowest())
              ? result_type{0}
-             : (URBG::max)() - (URBG::min)() + result_type{1};
-}
-
-template <typename UIntType>
-constexpr UIntType LargestPowerOfTwoLessThanOrEqualTo(UIntType n) {
-  return n < 2 ? n : 2 * LargestPowerOfTwoLessThanOrEqualTo(n / 2);
-}
-
-// Given a URBG generating values in the closed interval [Lo, Hi], returns the
-// largest power of two less than or equal to `Hi - Lo + 1`.
-template <typename URBG>
-constexpr typename URBG::result_type PowerOfTwoSubRangeSize() {
-  return LargestPowerOfTwoLessThanOrEqualTo(RangeSize<URBG>());
+             : ((URBG::max)() - (URBG::min)() + result_type{1});
 }
 
 // Computes the floor of the log. (i.e., std::floor(std::log2(N));
 template <typename UIntType>
 constexpr UIntType IntegerLog2(UIntType n) {
-  return (n <= 1) ? 0 : 1 + IntegerLog2(n / 2);
+  return (n <= 1) ? 0 : 1 + IntegerLog2(n >> 1);
 }
 
 // Returns the number of bits of randomness returned through
@@ -68,18 +58,23 @@ template <typename URBG>
 constexpr size_t NumBits() {
   return RangeSize<URBG>() == 0
              ? std::numeric_limits<typename URBG::result_type>::digits
-             : IntegerLog2(PowerOfTwoSubRangeSize<URBG>());
+             : IntegerLog2(RangeSize<URBG>());
 }
 
 // Given a shift value `n`, constructs a mask with exactly the low `n` bits set.
 // If `n == 0`, all bits are set.
 template <typename UIntType>
-constexpr UIntType MaskFromShift(UIntType n) {
+constexpr UIntType MaskFromShift(size_t n) {
   return ((n % std::numeric_limits<UIntType>::digits) == 0)
              ? ~UIntType{0}
              : (UIntType{1} << n) - UIntType{1};
 }
 
+// Tags used to dispatch FastUniformBits::generate to the simple or more complex
+// entropy extraction algorithm.
+struct SimplifiedLoopTag {};
+struct RejectionLoopTag {};
+
 // FastUniformBits implements a fast path to acquire uniform independent bits
 // from a type which conforms to the [rand.req.urbg] concept.
 // Parameterized by:
@@ -107,50 +102,16 @@ class FastUniformBits {
                 "Class-template FastUniformBits<> must be parameterized using "
                 "an unsigned type.");
 
-  // PowerOfTwoVariate() generates a single random variate, always returning a
-  // value in the half-open interval `[0, PowerOfTwoSubRangeSize<URBG>())`. If
-  // the URBG already generates values in a power-of-two range, the generator
-  // itself is used. Otherwise, we use rejection sampling on the largest
-  // possible power-of-two-sized subrange.
-  struct PowerOfTwoTag {};
-  struct RejectionSamplingTag {};
-  template <typename URBG>
-  static typename URBG::result_type PowerOfTwoVariate(
-      URBG& g) {  // NOLINT(runtime/references)
-    using tag =
-        typename std::conditional<IsPowerOfTwoOrZero(RangeSize<URBG>()),
-                                  PowerOfTwoTag, RejectionSamplingTag>::type;
-    return PowerOfTwoVariate(g, tag{});
-  }
-
-  template <typename URBG>
-  static typename URBG::result_type PowerOfTwoVariate(
-      URBG& g,  // NOLINT(runtime/references)
-      PowerOfTwoTag) {
-    return g() - (URBG::min)();
-  }
-
-  template <typename URBG>
-  static typename URBG::result_type PowerOfTwoVariate(
-      URBG& g,  // NOLINT(runtime/references)
-      RejectionSamplingTag) {
-    // Use rejection sampling to ensure uniformity across the range.
-    typename URBG::result_type u;
-    do {
-      u = g() - (URBG::min)();
-    } while (u >= PowerOfTwoSubRangeSize<URBG>());
-    return u;
-  }
-
   // Generate() generates a random value, dispatched on whether
-  // the underlying URBG must loop over multiple calls or not.
+  // the underlying URBG must use rejection sampling to generate a value,
+  // or whether a simplified loop will suffice.
   template <typename URBG>
   result_type Generate(URBG& g,  // NOLINT(runtime/references)
-                       std::true_type /* avoid_looping */);
+                       SimplifiedLoopTag);
 
   template <typename URBG>
   result_type Generate(URBG& g,  // NOLINT(runtime/references)
-                       std::false_type /* avoid_looping */);
+                       RejectionLoopTag);
 };
 
 template <typename UIntType>
@@ -162,31 +123,47 @@ FastUniformBits<UIntType>::operator()(URBG& g) {  // NOLINT(runtime/references)
   // Y = (2 ^ kRange) - 1
   static_assert((URBG::max)() > (URBG::min)(),
                 "URBG::max and URBG::min may not be equal.");
-  using urbg_result_type = typename URBG::result_type;
-  constexpr urbg_result_type kRangeMask =
-      RangeSize<URBG>() == 0
-          ? (std::numeric_limits<urbg_result_type>::max)()
-          : static_cast<urbg_result_type>(PowerOfTwoSubRangeSize<URBG>() - 1);
-  return Generate(g, std::integral_constant<bool, (kRangeMask >= (max)())>{});
+
+  using tag = absl::conditional_t<IsPowerOfTwoOrZero(RangeSize<URBG>()),
+                                  SimplifiedLoopTag, RejectionLoopTag>;
+  return Generate(g, tag{});
 }
 
 template <typename UIntType>
 template <typename URBG>
 typename FastUniformBits<UIntType>::result_type
 FastUniformBits<UIntType>::Generate(URBG& g,  // NOLINT(runtime/references)
-                                    std::true_type /* avoid_looping */) {
-  // The width of the result_type is less than than the width of the random bits
-  // provided by URBG.  Thus, generate a single value and then simply mask off
-  // the required bits.
+                                    SimplifiedLoopTag) {
+  // The simplified version of FastUniformBits works only on URBGs that have
+  // a range that is a power of 2. In this case we simply loop and shift without
+  // attempting to balance the bits across calls.
+  static_assert(IsPowerOfTwoOrZero(RangeSize<URBG>()),
+                "incorrect Generate tag for URBG instance");
+
+  static constexpr size_t kResultBits =
+      std::numeric_limits<result_type>::digits;
+  static constexpr size_t kUrbgBits = NumBits<URBG>();
+  static constexpr size_t kIters =
+      (kResultBits / kUrbgBits) + (kResultBits % kUrbgBits != 0);
+  static constexpr size_t kShift = (kIters == 1) ? 0 : kUrbgBits;
+  static constexpr auto kMin = (URBG::min)();
 
-  return PowerOfTwoVariate(g) & (max)();
+  result_type r = static_cast<result_type>(g() - kMin);
+  for (size_t n = 1; n < kIters; ++n) {
+    r = (r << kShift) + static_cast<result_type>(g() - kMin);
+  }
+  return r;
 }
 
 template <typename UIntType>
 template <typename URBG>
 typename FastUniformBits<UIntType>::result_type
 FastUniformBits<UIntType>::Generate(URBG& g,  // NOLINT(runtime/references)
-                                    std::false_type /* avoid_looping */) {
+                                    RejectionLoopTag) {
+  static_assert(!IsPowerOfTwoOrZero(RangeSize<URBG>()),
+                "incorrect Generate tag for URBG instance");
+  using urbg_result_type = typename URBG::result_type;
+
   // See [rand.adapt.ibits] for more details on the constants calculated below.
   //
   // It is preferable to use roughly the same number of bits from each generator
@@ -199,21 +176,44 @@ FastUniformBits<UIntType>::Generate(URBG& g,  // NOLINT(runtime/references)
   // `kSmallIters` and `kLargeIters` times respectively such
   // that
   //
-  //    `kTotalWidth == kSmallIters * kSmallWidth
-  //                    + kLargeIters * kLargeWidth`
+  //    `kResultBits == kSmallIters * kSmallBits
+  //                    + kLargeIters * kLargeBits`
   //
-  // where `kTotalWidth` is the total number of bits in `result_type`.
+  // where `kResultBits` is the total number of bits in `result_type`.
   //
-  constexpr size_t kTotalWidth = std::numeric_limits<result_type>::digits;
-  constexpr size_t kUrbgWidth = NumBits<URBG>();
-  constexpr size_t kTotalIters =
-      kTotalWidth / kUrbgWidth + (kTotalWidth % kUrbgWidth != 0);
-  constexpr size_t kSmallWidth = kTotalWidth / kTotalIters;
-  constexpr size_t kLargeWidth = kSmallWidth + 1;
+  static constexpr size_t kResultBits =
+      std::numeric_limits<result_type>::digits;                      // w
+  static constexpr urbg_result_type kUrbgRange = RangeSize<URBG>();  // R
+  static constexpr size_t kUrbgBits = NumBits<URBG>();               // m
+
+  // compute the initial estimate of the bits used.
+  // [rand.adapt.ibits] 2 (c)
+  static constexpr size_t kA =  // ceil(w/m)
+      (kResultBits / kUrbgBits) + ((kResultBits % kUrbgBits) != 0);  // n'
+
+  static constexpr size_t kABits = kResultBits / kA;  // w0'
+  static constexpr urbg_result_type kARejection =
+      ((kUrbgRange >> kABits) << kABits);  // y0'
+
+  // refine the selection to reduce the rejection frequency.
+  static constexpr size_t kTotalIters =
+      ((kUrbgRange - kARejection) <= (kARejection / kA)) ? kA : (kA + 1);  // n
+
+  // [rand.adapt.ibits] 2 (b)
+  static constexpr size_t kSmallIters =
+      kTotalIters - (kResultBits % kTotalIters);                   // n0
+  static constexpr size_t kSmallBits = kResultBits / kTotalIters;  // w0
+  static constexpr urbg_result_type kSmallRejection =
+      ((kUrbgRange >> kSmallBits) << kSmallBits);  // y0
+
+  static constexpr size_t kLargeBits = kSmallBits + 1;  // w0+1
+  static constexpr urbg_result_type kLargeRejection =
+      ((kUrbgRange >> kLargeBits) << kLargeBits);  // y1
+
   //
-  // Because `kLargeWidth == kSmallWidth + 1`, it follows that
+  // Because `kLargeBits == kSmallBits + 1`, it follows that
   //
-  //     `kTotalWidth == kTotalIters * kSmallWidth + kLargeIters`
+  //     `kResultBits == kSmallIters * kSmallBits + kLargeIters`
   //
   // and therefore
   //
@@ -224,36 +224,40 @@ FastUniformBits<UIntType>::Generate(URBG& g,  // NOLINT(runtime/references)
   // mentioned above, if the URBG width is a divisor of `kTotalWidth`, then
   // there would be no need for any large iterations (i.e., one loop would
   // suffice), and indeed, in this case, `kLargeIters` would be zero.
-  constexpr size_t kLargeIters = kTotalWidth % kSmallWidth;
-  constexpr size_t kSmallIters =
-      (kTotalWidth - (kLargeWidth * kLargeIters)) / kSmallWidth;
+  static_assert(kResultBits == kSmallIters * kSmallBits +
+                                   (kTotalIters - kSmallIters) * kLargeBits,
+                "Error in looping constant calculations.");
 
-  static_assert(
-      kTotalWidth == kSmallIters * kSmallWidth + kLargeIters * kLargeWidth,
-      "Error in looping constant calculations.");
+  // The small shift is essentially small bits, but due to the potential
+  // of generating a smaller result_type from a larger urbg type, the actual
+  // shift might be 0.
+  static constexpr size_t kSmallShift = kSmallBits % kResultBits;
+  static constexpr auto kSmallMask =
+      MaskFromShift<urbg_result_type>(kSmallShift);
+  static constexpr size_t kLargeShift = kLargeBits % kResultBits;
+  static constexpr auto kLargeMask =
+      MaskFromShift<urbg_result_type>(kLargeShift);
 
-  result_type s = 0;
+  static constexpr auto kMin = (URBG::min)();
 
-  constexpr size_t kSmallShift = kSmallWidth % kTotalWidth;
-  constexpr result_type kSmallMask = MaskFromShift(result_type{kSmallShift});
+  result_type s = 0;
   for (size_t n = 0; n < kSmallIters; ++n) {
-    s = (s << kSmallShift) +
-        (static_cast<result_type>(PowerOfTwoVariate(g)) & kSmallMask);
-  }
+    urbg_result_type v;
+    do {
+      v = g() - kMin;
+    } while (v >= kSmallRejection);
 
-  constexpr size_t kLargeShift = kLargeWidth % kTotalWidth;
-  constexpr result_type kLargeMask = MaskFromShift(result_type{kLargeShift});
-  for (size_t n = 0; n < kLargeIters; ++n) {
-    s = (s << kLargeShift) +
-        (static_cast<result_type>(PowerOfTwoVariate(g)) & kLargeMask);
+    s = (s << kSmallShift) + static_cast<result_type>(v & kSmallMask);
   }
 
-  static_assert(
-      kLargeShift == kSmallShift + 1 ||
-          (kLargeShift == 0 &&
-           kSmallShift == std::numeric_limits<result_type>::digits - 1),
-      "Error in looping constant calculations");
+  for (size_t n = kSmallIters; n < kTotalIters; ++n) {
+    urbg_result_type v;
+    do {
+      v = g() - kMin;
+    } while (v >= kLargeRejection);
 
+    s = (s << kLargeShift) + static_cast<result_type>(v & kLargeMask);
+  }
   return s;
 }
 
diff --git a/third_party/abseil_cpp/absl/random/internal/fast_uniform_bits_test.cc b/third_party/abseil_cpp/absl/random/internal/fast_uniform_bits_test.cc
index f5b837e5861b..cee702df852d 100644
--- a/third_party/abseil_cpp/absl/random/internal/fast_uniform_bits_test.cc
+++ b/third_party/abseil_cpp/absl/random/internal/fast_uniform_bits_test.cc
@@ -34,8 +34,8 @@ TYPED_TEST(FastUniformBitsTypedTest, BasicTest) {
   using Limits = std::numeric_limits<TypeParam>;
   using FastBits = FastUniformBits<TypeParam>;
 
-  EXPECT_EQ(0, FastBits::min());
-  EXPECT_EQ(Limits::max(), FastBits::max());
+  EXPECT_EQ(0, (FastBits::min)());
+  EXPECT_EQ((Limits::max)(), (FastBits::max)());
 
   constexpr int kIters = 10000;
   std::random_device rd;
@@ -43,8 +43,8 @@ TYPED_TEST(FastUniformBitsTypedTest, BasicTest) {
   FastBits fast;
   for (int i = 0; i < kIters; i++) {
     const auto v = fast(gen);
-    EXPECT_LE(v, FastBits::max());
-    EXPECT_GE(v, FastBits::min());
+    EXPECT_LE(v, (FastBits::max)());
+    EXPECT_GE(v, (FastBits::min)());
   }
 }
 
@@ -52,21 +52,26 @@ template <typename UIntType, UIntType Lo, UIntType Hi, UIntType Val = Lo>
 struct FakeUrbg {
   using result_type = UIntType;
 
+  FakeUrbg() = default;
+  explicit FakeUrbg(bool r) : reject(r) {}
+
   static constexpr result_type(max)() { return Hi; }
   static constexpr result_type(min)() { return Lo; }
-  result_type operator()() { return Val; }
-};
+  result_type operator()() {
+    // when reject is set, return Hi half the time.
+    return ((++calls % 2) == 1 && reject) ? Hi : Val;
+  }
 
-using UrngOddbits = FakeUrbg<uint8_t, 1, 0xfe, 0x73>;
-using Urng4bits = FakeUrbg<uint8_t, 1, 0x10, 2>;
-using Urng31bits = FakeUrbg<uint32_t, 1, 0xfffffffe, 0x60070f03>;
-using Urng32bits = FakeUrbg<uint32_t, 0, 0xffffffff, 0x74010f01>;
+  bool reject = false;
+  size_t calls = 0;
+};
 
 TEST(FastUniformBitsTest, IsPowerOfTwoOrZero) {
   EXPECT_TRUE(IsPowerOfTwoOrZero(uint8_t{0}));
   EXPECT_TRUE(IsPowerOfTwoOrZero(uint8_t{1}));
   EXPECT_TRUE(IsPowerOfTwoOrZero(uint8_t{2}));
   EXPECT_FALSE(IsPowerOfTwoOrZero(uint8_t{3}));
+  EXPECT_TRUE(IsPowerOfTwoOrZero(uint8_t{4}));
   EXPECT_TRUE(IsPowerOfTwoOrZero(uint8_t{16}));
   EXPECT_FALSE(IsPowerOfTwoOrZero(uint8_t{17}));
   EXPECT_FALSE(IsPowerOfTwoOrZero((std::numeric_limits<uint8_t>::max)()));
@@ -75,6 +80,7 @@ TEST(FastUniformBitsTest, IsPowerOfTwoOrZero) {
   EXPECT_TRUE(IsPowerOfTwoOrZero(uint16_t{1}));
   EXPECT_TRUE(IsPowerOfTwoOrZero(uint16_t{2}));
   EXPECT_FALSE(IsPowerOfTwoOrZero(uint16_t{3}));
+  EXPECT_TRUE(IsPowerOfTwoOrZero(uint16_t{4}));
   EXPECT_TRUE(IsPowerOfTwoOrZero(uint16_t{16}));
   EXPECT_FALSE(IsPowerOfTwoOrZero(uint16_t{17}));
   EXPECT_FALSE(IsPowerOfTwoOrZero((std::numeric_limits<uint16_t>::max)()));
@@ -91,181 +97,237 @@ TEST(FastUniformBitsTest, IsPowerOfTwoOrZero) {
   EXPECT_TRUE(IsPowerOfTwoOrZero(uint64_t{1}));
   EXPECT_TRUE(IsPowerOfTwoOrZero(uint64_t{2}));
   EXPECT_FALSE(IsPowerOfTwoOrZero(uint64_t{3}));
+  EXPECT_TRUE(IsPowerOfTwoOrZero(uint64_t{4}));
   EXPECT_TRUE(IsPowerOfTwoOrZero(uint64_t{64}));
   EXPECT_FALSE(IsPowerOfTwoOrZero(uint64_t{17}));
   EXPECT_FALSE(IsPowerOfTwoOrZero((std::numeric_limits<uint64_t>::max)()));
 }
 
 TEST(FastUniformBitsTest, IntegerLog2) {
-  EXPECT_EQ(IntegerLog2(uint16_t{0}), 0);
-  EXPECT_EQ(IntegerLog2(uint16_t{1}), 0);
-  EXPECT_EQ(IntegerLog2(uint16_t{2}), 1);
-  EXPECT_EQ(IntegerLog2(uint16_t{3}), 1);
-  EXPECT_EQ(IntegerLog2(uint16_t{4}), 2);
-  EXPECT_EQ(IntegerLog2(uint16_t{5}), 2);
-  EXPECT_EQ(IntegerLog2(std::numeric_limits<uint64_t>::max()), 63);
+  EXPECT_EQ(0, IntegerLog2(uint16_t{0}));
+  EXPECT_EQ(0, IntegerLog2(uint16_t{1}));
+  EXPECT_EQ(1, IntegerLog2(uint16_t{2}));
+  EXPECT_EQ(1, IntegerLog2(uint16_t{3}));
+  EXPECT_EQ(2, IntegerLog2(uint16_t{4}));
+  EXPECT_EQ(2, IntegerLog2(uint16_t{5}));
+  EXPECT_EQ(2, IntegerLog2(uint16_t{7}));
+  EXPECT_EQ(3, IntegerLog2(uint16_t{8}));
+  EXPECT_EQ(63, IntegerLog2((std::numeric_limits<uint64_t>::max)()));
 }
 
 TEST(FastUniformBitsTest, RangeSize) {
-  EXPECT_EQ((RangeSize<FakeUrbg<uint8_t, 0, 3>>()), 4);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint8_t, 2, 2>>()), 1);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint8_t, 2, 5>>()), 4);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint8_t, 2, 6>>()), 5);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint8_t, 2, 10>>()), 9);
+  EXPECT_EQ(2, (RangeSize<FakeUrbg<uint8_t, 0, 1>>()));
+  EXPECT_EQ(3, (RangeSize<FakeUrbg<uint8_t, 0, 2>>()));
+  EXPECT_EQ(4, (RangeSize<FakeUrbg<uint8_t, 0, 3>>()));
+  //  EXPECT_EQ(0, (RangeSize<FakeUrbg<uint8_t, 2, 2>>()));
+  EXPECT_EQ(4, (RangeSize<FakeUrbg<uint8_t, 2, 5>>()));
+  EXPECT_EQ(5, (RangeSize<FakeUrbg<uint8_t, 2, 6>>()));
+  EXPECT_EQ(9, (RangeSize<FakeUrbg<uint8_t, 2, 10>>()));
   EXPECT_EQ(
-      (RangeSize<FakeUrbg<uint8_t, 0, std::numeric_limits<uint8_t>::max()>>()),
-      0);
-
-  EXPECT_EQ((RangeSize<FakeUrbg<uint16_t, 0, 3>>()), 4);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint16_t, 2, 2>>()), 1);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint16_t, 2, 5>>()), 4);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint16_t, 2, 6>>()), 5);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint16_t, 1000, 1017>>()), 18);
-  EXPECT_EQ((RangeSize<
-                FakeUrbg<uint16_t, 0, std::numeric_limits<uint16_t>::max()>>()),
-            0);
-
-  EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 0, 3>>()), 4);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 2, 2>>()), 1);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 2, 5>>()), 4);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 2, 6>>()), 5);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 1000, 1017>>()), 18);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 0, 0xffffffff>>()), 0);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 1, 0xffffffff>>()), 0xffffffff);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 1, 0xfffffffe>>()), 0xfffffffe);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 2, 0xfffffffe>>()), 0xfffffffd);
-  EXPECT_EQ((RangeSize<
-                FakeUrbg<uint32_t, 0, std::numeric_limits<uint32_t>::max()>>()),
-            0);
-
-  EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 0, 3>>()), 4);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 2, 2>>()), 1);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 2, 5>>()), 4);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 2, 6>>()), 5);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 1000, 1017>>()), 18);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 0, 0xffffffff>>()), 0x100000000ull);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 1, 0xffffffff>>()), 0xffffffffull);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 1, 0xfffffffe>>()), 0xfffffffeull);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 2, 0xfffffffe>>()), 0xfffffffdull);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 0, 0xffffffffffffffffull>>()), 0ull);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 1, 0xffffffffffffffffull>>()),
-            0xffffffffffffffffull);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 1, 0xfffffffffffffffeull>>()),
-            0xfffffffffffffffeull);
-  EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 2, 0xfffffffffffffffeull>>()),
-            0xfffffffffffffffdull);
-  EXPECT_EQ((RangeSize<
-                FakeUrbg<uint64_t, 0, std::numeric_limits<uint64_t>::max()>>()),
-            0);
-}
+      0, (RangeSize<
+             FakeUrbg<uint8_t, 0, (std::numeric_limits<uint8_t>::max)()>>()));
 
-TEST(FastUniformBitsTest, PowerOfTwoSubRangeSize) {
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint8_t, 0, 3>>()), 4);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint8_t, 2, 2>>()), 1);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint8_t, 2, 5>>()), 4);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint8_t, 2, 6>>()), 4);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint8_t, 2, 10>>()), 8);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<
-                FakeUrbg<uint8_t, 0, std::numeric_limits<uint8_t>::max()>>()),
-            0);
-
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint16_t, 0, 3>>()), 4);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint16_t, 2, 2>>()), 1);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint16_t, 2, 5>>()), 4);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint16_t, 2, 6>>()), 4);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint16_t, 1000, 1017>>()), 16);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<
-                FakeUrbg<uint16_t, 0, std::numeric_limits<uint16_t>::max()>>()),
-            0);
-
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 0, 3>>()), 4);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 2, 2>>()), 1);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 2, 5>>()), 4);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 2, 6>>()), 4);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 1000, 1017>>()), 16);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 0, 0xffffffff>>()), 0);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 1, 0xffffffff>>()),
-            0x80000000);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 1, 0xfffffffe>>()),
-            0x80000000);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<
-                FakeUrbg<uint32_t, 0, std::numeric_limits<uint32_t>::max()>>()),
-            0);
-
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 0, 3>>()), 4);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 2, 2>>()), 1);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 2, 5>>()), 4);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 2, 6>>()), 4);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 1000, 1017>>()), 16);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 0, 0xffffffff>>()),
-            0x100000000ull);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 1, 0xffffffff>>()),
-            0x80000000ull);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 1, 0xfffffffe>>()),
-            0x80000000ull);
+  EXPECT_EQ(4, (RangeSize<FakeUrbg<uint16_t, 0, 3>>()));
+  EXPECT_EQ(4, (RangeSize<FakeUrbg<uint16_t, 2, 5>>()));
+  EXPECT_EQ(5, (RangeSize<FakeUrbg<uint16_t, 2, 6>>()));
+  EXPECT_EQ(18, (RangeSize<FakeUrbg<uint16_t, 1000, 1017>>()));
   EXPECT_EQ(
-      (PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 0, 0xffffffffffffffffull>>()),
-      0);
+      0, (RangeSize<
+             FakeUrbg<uint16_t, 0, (std::numeric_limits<uint16_t>::max)()>>()));
+
+  EXPECT_EQ(4, (RangeSize<FakeUrbg<uint32_t, 0, 3>>()));
+  EXPECT_EQ(4, (RangeSize<FakeUrbg<uint32_t, 2, 5>>()));
+  EXPECT_EQ(5, (RangeSize<FakeUrbg<uint32_t, 2, 6>>()));
+  EXPECT_EQ(18, (RangeSize<FakeUrbg<uint32_t, 1000, 1017>>()));
+  EXPECT_EQ(0, (RangeSize<FakeUrbg<uint32_t, 0, 0xffffffff>>()));
+  EXPECT_EQ(0xffffffff, (RangeSize<FakeUrbg<uint32_t, 1, 0xffffffff>>()));
+  EXPECT_EQ(0xfffffffe, (RangeSize<FakeUrbg<uint32_t, 1, 0xfffffffe>>()));
+  EXPECT_EQ(0xfffffffd, (RangeSize<FakeUrbg<uint32_t, 2, 0xfffffffe>>()));
   EXPECT_EQ(
-      (PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 1, 0xffffffffffffffffull>>()),
-      0x8000000000000000ull);
+      0, (RangeSize<
+             FakeUrbg<uint32_t, 0, (std::numeric_limits<uint32_t>::max)()>>()));
+
+  EXPECT_EQ(4, (RangeSize<FakeUrbg<uint64_t, 0, 3>>()));
+  EXPECT_EQ(4, (RangeSize<FakeUrbg<uint64_t, 2, 5>>()));
+  EXPECT_EQ(5, (RangeSize<FakeUrbg<uint64_t, 2, 6>>()));
+  EXPECT_EQ(18, (RangeSize<FakeUrbg<uint64_t, 1000, 1017>>()));
+  EXPECT_EQ(0x100000000, (RangeSize<FakeUrbg<uint64_t, 0, 0xffffffff>>()));
+  EXPECT_EQ(0xffffffff, (RangeSize<FakeUrbg<uint64_t, 1, 0xffffffff>>()));
+  EXPECT_EQ(0xfffffffe, (RangeSize<FakeUrbg<uint64_t, 1, 0xfffffffe>>()));
+  EXPECT_EQ(0xfffffffd, (RangeSize<FakeUrbg<uint64_t, 2, 0xfffffffe>>()));
+  EXPECT_EQ(0, (RangeSize<FakeUrbg<uint64_t, 0, 0xffffffffffffffff>>()));
+  EXPECT_EQ(0xffffffffffffffff,
+            (RangeSize<FakeUrbg<uint64_t, 1, 0xffffffffffffffff>>()));
+  EXPECT_EQ(0xfffffffffffffffe,
+            (RangeSize<FakeUrbg<uint64_t, 1, 0xfffffffffffffffe>>()));
+  EXPECT_EQ(0xfffffffffffffffd,
+            (RangeSize<FakeUrbg<uint64_t, 2, 0xfffffffffffffffe>>()));
   EXPECT_EQ(
-      (PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 1, 0xfffffffffffffffeull>>()),
-      0x8000000000000000ull);
-  EXPECT_EQ((PowerOfTwoSubRangeSize<
-                FakeUrbg<uint64_t, 0, std::numeric_limits<uint64_t>::max()>>()),
-            0);
+      0, (RangeSize<
+             FakeUrbg<uint64_t, 0, (std::numeric_limits<uint64_t>::max)()>>()));
 }
 
-TEST(FastUniformBitsTest, Urng4_VariousOutputs) {
+// The constants need to be choosen so that an infinite rejection loop doesn't
+// happen...
+using Urng1_5bit = FakeUrbg<uint8_t, 0, 2, 0>;  // ~1.5 bits (range 3)
+using Urng4bits = FakeUrbg<uint8_t, 1, 0x10, 2>;
+using Urng22bits = FakeUrbg<uint32_t, 0, 0x3fffff, 0x301020>;
+using Urng31bits = FakeUrbg<uint32_t, 1, 0xfffffffe, 0x60070f03>;  // ~31.9 bits
+using Urng32bits = FakeUrbg<uint32_t, 0, 0xffffffff, 0x74010f01>;
+using Urng33bits =
+    FakeUrbg<uint64_t, 1, 0x1ffffffff, 0x013301033>;  // ~32.9 bits
+using Urng63bits = FakeUrbg<uint64_t, 1, 0xfffffffffffffffe,
+                            0xfedcba9012345678>;  // ~63.9 bits
+using Urng64bits =
+    FakeUrbg<uint64_t, 0, 0xffffffffffffffff, 0x123456780fedcba9>;
+
+TEST(FastUniformBitsTest, OutputsUpTo32Bits) {
   // Tests that how values are composed; the single-bit deltas should be spread
   // across each invocation.
+  Urng1_5bit urng1_5;
   Urng4bits urng4;
+  Urng22bits urng22;
   Urng31bits urng31;
   Urng32bits urng32;
+  Urng33bits urng33;
+  Urng63bits urng63;
+  Urng64bits urng64;
 
   // 8-bit types
   {
     FastUniformBits<uint8_t> fast8;
+    EXPECT_EQ(0x0, fast8(urng1_5));
     EXPECT_EQ(0x11, fast8(urng4));
+    EXPECT_EQ(0x20, fast8(urng22));
     EXPECT_EQ(0x2, fast8(urng31));
     EXPECT_EQ(0x1, fast8(urng32));
+    EXPECT_EQ(0x32, fast8(urng33));
+    EXPECT_EQ(0x77, fast8(urng63));
+    EXPECT_EQ(0xa9, fast8(urng64));
   }
 
   // 16-bit types
   {
     FastUniformBits<uint16_t> fast16;
+    EXPECT_EQ(0x0, fast16(urng1_5));
     EXPECT_EQ(0x1111, fast16(urng4));
-    EXPECT_EQ(0xf02, fast16(urng31));
-    EXPECT_EQ(0xf01, fast16(urng32));
+    EXPECT_EQ(0x1020, fast16(urng22));
+    EXPECT_EQ(0x0f02, fast16(urng31));
+    EXPECT_EQ(0x0f01, fast16(urng32));
+    EXPECT_EQ(0x1032, fast16(urng33));
+    EXPECT_EQ(0x5677, fast16(urng63));
+    EXPECT_EQ(0xcba9, fast16(urng64));
   }
 
   // 32-bit types
   {
     FastUniformBits<uint32_t> fast32;
+    EXPECT_EQ(0x0, fast32(urng1_5));
     EXPECT_EQ(0x11111111, fast32(urng4));
+    EXPECT_EQ(0x08301020, fast32(urng22));
     EXPECT_EQ(0x0f020f02, fast32(urng31));
     EXPECT_EQ(0x74010f01, fast32(urng32));
+    EXPECT_EQ(0x13301032, fast32(urng33));
+    EXPECT_EQ(0x12345677, fast32(urng63));
+    EXPECT_EQ(0x0fedcba9, fast32(urng64));
   }
+}
+
+TEST(FastUniformBitsTest, Outputs64Bits) {
+  // Tests that how values are composed; the single-bit deltas should be spread
+  // across each invocation.
+  FastUniformBits<uint64_t> fast64;
 
-  // 64-bit types
   {
-    FastUniformBits<uint64_t> fast64;
+    FakeUrbg<uint8_t, 0, 1, 0> urng0;
+    FakeUrbg<uint8_t, 0, 1, 1> urng1;
+    Urng4bits urng4;
+    Urng22bits urng22;
+    Urng31bits urng31;
+    Urng32bits urng32;
+    Urng33bits urng33;
+    Urng63bits urng63;
+    Urng64bits urng64;
+
+    // somewhat degenerate cases only create a single bit.
+    EXPECT_EQ(0x0, fast64(urng0));
+    EXPECT_EQ(64, urng0.calls);
+    EXPECT_EQ(0xffffffffffffffff, fast64(urng1));
+    EXPECT_EQ(64, urng1.calls);
+
+    // less degenerate cases.
     EXPECT_EQ(0x1111111111111111, fast64(urng4));
+    EXPECT_EQ(16, urng4.calls);
+    EXPECT_EQ(0x01020c0408301020, fast64(urng22));
+    EXPECT_EQ(3, urng22.calls);
     EXPECT_EQ(0x387811c3c0870f02, fast64(urng31));
+    EXPECT_EQ(3, urng31.calls);
     EXPECT_EQ(0x74010f0174010f01, fast64(urng32));
+    EXPECT_EQ(2, urng32.calls);
+    EXPECT_EQ(0x808194040cb01032, fast64(urng33));
+    EXPECT_EQ(3, urng33.calls);
+    EXPECT_EQ(0x1234567712345677, fast64(urng63));
+    EXPECT_EQ(2, urng63.calls);
+    EXPECT_EQ(0x123456780fedcba9, fast64(urng64));
+    EXPECT_EQ(1, urng64.calls);
+  }
+
+  // The 1.5 bit case is somewhat interesting in that the algorithm refinement
+  // causes one extra small sample. Comments here reference the names used in
+  // [rand.adapt.ibits] that correspond to this case.
+  {
+    Urng1_5bit urng1_5;
+
+    // w = 64
+    // R = 3
+    // m = 1
+    // n' = 64
+    // w0' = 1
+    // y0' = 2
+    // n = (1 <= 0) > 64 : 65 = 65
+    // n0 = 65 - (64%65) = 1
+    // n1 = 64
+    // w0 = 0
+    // y0 = 3
+    // w1 = 1
+    // y1 = 2
+    EXPECT_EQ(0x0, fast64(urng1_5));
+    EXPECT_EQ(65, urng1_5.calls);
+  }
+
+  // Validate rejections for non-power-of-2 cases.
+  {
+    Urng1_5bit urng1_5(true);
+    Urng31bits urng31(true);
+    Urng33bits urng33(true);
+    Urng63bits urng63(true);
+
+    // For 1.5 bits, there would be 1+2*64, except the first
+    // value was accepted and shifted off the end.
+    EXPECT_EQ(0, fast64(urng1_5));
+    EXPECT_EQ(128, urng1_5.calls);
+    EXPECT_EQ(0x387811c3c0870f02, fast64(urng31));
+    EXPECT_EQ(6, urng31.calls);
+    EXPECT_EQ(0x808194040cb01032, fast64(urng33));
+    EXPECT_EQ(6, urng33.calls);
+    EXPECT_EQ(0x1234567712345677, fast64(urng63));
+    EXPECT_EQ(4, urng63.calls);
   }
 }
 
 TEST(FastUniformBitsTest, URBG32bitRegression) {
   // Validate with deterministic 32-bit std::minstd_rand
   // to ensure that operator() performs as expected.
+
+  EXPECT_EQ(2147483646, RangeSize<std::minstd_rand>());
+  EXPECT_EQ(30, IntegerLog2(RangeSize<std::minstd_rand>()));
+
   std::minstd_rand gen(1);
   FastUniformBits<uint64_t> fast64;
 
-  EXPECT_EQ(0x05e47095f847c122ull, fast64(gen));
-  EXPECT_EQ(0x8f82c1ba30b64d22ull, fast64(gen));
-  EXPECT_EQ(0x3b971a3558155039ull, fast64(gen));
+  EXPECT_EQ(0x05e47095f8791f45, fast64(gen));
+  EXPECT_EQ(0x028be17e3c07c122, fast64(gen));
+  EXPECT_EQ(0x55d2847c1626e8c2, fast64(gen));
 }
 
 }  // namespace
diff --git a/third_party/abseil_cpp/absl/random/internal/gaussian_distribution_gentables.cc b/third_party/abseil_cpp/absl/random/internal/gaussian_distribution_gentables.cc
index a2bf03940f67..a95333d55f55 100644
--- a/third_party/abseil_cpp/absl/random/internal/gaussian_distribution_gentables.cc
+++ b/third_party/abseil_cpp/absl/random/internal/gaussian_distribution_gentables.cc
@@ -111,12 +111,9 @@ void TableGenerator::Print(std::ostream* os) {
          "\n"
          "#include \"absl/random/gaussian_distribution.h\"\n"
          "\n"
-         // "namespace " and "absl" are broken apart so as not to conflict with
-         // script that adds the LTS inline namespace.
-         "namespace "
-         "absl {\n"
-         "namespace "
-         "random_internal {\n"
+         "namespace absl {\n"
+         "ABSL_NAMESPACE_BEGIN\n"
+         "namespace random_internal {\n"
          "\n"
          "const gaussian_distribution_base::Tables\n"
          "    gaussian_distribution_base::zg_ = {\n";
@@ -125,10 +122,9 @@ void TableGenerator::Print(std::ostream* os) {
   FormatArrayContents(os, tables_.f);
   *os << "};\n"
          "\n"
-         "}  // namespace "
-         "random_internal\n"
-         "}  // namespace "
-         "absl\n"
+         "}  // namespace random_internal\n"
+         "ABSL_NAMESPACE_END\n"
+         "}  // namespace absl\n"
          "\n"
          "// clang-format on\n"
          "// END GENERATED CODE";
diff --git a/third_party/abseil_cpp/absl/random/internal/generate_real_test.cc b/third_party/abseil_cpp/absl/random/internal/generate_real_test.cc
index aa02f0c2c1b9..4bdc453483e4 100644
--- a/third_party/abseil_cpp/absl/random/internal/generate_real_test.cc
+++ b/third_party/abseil_cpp/absl/random/internal/generate_real_test.cc
@@ -419,8 +419,8 @@ TEST(GenerateRealTest, ExhaustiveFloat) {
   };
 
   // Rely on RandU64ToFloat generating values from greatest to least when
-  // supplied with uint64_t values from greatest (0xfff...) to least (0x0).  Thus,
-  // this algorithm stores the previous value, and if the new value is at
+  // supplied with uint64_t values from greatest (0xfff...) to least (0x0).
+  // Thus, this algorithm stores the previous value, and if the new value is at
   // greater than or equal to the previous value, then there is a collision in
   // the generation algorithm.
   //
diff --git a/third_party/abseil_cpp/absl/random/internal/randen_detect.cc b/third_party/abseil_cpp/absl/random/internal/randen_detect.cc
index d63230c25583..bbe7b965329c 100644
--- a/third_party/abseil_cpp/absl/random/internal/randen_detect.cc
+++ b/third_party/abseil_cpp/absl/random/internal/randen_detect.cc
@@ -1,13 +1,13 @@
 // Copyright 2017 The Abseil Authors.
 //
-// Licensed under the Apache License, Version 2.0 (the"License");
+// Licensed under the Apache License, Version 2.0 (the "License");
 // you may not use this file except in compliance with the License.
 // You may obtain a copy of the License at
 //
 //      https://www.apache.org/licenses/LICENSE-2.0
 //
 // Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an"AS IS" BASIS,
+// distributed under the License is distributed on an "AS IS" BASIS,
 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 // See the License for the specific language governing permissions and
 // limitations under the License.
diff --git a/third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc b/third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc
index 9966486fde92..b5a3f90aee63 100644
--- a/third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc
+++ b/third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc
@@ -150,6 +150,7 @@ struct alignas(16) u64x2 {
 #include <altivec.h>
 // <altivec.h> #defines vector __vector; in C++, this is bad form.
 #undef vector
+#undef bool
 
 // Rely on the PowerPC AltiVec vector operations for accelerated AES
 // instructions. GCC support of the PPC vector types is described in:
diff --git a/third_party/abseil_cpp/absl/random/internal/uniform_helper.h b/third_party/abseil_cpp/absl/random/internal/uniform_helper.h
index 5b2afecb89e6..1243bc1c62ab 100644
--- a/third_party/abseil_cpp/absl/random/internal/uniform_helper.h
+++ b/third_party/abseil_cpp/absl/random/internal/uniform_helper.h
@@ -105,7 +105,7 @@ typename absl::enable_if_t<
                           std::is_same<Tag, IntervalOpenOpenTag>>>::value,
     IntType>
 uniform_lower_bound(Tag, IntType a, IntType) {
-  return a + 1;
+  return a < (std::numeric_limits<IntType>::max)() ? (a + 1) : a;
 }
 
 template <typename FloatType, typename Tag>
@@ -136,7 +136,7 @@ typename absl::enable_if_t<
                           std::is_same<Tag, IntervalOpenOpenTag>>>::value,
     IntType>
 uniform_upper_bound(Tag, IntType, IntType b) {
-  return b - 1;
+  return b > (std::numeric_limits<IntType>::min)() ? (b - 1) : b;
 }
 
 template <typename FloatType, typename Tag>
@@ -172,6 +172,40 @@ uniform_upper_bound(Tag, FloatType, FloatType b) {
   return std::nextafter(b, (std::numeric_limits<FloatType>::max)());
 }
 
+// Returns whether the bounds are valid for the underlying distribution.
+// Inputs must have already been resolved via uniform_*_bound calls.
+//
+// The c++ standard constraints in [rand.dist.uni.int] are listed as:
+//    requires: lo <= hi.
+//
+// In the uniform_int_distrubtion, {lo, hi} are closed, closed. Thus:
+// [0, 0] is legal.
+// [0, 0) is not legal, but [0, 1) is, which translates to [0, 0].
+// (0, 1) is not legal, but (0, 2) is, which translates to [1, 1].
+// (0, 0] is not legal, but (0, 1] is, which translates to [1, 1].
+//
+// The c++ standard constraints in [rand.dist.uni.real] are listed as:
+//    requires: lo <= hi.
+//    requires: (hi - lo) <= numeric_limits<T>::max()
+//
+// In the uniform_real_distribution, {lo, hi} are closed, open, Thus:
+// [0, 0] is legal, which is [0, 0+epsilon).
+// [0, 0) is legal.
+// (0, 0) is not legal, but (0-epsilon, 0+epsilon) is.
+// (0, 0] is not legal, but (0, 0+epsilon] is.
+//
+template <typename FloatType>
+absl::enable_if_t<std::is_floating_point<FloatType>::value, bool>
+is_uniform_range_valid(FloatType a, FloatType b) {
+  return a <= b && std::isfinite(b - a);
+}
+
+template <typename IntType>
+absl::enable_if_t<std::is_integral<IntType>::value, bool>
+is_uniform_range_valid(IntType a, IntType b) {
+  return a <= b;
+}
+
 // UniformDistribution selects either absl::uniform_int_distribution
 // or absl::uniform_real_distribution depending on the NumType parameter.
 template <typename NumType>
diff --git a/third_party/abseil_cpp/absl/random/internal/uniform_helper_test.cc b/third_party/abseil_cpp/absl/random/internal/uniform_helper_test.cc
new file mode 100644
index 000000000000..173c49b0b7f8
--- /dev/null
+++ b/third_party/abseil_cpp/absl/random/internal/uniform_helper_test.cc
@@ -0,0 +1,279 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/random/internal/uniform_helper.h"
+
+#include <cmath>
+#include <cstdint>
+#include <random>
+
+#include "gtest/gtest.h"
+
+namespace {
+
+using absl::IntervalClosedClosedTag;
+using absl::IntervalClosedOpenTag;
+using absl::IntervalOpenClosedTag;
+using absl::IntervalOpenOpenTag;
+using absl::random_internal::uniform_inferred_return_t;
+using absl::random_internal::uniform_lower_bound;
+using absl::random_internal::uniform_upper_bound;
+
+class UniformHelperTest : public testing::Test {};
+
+TEST_F(UniformHelperTest, UniformBoundFunctionsGeneral) {
+  constexpr IntervalClosedClosedTag IntervalClosedClosed;
+  constexpr IntervalClosedOpenTag IntervalClosedOpen;
+  constexpr IntervalOpenClosedTag IntervalOpenClosed;
+  constexpr IntervalOpenOpenTag IntervalOpenOpen;
+
+  // absl::uniform_int_distribution natively assumes IntervalClosedClosed
+  // absl::uniform_real_distribution natively assumes IntervalClosedOpen
+
+  EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, 0, 100), 1);
+  EXPECT_EQ(uniform_lower_bound(IntervalOpenOpen, 0, 100), 1);
+  EXPECT_GT(uniform_lower_bound<float>(IntervalOpenClosed, 0, 1.0), 0);
+  EXPECT_GT(uniform_lower_bound<float>(IntervalOpenOpen, 0, 1.0), 0);
+  EXPECT_GT(uniform_lower_bound<double>(IntervalOpenClosed, 0, 1.0), 0);
+  EXPECT_GT(uniform_lower_bound<double>(IntervalOpenOpen, 0, 1.0), 0);
+
+  EXPECT_EQ(uniform_lower_bound(IntervalClosedClosed, 0, 100), 0);
+  EXPECT_EQ(uniform_lower_bound(IntervalClosedOpen, 0, 100), 0);
+  EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedClosed, 0, 1.0), 0);
+  EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedOpen, 0, 1.0), 0);
+  EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedClosed, 0, 1.0), 0);
+  EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedOpen, 0, 1.0), 0);
+
+  EXPECT_EQ(uniform_upper_bound(IntervalOpenOpen, 0, 100), 99);
+  EXPECT_EQ(uniform_upper_bound(IntervalClosedOpen, 0, 100), 99);
+  EXPECT_EQ(uniform_upper_bound<float>(IntervalOpenOpen, 0, 1.0), 1.0);
+  EXPECT_EQ(uniform_upper_bound<float>(IntervalClosedOpen, 0, 1.0), 1.0);
+  EXPECT_EQ(uniform_upper_bound<double>(IntervalOpenOpen, 0, 1.0), 1.0);
+  EXPECT_EQ(uniform_upper_bound<double>(IntervalClosedOpen, 0, 1.0), 1.0);
+
+  EXPECT_EQ(uniform_upper_bound(IntervalOpenClosed, 0, 100), 100);
+  EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0, 100), 100);
+  EXPECT_GT(uniform_upper_bound<float>(IntervalOpenClosed, 0, 1.0), 1.0);
+  EXPECT_GT(uniform_upper_bound<float>(IntervalClosedClosed, 0, 1.0), 1.0);
+  EXPECT_GT(uniform_upper_bound<double>(IntervalOpenClosed, 0, 1.0), 1.0);
+  EXPECT_GT(uniform_upper_bound<double>(IntervalClosedClosed, 0, 1.0), 1.0);
+
+  // Negative value tests
+  EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, -100, -1), -99);
+  EXPECT_EQ(uniform_lower_bound(IntervalOpenOpen, -100, -1), -99);
+  EXPECT_GT(uniform_lower_bound<float>(IntervalOpenClosed, -2.0, -1.0), -2.0);
+  EXPECT_GT(uniform_lower_bound<float>(IntervalOpenOpen, -2.0, -1.0), -2.0);
+  EXPECT_GT(uniform_lower_bound<double>(IntervalOpenClosed, -2.0, -1.0), -2.0);
+  EXPECT_GT(uniform_lower_bound<double>(IntervalOpenOpen, -2.0, -1.0), -2.0);
+
+  EXPECT_EQ(uniform_lower_bound(IntervalClosedClosed, -100, -1), -100);
+  EXPECT_EQ(uniform_lower_bound(IntervalClosedOpen, -100, -1), -100);
+  EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedClosed, -2.0, -1.0), -2.0);
+  EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedOpen, -2.0, -1.0), -2.0);
+  EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedClosed, -2.0, -1.0),
+            -2.0);
+  EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedOpen, -2.0, -1.0), -2.0);
+
+  EXPECT_EQ(uniform_upper_bound(IntervalOpenOpen, -100, -1), -2);
+  EXPECT_EQ(uniform_upper_bound(IntervalClosedOpen, -100, -1), -2);
+  EXPECT_EQ(uniform_upper_bound<float>(IntervalOpenOpen, -2.0, -1.0), -1.0);
+  EXPECT_EQ(uniform_upper_bound<float>(IntervalClosedOpen, -2.0, -1.0), -1.0);
+  EXPECT_EQ(uniform_upper_bound<double>(IntervalOpenOpen, -2.0, -1.0), -1.0);
+  EXPECT_EQ(uniform_upper_bound<double>(IntervalClosedOpen, -2.0, -1.0), -1.0);
+
+  EXPECT_EQ(uniform_upper_bound(IntervalOpenClosed, -100, -1), -1);
+  EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, -100, -1), -1);
+  EXPECT_GT(uniform_upper_bound<float>(IntervalOpenClosed, -2.0, -1.0), -1.0);
+  EXPECT_GT(uniform_upper_bound<float>(IntervalClosedClosed, -2.0, -1.0), -1.0);
+  EXPECT_GT(uniform_upper_bound<double>(IntervalOpenClosed, -2.0, -1.0), -1.0);
+  EXPECT_GT(uniform_upper_bound<double>(IntervalClosedClosed, -2.0, -1.0),
+            -1.0);
+
+  EXPECT_GT(uniform_lower_bound(IntervalOpenClosed, 1.0, 2.0), 1.0);
+  EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, +0.0), 1.0);
+  EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, -0.0), 1.0);
+  EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, -1.0), 1.0);
+}
+
+TEST_F(UniformHelperTest, UniformBoundFunctionsIntBounds) {
+  // Verifies the saturating nature of uniform_lower_bound and
+  // uniform_upper_bound
+  constexpr IntervalOpenOpenTag IntervalOpenOpen;
+
+  // uint max.
+  constexpr auto m = (std::numeric_limits<uint64_t>::max)();
+
+  EXPECT_EQ(1, uniform_lower_bound(IntervalOpenOpen, 0u, 0u));
+  EXPECT_EQ(m, uniform_lower_bound(IntervalOpenOpen, m, m));
+  EXPECT_EQ(m, uniform_lower_bound(IntervalOpenOpen, m - 1, m - 1));
+  EXPECT_EQ(0, uniform_upper_bound(IntervalOpenOpen, 0u, 0u));
+  EXPECT_EQ(m - 1, uniform_upper_bound(IntervalOpenOpen, m, m));
+
+  // int min/max
+  constexpr auto l = (std::numeric_limits<int64_t>::min)();
+  constexpr auto r = (std::numeric_limits<int64_t>::max)();
+  EXPECT_EQ(1, uniform_lower_bound(IntervalOpenOpen, 0, 0));
+  EXPECT_EQ(l + 1, uniform_lower_bound(IntervalOpenOpen, l, l));
+  EXPECT_EQ(r, uniform_lower_bound(IntervalOpenOpen, r - 1, r - 1));
+  EXPECT_EQ(r, uniform_lower_bound(IntervalOpenOpen, r, r));
+  EXPECT_EQ(-1, uniform_upper_bound(IntervalOpenOpen, 0, 0));
+  EXPECT_EQ(l, uniform_upper_bound(IntervalOpenOpen, l, l));
+  EXPECT_EQ(r - 1, uniform_upper_bound(IntervalOpenOpen, r, r));
+}
+
+TEST_F(UniformHelperTest, UniformBoundFunctionsRealBounds) {
+  // absl::uniform_real_distribution natively assumes IntervalClosedOpen;
+  // use the inverse here so each bound has to change.
+  constexpr IntervalOpenClosedTag IntervalOpenClosed;
+
+  // Edge cases: the next value toward itself is itself.
+  EXPECT_EQ(1.0, uniform_lower_bound(IntervalOpenClosed, 1.0, 1.0));
+  EXPECT_EQ(1.0f, uniform_lower_bound(IntervalOpenClosed, 1.0f, 1.0f));
+
+  // rightmost and leftmost finite values.
+  constexpr auto r = (std::numeric_limits<double>::max)();
+  const auto re = std::nexttoward(r, 0.0);
+  constexpr auto l = -r;
+  const auto le = std::nexttoward(l, 0.0);
+
+  EXPECT_EQ(l, uniform_lower_bound(IntervalOpenClosed, l, l));     // (l,l)
+  EXPECT_EQ(r, uniform_lower_bound(IntervalOpenClosed, r, r));     // (r,r)
+  EXPECT_EQ(le, uniform_lower_bound(IntervalOpenClosed, l, r));    // (l,r)
+  EXPECT_EQ(le, uniform_lower_bound(IntervalOpenClosed, l, 0.0));  // (l, 0)
+  EXPECT_EQ(le, uniform_lower_bound(IntervalOpenClosed, l, le));   // (l, le)
+  EXPECT_EQ(r, uniform_lower_bound(IntervalOpenClosed, re, r));    // (re, r)
+
+  EXPECT_EQ(le, uniform_upper_bound(IntervalOpenClosed, l, l));   // (l,l)
+  EXPECT_EQ(r, uniform_upper_bound(IntervalOpenClosed, r, r));    // (r,r)
+  EXPECT_EQ(r, uniform_upper_bound(IntervalOpenClosed, l, r));    // (l,r)
+  EXPECT_EQ(r, uniform_upper_bound(IntervalOpenClosed, l, re));   // (l,re)
+  EXPECT_EQ(r, uniform_upper_bound(IntervalOpenClosed, 0.0, r));  // (0, r)
+  EXPECT_EQ(r, uniform_upper_bound(IntervalOpenClosed, re, r));   // (re, r)
+  EXPECT_EQ(r, uniform_upper_bound(IntervalOpenClosed, le, re));  // (le, re)
+
+  const double e = std::nextafter(1.0, 2.0);  // 1 + epsilon
+  const double f = std::nextafter(1.0, 0.0);  // 1 - epsilon
+
+  // (1.0, 1.0 + epsilon)
+  EXPECT_EQ(e, uniform_lower_bound(IntervalOpenClosed, 1.0, e));
+  EXPECT_EQ(std::nextafter(e, 2.0),
+            uniform_upper_bound(IntervalOpenClosed, 1.0, e));
+
+  // (1.0-epsilon, 1.0)
+  EXPECT_EQ(1.0, uniform_lower_bound(IntervalOpenClosed, f, 1.0));
+  EXPECT_EQ(e, uniform_upper_bound(IntervalOpenClosed, f, 1.0));
+
+  // denorm cases.
+  const double g = std::numeric_limits<double>::denorm_min();
+  const double h = std::nextafter(g, 1.0);
+
+  // (0, denorm_min)
+  EXPECT_EQ(g, uniform_lower_bound(IntervalOpenClosed, 0.0, g));
+  EXPECT_EQ(h, uniform_upper_bound(IntervalOpenClosed, 0.0, g));
+
+  // (denorm_min, 1.0)
+  EXPECT_EQ(h, uniform_lower_bound(IntervalOpenClosed, g, 1.0));
+  EXPECT_EQ(e, uniform_upper_bound(IntervalOpenClosed, g, 1.0));
+
+  // Edge cases: invalid bounds.
+  EXPECT_EQ(f, uniform_lower_bound(IntervalOpenClosed, 1.0, -1.0));
+}
+
+struct Invalid {};
+
+template <typename A, typename B>
+auto InferredUniformReturnT(int) -> uniform_inferred_return_t<A, B>;
+
+template <typename, typename>
+Invalid InferredUniformReturnT(...);
+
+// Given types <A, B, Expect>, CheckArgsInferType() verifies that
+//
+//   uniform_inferred_return_t<A, B> and
+//   uniform_inferred_return_t<B, A>
+//
+// returns the type "Expect".
+//
+// This interface can also be used to assert that a given inferred return types
+// are invalid. Writing:
+//
+//   CheckArgsInferType<float, int, Invalid>()
+//
+// will assert that this overload does not exist.
+template <typename A, typename B, typename Expect>
+void CheckArgsInferType() {
+  static_assert(
+      absl::conjunction<
+          std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,
+          std::is_same<Expect,
+                       decltype(InferredUniformReturnT<B, A>(0))>>::value,
+      "");
+}
+
+TEST_F(UniformHelperTest, UniformTypeInference) {
+  // Infers common types.
+  CheckArgsInferType<uint16_t, uint16_t, uint16_t>();
+  CheckArgsInferType<uint32_t, uint32_t, uint32_t>();
+  CheckArgsInferType<uint64_t, uint64_t, uint64_t>();
+  CheckArgsInferType<int16_t, int16_t, int16_t>();
+  CheckArgsInferType<int32_t, int32_t, int32_t>();
+  CheckArgsInferType<int64_t, int64_t, int64_t>();
+  CheckArgsInferType<float, float, float>();
+  CheckArgsInferType<double, double, double>();
+
+  // Properly promotes uint16_t.
+  CheckArgsInferType<uint16_t, uint32_t, uint32_t>();
+  CheckArgsInferType<uint16_t, uint64_t, uint64_t>();
+  CheckArgsInferType<uint16_t, int32_t, int32_t>();
+  CheckArgsInferType<uint16_t, int64_t, int64_t>();
+  CheckArgsInferType<uint16_t, float, float>();
+  CheckArgsInferType<uint16_t, double, double>();
+
+  // Properly promotes int16_t.
+  CheckArgsInferType<int16_t, int32_t, int32_t>();
+  CheckArgsInferType<int16_t, int64_t, int64_t>();
+  CheckArgsInferType<int16_t, float, float>();
+  CheckArgsInferType<int16_t, double, double>();
+
+  // Invalid (u)int16_t-pairings do not compile.
+  // See "CheckArgsInferType" comments above, for how this is achieved.
+  CheckArgsInferType<uint16_t, int16_t, Invalid>();
+  CheckArgsInferType<int16_t, uint32_t, Invalid>();
+  CheckArgsInferType<int16_t, uint64_t, Invalid>();
+
+  // Properly promotes uint32_t.
+  CheckArgsInferType<uint32_t, uint64_t, uint64_t>();
+  CheckArgsInferType<uint32_t, int64_t, int64_t>();
+  CheckArgsInferType<uint32_t, double, double>();
+
+  // Properly promotes int32_t.
+  CheckArgsInferType<int32_t, int64_t, int64_t>();
+  CheckArgsInferType<int32_t, double, double>();
+
+  // Invalid (u)int32_t-pairings do not compile.
+  CheckArgsInferType<uint32_t, int32_t, Invalid>();
+  CheckArgsInferType<int32_t, uint64_t, Invalid>();
+  CheckArgsInferType<int32_t, float, Invalid>();
+  CheckArgsInferType<uint32_t, float, Invalid>();
+
+  // Invalid (u)int64_t-pairings do not compile.
+  CheckArgsInferType<uint64_t, int64_t, Invalid>();
+  CheckArgsInferType<int64_t, float, Invalid>();
+  CheckArgsInferType<int64_t, double, Invalid>();
+
+  // Properly promotes float.
+  CheckArgsInferType<float, double, double>();
+}
+
+}  // namespace