diff options
author | Vincent Ambo <mail@tazj.in> | 2022-02-07T23·05+0300 |
---|---|---|
committer | clbot <clbot@tvl.fyi> | 2022-02-07T23·09+0000 |
commit | 5aa5d282eac56a21e74611c1cdbaa97bb5db2dca (patch) | |
tree | 8cc5dce8157a1470ff76719dd15d65f648a05522 /third_party/abseil_cpp/absl/random/distributions_test.cc | |
parent | a25675804c4f429fab5ee5201fe25e89865dfd13 (diff) |
chore(3p/abseil_cpp): unvendor abseil_cpp r/3786
we weren't actually using these sources anymore, okay? Change-Id: If701571d9716de308d3512e1eb22c35db0877a66 Reviewed-on: https://cl.tvl.fyi/c/depot/+/5248 Tested-by: BuildkiteCI Reviewed-by: grfn <grfn@gws.fyi> Autosubmit: tazjin <tazjin@tvl.su>
Diffstat (limited to 'third_party/abseil_cpp/absl/random/distributions_test.cc')
-rw-r--r-- | third_party/abseil_cpp/absl/random/distributions_test.cc | 455 |
1 files changed, 0 insertions, 455 deletions
diff --git a/third_party/abseil_cpp/absl/random/distributions_test.cc b/third_party/abseil_cpp/absl/random/distributions_test.cc deleted file mode 100644 index 5866a07257e5..000000000000 --- a/third_party/abseil_cpp/absl/random/distributions_test.cc +++ /dev/null @@ -1,455 +0,0 @@ -// Copyright 2017 The Abseil Authors. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// https://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include "absl/random/distributions.h" - -#include <cmath> -#include <cstdint> -#include <random> -#include <vector> - -#include "gtest/gtest.h" -#include "absl/random/internal/distribution_test_util.h" -#include "absl/random/random.h" - -namespace { - -constexpr int kSize = 400000; - -class RandomDistributionsTest : public testing::Test {}; - - -struct Invalid {}; - -template <typename A, typename B> -auto InferredUniformReturnT(int) - -> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(), - std::declval<A>(), std::declval<B>())); - -template <typename, typename> -Invalid InferredUniformReturnT(...); - -template <typename TagType, typename A, typename B> -auto InferredTaggedUniformReturnT(int) - -> decltype(absl::Uniform(std::declval<TagType>(), - std::declval<absl::InsecureBitGen&>(), - std::declval<A>(), std::declval<B>())); - -template <typename, typename, typename> -Invalid InferredTaggedUniformReturnT(...); - -// Given types <A, B, Expect>, CheckArgsInferType() verifies that -// -// absl::Uniform(gen, A{}, B{}) -// -// returns the type "Expect". -// -// This interface can also be used to assert that a given absl::Uniform() -// overload does not exist / will not compile. Given types <A, B>, the -// expression -// -// decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>())) -// -// will not compile, leaving the definition of InferredUniformReturnT<A, B> to -// resolve (via SFINAE) to the overload which returns type "Invalid". This -// allows tests to assert that an invocation such as -// -// absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1) -// -// should not compile, since neither type, float nor int, can precisely -// represent both endpoint-values. Writing: -// -// CheckArgsInferType<float, int, Invalid>() -// -// will assert that this overload does not exist. -template <typename A, typename B, typename Expect> -void CheckArgsInferType() { - static_assert( - absl::conjunction< - std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>, - std::is_same<Expect, - decltype(InferredUniformReturnT<B, A>(0))>>::value, - ""); - static_assert( - absl::conjunction< - std::is_same<Expect, decltype(InferredTaggedUniformReturnT< - absl::IntervalOpenOpenTag, A, B>(0))>, - std::is_same<Expect, - decltype(InferredTaggedUniformReturnT< - absl::IntervalOpenOpenTag, B, A>(0))>>::value, - ""); -} - -template <typename A, typename B, typename ExplicitRet> -auto ExplicitUniformReturnT(int) -> decltype( - absl::Uniform<ExplicitRet>(*std::declval<absl::InsecureBitGen*>(), - std::declval<A>(), std::declval<B>())); - -template <typename, typename, typename ExplicitRet> -Invalid ExplicitUniformReturnT(...); - -template <typename TagType, typename A, typename B, typename ExplicitRet> -auto ExplicitTaggedUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>( - std::declval<TagType>(), *std::declval<absl::InsecureBitGen*>(), - std::declval<A>(), std::declval<B>())); - -template <typename, typename, typename, typename ExplicitRet> -Invalid ExplicitTaggedUniformReturnT(...); - -// Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that -// -// absl::Uniform<Expect>(gen, A{}, B{}) -// -// returns the type "Expect", and that the function-overload has the signature -// -// Expect(URBG&, Expect, Expect) -template <typename A, typename B, typename Expect> -void CheckArgsReturnExpectedType() { - static_assert( - absl::conjunction< - std::is_same<Expect, - decltype(ExplicitUniformReturnT<A, B, Expect>(0))>, - std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>( - 0))>>::value, - ""); - static_assert( - absl::conjunction< - std::is_same<Expect, - decltype(ExplicitTaggedUniformReturnT< - absl::IntervalOpenOpenTag, A, B, Expect>(0))>, - std::is_same<Expect, decltype(ExplicitTaggedUniformReturnT< - absl::IntervalOpenOpenTag, B, A, - Expect>(0))>>::value, - ""); -} - -TEST_F(RandomDistributionsTest, UniformTypeInference) { - // Infers common types. - CheckArgsInferType<uint16_t, uint16_t, uint16_t>(); - CheckArgsInferType<uint32_t, uint32_t, uint32_t>(); - CheckArgsInferType<uint64_t, uint64_t, uint64_t>(); - CheckArgsInferType<int16_t, int16_t, int16_t>(); - CheckArgsInferType<int32_t, int32_t, int32_t>(); - CheckArgsInferType<int64_t, int64_t, int64_t>(); - CheckArgsInferType<float, float, float>(); - CheckArgsInferType<double, double, double>(); - - // Explicitly-specified return-values override inferences. - CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>(); - CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>(); - CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>(); - CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>(); - CheckArgsReturnExpectedType<int16_t, int32_t, double>(); - CheckArgsReturnExpectedType<float, float, double>(); - CheckArgsReturnExpectedType<int, int, int16_t>(); - - // Properly promotes uint16_t. - CheckArgsInferType<uint16_t, uint32_t, uint32_t>(); - CheckArgsInferType<uint16_t, uint64_t, uint64_t>(); - CheckArgsInferType<uint16_t, int32_t, int32_t>(); - CheckArgsInferType<uint16_t, int64_t, int64_t>(); - CheckArgsInferType<uint16_t, float, float>(); - CheckArgsInferType<uint16_t, double, double>(); - - // Properly promotes int16_t. - CheckArgsInferType<int16_t, int32_t, int32_t>(); - CheckArgsInferType<int16_t, int64_t, int64_t>(); - CheckArgsInferType<int16_t, float, float>(); - CheckArgsInferType<int16_t, double, double>(); - - // Invalid (u)int16_t-pairings do not compile. - // See "CheckArgsInferType" comments above, for how this is achieved. - CheckArgsInferType<uint16_t, int16_t, Invalid>(); - CheckArgsInferType<int16_t, uint32_t, Invalid>(); - CheckArgsInferType<int16_t, uint64_t, Invalid>(); - - // Properly promotes uint32_t. - CheckArgsInferType<uint32_t, uint64_t, uint64_t>(); - CheckArgsInferType<uint32_t, int64_t, int64_t>(); - CheckArgsInferType<uint32_t, double, double>(); - - // Properly promotes int32_t. - CheckArgsInferType<int32_t, int64_t, int64_t>(); - CheckArgsInferType<int32_t, double, double>(); - - // Invalid (u)int32_t-pairings do not compile. - CheckArgsInferType<uint32_t, int32_t, Invalid>(); - CheckArgsInferType<int32_t, uint64_t, Invalid>(); - CheckArgsInferType<int32_t, float, Invalid>(); - CheckArgsInferType<uint32_t, float, Invalid>(); - - // Invalid (u)int64_t-pairings do not compile. - CheckArgsInferType<uint64_t, int64_t, Invalid>(); - CheckArgsInferType<int64_t, float, Invalid>(); - CheckArgsInferType<int64_t, double, Invalid>(); - - // Properly promotes float. - CheckArgsInferType<float, double, double>(); -} - -TEST_F(RandomDistributionsTest, UniformExamples) { - // Examples. - absl::InsecureBitGen gen; - EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f)); - EXPECT_NE(1, absl::Uniform(gen, 0, 1.0)); - EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, - static_cast<uint16_t>(0), 1.0f)); - EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0)); - EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0)); - EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1)); - EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1)); - EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1)); -} - -TEST_F(RandomDistributionsTest, UniformNoBounds) { - absl::InsecureBitGen gen; - - absl::Uniform<uint8_t>(gen); - absl::Uniform<uint16_t>(gen); - absl::Uniform<uint32_t>(gen); - absl::Uniform<uint64_t>(gen); -} - -TEST_F(RandomDistributionsTest, UniformNonsenseRanges) { - // The ranges used in this test are undefined behavior. - // The results are arbitrary and subject to future changes. - absl::InsecureBitGen gen; - - // <uint> - EXPECT_EQ(0, absl::Uniform<uint64_t>(gen, 0, 0)); - EXPECT_EQ(1, absl::Uniform<uint64_t>(gen, 1, 0)); - EXPECT_EQ(0, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 0, 0)); - EXPECT_EQ(1, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 1, 0)); - - constexpr auto m = (std::numeric_limits<uint64_t>::max)(); - - EXPECT_EQ(m, absl::Uniform(gen, m, m)); - EXPECT_EQ(m, absl::Uniform(gen, m, m - 1)); - EXPECT_EQ(m - 1, absl::Uniform(gen, m - 1, m)); - EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m)); - EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m - 1)); - EXPECT_EQ(m - 1, absl::Uniform(absl::IntervalOpenOpen, gen, m - 1, m)); - - // <int> - EXPECT_EQ(0, absl::Uniform<int64_t>(gen, 0, 0)); - EXPECT_EQ(1, absl::Uniform<int64_t>(gen, 1, 0)); - EXPECT_EQ(0, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 0, 0)); - EXPECT_EQ(1, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 1, 0)); - - constexpr auto l = (std::numeric_limits<int64_t>::min)(); - constexpr auto r = (std::numeric_limits<int64_t>::max)(); - - EXPECT_EQ(l, absl::Uniform(gen, l, l)); - EXPECT_EQ(r, absl::Uniform(gen, r, r)); - EXPECT_EQ(r, absl::Uniform(gen, r, r - 1)); - EXPECT_EQ(r - 1, absl::Uniform(gen, r - 1, r)); - EXPECT_EQ(l, absl::Uniform(absl::IntervalOpenOpen, gen, l, l)); - EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r)); - EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r - 1)); - EXPECT_EQ(r - 1, absl::Uniform(absl::IntervalOpenOpen, gen, r - 1, r)); - - // <double> - const double e = std::nextafter(1.0, 2.0); // 1 + epsilon - const double f = std::nextafter(1.0, 0.0); // 1 - epsilon - const double g = std::numeric_limits<double>::denorm_min(); - - EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, e)); - EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, f)); - EXPECT_EQ(0.0, absl::Uniform(gen, 0.0, g)); - - EXPECT_EQ(e, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, e)); - EXPECT_EQ(f, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, f)); - EXPECT_EQ(g, absl::Uniform(absl::IntervalOpenOpen, gen, 0.0, g)); -} - -// TODO(lar): Validate properties of non-default interval-semantics. -TEST_F(RandomDistributionsTest, UniformReal) { - std::vector<double> values(kSize); - - absl::InsecureBitGen gen; - for (int i = 0; i < kSize; i++) { - values[i] = absl::Uniform(gen, 0, 1.0); - } - - const auto moments = - absl::random_internal::ComputeDistributionMoments(values); - EXPECT_NEAR(0.5, moments.mean, 0.02); - EXPECT_NEAR(1 / 12.0, moments.variance, 0.02); - EXPECT_NEAR(0.0, moments.skewness, 0.02); - EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02); -} - -TEST_F(RandomDistributionsTest, UniformInt) { - std::vector<double> values(kSize); - - absl::InsecureBitGen gen; - for (int i = 0; i < kSize; i++) { - const int64_t kMax = 1000000000000ll; - int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax); - // convert to double. - values[i] = static_cast<double>(j) / static_cast<double>(kMax); - } - - const auto moments = - absl::random_internal::ComputeDistributionMoments(values); - EXPECT_NEAR(0.5, moments.mean, 0.02); - EXPECT_NEAR(1 / 12.0, moments.variance, 0.02); - EXPECT_NEAR(0.0, moments.skewness, 0.02); - EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02); - - /* - // NOTE: These are not supported by absl::Uniform, which is specialized - // on integer and real valued types. - - enum E { E0, E1 }; // enum - enum S : int { S0, S1 }; // signed enum - enum U : unsigned int { U0, U1 }; // unsigned enum - - absl::Uniform(gen, E0, E1); - absl::Uniform(gen, S0, S1); - absl::Uniform(gen, U0, U1); - */ -} - -TEST_F(RandomDistributionsTest, Exponential) { - std::vector<double> values(kSize); - - absl::InsecureBitGen gen; - for (int i = 0; i < kSize; i++) { - values[i] = absl::Exponential<double>(gen); - } - - const auto moments = - absl::random_internal::ComputeDistributionMoments(values); - EXPECT_NEAR(1.0, moments.mean, 0.02); - EXPECT_NEAR(1.0, moments.variance, 0.025); - EXPECT_NEAR(2.0, moments.skewness, 0.1); - EXPECT_LT(5.0, moments.kurtosis); -} - -TEST_F(RandomDistributionsTest, PoissonDefault) { - std::vector<double> values(kSize); - - absl::InsecureBitGen gen; - for (int i = 0; i < kSize; i++) { - values[i] = absl::Poisson<int64_t>(gen); - } - - const auto moments = - absl::random_internal::ComputeDistributionMoments(values); - EXPECT_NEAR(1.0, moments.mean, 0.02); - EXPECT_NEAR(1.0, moments.variance, 0.02); - EXPECT_NEAR(1.0, moments.skewness, 0.025); - EXPECT_LT(2.0, moments.kurtosis); -} - -TEST_F(RandomDistributionsTest, PoissonLarge) { - constexpr double kMean = 100000000.0; - std::vector<double> values(kSize); - - absl::InsecureBitGen gen; - for (int i = 0; i < kSize; i++) { - values[i] = absl::Poisson<int64_t>(gen, kMean); - } - - const auto moments = - absl::random_internal::ComputeDistributionMoments(values); - EXPECT_NEAR(kMean, moments.mean, kMean * 0.015); - EXPECT_NEAR(kMean, moments.variance, kMean * 0.015); - EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02); - EXPECT_LT(2.0, moments.kurtosis); -} - -TEST_F(RandomDistributionsTest, Bernoulli) { - constexpr double kP = 0.5151515151; - std::vector<double> values(kSize); - - absl::InsecureBitGen gen; - for (int i = 0; i < kSize; i++) { - values[i] = absl::Bernoulli(gen, kP); - } - - const auto moments = - absl::random_internal::ComputeDistributionMoments(values); - EXPECT_NEAR(kP, moments.mean, 0.01); -} - -TEST_F(RandomDistributionsTest, Beta) { - constexpr double kAlpha = 2.0; - constexpr double kBeta = 3.0; - std::vector<double> values(kSize); - - absl::InsecureBitGen gen; - for (int i = 0; i < kSize; i++) { - values[i] = absl::Beta(gen, kAlpha, kBeta); - } - - const auto moments = - absl::random_internal::ComputeDistributionMoments(values); - EXPECT_NEAR(0.4, moments.mean, 0.01); -} - -TEST_F(RandomDistributionsTest, Zipf) { - std::vector<double> values(kSize); - - absl::InsecureBitGen gen; - for (int i = 0; i < kSize; i++) { - values[i] = absl::Zipf<int64_t>(gen, 100); - } - - // The mean of a zipf distribution is: H(N, s-1) / H(N,s). - // Given the parameter v = 1, this gives the following function: - // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944 - const auto moments = - absl::random_internal::ComputeDistributionMoments(values); - EXPECT_NEAR(6.5944, moments.mean, 2000) << moments; -} - -TEST_F(RandomDistributionsTest, Gaussian) { - std::vector<double> values(kSize); - - absl::InsecureBitGen gen; - for (int i = 0; i < kSize; i++) { - values[i] = absl::Gaussian<double>(gen); - } - - const auto moments = - absl::random_internal::ComputeDistributionMoments(values); - EXPECT_NEAR(0.0, moments.mean, 0.02); - EXPECT_NEAR(1.0, moments.variance, 0.04); - EXPECT_NEAR(0, moments.skewness, 0.2); - EXPECT_NEAR(3.0, moments.kurtosis, 0.5); -} - -TEST_F(RandomDistributionsTest, LogUniform) { - std::vector<double> values(kSize); - - absl::InsecureBitGen gen; - for (int i = 0; i < kSize; i++) { - values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1); - } - - // The mean is the sum of the fractional means of the uniform distributions: - // [0..0][1..1][2..3][4..7][8..15][16..31][32..63] - // [64..127][128..255][256..511][512..1023] - const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 + - 64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) / - (2.0 * 11.0); - - const auto moments = - absl::random_internal::ComputeDistributionMoments(values); - EXPECT_NEAR(mean, moments.mean, 2) << moments; -} - -} // namespace |