about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/random/bernoulli_distribution_test.cc
diff options
context:
space:
mode:
authorVincent Ambo <mail@tazj.in>2022-02-07T23·05+0300
committerclbot <clbot@tvl.fyi>2022-02-07T23·09+0000
commit5aa5d282eac56a21e74611c1cdbaa97bb5db2dca (patch)
tree8cc5dce8157a1470ff76719dd15d65f648a05522 /third_party/abseil_cpp/absl/random/bernoulli_distribution_test.cc
parenta25675804c4f429fab5ee5201fe25e89865dfd13 (diff)
chore(3p/abseil_cpp): unvendor abseil_cpp r/3786
we weren't actually using these sources anymore, okay?

Change-Id: If701571d9716de308d3512e1eb22c35db0877a66
Reviewed-on: https://cl.tvl.fyi/c/depot/+/5248
Tested-by: BuildkiteCI
Reviewed-by: grfn <grfn@gws.fyi>
Autosubmit: tazjin <tazjin@tvl.su>
Diffstat (limited to 'third_party/abseil_cpp/absl/random/bernoulli_distribution_test.cc')
-rw-r--r--third_party/abseil_cpp/absl/random/bernoulli_distribution_test.cc217
1 files changed, 0 insertions, 217 deletions
diff --git a/third_party/abseil_cpp/absl/random/bernoulli_distribution_test.cc b/third_party/abseil_cpp/absl/random/bernoulli_distribution_test.cc
deleted file mode 100644
index b250f8787c6e..000000000000
--- a/third_party/abseil_cpp/absl/random/bernoulli_distribution_test.cc
+++ /dev/null
@@ -1,217 +0,0 @@
-// Copyright 2017 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-//      https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-#include "absl/random/bernoulli_distribution.h"
-
-#include <cmath>
-#include <cstddef>
-#include <random>
-#include <sstream>
-#include <utility>
-
-#include "gtest/gtest.h"
-#include "absl/random/internal/pcg_engine.h"
-#include "absl/random/internal/sequence_urbg.h"
-#include "absl/random/random.h"
-
-namespace {
-
-class BernoulliTest : public testing::TestWithParam<std::pair<double, size_t>> {
-};
-
-TEST_P(BernoulliTest, Serialize) {
-  const double d = GetParam().first;
-  absl::bernoulli_distribution before(d);
-
-  {
-    absl::bernoulli_distribution via_param{
-        absl::bernoulli_distribution::param_type(d)};
-    EXPECT_EQ(via_param, before);
-  }
-
-  std::stringstream ss;
-  ss << before;
-  absl::bernoulli_distribution after(0.6789);
-
-  EXPECT_NE(before.p(), after.p());
-  EXPECT_NE(before.param(), after.param());
-  EXPECT_NE(before, after);
-
-  ss >> after;
-
-  EXPECT_EQ(before.p(), after.p());
-  EXPECT_EQ(before.param(), after.param());
-  EXPECT_EQ(before, after);
-}
-
-TEST_P(BernoulliTest, Accuracy) {
-  // Sadly, the claim to fame for this implementation is precise accuracy, which
-  // is very, very hard to measure, the improvements come as trials approach the
-  // limit of double accuracy; thus the outcome differs from the
-  // std::bernoulli_distribution with a probability of approximately 1 in 2^-53.
-  const std::pair<double, size_t> para = GetParam();
-  size_t trials = para.second;
-  double p = para.first;
-
-  // We use a fixed bit generator for distribution accuracy tests.  This allows
-  // these tests to be deterministic, while still testing the qualify of the
-  // implementation.
-  absl::random_internal::pcg64_2018_engine rng(0x2B7E151628AED2A6);
-
-  size_t yes = 0;
-  absl::bernoulli_distribution dist(p);
-  for (size_t i = 0; i < trials; ++i) {
-    if (dist(rng)) yes++;
-  }
-
-  // Compute the distribution parameters for a binomial test, using a normal
-  // approximation for the confidence interval, as there are a sufficiently
-  // large number of trials that the central limit theorem applies.
-  const double stddev_p = std::sqrt((p * (1.0 - p)) / trials);
-  const double expected = trials * p;
-  const double stddev = trials * stddev_p;
-
-  // 5 sigma, approved by Richard Feynman
-  EXPECT_NEAR(yes, expected, 5 * stddev)
-      << "@" << p << ", "
-      << std::abs(static_cast<double>(yes) - expected) / stddev << " stddev";
-}
-
-// There must be many more trials to make the mean approximately normal for `p`
-// closes to 0 or 1.
-INSTANTIATE_TEST_SUITE_P(
-    All, BernoulliTest,
-    ::testing::Values(
-        // Typical values.
-        std::make_pair(0, 30000), std::make_pair(1e-3, 30000000),
-        std::make_pair(0.1, 3000000), std::make_pair(0.5, 3000000),
-        std::make_pair(0.9, 30000000), std::make_pair(0.999, 30000000),
-        std::make_pair(1, 30000),
-        // Boundary cases.
-        std::make_pair(std::nextafter(1.0, 0.0), 1),  // ~1 - epsilon
-        std::make_pair(std::numeric_limits<double>::epsilon(), 1),
-        std::make_pair(std::nextafter(std::numeric_limits<double>::min(),
-                                      1.0),  // min + epsilon
-                       1),
-        std::make_pair(std::numeric_limits<double>::min(),  // smallest normal
-                       1),
-        std::make_pair(
-            std::numeric_limits<double>::denorm_min(),  // smallest denorm
-            1),
-        std::make_pair(std::numeric_limits<double>::min() / 2, 1),  // denorm
-        std::make_pair(std::nextafter(std::numeric_limits<double>::min(),
-                                      0.0),  // denorm_max
-                       1)));
-
-// NOTE: absl::bernoulli_distribution is not guaranteed to be stable.
-TEST(BernoulliTest, StabilityTest) {
-  // absl::bernoulli_distribution stability relies on FastUniformBits and
-  // integer arithmetic.
-  absl::random_internal::sequence_urbg urbg({
-      0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
-      0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
-      0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
-      0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull,
-      0x4864f22c059bf29eull, 0x247856d8b862665cull, 0xe46e86e9a1337e10ull,
-      0xd8c8541f3519b133ull, 0xe75b5162c567b9e4ull, 0xf732e5ded7009c5bull,
-      0xb170b98353121eacull, 0x1ec2e8986d2362caull, 0x814c8e35fe9a961aull,
-      0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull, 0x1224e62c978bbc7full,
-      0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull, 0x1bbc23cfa8fac721ull,
-      0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull, 0x836d794457c08849ull,
-      0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull, 0xb12d74fdd718c8c5ull,
-      0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull, 0x5738341045ba0d85ull,
-      0xe3fd722dc65ad09eull, 0x5a14fd21ea2a5705ull, 0x14e6ea4d6edb0c73ull,
-      0x275b0dc7e0a18acfull, 0x36cebe0d2653682eull, 0x0361e9b23861596bull,
-  });
-
-  // Generate a string of '0' and '1' for the distribution output.
-  auto generate = [&urbg](absl::bernoulli_distribution& dist) {
-    std::string output;
-    output.reserve(36);
-    urbg.reset();
-    for (int i = 0; i < 35; i++) {
-      output.append(dist(urbg) ? "1" : "0");
-    }
-    return output;
-  };
-
-  const double kP = 0.0331289862362;
-  {
-    absl::bernoulli_distribution dist(kP);
-    auto v = generate(dist);
-    EXPECT_EQ(35, urbg.invocations());
-    EXPECT_EQ(v, "00000000000010000000000010000000000") << dist;
-  }
-  {
-    absl::bernoulli_distribution dist(kP * 10.0);
-    auto v = generate(dist);
-    EXPECT_EQ(35, urbg.invocations());
-    EXPECT_EQ(v, "00000100010010010010000011000011010") << dist;
-  }
-  {
-    absl::bernoulli_distribution dist(kP * 20.0);
-    auto v = generate(dist);
-    EXPECT_EQ(35, urbg.invocations());
-    EXPECT_EQ(v, "00011110010110110011011111110111011") << dist;
-  }
-  {
-    absl::bernoulli_distribution dist(1.0 - kP);
-    auto v = generate(dist);
-    EXPECT_EQ(35, urbg.invocations());
-    EXPECT_EQ(v, "11111111111111111111011111111111111") << dist;
-  }
-}
-
-TEST(BernoulliTest, StabilityTest2) {
-  absl::random_internal::sequence_urbg urbg(
-      {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
-       0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
-       0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
-       0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
-
-  // Generate a string of '0' and '1' for the distribution output.
-  auto generate = [&urbg](absl::bernoulli_distribution& dist) {
-    std::string output;
-    output.reserve(13);
-    urbg.reset();
-    for (int i = 0; i < 12; i++) {
-      output.append(dist(urbg) ? "1" : "0");
-    }
-    return output;
-  };
-
-  constexpr double b0 = 1.0 / 13.0 / 0.2;
-  constexpr double b1 = 2.0 / 13.0 / 0.2;
-  constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1));
-  {
-    absl::bernoulli_distribution dist(b0);
-    auto v = generate(dist);
-    EXPECT_EQ(12, urbg.invocations());
-    EXPECT_EQ(v, "000011100101") << dist;
-  }
-  {
-    absl::bernoulli_distribution dist(b1);
-    auto v = generate(dist);
-    EXPECT_EQ(12, urbg.invocations());
-    EXPECT_EQ(v, "001111101101") << dist;
-  }
-  {
-    absl::bernoulli_distribution dist(b3);
-    auto v = generate(dist);
-    EXPECT_EQ(12, urbg.invocations());
-    EXPECT_EQ(v, "001111101111") << dist;
-  }
-}
-
-}  // namespace