diff options
author | Vincent Ambo <tazjin@google.com> | 2020-05-20T01·32+0100 |
---|---|---|
committer | Vincent Ambo <tazjin@google.com> | 2020-05-20T01·32+0100 |
commit | fc8dc48020ac5b52731d0828a96ea4d2526c77ba (patch) | |
tree | 353204eea3268095a9ad3f5345720f32c2615c69 /third_party/abseil_cpp/absl/random/discrete_distribution.h | |
parent | ffb2ae54beb5796cd408fbe15d2d2da09ff37adf (diff) | |
parent | 768eb2ca2857342673fcd462792ce04b8bac3fa3 (diff) |
Add 'third_party/abseil_cpp/' from commit '768eb2ca2857342673fcd462792ce04b8bac3fa3' r/781
git-subtree-dir: third_party/abseil_cpp git-subtree-mainline: ffb2ae54beb5796cd408fbe15d2d2da09ff37adf git-subtree-split: 768eb2ca2857342673fcd462792ce04b8bac3fa3
Diffstat (limited to 'third_party/abseil_cpp/absl/random/discrete_distribution.h')
-rw-r--r-- | third_party/abseil_cpp/absl/random/discrete_distribution.h | 247 |
1 files changed, 247 insertions, 0 deletions
diff --git a/third_party/abseil_cpp/absl/random/discrete_distribution.h b/third_party/abseil_cpp/absl/random/discrete_distribution.h new file mode 100644 index 000000000000..171aa11a1eb4 --- /dev/null +++ b/third_party/abseil_cpp/absl/random/discrete_distribution.h @@ -0,0 +1,247 @@ +// Copyright 2017 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ +#define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ + +#include <cassert> +#include <cmath> +#include <istream> +#include <limits> +#include <numeric> +#include <type_traits> +#include <utility> +#include <vector> + +#include "absl/random/bernoulli_distribution.h" +#include "absl/random/internal/iostream_state_saver.h" +#include "absl/random/uniform_int_distribution.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN + +// absl::discrete_distribution +// +// A discrete distribution produces random integers i, where 0 <= i < n +// distributed according to the discrete probability function: +// +// P(i|p0,...,pn−1)=pi +// +// This class is an implementation of discrete_distribution (see +// [rand.dist.samp.discrete]). +// +// The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2. +// absl::discrete_distribution takes O(N) time to precompute the probabilities +// (where N is the number of possible outcomes in the distribution) at +// construction, and then takes O(1) time for each variate generation. Many +// other implementations also take O(N) time to construct an ordered sequence of +// partial sums, plus O(log N) time per variate to binary search. +// +template <typename IntType = int> +class discrete_distribution { + public: + using result_type = IntType; + + class param_type { + public: + using distribution_type = discrete_distribution; + + param_type() { init(); } + + template <typename InputIterator> + explicit param_type(InputIterator begin, InputIterator end) + : p_(begin, end) { + init(); + } + + explicit param_type(std::initializer_list<double> weights) : p_(weights) { + init(); + } + + template <class UnaryOperation> + explicit param_type(size_t nw, double xmin, double xmax, + UnaryOperation fw) { + if (nw > 0) { + p_.reserve(nw); + double delta = (xmax - xmin) / static_cast<double>(nw); + assert(delta > 0); + double t = delta * 0.5; + for (size_t i = 0; i < nw; ++i) { + p_.push_back(fw(xmin + i * delta + t)); + } + } + init(); + } + + const std::vector<double>& probabilities() const { return p_; } + size_t n() const { return p_.size() - 1; } + + friend bool operator==(const param_type& a, const param_type& b) { + return a.probabilities() == b.probabilities(); + } + + friend bool operator!=(const param_type& a, const param_type& b) { + return !(a == b); + } + + private: + friend class discrete_distribution; + + void init(); + + std::vector<double> p_; // normalized probabilities + std::vector<std::pair<double, size_t>> q_; // (acceptance, alternate) pairs + + static_assert(std::is_integral<result_type>::value, + "Class-template absl::discrete_distribution<> must be " + "parameterized using an integral type."); + }; + + discrete_distribution() : param_() {} + + explicit discrete_distribution(const param_type& p) : param_(p) {} + + template <typename InputIterator> + explicit discrete_distribution(InputIterator begin, InputIterator end) + : param_(begin, end) {} + + explicit discrete_distribution(std::initializer_list<double> weights) + : param_(weights) {} + + template <class UnaryOperation> + explicit discrete_distribution(size_t nw, double xmin, double xmax, + UnaryOperation fw) + : param_(nw, xmin, xmax, std::move(fw)) {} + + void reset() {} + + // generating functions + template <typename URBG> + result_type operator()(URBG& g) { // NOLINT(runtime/references) + return (*this)(g, param_); + } + + template <typename URBG> + result_type operator()(URBG& g, // NOLINT(runtime/references) + const param_type& p); + + const param_type& param() const { return param_; } + void param(const param_type& p) { param_ = p; } + + result_type(min)() const { return 0; } + result_type(max)() const { + return static_cast<result_type>(param_.n()); + } // inclusive + + // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a + // const std::vector<double>&. + const std::vector<double>& probabilities() const { + return param_.probabilities(); + } + + friend bool operator==(const discrete_distribution& a, + const discrete_distribution& b) { + return a.param_ == b.param_; + } + friend bool operator!=(const discrete_distribution& a, + const discrete_distribution& b) { + return a.param_ != b.param_; + } + + private: + param_type param_; +}; + +// -------------------------------------------------------------------------- +// Implementation details only below +// -------------------------------------------------------------------------- + +namespace random_internal { + +// Using the vector `*probabilities`, whose values are the weights or +// probabilities of an element being selected, constructs the proportional +// probabilities used by the discrete distribution. `*probabilities` will be +// scaled, if necessary, so that its entries sum to a value sufficiently close +// to 1.0. +std::vector<std::pair<double, size_t>> InitDiscreteDistribution( + std::vector<double>* probabilities); + +} // namespace random_internal + +template <typename IntType> +void discrete_distribution<IntType>::param_type::init() { + if (p_.empty()) { + p_.push_back(1.0); + q_.emplace_back(1.0, 0); + } else { + assert(n() <= (std::numeric_limits<IntType>::max)()); + q_ = random_internal::InitDiscreteDistribution(&p_); + } +} + +template <typename IntType> +template <typename URBG> +typename discrete_distribution<IntType>::result_type +discrete_distribution<IntType>::operator()( + URBG& g, // NOLINT(runtime/references) + const param_type& p) { + const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g); + const auto& q = p.q_[idx]; + const bool selected = absl::bernoulli_distribution(q.first)(g); + return selected ? idx : static_cast<result_type>(q.second); +} + +template <typename CharT, typename Traits, typename IntType> +std::basic_ostream<CharT, Traits>& operator<<( + std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) + const discrete_distribution<IntType>& x) { + auto saver = random_internal::make_ostream_state_saver(os); + const auto& probabilities = x.param().probabilities(); + os << probabilities.size(); + + os.precision(random_internal::stream_precision_helper<double>::kPrecision); + for (const auto& p : probabilities) { + os << os.fill() << p; + } + return os; +} + +template <typename CharT, typename Traits, typename IntType> +std::basic_istream<CharT, Traits>& operator>>( + std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) + discrete_distribution<IntType>& x) { // NOLINT(runtime/references) + using param_type = typename discrete_distribution<IntType>::param_type; + auto saver = random_internal::make_istream_state_saver(is); + + size_t n; + std::vector<double> p; + + is >> n; + if (is.fail()) return is; + if (n > 0) { + p.reserve(n); + for (IntType i = 0; i < n && !is.fail(); ++i) { + auto tmp = random_internal::read_floating_point<double>(is); + if (is.fail()) return is; + p.push_back(tmp); + } + } + x.param(param_type(p.begin(), p.end())); + return is; +} + +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ |